]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/pxa3xx_nand.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2 * drivers/mtd/nand/pxa3xx_nand.c
3 *
4 * Copyright © 2005 Intel Corporation
5 * Copyright © 2006 Marvell International Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma/pxa-dma.h>
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/nand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_data/mtd-nand-pxa3xx.h>
33
34 #define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200)
35 #define NAND_STOP_DELAY msecs_to_jiffies(40)
36 #define PAGE_CHUNK_SIZE (2048)
37
38 /*
39 * Define a buffer size for the initial command that detects the flash device:
40 * STATUS, READID and PARAM.
41 * ONFI param page is 256 bytes, and there are three redundant copies
42 * to be read. JEDEC param page is 512 bytes, and there are also three
43 * redundant copies to be read.
44 * Hence this buffer should be at least 512 x 3. Let's pick 2048.
45 */
46 #define INIT_BUFFER_SIZE 2048
47
48 /* registers and bit definitions */
49 #define NDCR (0x00) /* Control register */
50 #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
51 #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
52 #define NDSR (0x14) /* Status Register */
53 #define NDPCR (0x18) /* Page Count Register */
54 #define NDBDR0 (0x1C) /* Bad Block Register 0 */
55 #define NDBDR1 (0x20) /* Bad Block Register 1 */
56 #define NDECCCTRL (0x28) /* ECC control */
57 #define NDDB (0x40) /* Data Buffer */
58 #define NDCB0 (0x48) /* Command Buffer0 */
59 #define NDCB1 (0x4C) /* Command Buffer1 */
60 #define NDCB2 (0x50) /* Command Buffer2 */
61
62 #define NDCR_SPARE_EN (0x1 << 31)
63 #define NDCR_ECC_EN (0x1 << 30)
64 #define NDCR_DMA_EN (0x1 << 29)
65 #define NDCR_ND_RUN (0x1 << 28)
66 #define NDCR_DWIDTH_C (0x1 << 27)
67 #define NDCR_DWIDTH_M (0x1 << 26)
68 #define NDCR_PAGE_SZ (0x1 << 24)
69 #define NDCR_NCSX (0x1 << 23)
70 #define NDCR_ND_MODE (0x3 << 21)
71 #define NDCR_NAND_MODE (0x0)
72 #define NDCR_CLR_PG_CNT (0x1 << 20)
73 #define NFCV1_NDCR_ARB_CNTL (0x1 << 19)
74 #define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19)
75 #define NDCR_RD_ID_CNT_MASK (0x7 << 16)
76 #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
77
78 #define NDCR_RA_START (0x1 << 15)
79 #define NDCR_PG_PER_BLK (0x1 << 14)
80 #define NDCR_ND_ARB_EN (0x1 << 12)
81 #define NDCR_INT_MASK (0xFFF)
82
83 #define NDSR_MASK (0xfff)
84 #define NDSR_ERR_CNT_OFF (16)
85 #define NDSR_ERR_CNT_MASK (0x1f)
86 #define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
87 #define NDSR_RDY (0x1 << 12)
88 #define NDSR_FLASH_RDY (0x1 << 11)
89 #define NDSR_CS0_PAGED (0x1 << 10)
90 #define NDSR_CS1_PAGED (0x1 << 9)
91 #define NDSR_CS0_CMDD (0x1 << 8)
92 #define NDSR_CS1_CMDD (0x1 << 7)
93 #define NDSR_CS0_BBD (0x1 << 6)
94 #define NDSR_CS1_BBD (0x1 << 5)
95 #define NDSR_UNCORERR (0x1 << 4)
96 #define NDSR_CORERR (0x1 << 3)
97 #define NDSR_WRDREQ (0x1 << 2)
98 #define NDSR_RDDREQ (0x1 << 1)
99 #define NDSR_WRCMDREQ (0x1)
100
101 #define NDCB0_LEN_OVRD (0x1 << 28)
102 #define NDCB0_ST_ROW_EN (0x1 << 26)
103 #define NDCB0_AUTO_RS (0x1 << 25)
104 #define NDCB0_CSEL (0x1 << 24)
105 #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
106 #define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
107 #define NDCB0_CMD_TYPE_MASK (0x7 << 21)
108 #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
109 #define NDCB0_NC (0x1 << 20)
110 #define NDCB0_DBC (0x1 << 19)
111 #define NDCB0_ADDR_CYC_MASK (0x7 << 16)
112 #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
113 #define NDCB0_CMD2_MASK (0xff << 8)
114 #define NDCB0_CMD1_MASK (0xff)
115 #define NDCB0_ADDR_CYC_SHIFT (16)
116
117 #define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */
118 #define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */
119 #define EXT_CMD_TYPE_READ 4 /* Read */
120 #define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */
121 #define EXT_CMD_TYPE_FINAL 3 /* Final command */
122 #define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */
123 #define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */
124
125 /*
126 * This should be large enough to read 'ONFI' and 'JEDEC'.
127 * Let's use 7 bytes, which is the maximum ID count supported
128 * by the controller (see NDCR_RD_ID_CNT_MASK).
129 */
130 #define READ_ID_BYTES 7
131
132 /* macros for registers read/write */
133 #define nand_writel(info, off, val) \
134 do { \
135 dev_vdbg(&info->pdev->dev, \
136 "%s():%d nand_writel(0x%x, 0x%04x)\n", \
137 __func__, __LINE__, (val), (off)); \
138 writel_relaxed((val), (info)->mmio_base + (off)); \
139 } while (0)
140
141 #define nand_readl(info, off) \
142 ({ \
143 unsigned int _v; \
144 _v = readl_relaxed((info)->mmio_base + (off)); \
145 dev_vdbg(&info->pdev->dev, \
146 "%s():%d nand_readl(0x%04x) = 0x%x\n", \
147 __func__, __LINE__, (off), _v); \
148 _v; \
149 })
150
151 /* error code and state */
152 enum {
153 ERR_NONE = 0,
154 ERR_DMABUSERR = -1,
155 ERR_SENDCMD = -2,
156 ERR_UNCORERR = -3,
157 ERR_BBERR = -4,
158 ERR_CORERR = -5,
159 };
160
161 enum {
162 STATE_IDLE = 0,
163 STATE_PREPARED,
164 STATE_CMD_HANDLE,
165 STATE_DMA_READING,
166 STATE_DMA_WRITING,
167 STATE_DMA_DONE,
168 STATE_PIO_READING,
169 STATE_PIO_WRITING,
170 STATE_CMD_DONE,
171 STATE_READY,
172 };
173
174 enum pxa3xx_nand_variant {
175 PXA3XX_NAND_VARIANT_PXA,
176 PXA3XX_NAND_VARIANT_ARMADA370,
177 };
178
179 struct pxa3xx_nand_host {
180 struct nand_chip chip;
181 void *info_data;
182
183 /* page size of attached chip */
184 int use_ecc;
185 int cs;
186
187 /* calculated from pxa3xx_nand_flash data */
188 unsigned int col_addr_cycles;
189 unsigned int row_addr_cycles;
190 };
191
192 struct pxa3xx_nand_info {
193 struct nand_hw_control controller;
194 struct platform_device *pdev;
195
196 struct clk *clk;
197 void __iomem *mmio_base;
198 unsigned long mmio_phys;
199 struct completion cmd_complete, dev_ready;
200
201 unsigned int buf_start;
202 unsigned int buf_count;
203 unsigned int buf_size;
204 unsigned int data_buff_pos;
205 unsigned int oob_buff_pos;
206
207 /* DMA information */
208 struct scatterlist sg;
209 enum dma_data_direction dma_dir;
210 struct dma_chan *dma_chan;
211 dma_cookie_t dma_cookie;
212 int drcmr_dat;
213
214 unsigned char *data_buff;
215 unsigned char *oob_buff;
216 dma_addr_t data_buff_phys;
217 int data_dma_ch;
218
219 struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
220 unsigned int state;
221
222 /*
223 * This driver supports NFCv1 (as found in PXA SoC)
224 * and NFCv2 (as found in Armada 370/XP SoC).
225 */
226 enum pxa3xx_nand_variant variant;
227
228 int cs;
229 int use_ecc; /* use HW ECC ? */
230 int ecc_bch; /* using BCH ECC? */
231 int use_dma; /* use DMA ? */
232 int use_spare; /* use spare ? */
233 int need_wait;
234
235 /* Amount of real data per full chunk */
236 unsigned int chunk_size;
237
238 /* Amount of spare data per full chunk */
239 unsigned int spare_size;
240
241 /* Number of full chunks (i.e chunk_size + spare_size) */
242 unsigned int nfullchunks;
243
244 /*
245 * Total number of chunks. If equal to nfullchunks, then there
246 * are only full chunks. Otherwise, there is one last chunk of
247 * size (last_chunk_size + last_spare_size)
248 */
249 unsigned int ntotalchunks;
250
251 /* Amount of real data in the last chunk */
252 unsigned int last_chunk_size;
253
254 /* Amount of spare data in the last chunk */
255 unsigned int last_spare_size;
256
257 unsigned int ecc_size;
258 unsigned int ecc_err_cnt;
259 unsigned int max_bitflips;
260 int retcode;
261
262 /*
263 * Variables only valid during command
264 * execution. step_chunk_size and step_spare_size is the
265 * amount of real data and spare data in the current
266 * chunk. cur_chunk is the current chunk being
267 * read/programmed.
268 */
269 unsigned int step_chunk_size;
270 unsigned int step_spare_size;
271 unsigned int cur_chunk;
272
273 /* cached register value */
274 uint32_t reg_ndcr;
275 uint32_t ndtr0cs0;
276 uint32_t ndtr1cs0;
277
278 /* generated NDCBx register values */
279 uint32_t ndcb0;
280 uint32_t ndcb1;
281 uint32_t ndcb2;
282 uint32_t ndcb3;
283 };
284
285 static bool use_dma = 1;
286 module_param(use_dma, bool, 0444);
287 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
288
289 struct pxa3xx_nand_timing {
290 unsigned int tCH; /* Enable signal hold time */
291 unsigned int tCS; /* Enable signal setup time */
292 unsigned int tWH; /* ND_nWE high duration */
293 unsigned int tWP; /* ND_nWE pulse time */
294 unsigned int tRH; /* ND_nRE high duration */
295 unsigned int tRP; /* ND_nRE pulse width */
296 unsigned int tR; /* ND_nWE high to ND_nRE low for read */
297 unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
298 unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
299 };
300
301 struct pxa3xx_nand_flash {
302 uint32_t chip_id;
303 unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */
304 unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */
305 struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
306 };
307
308 static struct pxa3xx_nand_timing timing[] = {
309 { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
310 { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
311 { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
312 { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
313 };
314
315 static struct pxa3xx_nand_flash builtin_flash_types[] = {
316 { 0x46ec, 16, 16, &timing[1] },
317 { 0xdaec, 8, 8, &timing[1] },
318 { 0xd7ec, 8, 8, &timing[1] },
319 { 0xa12c, 8, 8, &timing[2] },
320 { 0xb12c, 16, 16, &timing[2] },
321 { 0xdc2c, 8, 8, &timing[2] },
322 { 0xcc2c, 16, 16, &timing[2] },
323 { 0xba20, 16, 16, &timing[3] },
324 };
325
326 static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section,
327 struct mtd_oob_region *oobregion)
328 {
329 struct nand_chip *chip = mtd_to_nand(mtd);
330 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
331 struct pxa3xx_nand_info *info = host->info_data;
332 int nchunks = mtd->writesize / info->chunk_size;
333
334 if (section >= nchunks)
335 return -ERANGE;
336
337 oobregion->offset = ((info->ecc_size + info->spare_size) * section) +
338 info->spare_size;
339 oobregion->length = info->ecc_size;
340
341 return 0;
342 }
343
344 static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section,
345 struct mtd_oob_region *oobregion)
346 {
347 struct nand_chip *chip = mtd_to_nand(mtd);
348 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
349 struct pxa3xx_nand_info *info = host->info_data;
350 int nchunks = mtd->writesize / info->chunk_size;
351
352 if (section >= nchunks)
353 return -ERANGE;
354
355 if (!info->spare_size)
356 return 0;
357
358 oobregion->offset = section * (info->ecc_size + info->spare_size);
359 oobregion->length = info->spare_size;
360 if (!section) {
361 /*
362 * Bootrom looks in bytes 0 & 5 for bad blocks for the
363 * 4KB page / 4bit BCH combination.
364 */
365 if (mtd->writesize == 4096 && info->chunk_size == 2048) {
366 oobregion->offset += 6;
367 oobregion->length -= 6;
368 } else {
369 oobregion->offset += 2;
370 oobregion->length -= 2;
371 }
372 }
373
374 return 0;
375 }
376
377 static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = {
378 .ecc = pxa3xx_ooblayout_ecc,
379 .free = pxa3xx_ooblayout_free,
380 };
381
382 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
383 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
384
385 static struct nand_bbt_descr bbt_main_descr = {
386 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
387 | NAND_BBT_2BIT | NAND_BBT_VERSION,
388 .offs = 8,
389 .len = 6,
390 .veroffs = 14,
391 .maxblocks = 8, /* Last 8 blocks in each chip */
392 .pattern = bbt_pattern
393 };
394
395 static struct nand_bbt_descr bbt_mirror_descr = {
396 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
397 | NAND_BBT_2BIT | NAND_BBT_VERSION,
398 .offs = 8,
399 .len = 6,
400 .veroffs = 14,
401 .maxblocks = 8, /* Last 8 blocks in each chip */
402 .pattern = bbt_mirror_pattern
403 };
404
405 #define NDTR0_tCH(c) (min((c), 7) << 19)
406 #define NDTR0_tCS(c) (min((c), 7) << 16)
407 #define NDTR0_tWH(c) (min((c), 7) << 11)
408 #define NDTR0_tWP(c) (min((c), 7) << 8)
409 #define NDTR0_tRH(c) (min((c), 7) << 3)
410 #define NDTR0_tRP(c) (min((c), 7) << 0)
411
412 #define NDTR1_tR(c) (min((c), 65535) << 16)
413 #define NDTR1_tWHR(c) (min((c), 15) << 4)
414 #define NDTR1_tAR(c) (min((c), 15) << 0)
415
416 /* convert nano-seconds to nand flash controller clock cycles */
417 #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
418
419 static const struct of_device_id pxa3xx_nand_dt_ids[] = {
420 {
421 .compatible = "marvell,pxa3xx-nand",
422 .data = (void *)PXA3XX_NAND_VARIANT_PXA,
423 },
424 {
425 .compatible = "marvell,armada370-nand",
426 .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
427 },
428 {}
429 };
430 MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
431
432 static enum pxa3xx_nand_variant
433 pxa3xx_nand_get_variant(struct platform_device *pdev)
434 {
435 const struct of_device_id *of_id =
436 of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
437 if (!of_id)
438 return PXA3XX_NAND_VARIANT_PXA;
439 return (enum pxa3xx_nand_variant)of_id->data;
440 }
441
442 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
443 const struct pxa3xx_nand_timing *t)
444 {
445 struct pxa3xx_nand_info *info = host->info_data;
446 unsigned long nand_clk = clk_get_rate(info->clk);
447 uint32_t ndtr0, ndtr1;
448
449 ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
450 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
451 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
452 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
453 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
454 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
455
456 ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
457 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
458 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
459
460 info->ndtr0cs0 = ndtr0;
461 info->ndtr1cs0 = ndtr1;
462 nand_writel(info, NDTR0CS0, ndtr0);
463 nand_writel(info, NDTR1CS0, ndtr1);
464 }
465
466 static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
467 const struct nand_sdr_timings *t)
468 {
469 struct pxa3xx_nand_info *info = host->info_data;
470 struct nand_chip *chip = &host->chip;
471 unsigned long nand_clk = clk_get_rate(info->clk);
472 uint32_t ndtr0, ndtr1;
473
474 u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
475 u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
476 u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
477 u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
478 u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
479 u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
480 u32 tR = chip->chip_delay * 1000;
481 u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
482 u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
483
484 /* fallback to a default value if tR = 0 */
485 if (!tR)
486 tR = 20000;
487
488 ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
489 NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
490 NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
491 NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
492 NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
493 NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
494
495 ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
496 NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
497 NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
498
499 info->ndtr0cs0 = ndtr0;
500 info->ndtr1cs0 = ndtr1;
501 nand_writel(info, NDTR0CS0, ndtr0);
502 nand_writel(info, NDTR1CS0, ndtr1);
503 }
504
505 static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host,
506 unsigned int *flash_width,
507 unsigned int *dfc_width)
508 {
509 struct nand_chip *chip = &host->chip;
510 struct pxa3xx_nand_info *info = host->info_data;
511 const struct pxa3xx_nand_flash *f = NULL;
512 struct mtd_info *mtd = nand_to_mtd(&host->chip);
513 int i, id, ntypes;
514
515 ntypes = ARRAY_SIZE(builtin_flash_types);
516
517 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
518
519 id = chip->read_byte(mtd);
520 id |= chip->read_byte(mtd) << 0x8;
521
522 for (i = 0; i < ntypes; i++) {
523 f = &builtin_flash_types[i];
524
525 if (f->chip_id == id)
526 break;
527 }
528
529 if (i == ntypes) {
530 dev_err(&info->pdev->dev, "Error: timings not found\n");
531 return -EINVAL;
532 }
533
534 pxa3xx_nand_set_timing(host, f->timing);
535
536 *flash_width = f->flash_width;
537 *dfc_width = f->dfc_width;
538
539 return 0;
540 }
541
542 static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host,
543 int mode)
544 {
545 const struct nand_sdr_timings *timings;
546
547 mode = fls(mode) - 1;
548 if (mode < 0)
549 mode = 0;
550
551 timings = onfi_async_timing_mode_to_sdr_timings(mode);
552 if (IS_ERR(timings))
553 return PTR_ERR(timings);
554
555 pxa3xx_nand_set_sdr_timing(host, timings);
556
557 return 0;
558 }
559
560 static int pxa3xx_nand_init(struct pxa3xx_nand_host *host)
561 {
562 struct nand_chip *chip = &host->chip;
563 struct pxa3xx_nand_info *info = host->info_data;
564 unsigned int flash_width = 0, dfc_width = 0;
565 int mode, err;
566
567 mode = onfi_get_async_timing_mode(chip);
568 if (mode == ONFI_TIMING_MODE_UNKNOWN) {
569 err = pxa3xx_nand_init_timings_compat(host, &flash_width,
570 &dfc_width);
571 if (err)
572 return err;
573
574 if (flash_width == 16) {
575 info->reg_ndcr |= NDCR_DWIDTH_M;
576 chip->options |= NAND_BUSWIDTH_16;
577 }
578
579 info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0;
580 } else {
581 err = pxa3xx_nand_init_timings_onfi(host, mode);
582 if (err)
583 return err;
584 }
585
586 return 0;
587 }
588
589 /**
590 * NOTE: it is a must to set ND_RUN firstly, then write
591 * command buffer, otherwise, it does not work.
592 * We enable all the interrupt at the same time, and
593 * let pxa3xx_nand_irq to handle all logic.
594 */
595 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
596 {
597 uint32_t ndcr;
598
599 ndcr = info->reg_ndcr;
600
601 if (info->use_ecc) {
602 ndcr |= NDCR_ECC_EN;
603 if (info->ecc_bch)
604 nand_writel(info, NDECCCTRL, 0x1);
605 } else {
606 ndcr &= ~NDCR_ECC_EN;
607 if (info->ecc_bch)
608 nand_writel(info, NDECCCTRL, 0x0);
609 }
610
611 if (info->use_dma)
612 ndcr |= NDCR_DMA_EN;
613 else
614 ndcr &= ~NDCR_DMA_EN;
615
616 if (info->use_spare)
617 ndcr |= NDCR_SPARE_EN;
618 else
619 ndcr &= ~NDCR_SPARE_EN;
620
621 ndcr |= NDCR_ND_RUN;
622
623 /* clear status bits and run */
624 nand_writel(info, NDSR, NDSR_MASK);
625 nand_writel(info, NDCR, 0);
626 nand_writel(info, NDCR, ndcr);
627 }
628
629 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
630 {
631 uint32_t ndcr;
632 int timeout = NAND_STOP_DELAY;
633
634 /* wait RUN bit in NDCR become 0 */
635 ndcr = nand_readl(info, NDCR);
636 while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
637 ndcr = nand_readl(info, NDCR);
638 udelay(1);
639 }
640
641 if (timeout <= 0) {
642 ndcr &= ~NDCR_ND_RUN;
643 nand_writel(info, NDCR, ndcr);
644 }
645 if (info->dma_chan)
646 dmaengine_terminate_all(info->dma_chan);
647
648 /* clear status bits */
649 nand_writel(info, NDSR, NDSR_MASK);
650 }
651
652 static void __maybe_unused
653 enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
654 {
655 uint32_t ndcr;
656
657 ndcr = nand_readl(info, NDCR);
658 nand_writel(info, NDCR, ndcr & ~int_mask);
659 }
660
661 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
662 {
663 uint32_t ndcr;
664
665 ndcr = nand_readl(info, NDCR);
666 nand_writel(info, NDCR, ndcr | int_mask);
667 }
668
669 static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
670 {
671 if (info->ecc_bch) {
672 u32 val;
673 int ret;
674
675 /*
676 * According to the datasheet, when reading from NDDB
677 * with BCH enabled, after each 32 bytes reads, we
678 * have to make sure that the NDSR.RDDREQ bit is set.
679 *
680 * Drain the FIFO 8 32 bits reads at a time, and skip
681 * the polling on the last read.
682 */
683 while (len > 8) {
684 ioread32_rep(info->mmio_base + NDDB, data, 8);
685
686 ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val,
687 val & NDSR_RDDREQ, 1000, 5000);
688 if (ret) {
689 dev_err(&info->pdev->dev,
690 "Timeout on RDDREQ while draining the FIFO\n");
691 return;
692 }
693
694 data += 32;
695 len -= 8;
696 }
697 }
698
699 ioread32_rep(info->mmio_base + NDDB, data, len);
700 }
701
702 static void handle_data_pio(struct pxa3xx_nand_info *info)
703 {
704 switch (info->state) {
705 case STATE_PIO_WRITING:
706 if (info->step_chunk_size)
707 writesl(info->mmio_base + NDDB,
708 info->data_buff + info->data_buff_pos,
709 DIV_ROUND_UP(info->step_chunk_size, 4));
710
711 if (info->step_spare_size)
712 writesl(info->mmio_base + NDDB,
713 info->oob_buff + info->oob_buff_pos,
714 DIV_ROUND_UP(info->step_spare_size, 4));
715 break;
716 case STATE_PIO_READING:
717 if (info->step_chunk_size)
718 drain_fifo(info,
719 info->data_buff + info->data_buff_pos,
720 DIV_ROUND_UP(info->step_chunk_size, 4));
721
722 if (info->step_spare_size)
723 drain_fifo(info,
724 info->oob_buff + info->oob_buff_pos,
725 DIV_ROUND_UP(info->step_spare_size, 4));
726 break;
727 default:
728 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
729 info->state);
730 BUG();
731 }
732
733 /* Update buffer pointers for multi-page read/write */
734 info->data_buff_pos += info->step_chunk_size;
735 info->oob_buff_pos += info->step_spare_size;
736 }
737
738 static void pxa3xx_nand_data_dma_irq(void *data)
739 {
740 struct pxa3xx_nand_info *info = data;
741 struct dma_tx_state state;
742 enum dma_status status;
743
744 status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state);
745 if (likely(status == DMA_COMPLETE)) {
746 info->state = STATE_DMA_DONE;
747 } else {
748 dev_err(&info->pdev->dev, "DMA error on data channel\n");
749 info->retcode = ERR_DMABUSERR;
750 }
751 dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
752
753 nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
754 enable_int(info, NDCR_INT_MASK);
755 }
756
757 static void start_data_dma(struct pxa3xx_nand_info *info)
758 {
759 enum dma_transfer_direction direction;
760 struct dma_async_tx_descriptor *tx;
761
762 switch (info->state) {
763 case STATE_DMA_WRITING:
764 info->dma_dir = DMA_TO_DEVICE;
765 direction = DMA_MEM_TO_DEV;
766 break;
767 case STATE_DMA_READING:
768 info->dma_dir = DMA_FROM_DEVICE;
769 direction = DMA_DEV_TO_MEM;
770 break;
771 default:
772 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
773 info->state);
774 BUG();
775 }
776 info->sg.length = info->chunk_size;
777 if (info->use_spare)
778 info->sg.length += info->spare_size + info->ecc_size;
779 dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
780
781 tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction,
782 DMA_PREP_INTERRUPT);
783 if (!tx) {
784 dev_err(&info->pdev->dev, "prep_slave_sg() failed\n");
785 return;
786 }
787 tx->callback = pxa3xx_nand_data_dma_irq;
788 tx->callback_param = info;
789 info->dma_cookie = dmaengine_submit(tx);
790 dma_async_issue_pending(info->dma_chan);
791 dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n",
792 __func__, direction, info->dma_cookie, info->sg.length);
793 }
794
795 static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data)
796 {
797 struct pxa3xx_nand_info *info = data;
798
799 handle_data_pio(info);
800
801 info->state = STATE_CMD_DONE;
802 nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
803
804 return IRQ_HANDLED;
805 }
806
807 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
808 {
809 struct pxa3xx_nand_info *info = devid;
810 unsigned int status, is_completed = 0, is_ready = 0;
811 unsigned int ready, cmd_done;
812 irqreturn_t ret = IRQ_HANDLED;
813
814 if (info->cs == 0) {
815 ready = NDSR_FLASH_RDY;
816 cmd_done = NDSR_CS0_CMDD;
817 } else {
818 ready = NDSR_RDY;
819 cmd_done = NDSR_CS1_CMDD;
820 }
821
822 status = nand_readl(info, NDSR);
823
824 if (status & NDSR_UNCORERR)
825 info->retcode = ERR_UNCORERR;
826 if (status & NDSR_CORERR) {
827 info->retcode = ERR_CORERR;
828 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
829 info->ecc_bch)
830 info->ecc_err_cnt = NDSR_ERR_CNT(status);
831 else
832 info->ecc_err_cnt = 1;
833
834 /*
835 * Each chunk composing a page is corrected independently,
836 * and we need to store maximum number of corrected bitflips
837 * to return it to the MTD layer in ecc.read_page().
838 */
839 info->max_bitflips = max_t(unsigned int,
840 info->max_bitflips,
841 info->ecc_err_cnt);
842 }
843 if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
844 /* whether use dma to transfer data */
845 if (info->use_dma) {
846 disable_int(info, NDCR_INT_MASK);
847 info->state = (status & NDSR_RDDREQ) ?
848 STATE_DMA_READING : STATE_DMA_WRITING;
849 start_data_dma(info);
850 goto NORMAL_IRQ_EXIT;
851 } else {
852 info->state = (status & NDSR_RDDREQ) ?
853 STATE_PIO_READING : STATE_PIO_WRITING;
854 ret = IRQ_WAKE_THREAD;
855 goto NORMAL_IRQ_EXIT;
856 }
857 }
858 if (status & cmd_done) {
859 info->state = STATE_CMD_DONE;
860 is_completed = 1;
861 }
862 if (status & ready) {
863 info->state = STATE_READY;
864 is_ready = 1;
865 }
866
867 /*
868 * Clear all status bit before issuing the next command, which
869 * can and will alter the status bits and will deserve a new
870 * interrupt on its own. This lets the controller exit the IRQ
871 */
872 nand_writel(info, NDSR, status);
873
874 if (status & NDSR_WRCMDREQ) {
875 status &= ~NDSR_WRCMDREQ;
876 info->state = STATE_CMD_HANDLE;
877
878 /*
879 * Command buffer registers NDCB{0-2} (and optionally NDCB3)
880 * must be loaded by writing directly either 12 or 16
881 * bytes directly to NDCB0, four bytes at a time.
882 *
883 * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
884 * but each NDCBx register can be read.
885 */
886 nand_writel(info, NDCB0, info->ndcb0);
887 nand_writel(info, NDCB0, info->ndcb1);
888 nand_writel(info, NDCB0, info->ndcb2);
889
890 /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
891 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
892 nand_writel(info, NDCB0, info->ndcb3);
893 }
894
895 if (is_completed)
896 complete(&info->cmd_complete);
897 if (is_ready)
898 complete(&info->dev_ready);
899 NORMAL_IRQ_EXIT:
900 return ret;
901 }
902
903 static inline int is_buf_blank(uint8_t *buf, size_t len)
904 {
905 for (; len > 0; len--)
906 if (*buf++ != 0xff)
907 return 0;
908 return 1;
909 }
910
911 static void set_command_address(struct pxa3xx_nand_info *info,
912 unsigned int page_size, uint16_t column, int page_addr)
913 {
914 /* small page addr setting */
915 if (page_size < PAGE_CHUNK_SIZE) {
916 info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
917 | (column & 0xFF);
918
919 info->ndcb2 = 0;
920 } else {
921 info->ndcb1 = ((page_addr & 0xFFFF) << 16)
922 | (column & 0xFFFF);
923
924 if (page_addr & 0xFF0000)
925 info->ndcb2 = (page_addr & 0xFF0000) >> 16;
926 else
927 info->ndcb2 = 0;
928 }
929 }
930
931 static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
932 {
933 struct pxa3xx_nand_host *host = info->host[info->cs];
934 struct mtd_info *mtd = nand_to_mtd(&host->chip);
935
936 /* reset data and oob column point to handle data */
937 info->buf_start = 0;
938 info->buf_count = 0;
939 info->data_buff_pos = 0;
940 info->oob_buff_pos = 0;
941 info->step_chunk_size = 0;
942 info->step_spare_size = 0;
943 info->cur_chunk = 0;
944 info->use_ecc = 0;
945 info->use_spare = 1;
946 info->retcode = ERR_NONE;
947 info->ecc_err_cnt = 0;
948 info->ndcb3 = 0;
949 info->need_wait = 0;
950
951 switch (command) {
952 case NAND_CMD_READ0:
953 case NAND_CMD_PAGEPROG:
954 info->use_ecc = 1;
955 break;
956 case NAND_CMD_PARAM:
957 info->use_spare = 0;
958 break;
959 default:
960 info->ndcb1 = 0;
961 info->ndcb2 = 0;
962 break;
963 }
964
965 /*
966 * If we are about to issue a read command, or about to set
967 * the write address, then clean the data buffer.
968 */
969 if (command == NAND_CMD_READ0 ||
970 command == NAND_CMD_READOOB ||
971 command == NAND_CMD_SEQIN) {
972
973 info->buf_count = mtd->writesize + mtd->oobsize;
974 memset(info->data_buff, 0xFF, info->buf_count);
975 }
976
977 }
978
979 static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
980 int ext_cmd_type, uint16_t column, int page_addr)
981 {
982 int addr_cycle, exec_cmd;
983 struct pxa3xx_nand_host *host;
984 struct mtd_info *mtd;
985
986 host = info->host[info->cs];
987 mtd = nand_to_mtd(&host->chip);
988 addr_cycle = 0;
989 exec_cmd = 1;
990
991 if (info->cs != 0)
992 info->ndcb0 = NDCB0_CSEL;
993 else
994 info->ndcb0 = 0;
995
996 if (command == NAND_CMD_SEQIN)
997 exec_cmd = 0;
998
999 addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
1000 + host->col_addr_cycles);
1001
1002 switch (command) {
1003 case NAND_CMD_READOOB:
1004 case NAND_CMD_READ0:
1005 info->buf_start = column;
1006 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1007 | addr_cycle
1008 | NAND_CMD_READ0;
1009
1010 if (command == NAND_CMD_READOOB)
1011 info->buf_start += mtd->writesize;
1012
1013 if (info->cur_chunk < info->nfullchunks) {
1014 info->step_chunk_size = info->chunk_size;
1015 info->step_spare_size = info->spare_size;
1016 } else {
1017 info->step_chunk_size = info->last_chunk_size;
1018 info->step_spare_size = info->last_spare_size;
1019 }
1020
1021 /*
1022 * Multiple page read needs an 'extended command type' field,
1023 * which is either naked-read or last-read according to the
1024 * state.
1025 */
1026 if (mtd->writesize == PAGE_CHUNK_SIZE) {
1027 info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
1028 } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
1029 info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
1030 | NDCB0_LEN_OVRD
1031 | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1032 info->ndcb3 = info->step_chunk_size +
1033 info->step_spare_size;
1034 }
1035
1036 set_command_address(info, mtd->writesize, column, page_addr);
1037 break;
1038
1039 case NAND_CMD_SEQIN:
1040
1041 info->buf_start = column;
1042 set_command_address(info, mtd->writesize, 0, page_addr);
1043
1044 /*
1045 * Multiple page programming needs to execute the initial
1046 * SEQIN command that sets the page address.
1047 */
1048 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1049 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1050 | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1051 | addr_cycle
1052 | command;
1053 exec_cmd = 1;
1054 }
1055 break;
1056
1057 case NAND_CMD_PAGEPROG:
1058 if (is_buf_blank(info->data_buff,
1059 (mtd->writesize + mtd->oobsize))) {
1060 exec_cmd = 0;
1061 break;
1062 }
1063
1064 if (info->cur_chunk < info->nfullchunks) {
1065 info->step_chunk_size = info->chunk_size;
1066 info->step_spare_size = info->spare_size;
1067 } else {
1068 info->step_chunk_size = info->last_chunk_size;
1069 info->step_spare_size = info->last_spare_size;
1070 }
1071
1072 /* Second command setting for large pages */
1073 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1074 /*
1075 * Multiple page write uses the 'extended command'
1076 * field. This can be used to issue a command dispatch
1077 * or a naked-write depending on the current stage.
1078 */
1079 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1080 | NDCB0_LEN_OVRD
1081 | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1082 info->ndcb3 = info->step_chunk_size +
1083 info->step_spare_size;
1084
1085 /*
1086 * This is the command dispatch that completes a chunked
1087 * page program operation.
1088 */
1089 if (info->cur_chunk == info->ntotalchunks) {
1090 info->ndcb0 = NDCB0_CMD_TYPE(0x1)
1091 | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1092 | command;
1093 info->ndcb1 = 0;
1094 info->ndcb2 = 0;
1095 info->ndcb3 = 0;
1096 }
1097 } else {
1098 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1099 | NDCB0_AUTO_RS
1100 | NDCB0_ST_ROW_EN
1101 | NDCB0_DBC
1102 | (NAND_CMD_PAGEPROG << 8)
1103 | NAND_CMD_SEQIN
1104 | addr_cycle;
1105 }
1106 break;
1107
1108 case NAND_CMD_PARAM:
1109 info->buf_count = INIT_BUFFER_SIZE;
1110 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1111 | NDCB0_ADDR_CYC(1)
1112 | NDCB0_LEN_OVRD
1113 | command;
1114 info->ndcb1 = (column & 0xFF);
1115 info->ndcb3 = INIT_BUFFER_SIZE;
1116 info->step_chunk_size = INIT_BUFFER_SIZE;
1117 break;
1118
1119 case NAND_CMD_READID:
1120 info->buf_count = READ_ID_BYTES;
1121 info->ndcb0 |= NDCB0_CMD_TYPE(3)
1122 | NDCB0_ADDR_CYC(1)
1123 | command;
1124 info->ndcb1 = (column & 0xFF);
1125
1126 info->step_chunk_size = 8;
1127 break;
1128 case NAND_CMD_STATUS:
1129 info->buf_count = 1;
1130 info->ndcb0 |= NDCB0_CMD_TYPE(4)
1131 | NDCB0_ADDR_CYC(1)
1132 | command;
1133
1134 info->step_chunk_size = 8;
1135 break;
1136
1137 case NAND_CMD_ERASE1:
1138 info->ndcb0 |= NDCB0_CMD_TYPE(2)
1139 | NDCB0_AUTO_RS
1140 | NDCB0_ADDR_CYC(3)
1141 | NDCB0_DBC
1142 | (NAND_CMD_ERASE2 << 8)
1143 | NAND_CMD_ERASE1;
1144 info->ndcb1 = page_addr;
1145 info->ndcb2 = 0;
1146
1147 break;
1148 case NAND_CMD_RESET:
1149 info->ndcb0 |= NDCB0_CMD_TYPE(5)
1150 | command;
1151
1152 break;
1153
1154 case NAND_CMD_ERASE2:
1155 exec_cmd = 0;
1156 break;
1157
1158 default:
1159 exec_cmd = 0;
1160 dev_err(&info->pdev->dev, "non-supported command %x\n",
1161 command);
1162 break;
1163 }
1164
1165 return exec_cmd;
1166 }
1167
1168 static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
1169 int column, int page_addr)
1170 {
1171 struct nand_chip *chip = mtd_to_nand(mtd);
1172 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1173 struct pxa3xx_nand_info *info = host->info_data;
1174 int exec_cmd;
1175
1176 /*
1177 * if this is a x16 device ,then convert the input
1178 * "byte" address into a "word" address appropriate
1179 * for indexing a word-oriented device
1180 */
1181 if (info->reg_ndcr & NDCR_DWIDTH_M)
1182 column /= 2;
1183
1184 /*
1185 * There may be different NAND chip hooked to
1186 * different chip select, so check whether
1187 * chip select has been changed, if yes, reset the timing
1188 */
1189 if (info->cs != host->cs) {
1190 info->cs = host->cs;
1191 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1192 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1193 }
1194
1195 prepare_start_command(info, command);
1196
1197 info->state = STATE_PREPARED;
1198 exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
1199
1200 if (exec_cmd) {
1201 init_completion(&info->cmd_complete);
1202 init_completion(&info->dev_ready);
1203 info->need_wait = 1;
1204 pxa3xx_nand_start(info);
1205
1206 if (!wait_for_completion_timeout(&info->cmd_complete,
1207 CHIP_DELAY_TIMEOUT)) {
1208 dev_err(&info->pdev->dev, "Wait time out!!!\n");
1209 /* Stop State Machine for next command cycle */
1210 pxa3xx_nand_stop(info);
1211 }
1212 }
1213 info->state = STATE_IDLE;
1214 }
1215
1216 static void nand_cmdfunc_extended(struct mtd_info *mtd,
1217 const unsigned command,
1218 int column, int page_addr)
1219 {
1220 struct nand_chip *chip = mtd_to_nand(mtd);
1221 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1222 struct pxa3xx_nand_info *info = host->info_data;
1223 int exec_cmd, ext_cmd_type;
1224
1225 /*
1226 * if this is a x16 device then convert the input
1227 * "byte" address into a "word" address appropriate
1228 * for indexing a word-oriented device
1229 */
1230 if (info->reg_ndcr & NDCR_DWIDTH_M)
1231 column /= 2;
1232
1233 /*
1234 * There may be different NAND chip hooked to
1235 * different chip select, so check whether
1236 * chip select has been changed, if yes, reset the timing
1237 */
1238 if (info->cs != host->cs) {
1239 info->cs = host->cs;
1240 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1241 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1242 }
1243
1244 /* Select the extended command for the first command */
1245 switch (command) {
1246 case NAND_CMD_READ0:
1247 case NAND_CMD_READOOB:
1248 ext_cmd_type = EXT_CMD_TYPE_MONO;
1249 break;
1250 case NAND_CMD_SEQIN:
1251 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1252 break;
1253 case NAND_CMD_PAGEPROG:
1254 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1255 break;
1256 default:
1257 ext_cmd_type = 0;
1258 break;
1259 }
1260
1261 prepare_start_command(info, command);
1262
1263 /*
1264 * Prepare the "is ready" completion before starting a command
1265 * transaction sequence. If the command is not executed the
1266 * completion will be completed, see below.
1267 *
1268 * We can do that inside the loop because the command variable
1269 * is invariant and thus so is the exec_cmd.
1270 */
1271 info->need_wait = 1;
1272 init_completion(&info->dev_ready);
1273 do {
1274 info->state = STATE_PREPARED;
1275
1276 exec_cmd = prepare_set_command(info, command, ext_cmd_type,
1277 column, page_addr);
1278 if (!exec_cmd) {
1279 info->need_wait = 0;
1280 complete(&info->dev_ready);
1281 break;
1282 }
1283
1284 init_completion(&info->cmd_complete);
1285 pxa3xx_nand_start(info);
1286
1287 if (!wait_for_completion_timeout(&info->cmd_complete,
1288 CHIP_DELAY_TIMEOUT)) {
1289 dev_err(&info->pdev->dev, "Wait time out!!!\n");
1290 /* Stop State Machine for next command cycle */
1291 pxa3xx_nand_stop(info);
1292 break;
1293 }
1294
1295 /* Only a few commands need several steps */
1296 if (command != NAND_CMD_PAGEPROG &&
1297 command != NAND_CMD_READ0 &&
1298 command != NAND_CMD_READOOB)
1299 break;
1300
1301 info->cur_chunk++;
1302
1303 /* Check if the sequence is complete */
1304 if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG)
1305 break;
1306
1307 /*
1308 * After a splitted program command sequence has issued
1309 * the command dispatch, the command sequence is complete.
1310 */
1311 if (info->cur_chunk == (info->ntotalchunks + 1) &&
1312 command == NAND_CMD_PAGEPROG &&
1313 ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
1314 break;
1315
1316 if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
1317 /* Last read: issue a 'last naked read' */
1318 if (info->cur_chunk == info->ntotalchunks - 1)
1319 ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
1320 else
1321 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1322
1323 /*
1324 * If a splitted program command has no more data to transfer,
1325 * the command dispatch must be issued to complete.
1326 */
1327 } else if (command == NAND_CMD_PAGEPROG &&
1328 info->cur_chunk == info->ntotalchunks) {
1329 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1330 }
1331 } while (1);
1332
1333 info->state = STATE_IDLE;
1334 }
1335
1336 static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
1337 struct nand_chip *chip, const uint8_t *buf, int oob_required,
1338 int page)
1339 {
1340 chip->write_buf(mtd, buf, mtd->writesize);
1341 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1342
1343 return 0;
1344 }
1345
1346 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
1347 struct nand_chip *chip, uint8_t *buf, int oob_required,
1348 int page)
1349 {
1350 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1351 struct pxa3xx_nand_info *info = host->info_data;
1352
1353 chip->read_buf(mtd, buf, mtd->writesize);
1354 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1355
1356 if (info->retcode == ERR_CORERR && info->use_ecc) {
1357 mtd->ecc_stats.corrected += info->ecc_err_cnt;
1358
1359 } else if (info->retcode == ERR_UNCORERR) {
1360 /*
1361 * for blank page (all 0xff), HW will calculate its ECC as
1362 * 0, which is different from the ECC information within
1363 * OOB, ignore such uncorrectable errors
1364 */
1365 if (is_buf_blank(buf, mtd->writesize))
1366 info->retcode = ERR_NONE;
1367 else
1368 mtd->ecc_stats.failed++;
1369 }
1370
1371 return info->max_bitflips;
1372 }
1373
1374 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
1375 {
1376 struct nand_chip *chip = mtd_to_nand(mtd);
1377 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1378 struct pxa3xx_nand_info *info = host->info_data;
1379 char retval = 0xFF;
1380
1381 if (info->buf_start < info->buf_count)
1382 /* Has just send a new command? */
1383 retval = info->data_buff[info->buf_start++];
1384
1385 return retval;
1386 }
1387
1388 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
1389 {
1390 struct nand_chip *chip = mtd_to_nand(mtd);
1391 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1392 struct pxa3xx_nand_info *info = host->info_data;
1393 u16 retval = 0xFFFF;
1394
1395 if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
1396 retval = *((u16 *)(info->data_buff+info->buf_start));
1397 info->buf_start += 2;
1398 }
1399 return retval;
1400 }
1401
1402 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1403 {
1404 struct nand_chip *chip = mtd_to_nand(mtd);
1405 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1406 struct pxa3xx_nand_info *info = host->info_data;
1407 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1408
1409 memcpy(buf, info->data_buff + info->buf_start, real_len);
1410 info->buf_start += real_len;
1411 }
1412
1413 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
1414 const uint8_t *buf, int len)
1415 {
1416 struct nand_chip *chip = mtd_to_nand(mtd);
1417 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1418 struct pxa3xx_nand_info *info = host->info_data;
1419 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1420
1421 memcpy(info->data_buff + info->buf_start, buf, real_len);
1422 info->buf_start += real_len;
1423 }
1424
1425 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
1426 {
1427 return;
1428 }
1429
1430 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1431 {
1432 struct nand_chip *chip = mtd_to_nand(mtd);
1433 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1434 struct pxa3xx_nand_info *info = host->info_data;
1435
1436 if (info->need_wait) {
1437 info->need_wait = 0;
1438 if (!wait_for_completion_timeout(&info->dev_ready,
1439 CHIP_DELAY_TIMEOUT)) {
1440 dev_err(&info->pdev->dev, "Ready time out!!!\n");
1441 return NAND_STATUS_FAIL;
1442 }
1443 }
1444
1445 /* pxa3xx_nand_send_command has waited for command complete */
1446 if (this->state == FL_WRITING || this->state == FL_ERASING) {
1447 if (info->retcode == ERR_NONE)
1448 return 0;
1449 else
1450 return NAND_STATUS_FAIL;
1451 }
1452
1453 return NAND_STATUS_READY;
1454 }
1455
1456 static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
1457 {
1458 struct pxa3xx_nand_host *host = info->host[info->cs];
1459 struct platform_device *pdev = info->pdev;
1460 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1461 const struct nand_sdr_timings *timings;
1462
1463 /* Configure default flash values */
1464 info->chunk_size = PAGE_CHUNK_SIZE;
1465 info->reg_ndcr = 0x0; /* enable all interrupts */
1466 info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1467 info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
1468 info->reg_ndcr |= NDCR_SPARE_EN;
1469
1470 /* use the common timing to make a try */
1471 timings = onfi_async_timing_mode_to_sdr_timings(0);
1472 if (IS_ERR(timings))
1473 return PTR_ERR(timings);
1474
1475 pxa3xx_nand_set_sdr_timing(host, timings);
1476 return 0;
1477 }
1478
1479 static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
1480 {
1481 struct pxa3xx_nand_host *host = info->host[info->cs];
1482 struct nand_chip *chip = &host->chip;
1483 struct mtd_info *mtd = nand_to_mtd(chip);
1484
1485 info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
1486 info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
1487 info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
1488 }
1489
1490 static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
1491 {
1492 struct platform_device *pdev = info->pdev;
1493 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1494 uint32_t ndcr = nand_readl(info, NDCR);
1495
1496 /* Set an initial chunk size */
1497 info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
1498 info->reg_ndcr = ndcr &
1499 ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
1500 info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1501 info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
1502 info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
1503 }
1504
1505 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
1506 {
1507 struct platform_device *pdev = info->pdev;
1508 struct dma_slave_config config;
1509 dma_cap_mask_t mask;
1510 struct pxad_param param;
1511 int ret;
1512
1513 info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1514 if (info->data_buff == NULL)
1515 return -ENOMEM;
1516 if (use_dma == 0)
1517 return 0;
1518
1519 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1520 if (ret)
1521 return ret;
1522
1523 sg_init_one(&info->sg, info->data_buff, info->buf_size);
1524 dma_cap_zero(mask);
1525 dma_cap_set(DMA_SLAVE, mask);
1526 param.prio = PXAD_PRIO_LOWEST;
1527 param.drcmr = info->drcmr_dat;
1528 info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn,
1529 &param, &pdev->dev,
1530 "data");
1531 if (!info->dma_chan) {
1532 dev_err(&pdev->dev, "unable to request data dma channel\n");
1533 return -ENODEV;
1534 }
1535
1536 memset(&config, 0, sizeof(config));
1537 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1538 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1539 config.src_addr = info->mmio_phys + NDDB;
1540 config.dst_addr = info->mmio_phys + NDDB;
1541 config.src_maxburst = 32;
1542 config.dst_maxburst = 32;
1543 ret = dmaengine_slave_config(info->dma_chan, &config);
1544 if (ret < 0) {
1545 dev_err(&info->pdev->dev,
1546 "dma channel configuration failed: %d\n",
1547 ret);
1548 return ret;
1549 }
1550
1551 /*
1552 * Now that DMA buffers are allocated we turn on
1553 * DMA proper for I/O operations.
1554 */
1555 info->use_dma = 1;
1556 return 0;
1557 }
1558
1559 static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
1560 {
1561 if (info->use_dma) {
1562 dmaengine_terminate_all(info->dma_chan);
1563 dma_release_channel(info->dma_chan);
1564 }
1565 kfree(info->data_buff);
1566 }
1567
1568 static int pxa_ecc_init(struct pxa3xx_nand_info *info,
1569 struct mtd_info *mtd,
1570 int strength, int ecc_stepsize, int page_size)
1571 {
1572 struct nand_chip *chip = mtd_to_nand(mtd);
1573 struct nand_ecc_ctrl *ecc = &chip->ecc;
1574
1575 if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
1576 info->nfullchunks = 1;
1577 info->ntotalchunks = 1;
1578 info->chunk_size = 2048;
1579 info->spare_size = 40;
1580 info->ecc_size = 24;
1581 ecc->mode = NAND_ECC_HW;
1582 ecc->size = 512;
1583 ecc->strength = 1;
1584
1585 } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
1586 info->nfullchunks = 1;
1587 info->ntotalchunks = 1;
1588 info->chunk_size = 512;
1589 info->spare_size = 8;
1590 info->ecc_size = 8;
1591 ecc->mode = NAND_ECC_HW;
1592 ecc->size = 512;
1593 ecc->strength = 1;
1594
1595 /*
1596 * Required ECC: 4-bit correction per 512 bytes
1597 * Select: 16-bit correction per 2048 bytes
1598 */
1599 } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
1600 info->ecc_bch = 1;
1601 info->nfullchunks = 1;
1602 info->ntotalchunks = 1;
1603 info->chunk_size = 2048;
1604 info->spare_size = 32;
1605 info->ecc_size = 32;
1606 ecc->mode = NAND_ECC_HW;
1607 ecc->size = info->chunk_size;
1608 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1609 ecc->strength = 16;
1610
1611 } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
1612 info->ecc_bch = 1;
1613 info->nfullchunks = 2;
1614 info->ntotalchunks = 2;
1615 info->chunk_size = 2048;
1616 info->spare_size = 32;
1617 info->ecc_size = 32;
1618 ecc->mode = NAND_ECC_HW;
1619 ecc->size = info->chunk_size;
1620 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1621 ecc->strength = 16;
1622
1623 /*
1624 * Required ECC: 8-bit correction per 512 bytes
1625 * Select: 16-bit correction per 1024 bytes
1626 */
1627 } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
1628 info->ecc_bch = 1;
1629 info->nfullchunks = 4;
1630 info->ntotalchunks = 5;
1631 info->chunk_size = 1024;
1632 info->spare_size = 0;
1633 info->last_chunk_size = 0;
1634 info->last_spare_size = 64;
1635 info->ecc_size = 32;
1636 ecc->mode = NAND_ECC_HW;
1637 ecc->size = info->chunk_size;
1638 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1639 ecc->strength = 16;
1640 } else {
1641 dev_err(&info->pdev->dev,
1642 "ECC strength %d at page size %d is not supported\n",
1643 strength, page_size);
1644 return -ENODEV;
1645 }
1646
1647 dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
1648 ecc->strength, ecc->size);
1649 return 0;
1650 }
1651
1652 static int pxa3xx_nand_scan(struct mtd_info *mtd)
1653 {
1654 struct nand_chip *chip = mtd_to_nand(mtd);
1655 struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1656 struct pxa3xx_nand_info *info = host->info_data;
1657 struct platform_device *pdev = info->pdev;
1658 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1659 int ret;
1660 uint16_t ecc_strength, ecc_step;
1661
1662 if (pdata->keep_config) {
1663 pxa3xx_nand_detect_config(info);
1664 } else {
1665 ret = pxa3xx_nand_config_ident(info);
1666 if (ret)
1667 return ret;
1668 }
1669
1670 if (info->reg_ndcr & NDCR_DWIDTH_M)
1671 chip->options |= NAND_BUSWIDTH_16;
1672
1673 /* Device detection must be done with ECC disabled */
1674 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
1675 nand_writel(info, NDECCCTRL, 0x0);
1676
1677 if (pdata->flash_bbt)
1678 chip->bbt_options |= NAND_BBT_USE_FLASH;
1679
1680 chip->ecc.strength = pdata->ecc_strength;
1681 chip->ecc.size = pdata->ecc_step_size;
1682
1683 ret = nand_scan_ident(mtd, 1, NULL);
1684 if (ret)
1685 return ret;
1686
1687 if (!pdata->keep_config) {
1688 ret = pxa3xx_nand_init(host);
1689 if (ret) {
1690 dev_err(&info->pdev->dev, "Failed to init nand: %d\n",
1691 ret);
1692 return ret;
1693 }
1694 }
1695
1696 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1697 /*
1698 * We'll use a bad block table stored in-flash and don't
1699 * allow writing the bad block marker to the flash.
1700 */
1701 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
1702 chip->bbt_td = &bbt_main_descr;
1703 chip->bbt_md = &bbt_mirror_descr;
1704 }
1705
1706 /*
1707 * If the page size is bigger than the FIFO size, let's check
1708 * we are given the right variant and then switch to the extended
1709 * (aka splitted) command handling,
1710 */
1711 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1712 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
1713 chip->cmdfunc = nand_cmdfunc_extended;
1714 } else {
1715 dev_err(&info->pdev->dev,
1716 "unsupported page size on this variant\n");
1717 return -ENODEV;
1718 }
1719 }
1720
1721 ecc_strength = chip->ecc.strength;
1722 ecc_step = chip->ecc.size;
1723 if (!ecc_strength || !ecc_step) {
1724 ecc_strength = chip->ecc_strength_ds;
1725 ecc_step = chip->ecc_step_ds;
1726 }
1727
1728 /* Set default ECC strength requirements on non-ONFI devices */
1729 if (ecc_strength < 1 && ecc_step < 1) {
1730 ecc_strength = 1;
1731 ecc_step = 512;
1732 }
1733
1734 ret = pxa_ecc_init(info, mtd, ecc_strength,
1735 ecc_step, mtd->writesize);
1736 if (ret)
1737 return ret;
1738
1739 /* calculate addressing information */
1740 if (mtd->writesize >= 2048)
1741 host->col_addr_cycles = 2;
1742 else
1743 host->col_addr_cycles = 1;
1744
1745 /* release the initial buffer */
1746 kfree(info->data_buff);
1747
1748 /* allocate the real data + oob buffer */
1749 info->buf_size = mtd->writesize + mtd->oobsize;
1750 ret = pxa3xx_nand_init_buff(info);
1751 if (ret)
1752 return ret;
1753 info->oob_buff = info->data_buff + mtd->writesize;
1754
1755 if ((mtd->size >> chip->page_shift) > 65536)
1756 host->row_addr_cycles = 3;
1757 else
1758 host->row_addr_cycles = 2;
1759
1760 if (!pdata->keep_config)
1761 pxa3xx_nand_config_tail(info);
1762
1763 return nand_scan_tail(mtd);
1764 }
1765
1766 static int alloc_nand_resource(struct platform_device *pdev)
1767 {
1768 struct device_node *np = pdev->dev.of_node;
1769 struct pxa3xx_nand_platform_data *pdata;
1770 struct pxa3xx_nand_info *info;
1771 struct pxa3xx_nand_host *host;
1772 struct nand_chip *chip = NULL;
1773 struct mtd_info *mtd;
1774 struct resource *r;
1775 int ret, irq, cs;
1776
1777 pdata = dev_get_platdata(&pdev->dev);
1778 if (pdata->num_cs <= 0) {
1779 dev_err(&pdev->dev, "invalid number of chip selects\n");
1780 return -ENODEV;
1781 }
1782
1783 info = devm_kzalloc(&pdev->dev,
1784 sizeof(*info) + sizeof(*host) * pdata->num_cs,
1785 GFP_KERNEL);
1786 if (!info)
1787 return -ENOMEM;
1788
1789 info->pdev = pdev;
1790 info->variant = pxa3xx_nand_get_variant(pdev);
1791 for (cs = 0; cs < pdata->num_cs; cs++) {
1792 host = (void *)&info[1] + sizeof(*host) * cs;
1793 chip = &host->chip;
1794 nand_set_controller_data(chip, host);
1795 mtd = nand_to_mtd(chip);
1796 info->host[cs] = host;
1797 host->cs = cs;
1798 host->info_data = info;
1799 mtd->dev.parent = &pdev->dev;
1800 /* FIXME: all chips use the same device tree partitions */
1801 nand_set_flash_node(chip, np);
1802
1803 nand_set_controller_data(chip, host);
1804 chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
1805 chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
1806 chip->controller = &info->controller;
1807 chip->waitfunc = pxa3xx_nand_waitfunc;
1808 chip->select_chip = pxa3xx_nand_select_chip;
1809 chip->read_word = pxa3xx_nand_read_word;
1810 chip->read_byte = pxa3xx_nand_read_byte;
1811 chip->read_buf = pxa3xx_nand_read_buf;
1812 chip->write_buf = pxa3xx_nand_write_buf;
1813 chip->options |= NAND_NO_SUBPAGE_WRITE;
1814 chip->cmdfunc = nand_cmdfunc;
1815 }
1816
1817 nand_hw_control_init(chip->controller);
1818 info->clk = devm_clk_get(&pdev->dev, NULL);
1819 if (IS_ERR(info->clk)) {
1820 ret = PTR_ERR(info->clk);
1821 dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret);
1822 return ret;
1823 }
1824 ret = clk_prepare_enable(info->clk);
1825 if (ret < 0)
1826 return ret;
1827
1828 if (!np && use_dma) {
1829 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1830 if (r == NULL) {
1831 dev_err(&pdev->dev,
1832 "no resource defined for data DMA\n");
1833 ret = -ENXIO;
1834 goto fail_disable_clk;
1835 }
1836 info->drcmr_dat = r->start;
1837 }
1838
1839 irq = platform_get_irq(pdev, 0);
1840 if (irq < 0) {
1841 dev_err(&pdev->dev, "no IRQ resource defined\n");
1842 ret = -ENXIO;
1843 goto fail_disable_clk;
1844 }
1845
1846 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1847 info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
1848 if (IS_ERR(info->mmio_base)) {
1849 ret = PTR_ERR(info->mmio_base);
1850 dev_err(&pdev->dev, "failed to map register space: %d\n", ret);
1851 goto fail_disable_clk;
1852 }
1853 info->mmio_phys = r->start;
1854
1855 /* Allocate a buffer to allow flash detection */
1856 info->buf_size = INIT_BUFFER_SIZE;
1857 info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1858 if (info->data_buff == NULL) {
1859 ret = -ENOMEM;
1860 goto fail_disable_clk;
1861 }
1862
1863 /* initialize all interrupts to be disabled */
1864 disable_int(info, NDSR_MASK);
1865
1866 ret = request_threaded_irq(irq, pxa3xx_nand_irq,
1867 pxa3xx_nand_irq_thread, IRQF_ONESHOT,
1868 pdev->name, info);
1869 if (ret < 0) {
1870 dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret);
1871 goto fail_free_buf;
1872 }
1873
1874 platform_set_drvdata(pdev, info);
1875
1876 return 0;
1877
1878 fail_free_buf:
1879 free_irq(irq, info);
1880 kfree(info->data_buff);
1881 fail_disable_clk:
1882 clk_disable_unprepare(info->clk);
1883 return ret;
1884 }
1885
1886 static int pxa3xx_nand_remove(struct platform_device *pdev)
1887 {
1888 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1889 struct pxa3xx_nand_platform_data *pdata;
1890 int irq, cs;
1891
1892 if (!info)
1893 return 0;
1894
1895 pdata = dev_get_platdata(&pdev->dev);
1896
1897 irq = platform_get_irq(pdev, 0);
1898 if (irq >= 0)
1899 free_irq(irq, info);
1900 pxa3xx_nand_free_buff(info);
1901
1902 /*
1903 * In the pxa3xx case, the DFI bus is shared between the SMC and NFC.
1904 * In order to prevent a lockup of the system bus, the DFI bus
1905 * arbitration is granted to SMC upon driver removal. This is done by
1906 * setting the x_ARB_CNTL bit, which also prevents the NAND to have
1907 * access to the bus anymore.
1908 */
1909 nand_writel(info, NDCR,
1910 (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) |
1911 NFCV1_NDCR_ARB_CNTL);
1912 clk_disable_unprepare(info->clk);
1913
1914 for (cs = 0; cs < pdata->num_cs; cs++)
1915 nand_release(nand_to_mtd(&info->host[cs]->chip));
1916 return 0;
1917 }
1918
1919 static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1920 {
1921 struct pxa3xx_nand_platform_data *pdata;
1922 struct device_node *np = pdev->dev.of_node;
1923 const struct of_device_id *of_id =
1924 of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1925
1926 if (!of_id)
1927 return 0;
1928
1929 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1930 if (!pdata)
1931 return -ENOMEM;
1932
1933 if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1934 pdata->enable_arbiter = 1;
1935 if (of_get_property(np, "marvell,nand-keep-config", NULL))
1936 pdata->keep_config = 1;
1937 of_property_read_u32(np, "num-cs", &pdata->num_cs);
1938
1939 pdev->dev.platform_data = pdata;
1940
1941 return 0;
1942 }
1943
1944 static int pxa3xx_nand_probe(struct platform_device *pdev)
1945 {
1946 struct pxa3xx_nand_platform_data *pdata;
1947 struct pxa3xx_nand_info *info;
1948 int ret, cs, probe_success, dma_available;
1949
1950 dma_available = IS_ENABLED(CONFIG_ARM) &&
1951 (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP));
1952 if (use_dma && !dma_available) {
1953 use_dma = 0;
1954 dev_warn(&pdev->dev,
1955 "This platform can't do DMA on this device\n");
1956 }
1957
1958 ret = pxa3xx_nand_probe_dt(pdev);
1959 if (ret)
1960 return ret;
1961
1962 pdata = dev_get_platdata(&pdev->dev);
1963 if (!pdata) {
1964 dev_err(&pdev->dev, "no platform data defined\n");
1965 return -ENODEV;
1966 }
1967
1968 ret = alloc_nand_resource(pdev);
1969 if (ret)
1970 return ret;
1971
1972 info = platform_get_drvdata(pdev);
1973 probe_success = 0;
1974 for (cs = 0; cs < pdata->num_cs; cs++) {
1975 struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
1976
1977 /*
1978 * The mtd name matches the one used in 'mtdparts' kernel
1979 * parameter. This name cannot be changed or otherwise
1980 * user's mtd partitions configuration would get broken.
1981 */
1982 mtd->name = "pxa3xx_nand-0";
1983 info->cs = cs;
1984 ret = pxa3xx_nand_scan(mtd);
1985 if (ret) {
1986 dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1987 cs);
1988 continue;
1989 }
1990
1991 ret = mtd_device_register(mtd, pdata->parts[cs],
1992 pdata->nr_parts[cs]);
1993 if (!ret)
1994 probe_success = 1;
1995 }
1996
1997 if (!probe_success) {
1998 pxa3xx_nand_remove(pdev);
1999 return -ENODEV;
2000 }
2001
2002 return 0;
2003 }
2004
2005 #ifdef CONFIG_PM
2006 static int pxa3xx_nand_suspend(struct device *dev)
2007 {
2008 struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2009
2010 if (info->state) {
2011 dev_err(dev, "driver busy, state = %d\n", info->state);
2012 return -EAGAIN;
2013 }
2014
2015 clk_disable(info->clk);
2016 return 0;
2017 }
2018
2019 static int pxa3xx_nand_resume(struct device *dev)
2020 {
2021 struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2022 int ret;
2023
2024 ret = clk_enable(info->clk);
2025 if (ret < 0)
2026 return ret;
2027
2028 /* We don't want to handle interrupt without calling mtd routine */
2029 disable_int(info, NDCR_INT_MASK);
2030
2031 /*
2032 * Directly set the chip select to a invalid value,
2033 * then the driver would reset the timing according
2034 * to current chip select at the beginning of cmdfunc
2035 */
2036 info->cs = 0xff;
2037
2038 /*
2039 * As the spec says, the NDSR would be updated to 0x1800 when
2040 * doing the nand_clk disable/enable.
2041 * To prevent it damaging state machine of the driver, clear
2042 * all status before resume
2043 */
2044 nand_writel(info, NDSR, NDSR_MASK);
2045
2046 return 0;
2047 }
2048 #else
2049 #define pxa3xx_nand_suspend NULL
2050 #define pxa3xx_nand_resume NULL
2051 #endif
2052
2053 static const struct dev_pm_ops pxa3xx_nand_pm_ops = {
2054 .suspend = pxa3xx_nand_suspend,
2055 .resume = pxa3xx_nand_resume,
2056 };
2057
2058 static struct platform_driver pxa3xx_nand_driver = {
2059 .driver = {
2060 .name = "pxa3xx-nand",
2061 .of_match_table = pxa3xx_nand_dt_ids,
2062 .pm = &pxa3xx_nand_pm_ops,
2063 },
2064 .probe = pxa3xx_nand_probe,
2065 .remove = pxa3xx_nand_remove,
2066 };
2067
2068 module_platform_driver(pxa3xx_nand_driver);
2069
2070 MODULE_LICENSE("GPL");
2071 MODULE_DESCRIPTION("PXA3xx NAND controller driver");