]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/nand/nand_base.c
[MTD NAND] Allow override of page read and write functions.
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
89
90 /*
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
93 */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
99 *
100 * Deselect, release chip lock and wake up anyone waiting on the device
101 */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104 struct nand_chip *chip = mtd->priv;
105
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
108
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
120 *
121 * Default read function for 8bit buswith
122 */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
132 *
133 * Default read function for 16bit buswith with
134 * endianess conversion
135 */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 16bit buswith without
147 * endianess conversion
148 */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
159 *
160 * Default select function for 1 chip devices.
161 */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164 struct nand_chip *chip = mtd->priv;
165
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
172
173 default:
174 BUG();
175 }
176 }
177
178 /**
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
183 *
184 * Default write function for 8bit buswith
185 */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188 int i;
189 struct nand_chip *chip = mtd->priv;
190
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
200 *
201 * Default read function for 8bit buswith
202 */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205 int i;
206 struct nand_chip *chip = mtd->priv;
207
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
217 *
218 * Default verify function for 8bit buswith
219 */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222 int i;
223 struct nand_chip *chip = mtd->priv;
224
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
229 }
230
231 /**
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 16bit buswith
238 */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
245
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
256 *
257 * Default read function for 16bit buswith
258 */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
265
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
275 *
276 * Default verify function for 16bit buswith
277 */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
288
289 return 0;
290 }
291
292 /**
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
297 *
298 * Check, if the block is bad.
299 */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
305
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
309
310 nand_get_device(chip, mtd, FL_READING);
311
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
316
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
330 }
331
332 if (getchip)
333 nand_release_device(mtd);
334
335 return res;
336 }
337
338 /**
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
342 *
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
351
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
363 */
364 ofs += mtd->oobsize;
365 chip->ops.len = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371 }
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
375 }
376
377 /**
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
381 *
382 * The function expects, that the device is already selected
383 */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
398 *
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
401 */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
404 {
405 struct nand_chip *chip = mtd->priv;
406
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
409
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
417 */
418 void nand_wait_ready(struct mtd_info *mtd)
419 {
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
422
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
433
434 /**
435 * nand_command - [DEFAULT] Send command to NAND device
436 * @mtd: MTD device structure
437 * @command: the command to be sent
438 * @column: the column address for this command, -1 if none
439 * @page_addr: the page address for this command, -1 if none
440 *
441 * Send command to NAND device. This function is used for small page
442 * devices (256/512 Bytes per page)
443 */
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445 int column, int page_addr)
446 {
447 register struct nand_chip *chip = mtd->priv;
448 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
449
450 /*
451 * Write out the command to the device.
452 */
453 if (command == NAND_CMD_SEQIN) {
454 int readcmd;
455
456 if (column >= mtd->writesize) {
457 /* OOB area */
458 column -= mtd->writesize;
459 readcmd = NAND_CMD_READOOB;
460 } else if (column < 256) {
461 /* First 256 bytes --> READ0 */
462 readcmd = NAND_CMD_READ0;
463 } else {
464 column -= 256;
465 readcmd = NAND_CMD_READ1;
466 }
467 chip->cmd_ctrl(mtd, readcmd, ctrl);
468 ctrl &= ~NAND_CTRL_CHANGE;
469 }
470 chip->cmd_ctrl(mtd, command, ctrl);
471
472 /*
473 * Address cycle, when necessary
474 */
475 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476 /* Serially input address */
477 if (column != -1) {
478 /* Adjust columns for 16 bit buswidth */
479 if (chip->options & NAND_BUSWIDTH_16)
480 column >>= 1;
481 chip->cmd_ctrl(mtd, column, ctrl);
482 ctrl &= ~NAND_CTRL_CHANGE;
483 }
484 if (page_addr != -1) {
485 chip->cmd_ctrl(mtd, page_addr, ctrl);
486 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488 /* One more address cycle for devices > 32MiB */
489 if (chip->chipsize > (32 << 20))
490 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
491 }
492 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
493
494 /*
495 * program and erase have their own busy handlers
496 * status and sequential in needs no delay
497 */
498 switch (command) {
499
500 case NAND_CMD_PAGEPROG:
501 case NAND_CMD_ERASE1:
502 case NAND_CMD_ERASE2:
503 case NAND_CMD_SEQIN:
504 case NAND_CMD_STATUS:
505 return;
506
507 case NAND_CMD_RESET:
508 if (chip->dev_ready)
509 break;
510 udelay(chip->chip_delay);
511 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 chip->cmd_ctrl(mtd,
514 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516 return;
517
518 /* This applies to read commands */
519 default:
520 /*
521 * If we don't have access to the busy pin, we apply the given
522 * command delay
523 */
524 if (!chip->dev_ready) {
525 udelay(chip->chip_delay);
526 return;
527 }
528 }
529 /* Apply this short delay always to ensure that we do wait tWB in
530 * any case on any machine. */
531 ndelay(100);
532
533 nand_wait_ready(mtd);
534 }
535
536 /**
537 * nand_command_lp - [DEFAULT] Send command to NAND large page device
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
542 *
543 * Send command to NAND device. This is the version for the new large page
544 * devices We dont have the separate regions as we have in the small page
545 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
546 */
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548 int column, int page_addr)
549 {
550 register struct nand_chip *chip = mtd->priv;
551
552 /* Emulate NAND_CMD_READOOB */
553 if (command == NAND_CMD_READOOB) {
554 column += mtd->writesize;
555 command = NAND_CMD_READ0;
556 }
557
558 /* Command latch cycle */
559 chip->cmd_ctrl(mtd, command & 0xff,
560 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
561
562 if (column != -1 || page_addr != -1) {
563 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
564
565 /* Serially input address */
566 if (column != -1) {
567 /* Adjust columns for 16 bit buswidth */
568 if (chip->options & NAND_BUSWIDTH_16)
569 column >>= 1;
570 chip->cmd_ctrl(mtd, column, ctrl);
571 ctrl &= ~NAND_CTRL_CHANGE;
572 chip->cmd_ctrl(mtd, column >> 8, ctrl);
573 }
574 if (page_addr != -1) {
575 chip->cmd_ctrl(mtd, page_addr, ctrl);
576 chip->cmd_ctrl(mtd, page_addr >> 8,
577 NAND_NCE | NAND_ALE);
578 /* One more address cycle for devices > 128MiB */
579 if (chip->chipsize > (128 << 20))
580 chip->cmd_ctrl(mtd, page_addr >> 16,
581 NAND_NCE | NAND_ALE);
582 }
583 }
584 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
585
586 /*
587 * program and erase have their own busy handlers
588 * status, sequential in, and deplete1 need no delay
589 */
590 switch (command) {
591
592 case NAND_CMD_CACHEDPROG:
593 case NAND_CMD_PAGEPROG:
594 case NAND_CMD_ERASE1:
595 case NAND_CMD_ERASE2:
596 case NAND_CMD_SEQIN:
597 case NAND_CMD_RNDIN:
598 case NAND_CMD_STATUS:
599 case NAND_CMD_DEPLETE1:
600 return;
601
602 /*
603 * read error status commands require only a short delay
604 */
605 case NAND_CMD_STATUS_ERROR:
606 case NAND_CMD_STATUS_ERROR0:
607 case NAND_CMD_STATUS_ERROR1:
608 case NAND_CMD_STATUS_ERROR2:
609 case NAND_CMD_STATUS_ERROR3:
610 udelay(chip->chip_delay);
611 return;
612
613 case NAND_CMD_RESET:
614 if (chip->dev_ready)
615 break;
616 udelay(chip->chip_delay);
617 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620 NAND_NCE | NAND_CTRL_CHANGE);
621 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622 return;
623
624 case NAND_CMD_RNDOUT:
625 /* No ready / busy check necessary */
626 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629 NAND_NCE | NAND_CTRL_CHANGE);
630 return;
631
632 case NAND_CMD_READ0:
633 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636 NAND_NCE | NAND_CTRL_CHANGE);
637
638 /* This applies to read commands */
639 default:
640 /*
641 * If we don't have access to the busy pin, we apply the given
642 * command delay
643 */
644 if (!chip->dev_ready) {
645 udelay(chip->chip_delay);
646 return;
647 }
648 }
649
650 /* Apply this short delay always to ensure that we do wait tWB in
651 * any case on any machine. */
652 ndelay(100);
653
654 nand_wait_ready(mtd);
655 }
656
657 /**
658 * nand_get_device - [GENERIC] Get chip for selected access
659 * @chip: the nand chip descriptor
660 * @mtd: MTD device structure
661 * @new_state: the state which is requested
662 *
663 * Get the device and lock it for exclusive access
664 */
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
667 {
668 spinlock_t *lock = &chip->controller->lock;
669 wait_queue_head_t *wq = &chip->controller->wq;
670 DECLARE_WAITQUEUE(wait, current);
671 retry:
672 spin_lock(lock);
673
674 /* Hardware controller shared among independend devices */
675 /* Hardware controller shared among independend devices */
676 if (!chip->controller->active)
677 chip->controller->active = chip;
678
679 if (chip->controller->active == chip && chip->state == FL_READY) {
680 chip->state = new_state;
681 spin_unlock(lock);
682 return 0;
683 }
684 if (new_state == FL_PM_SUSPENDED) {
685 spin_unlock(lock);
686 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
687 }
688 set_current_state(TASK_UNINTERRUPTIBLE);
689 add_wait_queue(wq, &wait);
690 spin_unlock(lock);
691 schedule();
692 remove_wait_queue(wq, &wait);
693 goto retry;
694 }
695
696 /**
697 * nand_wait - [DEFAULT] wait until the command is done
698 * @mtd: MTD device structure
699 * @chip: NAND chip structure
700 *
701 * Wait for command done. This applies to erase and program only
702 * Erase can take up to 400ms and program up to 20ms according to
703 * general NAND and SmartMedia specs
704 */
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
706 {
707
708 unsigned long timeo = jiffies;
709 int status, state = chip->state;
710
711 if (state == FL_ERASING)
712 timeo += (HZ * 400) / 1000;
713 else
714 timeo += (HZ * 20) / 1000;
715
716 led_trigger_event(nand_led_trigger, LED_FULL);
717
718 /* Apply this short delay always to ensure that we do wait tWB in
719 * any case on any machine. */
720 ndelay(100);
721
722 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724 else
725 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
726
727 while (time_before(jiffies, timeo)) {
728 if (chip->dev_ready) {
729 if (chip->dev_ready(mtd))
730 break;
731 } else {
732 if (chip->read_byte(mtd) & NAND_STATUS_READY)
733 break;
734 }
735 cond_resched();
736 }
737 led_trigger_event(nand_led_trigger, LED_OFF);
738
739 status = (int)chip->read_byte(mtd);
740 return status;
741 }
742
743 /**
744 * nand_read_page_raw - [Intern] read raw page data without ecc
745 * @mtd: mtd info structure
746 * @chip: nand chip info structure
747 * @buf: buffer to store read data
748 */
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750 uint8_t *buf)
751 {
752 chip->read_buf(mtd, buf, mtd->writesize);
753 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754 return 0;
755 }
756
757 /**
758 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
759 * @mtd: mtd info structure
760 * @chip: nand chip info structure
761 * @buf: buffer to store read data
762 */
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764 uint8_t *buf)
765 {
766 int i, eccsize = chip->ecc.size;
767 int eccbytes = chip->ecc.bytes;
768 int eccsteps = chip->ecc.steps;
769 uint8_t *p = buf;
770 uint8_t *ecc_calc = chip->buffers->ecccalc;
771 uint8_t *ecc_code = chip->buffers->ecccode;
772 int *eccpos = chip->ecc.layout->eccpos;
773
774 nand_read_page_raw(mtd, chip, buf);
775
776 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
778
779 for (i = 0; i < chip->ecc.total; i++)
780 ecc_code[i] = chip->oob_poi[eccpos[i]];
781
782 eccsteps = chip->ecc.steps;
783 p = buf;
784
785 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786 int stat;
787
788 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789 if (stat == -1)
790 mtd->ecc_stats.failed++;
791 else
792 mtd->ecc_stats.corrected += stat;
793 }
794 return 0;
795 }
796
797 /**
798 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
799 * @mtd: mtd info structure
800 * @chip: nand chip info structure
801 * @buf: buffer to store read data
802 *
803 * Not for syndrome calculating ecc controllers which need a special oob layout
804 */
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806 uint8_t *buf)
807 {
808 int i, eccsize = chip->ecc.size;
809 int eccbytes = chip->ecc.bytes;
810 int eccsteps = chip->ecc.steps;
811 uint8_t *p = buf;
812 uint8_t *ecc_calc = chip->buffers->ecccalc;
813 uint8_t *ecc_code = chip->buffers->ecccode;
814 int *eccpos = chip->ecc.layout->eccpos;
815
816 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818 chip->read_buf(mtd, p, eccsize);
819 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
820 }
821 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
822
823 for (i = 0; i < chip->ecc.total; i++)
824 ecc_code[i] = chip->oob_poi[eccpos[i]];
825
826 eccsteps = chip->ecc.steps;
827 p = buf;
828
829 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830 int stat;
831
832 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833 if (stat == -1)
834 mtd->ecc_stats.failed++;
835 else
836 mtd->ecc_stats.corrected += stat;
837 }
838 return 0;
839 }
840
841 /**
842 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
843 * @mtd: mtd info structure
844 * @chip: nand chip info structure
845 * @buf: buffer to store read data
846 *
847 * The hw generator calculates the error syndrome automatically. Therefor
848 * we need a special oob layout and handling.
849 */
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851 uint8_t *buf)
852 {
853 int i, eccsize = chip->ecc.size;
854 int eccbytes = chip->ecc.bytes;
855 int eccsteps = chip->ecc.steps;
856 uint8_t *p = buf;
857 uint8_t *oob = chip->oob_poi;
858
859 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860 int stat;
861
862 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863 chip->read_buf(mtd, p, eccsize);
864
865 if (chip->ecc.prepad) {
866 chip->read_buf(mtd, oob, chip->ecc.prepad);
867 oob += chip->ecc.prepad;
868 }
869
870 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871 chip->read_buf(mtd, oob, eccbytes);
872 stat = chip->ecc.correct(mtd, p, oob, NULL);
873
874 if (stat == -1)
875 mtd->ecc_stats.failed++;
876 else
877 mtd->ecc_stats.corrected += stat;
878
879 oob += eccbytes;
880
881 if (chip->ecc.postpad) {
882 chip->read_buf(mtd, oob, chip->ecc.postpad);
883 oob += chip->ecc.postpad;
884 }
885 }
886
887 /* Calculate remaining oob bytes */
888 i = mtd->oobsize - (oob - chip->oob_poi);
889 if (i)
890 chip->read_buf(mtd, oob, i);
891
892 return 0;
893 }
894
895 /**
896 * nand_transfer_oob - [Internal] Transfer oob to client buffer
897 * @chip: nand chip structure
898 * @oob: oob destination address
899 * @ops: oob ops structure
900 */
901 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
902 struct mtd_oob_ops *ops)
903 {
904 size_t len = ops->ooblen;
905
906 switch(ops->mode) {
907
908 case MTD_OOB_PLACE:
909 case MTD_OOB_RAW:
910 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
911 return oob + len;
912
913 case MTD_OOB_AUTO: {
914 struct nand_oobfree *free = chip->ecc.layout->oobfree;
915 uint32_t boffs = 0, roffs = ops->ooboffs;
916 size_t bytes = 0;
917
918 for(; free->length && len; free++, len -= bytes) {
919 /* Read request not from offset 0 ? */
920 if (unlikely(roffs)) {
921 if (roffs >= free->length) {
922 roffs -= free->length;
923 continue;
924 }
925 boffs = free->offset + roffs;
926 bytes = min_t(size_t, len,
927 (free->length - roffs));
928 roffs = 0;
929 } else {
930 bytes = min_t(size_t, len, free->length);
931 boffs = free->offset;
932 }
933 memcpy(oob, chip->oob_poi + boffs, bytes);
934 oob += bytes;
935 }
936 return oob;
937 }
938 default:
939 BUG();
940 }
941 return NULL;
942 }
943
944 /**
945 * nand_do_read_ops - [Internal] Read data with ECC
946 *
947 * @mtd: MTD device structure
948 * @from: offset to read from
949 * @ops: oob ops structure
950 *
951 * Internal function. Called with chip held.
952 */
953 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
954 struct mtd_oob_ops *ops)
955 {
956 int chipnr, page, realpage, col, bytes, aligned;
957 struct nand_chip *chip = mtd->priv;
958 struct mtd_ecc_stats stats;
959 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
960 int sndcmd = 1;
961 int ret = 0;
962 uint32_t readlen = ops->len;
963 uint8_t *bufpoi, *oob, *buf;
964
965 stats = mtd->ecc_stats;
966
967 chipnr = (int)(from >> chip->chip_shift);
968 chip->select_chip(mtd, chipnr);
969
970 realpage = (int)(from >> chip->page_shift);
971 page = realpage & chip->pagemask;
972
973 col = (int)(from & (mtd->writesize - 1));
974 chip->oob_poi = chip->buffers->oobrbuf;
975
976 buf = ops->datbuf;
977 oob = ops->oobbuf;
978
979 while(1) {
980 bytes = min(mtd->writesize - col, readlen);
981 aligned = (bytes == mtd->writesize);
982
983 /* Is the current page in the buffer ? */
984 if (realpage != chip->pagebuf || oob) {
985 bufpoi = aligned ? buf : chip->buffers->databuf;
986
987 if (likely(sndcmd)) {
988 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
989 sndcmd = 0;
990 }
991
992 /* Now read the page into the buffer */
993 if (unlikely(ops->mode == MTD_OOB_RAW))
994 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
995 else
996 ret = chip->ecc.read_page(mtd, chip, bufpoi);
997 if (ret < 0)
998 break;
999
1000 /* Transfer not aligned data */
1001 if (!aligned) {
1002 chip->pagebuf = realpage;
1003 memcpy(buf, chip->buffers->databuf + col, bytes);
1004 }
1005
1006 buf += bytes;
1007
1008 if (unlikely(oob)) {
1009 /* Raw mode does data:oob:data:oob */
1010 if (ops->mode != MTD_OOB_RAW)
1011 oob = nand_transfer_oob(chip, oob, ops);
1012 else
1013 buf = nand_transfer_oob(chip, buf, ops);
1014 }
1015
1016 if (!(chip->options & NAND_NO_READRDY)) {
1017 /*
1018 * Apply delay or wait for ready/busy pin. Do
1019 * this before the AUTOINCR check, so no
1020 * problems arise if a chip which does auto
1021 * increment is marked as NOAUTOINCR by the
1022 * board driver.
1023 */
1024 if (!chip->dev_ready)
1025 udelay(chip->chip_delay);
1026 else
1027 nand_wait_ready(mtd);
1028 }
1029 } else {
1030 memcpy(buf, chip->buffers->databuf + col, bytes);
1031 buf += bytes;
1032 }
1033
1034 readlen -= bytes;
1035
1036 if (!readlen)
1037 break;
1038
1039 /* For subsequent reads align to page boundary. */
1040 col = 0;
1041 /* Increment page address */
1042 realpage++;
1043
1044 page = realpage & chip->pagemask;
1045 /* Check, if we cross a chip boundary */
1046 if (!page) {
1047 chipnr++;
1048 chip->select_chip(mtd, -1);
1049 chip->select_chip(mtd, chipnr);
1050 }
1051
1052 /* Check, if the chip supports auto page increment
1053 * or if we have hit a block boundary.
1054 */
1055 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1056 sndcmd = 1;
1057 }
1058
1059 ops->retlen = ops->len - (size_t) readlen;
1060
1061 if (ret)
1062 return ret;
1063
1064 if (mtd->ecc_stats.failed - stats.failed)
1065 return -EBADMSG;
1066
1067 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1068 }
1069
1070 /**
1071 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1072 * @mtd: MTD device structure
1073 * @from: offset to read from
1074 * @len: number of bytes to read
1075 * @retlen: pointer to variable to store the number of read bytes
1076 * @buf: the databuffer to put data
1077 *
1078 * Get hold of the chip and call nand_do_read
1079 */
1080 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1081 size_t *retlen, uint8_t *buf)
1082 {
1083 struct nand_chip *chip = mtd->priv;
1084 int ret;
1085
1086 /* Do not allow reads past end of device */
1087 if ((from + len) > mtd->size)
1088 return -EINVAL;
1089 if (!len)
1090 return 0;
1091
1092 nand_get_device(chip, mtd, FL_READING);
1093
1094 chip->ops.len = len;
1095 chip->ops.datbuf = buf;
1096 chip->ops.oobbuf = NULL;
1097
1098 ret = nand_do_read_ops(mtd, from, &chip->ops);
1099
1100 *retlen = chip->ops.retlen;
1101
1102 nand_release_device(mtd);
1103
1104 return ret;
1105 }
1106
1107 /**
1108 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1109 * @mtd: mtd info structure
1110 * @chip: nand chip info structure
1111 * @page: page number to read
1112 * @sndcmd: flag whether to issue read command or not
1113 */
1114 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1115 int page, int sndcmd)
1116 {
1117 if (sndcmd) {
1118 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1119 sndcmd = 0;
1120 }
1121 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1122 return sndcmd;
1123 }
1124
1125 /**
1126 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1127 * with syndromes
1128 * @mtd: mtd info structure
1129 * @chip: nand chip info structure
1130 * @page: page number to read
1131 * @sndcmd: flag whether to issue read command or not
1132 */
1133 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1134 int page, int sndcmd)
1135 {
1136 uint8_t *buf = chip->oob_poi;
1137 int length = mtd->oobsize;
1138 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1139 int eccsize = chip->ecc.size;
1140 uint8_t *bufpoi = buf;
1141 int i, toread, sndrnd = 0, pos;
1142
1143 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1144 for (i = 0; i < chip->ecc.steps; i++) {
1145 if (sndrnd) {
1146 pos = eccsize + i * (eccsize + chunk);
1147 if (mtd->writesize > 512)
1148 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1149 else
1150 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1151 } else
1152 sndrnd = 1;
1153 toread = min_t(int, length, chunk);
1154 chip->read_buf(mtd, bufpoi, toread);
1155 bufpoi += toread;
1156 length -= toread;
1157 }
1158 if (length > 0)
1159 chip->read_buf(mtd, bufpoi, length);
1160
1161 return 1;
1162 }
1163
1164 /**
1165 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1166 * @mtd: mtd info structure
1167 * @chip: nand chip info structure
1168 * @page: page number to write
1169 */
1170 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1171 int page)
1172 {
1173 int status = 0;
1174 const uint8_t *buf = chip->oob_poi;
1175 int length = mtd->oobsize;
1176
1177 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1178 chip->write_buf(mtd, buf, length);
1179 /* Send command to program the OOB data */
1180 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1181
1182 status = chip->waitfunc(mtd, chip);
1183
1184 return status & NAND_STATUS_FAIL ? -EIO : 0;
1185 }
1186
1187 /**
1188 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1189 * with syndrome - only for large page flash !
1190 * @mtd: mtd info structure
1191 * @chip: nand chip info structure
1192 * @page: page number to write
1193 */
1194 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1195 struct nand_chip *chip, int page)
1196 {
1197 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1198 int eccsize = chip->ecc.size, length = mtd->oobsize;
1199 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1200 const uint8_t *bufpoi = chip->oob_poi;
1201
1202 /*
1203 * data-ecc-data-ecc ... ecc-oob
1204 * or
1205 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1206 */
1207 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1208 pos = steps * (eccsize + chunk);
1209 steps = 0;
1210 } else
1211 pos = eccsize;
1212
1213 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1214 for (i = 0; i < steps; i++) {
1215 if (sndcmd) {
1216 if (mtd->writesize <= 512) {
1217 uint32_t fill = 0xFFFFFFFF;
1218
1219 len = eccsize;
1220 while (len > 0) {
1221 int num = min_t(int, len, 4);
1222 chip->write_buf(mtd, (uint8_t *)&fill,
1223 num);
1224 len -= num;
1225 }
1226 } else {
1227 pos = eccsize + i * (eccsize + chunk);
1228 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1229 }
1230 } else
1231 sndcmd = 1;
1232 len = min_t(int, length, chunk);
1233 chip->write_buf(mtd, bufpoi, len);
1234 bufpoi += len;
1235 length -= len;
1236 }
1237 if (length > 0)
1238 chip->write_buf(mtd, bufpoi, length);
1239
1240 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1241 status = chip->waitfunc(mtd, chip);
1242
1243 return status & NAND_STATUS_FAIL ? -EIO : 0;
1244 }
1245
1246 /**
1247 * nand_do_read_oob - [Intern] NAND read out-of-band
1248 * @mtd: MTD device structure
1249 * @from: offset to read from
1250 * @ops: oob operations description structure
1251 *
1252 * NAND read out-of-band data from the spare area
1253 */
1254 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1255 struct mtd_oob_ops *ops)
1256 {
1257 int page, realpage, chipnr, sndcmd = 1;
1258 struct nand_chip *chip = mtd->priv;
1259 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1260 int readlen = ops->len;
1261 uint8_t *buf = ops->oobbuf;
1262
1263 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1264 (unsigned long long)from, readlen);
1265
1266 chipnr = (int)(from >> chip->chip_shift);
1267 chip->select_chip(mtd, chipnr);
1268
1269 /* Shift to get page */
1270 realpage = (int)(from >> chip->page_shift);
1271 page = realpage & chip->pagemask;
1272
1273 chip->oob_poi = chip->buffers->oobrbuf;
1274
1275 while(1) {
1276 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1277 buf = nand_transfer_oob(chip, buf, ops);
1278
1279 if (!(chip->options & NAND_NO_READRDY)) {
1280 /*
1281 * Apply delay or wait for ready/busy pin. Do this
1282 * before the AUTOINCR check, so no problems arise if a
1283 * chip which does auto increment is marked as
1284 * NOAUTOINCR by the board driver.
1285 */
1286 if (!chip->dev_ready)
1287 udelay(chip->chip_delay);
1288 else
1289 nand_wait_ready(mtd);
1290 }
1291
1292 readlen -= ops->ooblen;
1293 if (!readlen)
1294 break;
1295
1296 /* Increment page address */
1297 realpage++;
1298
1299 page = realpage & chip->pagemask;
1300 /* Check, if we cross a chip boundary */
1301 if (!page) {
1302 chipnr++;
1303 chip->select_chip(mtd, -1);
1304 chip->select_chip(mtd, chipnr);
1305 }
1306
1307 /* Check, if the chip supports auto page increment
1308 * or if we have hit a block boundary.
1309 */
1310 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1311 sndcmd = 1;
1312 }
1313
1314 ops->retlen = ops->len;
1315 return 0;
1316 }
1317
1318 /**
1319 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1320 * @mtd: MTD device structure
1321 * @from: offset to read from
1322 * @ops: oob operation description structure
1323 *
1324 * NAND read data and/or out-of-band data
1325 */
1326 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1327 struct mtd_oob_ops *ops)
1328 {
1329 struct nand_chip *chip = mtd->priv;
1330 int ret = -ENOTSUPP;
1331
1332 ops->retlen = 0;
1333
1334 /* Do not allow reads past end of device */
1335 if ((from + ops->len) > mtd->size) {
1336 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1337 "Attempt read beyond end of device\n");
1338 return -EINVAL;
1339 }
1340
1341 nand_get_device(chip, mtd, FL_READING);
1342
1343 switch(ops->mode) {
1344 case MTD_OOB_PLACE:
1345 case MTD_OOB_AUTO:
1346 case MTD_OOB_RAW:
1347 break;
1348
1349 default:
1350 goto out;
1351 }
1352
1353 if (!ops->datbuf)
1354 ret = nand_do_read_oob(mtd, from, ops);
1355 else
1356 ret = nand_do_read_ops(mtd, from, ops);
1357
1358 out:
1359 nand_release_device(mtd);
1360 return ret;
1361 }
1362
1363
1364 /**
1365 * nand_write_page_raw - [Intern] raw page write function
1366 * @mtd: mtd info structure
1367 * @chip: nand chip info structure
1368 * @buf: data buffer
1369 */
1370 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1371 const uint8_t *buf)
1372 {
1373 chip->write_buf(mtd, buf, mtd->writesize);
1374 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1375 }
1376
1377 /**
1378 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1379 * @mtd: mtd info structure
1380 * @chip: nand chip info structure
1381 * @buf: data buffer
1382 */
1383 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1384 const uint8_t *buf)
1385 {
1386 int i, eccsize = chip->ecc.size;
1387 int eccbytes = chip->ecc.bytes;
1388 int eccsteps = chip->ecc.steps;
1389 uint8_t *ecc_calc = chip->buffers->ecccalc;
1390 const uint8_t *p = buf;
1391 int *eccpos = chip->ecc.layout->eccpos;
1392
1393 /* Software ecc calculation */
1394 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1395 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1396
1397 for (i = 0; i < chip->ecc.total; i++)
1398 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1399
1400 nand_write_page_raw(mtd, chip, buf);
1401 }
1402
1403 /**
1404 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1405 * @mtd: mtd info structure
1406 * @chip: nand chip info structure
1407 * @buf: data buffer
1408 */
1409 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1410 const uint8_t *buf)
1411 {
1412 int i, eccsize = chip->ecc.size;
1413 int eccbytes = chip->ecc.bytes;
1414 int eccsteps = chip->ecc.steps;
1415 uint8_t *ecc_calc = chip->buffers->ecccalc;
1416 const uint8_t *p = buf;
1417 int *eccpos = chip->ecc.layout->eccpos;
1418
1419 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1420 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1421 chip->write_buf(mtd, p, eccsize);
1422 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1423 }
1424
1425 for (i = 0; i < chip->ecc.total; i++)
1426 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1427
1428 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1429 }
1430
1431 /**
1432 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1433 * @mtd: mtd info structure
1434 * @chip: nand chip info structure
1435 * @buf: data buffer
1436 *
1437 * The hw generator calculates the error syndrome automatically. Therefor
1438 * we need a special oob layout and handling.
1439 */
1440 static void nand_write_page_syndrome(struct mtd_info *mtd,
1441 struct nand_chip *chip, const uint8_t *buf)
1442 {
1443 int i, eccsize = chip->ecc.size;
1444 int eccbytes = chip->ecc.bytes;
1445 int eccsteps = chip->ecc.steps;
1446 const uint8_t *p = buf;
1447 uint8_t *oob = chip->oob_poi;
1448
1449 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1450
1451 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1452 chip->write_buf(mtd, p, eccsize);
1453
1454 if (chip->ecc.prepad) {
1455 chip->write_buf(mtd, oob, chip->ecc.prepad);
1456 oob += chip->ecc.prepad;
1457 }
1458
1459 chip->ecc.calculate(mtd, p, oob);
1460 chip->write_buf(mtd, oob, eccbytes);
1461 oob += eccbytes;
1462
1463 if (chip->ecc.postpad) {
1464 chip->write_buf(mtd, oob, chip->ecc.postpad);
1465 oob += chip->ecc.postpad;
1466 }
1467 }
1468
1469 /* Calculate remaining oob bytes */
1470 i = mtd->oobsize - (oob - chip->oob_poi);
1471 if (i)
1472 chip->write_buf(mtd, oob, i);
1473 }
1474
1475 /**
1476 * nand_write_page - [REPLACEABLE] write one page
1477 * @mtd: MTD device structure
1478 * @chip: NAND chip descriptor
1479 * @buf: the data to write
1480 * @page: page number to write
1481 * @cached: cached programming
1482 */
1483 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1484 const uint8_t *buf, int page, int cached, int raw)
1485 {
1486 int status;
1487
1488 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1489
1490 if (unlikely(raw))
1491 chip->ecc.write_page_raw(mtd, chip, buf);
1492 else
1493 chip->ecc.write_page(mtd, chip, buf);
1494
1495 /*
1496 * Cached progamming disabled for now, Not sure if its worth the
1497 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1498 */
1499 cached = 0;
1500
1501 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1502
1503 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1504 status = chip->waitfunc(mtd, chip);
1505 /*
1506 * See if operation failed and additional status checks are
1507 * available
1508 */
1509 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1510 status = chip->errstat(mtd, chip, FL_WRITING, status,
1511 page);
1512
1513 if (status & NAND_STATUS_FAIL)
1514 return -EIO;
1515 } else {
1516 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1517 status = chip->waitfunc(mtd, chip);
1518 }
1519
1520 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1521 /* Send command to read back the data */
1522 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1523
1524 if (chip->verify_buf(mtd, buf, mtd->writesize))
1525 return -EIO;
1526 #endif
1527 return 0;
1528 }
1529
1530 /**
1531 * nand_fill_oob - [Internal] Transfer client buffer to oob
1532 * @chip: nand chip structure
1533 * @oob: oob data buffer
1534 * @ops: oob ops structure
1535 */
1536 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1537 struct mtd_oob_ops *ops)
1538 {
1539 size_t len = ops->ooblen;
1540
1541 switch(ops->mode) {
1542
1543 case MTD_OOB_PLACE:
1544 case MTD_OOB_RAW:
1545 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1546 return oob + len;
1547
1548 case MTD_OOB_AUTO: {
1549 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1550 uint32_t boffs = 0, woffs = ops->ooboffs;
1551 size_t bytes = 0;
1552
1553 for(; free->length && len; free++, len -= bytes) {
1554 /* Write request not from offset 0 ? */
1555 if (unlikely(woffs)) {
1556 if (woffs >= free->length) {
1557 woffs -= free->length;
1558 continue;
1559 }
1560 boffs = free->offset + woffs;
1561 bytes = min_t(size_t, len,
1562 (free->length - woffs));
1563 woffs = 0;
1564 } else {
1565 bytes = min_t(size_t, len, free->length);
1566 boffs = free->offset;
1567 }
1568 memcpy(chip->oob_poi + boffs, oob, bytes);
1569 oob += bytes;
1570 }
1571 return oob;
1572 }
1573 default:
1574 BUG();
1575 }
1576 return NULL;
1577 }
1578
1579 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1580
1581 /**
1582 * nand_do_write_ops - [Internal] NAND write with ECC
1583 * @mtd: MTD device structure
1584 * @to: offset to write to
1585 * @ops: oob operations description structure
1586 *
1587 * NAND write with ECC
1588 */
1589 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1590 struct mtd_oob_ops *ops)
1591 {
1592 int chipnr, realpage, page, blockmask;
1593 struct nand_chip *chip = mtd->priv;
1594 uint32_t writelen = ops->len;
1595 uint8_t *oob = ops->oobbuf;
1596 uint8_t *buf = ops->datbuf;
1597 int bytes = mtd->writesize;
1598 int ret;
1599
1600 ops->retlen = 0;
1601
1602 /* reject writes, which are not page aligned */
1603 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1604 printk(KERN_NOTICE "nand_write: "
1605 "Attempt to write not page aligned data\n");
1606 return -EINVAL;
1607 }
1608
1609 if (!writelen)
1610 return 0;
1611
1612 chipnr = (int)(to >> chip->chip_shift);
1613 chip->select_chip(mtd, chipnr);
1614
1615 /* Check, if it is write protected */
1616 if (nand_check_wp(mtd))
1617 return -EIO;
1618
1619 realpage = (int)(to >> chip->page_shift);
1620 page = realpage & chip->pagemask;
1621 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1622
1623 /* Invalidate the page cache, when we write to the cached page */
1624 if (to <= (chip->pagebuf << chip->page_shift) &&
1625 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1626 chip->pagebuf = -1;
1627
1628 chip->oob_poi = chip->buffers->oobwbuf;
1629
1630 while(1) {
1631 int cached = writelen > bytes && page != blockmask;
1632
1633 if (unlikely(oob))
1634 oob = nand_fill_oob(chip, oob, ops);
1635
1636 ret = chip->write_page(mtd, chip, buf, page, cached,
1637 (ops->mode == MTD_OOB_RAW));
1638 if (ret)
1639 break;
1640
1641 writelen -= bytes;
1642 if (!writelen)
1643 break;
1644
1645 buf += bytes;
1646 realpage++;
1647
1648 page = realpage & chip->pagemask;
1649 /* Check, if we cross a chip boundary */
1650 if (!page) {
1651 chipnr++;
1652 chip->select_chip(mtd, -1);
1653 chip->select_chip(mtd, chipnr);
1654 }
1655 }
1656
1657 if (unlikely(oob))
1658 memset(chip->oob_poi, 0xff, mtd->oobsize);
1659
1660 ops->retlen = ops->len - writelen;
1661 return ret;
1662 }
1663
1664 /**
1665 * nand_write - [MTD Interface] NAND write with ECC
1666 * @mtd: MTD device structure
1667 * @to: offset to write to
1668 * @len: number of bytes to write
1669 * @retlen: pointer to variable to store the number of written bytes
1670 * @buf: the data to write
1671 *
1672 * NAND write with ECC
1673 */
1674 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1675 size_t *retlen, const uint8_t *buf)
1676 {
1677 struct nand_chip *chip = mtd->priv;
1678 int ret;
1679
1680 /* Do not allow reads past end of device */
1681 if ((to + len) > mtd->size)
1682 return -EINVAL;
1683 if (!len)
1684 return 0;
1685
1686 nand_get_device(chip, mtd, FL_WRITING);
1687
1688 chip->ops.len = len;
1689 chip->ops.datbuf = (uint8_t *)buf;
1690 chip->ops.oobbuf = NULL;
1691
1692 ret = nand_do_write_ops(mtd, to, &chip->ops);
1693
1694 *retlen = chip->ops.retlen;
1695
1696 nand_release_device(mtd);
1697
1698 return ret;
1699 }
1700
1701 /**
1702 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1703 * @mtd: MTD device structure
1704 * @to: offset to write to
1705 * @ops: oob operation description structure
1706 *
1707 * NAND write out-of-band
1708 */
1709 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1710 struct mtd_oob_ops *ops)
1711 {
1712 int chipnr, page, status;
1713 struct nand_chip *chip = mtd->priv;
1714
1715 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1716 (unsigned int)to, (int)ops->len);
1717
1718 /* Do not allow write past end of page */
1719 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1720 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1721 "Attempt to write past end of page\n");
1722 return -EINVAL;
1723 }
1724
1725 chipnr = (int)(to >> chip->chip_shift);
1726 chip->select_chip(mtd, chipnr);
1727
1728 /* Shift to get page */
1729 page = (int)(to >> chip->page_shift);
1730
1731 /*
1732 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1733 * of my DiskOnChip 2000 test units) will clear the whole data page too
1734 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1735 * it in the doc2000 driver in August 1999. dwmw2.
1736 */
1737 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1738
1739 /* Check, if it is write protected */
1740 if (nand_check_wp(mtd))
1741 return -EROFS;
1742
1743 /* Invalidate the page cache, if we write to the cached page */
1744 if (page == chip->pagebuf)
1745 chip->pagebuf = -1;
1746
1747 chip->oob_poi = chip->buffers->oobwbuf;
1748 memset(chip->oob_poi, 0xff, mtd->oobsize);
1749 nand_fill_oob(chip, ops->oobbuf, ops);
1750 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1751 memset(chip->oob_poi, 0xff, mtd->oobsize);
1752
1753 if (status)
1754 return status;
1755
1756 ops->retlen = ops->len;
1757
1758 return 0;
1759 }
1760
1761 /**
1762 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1763 * @mtd: MTD device structure
1764 * @to: offset to write to
1765 * @ops: oob operation description structure
1766 */
1767 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1768 struct mtd_oob_ops *ops)
1769 {
1770 struct nand_chip *chip = mtd->priv;
1771 int ret = -ENOTSUPP;
1772
1773 ops->retlen = 0;
1774
1775 /* Do not allow writes past end of device */
1776 if ((to + ops->len) > mtd->size) {
1777 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1778 "Attempt read beyond end of device\n");
1779 return -EINVAL;
1780 }
1781
1782 nand_get_device(chip, mtd, FL_WRITING);
1783
1784 switch(ops->mode) {
1785 case MTD_OOB_PLACE:
1786 case MTD_OOB_AUTO:
1787 case MTD_OOB_RAW:
1788 break;
1789
1790 default:
1791 goto out;
1792 }
1793
1794 if (!ops->datbuf)
1795 ret = nand_do_write_oob(mtd, to, ops);
1796 else
1797 ret = nand_do_write_ops(mtd, to, ops);
1798
1799 out:
1800 nand_release_device(mtd);
1801 return ret;
1802 }
1803
1804 /**
1805 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1806 * @mtd: MTD device structure
1807 * @page: the page address of the block which will be erased
1808 *
1809 * Standard erase command for NAND chips
1810 */
1811 static void single_erase_cmd(struct mtd_info *mtd, int page)
1812 {
1813 struct nand_chip *chip = mtd->priv;
1814 /* Send commands to erase a block */
1815 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1816 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1817 }
1818
1819 /**
1820 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1821 * @mtd: MTD device structure
1822 * @page: the page address of the block which will be erased
1823 *
1824 * AND multi block erase command function
1825 * Erase 4 consecutive blocks
1826 */
1827 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1828 {
1829 struct nand_chip *chip = mtd->priv;
1830 /* Send commands to erase a block */
1831 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1832 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1833 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1834 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1835 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1836 }
1837
1838 /**
1839 * nand_erase - [MTD Interface] erase block(s)
1840 * @mtd: MTD device structure
1841 * @instr: erase instruction
1842 *
1843 * Erase one ore more blocks
1844 */
1845 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1846 {
1847 return nand_erase_nand(mtd, instr, 0);
1848 }
1849
1850 #define BBT_PAGE_MASK 0xffffff3f
1851 /**
1852 * nand_erase_nand - [Internal] erase block(s)
1853 * @mtd: MTD device structure
1854 * @instr: erase instruction
1855 * @allowbbt: allow erasing the bbt area
1856 *
1857 * Erase one ore more blocks
1858 */
1859 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1860 int allowbbt)
1861 {
1862 int page, len, status, pages_per_block, ret, chipnr;
1863 struct nand_chip *chip = mtd->priv;
1864 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1865 unsigned int bbt_masked_page = 0xffffffff;
1866
1867 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1868 (unsigned int)instr->addr, (unsigned int)instr->len);
1869
1870 /* Start address must align on block boundary */
1871 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1872 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1873 return -EINVAL;
1874 }
1875
1876 /* Length must align on block boundary */
1877 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1878 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1879 "Length not block aligned\n");
1880 return -EINVAL;
1881 }
1882
1883 /* Do not allow erase past end of device */
1884 if ((instr->len + instr->addr) > mtd->size) {
1885 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1886 "Erase past end of device\n");
1887 return -EINVAL;
1888 }
1889
1890 instr->fail_addr = 0xffffffff;
1891
1892 /* Grab the lock and see if the device is available */
1893 nand_get_device(chip, mtd, FL_ERASING);
1894
1895 /* Shift to get first page */
1896 page = (int)(instr->addr >> chip->page_shift);
1897 chipnr = (int)(instr->addr >> chip->chip_shift);
1898
1899 /* Calculate pages in each block */
1900 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1901
1902 /* Select the NAND device */
1903 chip->select_chip(mtd, chipnr);
1904
1905 /* Check, if it is write protected */
1906 if (nand_check_wp(mtd)) {
1907 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1908 "Device is write protected!!!\n");
1909 instr->state = MTD_ERASE_FAILED;
1910 goto erase_exit;
1911 }
1912
1913 /*
1914 * If BBT requires refresh, set the BBT page mask to see if the BBT
1915 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1916 * can not be matched. This is also done when the bbt is actually
1917 * erased to avoid recusrsive updates
1918 */
1919 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1920 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1921
1922 /* Loop through the pages */
1923 len = instr->len;
1924
1925 instr->state = MTD_ERASING;
1926
1927 while (len) {
1928 /*
1929 * heck if we have a bad block, we do not erase bad blocks !
1930 */
1931 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1932 chip->page_shift, 0, allowbbt)) {
1933 printk(KERN_WARNING "nand_erase: attempt to erase a "
1934 "bad block at page 0x%08x\n", page);
1935 instr->state = MTD_ERASE_FAILED;
1936 goto erase_exit;
1937 }
1938
1939 /*
1940 * Invalidate the page cache, if we erase the block which
1941 * contains the current cached page
1942 */
1943 if (page <= chip->pagebuf && chip->pagebuf <
1944 (page + pages_per_block))
1945 chip->pagebuf = -1;
1946
1947 chip->erase_cmd(mtd, page & chip->pagemask);
1948
1949 status = chip->waitfunc(mtd, chip);
1950
1951 /*
1952 * See if operation failed and additional status checks are
1953 * available
1954 */
1955 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1956 status = chip->errstat(mtd, chip, FL_ERASING,
1957 status, page);
1958
1959 /* See if block erase succeeded */
1960 if (status & NAND_STATUS_FAIL) {
1961 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1962 "Failed erase, page 0x%08x\n", page);
1963 instr->state = MTD_ERASE_FAILED;
1964 instr->fail_addr = (page << chip->page_shift);
1965 goto erase_exit;
1966 }
1967
1968 /*
1969 * If BBT requires refresh, set the BBT rewrite flag to the
1970 * page being erased
1971 */
1972 if (bbt_masked_page != 0xffffffff &&
1973 (page & BBT_PAGE_MASK) == bbt_masked_page)
1974 rewrite_bbt[chipnr] = (page << chip->page_shift);
1975
1976 /* Increment page address and decrement length */
1977 len -= (1 << chip->phys_erase_shift);
1978 page += pages_per_block;
1979
1980 /* Check, if we cross a chip boundary */
1981 if (len && !(page & chip->pagemask)) {
1982 chipnr++;
1983 chip->select_chip(mtd, -1);
1984 chip->select_chip(mtd, chipnr);
1985
1986 /*
1987 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1988 * page mask to see if this BBT should be rewritten
1989 */
1990 if (bbt_masked_page != 0xffffffff &&
1991 (chip->bbt_td->options & NAND_BBT_PERCHIP))
1992 bbt_masked_page = chip->bbt_td->pages[chipnr] &
1993 BBT_PAGE_MASK;
1994 }
1995 }
1996 instr->state = MTD_ERASE_DONE;
1997
1998 erase_exit:
1999
2000 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2001 /* Do call back function */
2002 if (!ret)
2003 mtd_erase_callback(instr);
2004
2005 /* Deselect and wake up anyone waiting on the device */
2006 nand_release_device(mtd);
2007
2008 /*
2009 * If BBT requires refresh and erase was successful, rewrite any
2010 * selected bad block tables
2011 */
2012 if (bbt_masked_page == 0xffffffff || ret)
2013 return ret;
2014
2015 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2016 if (!rewrite_bbt[chipnr])
2017 continue;
2018 /* update the BBT for chip */
2019 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2020 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2021 chip->bbt_td->pages[chipnr]);
2022 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2023 }
2024
2025 /* Return more or less happy */
2026 return ret;
2027 }
2028
2029 /**
2030 * nand_sync - [MTD Interface] sync
2031 * @mtd: MTD device structure
2032 *
2033 * Sync is actually a wait for chip ready function
2034 */
2035 static void nand_sync(struct mtd_info *mtd)
2036 {
2037 struct nand_chip *chip = mtd->priv;
2038
2039 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2040
2041 /* Grab the lock and see if the device is available */
2042 nand_get_device(chip, mtd, FL_SYNCING);
2043 /* Release it and go back */
2044 nand_release_device(mtd);
2045 }
2046
2047 /**
2048 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2049 * @mtd: MTD device structure
2050 * @offs: offset relative to mtd start
2051 */
2052 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2053 {
2054 /* Check for invalid offset */
2055 if (offs > mtd->size)
2056 return -EINVAL;
2057
2058 return nand_block_checkbad(mtd, offs, 1, 0);
2059 }
2060
2061 /**
2062 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2063 * @mtd: MTD device structure
2064 * @ofs: offset relative to mtd start
2065 */
2066 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2067 {
2068 struct nand_chip *chip = mtd->priv;
2069 int ret;
2070
2071 if ((ret = nand_block_isbad(mtd, ofs))) {
2072 /* If it was bad already, return success and do nothing. */
2073 if (ret > 0)
2074 return 0;
2075 return ret;
2076 }
2077
2078 return chip->block_markbad(mtd, ofs);
2079 }
2080
2081 /**
2082 * nand_suspend - [MTD Interface] Suspend the NAND flash
2083 * @mtd: MTD device structure
2084 */
2085 static int nand_suspend(struct mtd_info *mtd)
2086 {
2087 struct nand_chip *chip = mtd->priv;
2088
2089 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2090 }
2091
2092 /**
2093 * nand_resume - [MTD Interface] Resume the NAND flash
2094 * @mtd: MTD device structure
2095 */
2096 static void nand_resume(struct mtd_info *mtd)
2097 {
2098 struct nand_chip *chip = mtd->priv;
2099
2100 if (chip->state == FL_PM_SUSPENDED)
2101 nand_release_device(mtd);
2102 else
2103 printk(KERN_ERR "nand_resume() called for a chip which is not "
2104 "in suspended state\n");
2105 }
2106
2107 /*
2108 * Set default functions
2109 */
2110 static void nand_set_defaults(struct nand_chip *chip, int busw)
2111 {
2112 /* check for proper chip_delay setup, set 20us if not */
2113 if (!chip->chip_delay)
2114 chip->chip_delay = 20;
2115
2116 /* check, if a user supplied command function given */
2117 if (chip->cmdfunc == NULL)
2118 chip->cmdfunc = nand_command;
2119
2120 /* check, if a user supplied wait function given */
2121 if (chip->waitfunc == NULL)
2122 chip->waitfunc = nand_wait;
2123
2124 if (!chip->select_chip)
2125 chip->select_chip = nand_select_chip;
2126 if (!chip->read_byte)
2127 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2128 if (!chip->read_word)
2129 chip->read_word = nand_read_word;
2130 if (!chip->block_bad)
2131 chip->block_bad = nand_block_bad;
2132 if (!chip->block_markbad)
2133 chip->block_markbad = nand_default_block_markbad;
2134 if (!chip->write_buf)
2135 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2136 if (!chip->read_buf)
2137 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2138 if (!chip->verify_buf)
2139 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2140 if (!chip->scan_bbt)
2141 chip->scan_bbt = nand_default_bbt;
2142
2143 if (!chip->controller) {
2144 chip->controller = &chip->hwcontrol;
2145 spin_lock_init(&chip->controller->lock);
2146 init_waitqueue_head(&chip->controller->wq);
2147 }
2148
2149 }
2150
2151 /*
2152 * Get the flash and manufacturer id and lookup if the type is supported
2153 */
2154 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2155 struct nand_chip *chip,
2156 int busw, int *maf_id)
2157 {
2158 struct nand_flash_dev *type = NULL;
2159 int i, dev_id, maf_idx;
2160
2161 /* Select the device */
2162 chip->select_chip(mtd, 0);
2163
2164 /* Send the command for reading device ID */
2165 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2166
2167 /* Read manufacturer and device IDs */
2168 *maf_id = chip->read_byte(mtd);
2169 dev_id = chip->read_byte(mtd);
2170
2171 /* Lookup the flash id */
2172 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2173 if (dev_id == nand_flash_ids[i].id) {
2174 type = &nand_flash_ids[i];
2175 break;
2176 }
2177 }
2178
2179 if (!type)
2180 return ERR_PTR(-ENODEV);
2181
2182 if (!mtd->name)
2183 mtd->name = type->name;
2184
2185 chip->chipsize = type->chipsize << 20;
2186
2187 /* Newer devices have all the information in additional id bytes */
2188 if (!type->pagesize) {
2189 int extid;
2190 /* The 3rd id byte contains non relevant data ATM */
2191 extid = chip->read_byte(mtd);
2192 /* The 4th id byte is the important one */
2193 extid = chip->read_byte(mtd);
2194 /* Calc pagesize */
2195 mtd->writesize = 1024 << (extid & 0x3);
2196 extid >>= 2;
2197 /* Calc oobsize */
2198 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2199 extid >>= 2;
2200 /* Calc blocksize. Blocksize is multiples of 64KiB */
2201 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2202 extid >>= 2;
2203 /* Get buswidth information */
2204 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2205
2206 } else {
2207 /*
2208 * Old devices have chip data hardcoded in the device id table
2209 */
2210 mtd->erasesize = type->erasesize;
2211 mtd->writesize = type->pagesize;
2212 mtd->oobsize = mtd->writesize / 32;
2213 busw = type->options & NAND_BUSWIDTH_16;
2214 }
2215
2216 /* Try to identify manufacturer */
2217 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2218 if (nand_manuf_ids[maf_idx].id == *maf_id)
2219 break;
2220 }
2221
2222 /*
2223 * Check, if buswidth is correct. Hardware drivers should set
2224 * chip correct !
2225 */
2226 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2227 printk(KERN_INFO "NAND device: Manufacturer ID:"
2228 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2229 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2230 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2231 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2232 busw ? 16 : 8);
2233 return ERR_PTR(-EINVAL);
2234 }
2235
2236 /* Calculate the address shift from the page size */
2237 chip->page_shift = ffs(mtd->writesize) - 1;
2238 /* Convert chipsize to number of pages per chip -1. */
2239 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2240
2241 chip->bbt_erase_shift = chip->phys_erase_shift =
2242 ffs(mtd->erasesize) - 1;
2243 chip->chip_shift = ffs(chip->chipsize) - 1;
2244
2245 /* Set the bad block position */
2246 chip->badblockpos = mtd->writesize > 512 ?
2247 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2248
2249 /* Get chip options, preserve non chip based options */
2250 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2251 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2252
2253 /*
2254 * Set chip as a default. Board drivers can override it, if necessary
2255 */
2256 chip->options |= NAND_NO_AUTOINCR;
2257
2258 /* Check if chip is a not a samsung device. Do not clear the
2259 * options for chips which are not having an extended id.
2260 */
2261 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2262 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2263
2264 /* Check for AND chips with 4 page planes */
2265 if (chip->options & NAND_4PAGE_ARRAY)
2266 chip->erase_cmd = multi_erase_cmd;
2267 else
2268 chip->erase_cmd = single_erase_cmd;
2269
2270 /* Do not replace user supplied command function ! */
2271 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2272 chip->cmdfunc = nand_command_lp;
2273
2274 printk(KERN_INFO "NAND device: Manufacturer ID:"
2275 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2276 nand_manuf_ids[maf_idx].name, type->name);
2277
2278 return type;
2279 }
2280
2281 /**
2282 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2283 * @mtd: MTD device structure
2284 * @maxchips: Number of chips to scan for
2285 *
2286 * This is the first phase of the normal nand_scan() function. It
2287 * reads the flash ID and sets up MTD fields accordingly.
2288 *
2289 * The mtd->owner field must be set to the module of the caller.
2290 */
2291 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2292 {
2293 int i, busw, nand_maf_id;
2294 struct nand_chip *chip = mtd->priv;
2295 struct nand_flash_dev *type;
2296
2297 /* Get buswidth to select the correct functions */
2298 busw = chip->options & NAND_BUSWIDTH_16;
2299 /* Set the default functions */
2300 nand_set_defaults(chip, busw);
2301
2302 /* Read the flash type */
2303 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2304
2305 if (IS_ERR(type)) {
2306 printk(KERN_WARNING "No NAND device found!!!\n");
2307 chip->select_chip(mtd, -1);
2308 return PTR_ERR(type);
2309 }
2310
2311 /* Check for a chip array */
2312 for (i = 1; i < maxchips; i++) {
2313 chip->select_chip(mtd, i);
2314 /* Send the command for reading device ID */
2315 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2316 /* Read manufacturer and device IDs */
2317 if (nand_maf_id != chip->read_byte(mtd) ||
2318 type->id != chip->read_byte(mtd))
2319 break;
2320 }
2321 if (i > 1)
2322 printk(KERN_INFO "%d NAND chips detected\n", i);
2323
2324 /* Store the number of chips and calc total size for mtd */
2325 chip->numchips = i;
2326 mtd->size = i * chip->chipsize;
2327
2328 return 0;
2329 }
2330
2331
2332 /**
2333 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2334 * @mtd: MTD device structure
2335 * @maxchips: Number of chips to scan for
2336 *
2337 * This is the second phase of the normal nand_scan() function. It
2338 * fills out all the uninitialized function pointers with the defaults
2339 * and scans for a bad block table if appropriate.
2340 */
2341 int nand_scan_tail(struct mtd_info *mtd)
2342 {
2343 int i;
2344 struct nand_chip *chip = mtd->priv;
2345
2346 if (!(chip->options & NAND_OWN_BUFFERS))
2347 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2348 if (!chip->buffers)
2349 return -ENOMEM;
2350
2351 /* Preset the internal oob write buffer */
2352 memset(chip->buffers->oobwbuf, 0xff, mtd->oobsize);
2353
2354 /*
2355 * If no default placement scheme is given, select an appropriate one
2356 */
2357 if (!chip->ecc.layout) {
2358 switch (mtd->oobsize) {
2359 case 8:
2360 chip->ecc.layout = &nand_oob_8;
2361 break;
2362 case 16:
2363 chip->ecc.layout = &nand_oob_16;
2364 break;
2365 case 64:
2366 chip->ecc.layout = &nand_oob_64;
2367 break;
2368 default:
2369 printk(KERN_WARNING "No oob scheme defined for "
2370 "oobsize %d\n", mtd->oobsize);
2371 BUG();
2372 }
2373 }
2374
2375 if (!chip->write_page)
2376 chip->write_page = nand_write_page;
2377
2378 /*
2379 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2380 * selected and we have 256 byte pagesize fallback to software ECC
2381 */
2382 if (!chip->ecc.read_page_raw)
2383 chip->ecc.read_page_raw = nand_read_page_raw;
2384 if (!chip->ecc.write_page_raw)
2385 chip->ecc.write_page_raw = nand_write_page_raw;
2386
2387 switch (chip->ecc.mode) {
2388 case NAND_ECC_HW:
2389 /* Use standard hwecc read page function ? */
2390 if (!chip->ecc.read_page)
2391 chip->ecc.read_page = nand_read_page_hwecc;
2392 if (!chip->ecc.write_page)
2393 chip->ecc.write_page = nand_write_page_hwecc;
2394 if (!chip->ecc.read_oob)
2395 chip->ecc.read_oob = nand_read_oob_std;
2396 if (!chip->ecc.write_oob)
2397 chip->ecc.write_oob = nand_write_oob_std;
2398
2399 case NAND_ECC_HW_SYNDROME:
2400 if (!chip->ecc.calculate || !chip->ecc.correct ||
2401 !chip->ecc.hwctl) {
2402 printk(KERN_WARNING "No ECC functions supplied, "
2403 "Hardware ECC not possible\n");
2404 BUG();
2405 }
2406 /* Use standard syndrome read/write page function ? */
2407 if (!chip->ecc.read_page)
2408 chip->ecc.read_page = nand_read_page_syndrome;
2409 if (!chip->ecc.write_page)
2410 chip->ecc.write_page = nand_write_page_syndrome;
2411 if (!chip->ecc.read_oob)
2412 chip->ecc.read_oob = nand_read_oob_syndrome;
2413 if (!chip->ecc.write_oob)
2414 chip->ecc.write_oob = nand_write_oob_syndrome;
2415
2416 if (mtd->writesize >= chip->ecc.size)
2417 break;
2418 printk(KERN_WARNING "%d byte HW ECC not possible on "
2419 "%d byte page size, fallback to SW ECC\n",
2420 chip->ecc.size, mtd->writesize);
2421 chip->ecc.mode = NAND_ECC_SOFT;
2422
2423 case NAND_ECC_SOFT:
2424 chip->ecc.calculate = nand_calculate_ecc;
2425 chip->ecc.correct = nand_correct_data;
2426 chip->ecc.read_page = nand_read_page_swecc;
2427 chip->ecc.write_page = nand_write_page_swecc;
2428 chip->ecc.read_oob = nand_read_oob_std;
2429 chip->ecc.write_oob = nand_write_oob_std;
2430 chip->ecc.size = 256;
2431 chip->ecc.bytes = 3;
2432 break;
2433
2434 case NAND_ECC_NONE:
2435 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2436 "This is not recommended !!\n");
2437 chip->ecc.read_page = nand_read_page_raw;
2438 chip->ecc.write_page = nand_write_page_raw;
2439 chip->ecc.read_oob = nand_read_oob_std;
2440 chip->ecc.write_oob = nand_write_oob_std;
2441 chip->ecc.size = mtd->writesize;
2442 chip->ecc.bytes = 0;
2443 break;
2444
2445 default:
2446 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2447 chip->ecc.mode);
2448 BUG();
2449 }
2450
2451 /*
2452 * The number of bytes available for a client to place data into
2453 * the out of band area
2454 */
2455 chip->ecc.layout->oobavail = 0;
2456 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2457 chip->ecc.layout->oobavail +=
2458 chip->ecc.layout->oobfree[i].length;
2459
2460 /*
2461 * Set the number of read / write steps for one page depending on ECC
2462 * mode
2463 */
2464 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2465 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2466 printk(KERN_WARNING "Invalid ecc parameters\n");
2467 BUG();
2468 }
2469 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2470
2471 /* Initialize state */
2472 chip->state = FL_READY;
2473
2474 /* De-select the device */
2475 chip->select_chip(mtd, -1);
2476
2477 /* Invalidate the pagebuffer reference */
2478 chip->pagebuf = -1;
2479
2480 /* Fill in remaining MTD driver data */
2481 mtd->type = MTD_NANDFLASH;
2482 mtd->flags = MTD_CAP_NANDFLASH;
2483 mtd->ecctype = MTD_ECC_SW;
2484 mtd->erase = nand_erase;
2485 mtd->point = NULL;
2486 mtd->unpoint = NULL;
2487 mtd->read = nand_read;
2488 mtd->write = nand_write;
2489 mtd->read_oob = nand_read_oob;
2490 mtd->write_oob = nand_write_oob;
2491 mtd->sync = nand_sync;
2492 mtd->lock = NULL;
2493 mtd->unlock = NULL;
2494 mtd->suspend = nand_suspend;
2495 mtd->resume = nand_resume;
2496 mtd->block_isbad = nand_block_isbad;
2497 mtd->block_markbad = nand_block_markbad;
2498
2499 /* propagate ecc.layout to mtd_info */
2500 mtd->ecclayout = chip->ecc.layout;
2501
2502 /* Check, if we should skip the bad block table scan */
2503 if (chip->options & NAND_SKIP_BBTSCAN)
2504 return 0;
2505
2506 /* Build bad block table */
2507 return chip->scan_bbt(mtd);
2508 }
2509
2510 /* module_text_address() isn't exported, and it's mostly a pointless
2511 test if this is a module _anyway_ -- they'd have to try _really_ hard
2512 to call us from in-kernel code if the core NAND support is modular. */
2513 #ifdef MODULE
2514 #define caller_is_module() (1)
2515 #else
2516 #define caller_is_module() \
2517 module_text_address((unsigned long)__builtin_return_address(0))
2518 #endif
2519
2520 /**
2521 * nand_scan - [NAND Interface] Scan for the NAND device
2522 * @mtd: MTD device structure
2523 * @maxchips: Number of chips to scan for
2524 *
2525 * This fills out all the uninitialized function pointers
2526 * with the defaults.
2527 * The flash ID is read and the mtd/chip structures are
2528 * filled with the appropriate values.
2529 * The mtd->owner field must be set to the module of the caller
2530 *
2531 */
2532 int nand_scan(struct mtd_info *mtd, int maxchips)
2533 {
2534 int ret;
2535
2536 /* Many callers got this wrong, so check for it for a while... */
2537 if (!mtd->owner && caller_is_module()) {
2538 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2539 BUG();
2540 }
2541
2542 ret = nand_scan_ident(mtd, maxchips);
2543 if (!ret)
2544 ret = nand_scan_tail(mtd);
2545 return ret;
2546 }
2547
2548 /**
2549 * nand_release - [NAND Interface] Free resources held by the NAND device
2550 * @mtd: MTD device structure
2551 */
2552 void nand_release(struct mtd_info *mtd)
2553 {
2554 struct nand_chip *chip = mtd->priv;
2555
2556 #ifdef CONFIG_MTD_PARTITIONS
2557 /* Deregister partitions */
2558 del_mtd_partitions(mtd);
2559 #endif
2560 /* Deregister the device */
2561 del_mtd_device(mtd);
2562
2563 /* Free bad block table memory */
2564 kfree(chip->bbt);
2565 if (!(chip->options & NAND_OWN_BUFFERS))
2566 kfree(chip->buffers);
2567 }
2568
2569 EXPORT_SYMBOL_GPL(nand_scan);
2570 EXPORT_SYMBOL_GPL(nand_scan_ident);
2571 EXPORT_SYMBOL_GPL(nand_scan_tail);
2572 EXPORT_SYMBOL_GPL(nand_release);
2573
2574 static int __init nand_base_init(void)
2575 {
2576 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2577 return 0;
2578 }
2579
2580 static void __exit nand_base_exit(void)
2581 {
2582 led_trigger_unregister_simple(nand_led_trigger);
2583 }
2584
2585 module_init(nand_base_init);
2586 module_exit(nand_base_exit);
2587
2588 MODULE_LICENSE("GPL");
2589 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2590 MODULE_DESCRIPTION("Generic NAND flash driver code");