]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/nand/raw/cafe_nand.c
Merge tag 'for-4.21/block-20190102' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / cafe_nand.c
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 *
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
6 *
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1 0x00
28 #define CAFE_NAND_CTRL2 0x04
29 #define CAFE_NAND_CTRL3 0x08
30 #define CAFE_NAND_STATUS 0x0c
31 #define CAFE_NAND_IRQ 0x10
32 #define CAFE_NAND_IRQ_MASK 0x14
33 #define CAFE_NAND_DATA_LEN 0x18
34 #define CAFE_NAND_ADDR1 0x1c
35 #define CAFE_NAND_ADDR2 0x20
36 #define CAFE_NAND_TIMING1 0x24
37 #define CAFE_NAND_TIMING2 0x28
38 #define CAFE_NAND_TIMING3 0x2c
39 #define CAFE_NAND_NONMEM 0x30
40 #define CAFE_NAND_ECC_RESULT 0x3C
41 #define CAFE_NAND_DMA_CTRL 0x40
42 #define CAFE_NAND_DMA_ADDR0 0x44
43 #define CAFE_NAND_DMA_ADDR1 0x48
44 #define CAFE_NAND_ECC_SYN01 0x50
45 #define CAFE_NAND_ECC_SYN23 0x54
46 #define CAFE_NAND_ECC_SYN45 0x58
47 #define CAFE_NAND_ECC_SYN67 0x5c
48 #define CAFE_NAND_READ_DATA 0x1000
49 #define CAFE_NAND_WRITE_DATA 0x2000
50
51 #define CAFE_GLOBAL_CTRL 0x3004
52 #define CAFE_GLOBAL_IRQ 0x3008
53 #define CAFE_GLOBAL_IRQ_MASK 0x300c
54 #define CAFE_NAND_RESET 0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT (1<<19)
58
59 struct cafe_priv {
60 struct nand_chip nand;
61 struct pci_dev *pdev;
62 void __iomem *mmio;
63 struct rs_control *rs;
64 uint32_t ctl1;
65 uint32_t ctl2;
66 int datalen;
67 int nr_data;
68 int data_pos;
69 int page_addr;
70 bool usedma;
71 dma_addr_t dmaaddr;
72 unsigned char *dmabuf;
73 };
74
75 static int usedma = 1;
76 module_param(usedma, int, 0644);
77
78 static int skipbbt = 0;
79 module_param(skipbbt, int, 0644);
80
81 static int debug = 0;
82 module_param(debug, int, 0644);
83
84 static int regdebug = 0;
85 module_param(regdebug, int, 0644);
86
87 static int checkecc = 1;
88 module_param(checkecc, int, 0644);
89
90 static unsigned int numtimings;
91 static int timing[3];
92 module_param_array(timing, int, &numtimings, 0644);
93
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
102
103 static int cafe_device_ready(struct nand_chip *chip)
104 {
105 struct cafe_priv *cafe = nand_get_controller_data(chip);
106 int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108
109 cafe_writel(cafe, irqs, NAND_IRQ);
110
111 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114
115 return result;
116 }
117
118
119 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
120 {
121 struct cafe_priv *cafe = nand_get_controller_data(chip);
122
123 if (cafe->usedma)
124 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
125 else
126 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127
128 cafe->datalen += len;
129
130 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131 len, cafe->datalen);
132 }
133
134 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
135 {
136 struct cafe_priv *cafe = nand_get_controller_data(chip);
137
138 if (cafe->usedma)
139 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
140 else
141 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
142
143 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144 len, cafe->datalen);
145 cafe->datalen += len;
146 }
147
148 static uint8_t cafe_read_byte(struct nand_chip *chip)
149 {
150 struct cafe_priv *cafe = nand_get_controller_data(chip);
151 uint8_t d;
152
153 cafe_read_buf(chip, &d, 1);
154 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155
156 return d;
157 }
158
159 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
160 int column, int page_addr)
161 {
162 struct mtd_info *mtd = nand_to_mtd(chip);
163 struct cafe_priv *cafe = nand_get_controller_data(chip);
164 int adrbytes = 0;
165 uint32_t ctl1;
166 uint32_t doneint = 0x80000000;
167
168 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169 command, column, page_addr);
170
171 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172 /* Second half of a command we already calculated */
173 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174 ctl1 = cafe->ctl1;
175 cafe->ctl2 &= ~(1<<30);
176 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177 cafe->ctl1, cafe->nr_data);
178 goto do_command;
179 }
180 /* Reset ECC engine */
181 cafe_writel(cafe, 0, NAND_CTRL2);
182
183 /* Emulate NAND_CMD_READOOB on large-page chips */
184 if (mtd->writesize > 512 &&
185 command == NAND_CMD_READOOB) {
186 column += mtd->writesize;
187 command = NAND_CMD_READ0;
188 }
189
190 /* FIXME: Do we need to send read command before sending data
191 for small-page chips, to position the buffer correctly? */
192
193 if (column != -1) {
194 cafe_writel(cafe, column, NAND_ADDR1);
195 adrbytes = 2;
196 if (page_addr != -1)
197 goto write_adr2;
198 } else if (page_addr != -1) {
199 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200 page_addr >>= 16;
201 write_adr2:
202 cafe_writel(cafe, page_addr, NAND_ADDR2);
203 adrbytes += 2;
204 if (mtd->size > mtd->writesize << 16)
205 adrbytes++;
206 }
207
208 cafe->data_pos = cafe->datalen = 0;
209
210 /* Set command valid bit, mask in the chip select bit */
211 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212
213 /* Set RD or WR bits as appropriate */
214 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
215 ctl1 |= (1<<26); /* rd */
216 /* Always 5 bytes, for now */
217 cafe->datalen = 4;
218 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219 adrbytes = 1;
220 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
221 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
222 ctl1 |= 1<<26; /* rd */
223 /* For now, assume just read to end of page */
224 cafe->datalen = mtd->writesize + mtd->oobsize - column;
225 } else if (command == NAND_CMD_SEQIN)
226 ctl1 |= 1<<25; /* wr */
227
228 /* Set number of address bytes */
229 if (adrbytes)
230 ctl1 |= ((adrbytes-1)|8) << 27;
231
232 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
233 /* Ignore the first command of a pair; the hardware
234 deals with them both at once, later */
235 cafe->ctl1 = ctl1;
236 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237 cafe->ctl1, cafe->datalen);
238 return;
239 }
240 /* RNDOUT and READ0 commands need a following byte */
241 if (command == NAND_CMD_RNDOUT)
242 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
245
246 do_command:
247 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249
250 /* NB: The datasheet lies -- we really should be subtracting 1 here */
251 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
252 cafe_writel(cafe, 0x90000000, NAND_IRQ);
253 if (cafe->usedma && (ctl1 & (3<<25))) {
254 uint32_t dmactl = 0xc0000000 + cafe->datalen;
255 /* If WR or RD bits set, set up DMA */
256 if (ctl1 & (1<<26)) {
257 /* It's a read */
258 dmactl |= (1<<29);
259 /* ... so it's done when the DMA is done, not just
260 the command. */
261 doneint = 0x10000000;
262 }
263 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
264 }
265 cafe->datalen = 0;
266
267 if (unlikely(regdebug)) {
268 int i;
269 printk("About to write command %08x to register 0\n", ctl1);
270 for (i=4; i< 0x5c; i+=4)
271 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
272 }
273
274 cafe_writel(cafe, ctl1, NAND_CTRL1);
275 /* Apply this short delay always to ensure that we do wait tWB in
276 * any case on any machine. */
277 ndelay(100);
278
279 if (1) {
280 int c;
281 uint32_t irqs;
282
283 for (c = 500000; c != 0; c--) {
284 irqs = cafe_readl(cafe, NAND_IRQ);
285 if (irqs & doneint)
286 break;
287 udelay(1);
288 if (!(c % 100000))
289 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290 cpu_relax();
291 }
292 cafe_writel(cafe, doneint, NAND_IRQ);
293 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
295 }
296
297 WARN_ON(cafe->ctl2 & (1<<30));
298
299 switch (command) {
300
301 case NAND_CMD_CACHEDPROG:
302 case NAND_CMD_PAGEPROG:
303 case NAND_CMD_ERASE1:
304 case NAND_CMD_ERASE2:
305 case NAND_CMD_SEQIN:
306 case NAND_CMD_RNDIN:
307 case NAND_CMD_STATUS:
308 case NAND_CMD_RNDOUT:
309 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
310 return;
311 }
312 nand_wait_ready(chip);
313 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314 }
315
316 static void cafe_select_chip(struct nand_chip *chip, int chipnr)
317 {
318 struct cafe_priv *cafe = nand_get_controller_data(chip);
319
320 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
321
322 /* Mask the appropriate bit into the stored value of ctl1
323 which will be used by cafe_nand_cmdfunc() */
324 if (chipnr)
325 cafe->ctl1 |= CTRL1_CHIPSELECT;
326 else
327 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
328 }
329
330 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
331 {
332 struct mtd_info *mtd = id;
333 struct nand_chip *chip = mtd_to_nand(mtd);
334 struct cafe_priv *cafe = nand_get_controller_data(chip);
335 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
336 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
337 if (!irqs)
338 return IRQ_NONE;
339
340 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
341 return IRQ_HANDLED;
342 }
343
344 static int cafe_nand_write_oob(struct nand_chip *chip, int page)
345 {
346 struct mtd_info *mtd = nand_to_mtd(chip);
347
348 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
349 mtd->oobsize);
350 }
351
352 /* Don't use -- use nand_read_oob_std for now */
353 static int cafe_nand_read_oob(struct nand_chip *chip, int page)
354 {
355 struct mtd_info *mtd = nand_to_mtd(chip);
356
357 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
358 }
359 /**
360 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
361 * @mtd: mtd info structure
362 * @chip: nand chip info structure
363 * @buf: buffer to store read data
364 * @oob_required: caller expects OOB data read to chip->oob_poi
365 *
366 * The hw generator calculates the error syndrome automatically. Therefore
367 * we need a special oob layout and handling.
368 */
369 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
370 int oob_required, int page)
371 {
372 struct mtd_info *mtd = nand_to_mtd(chip);
373 struct cafe_priv *cafe = nand_get_controller_data(chip);
374 unsigned int max_bitflips = 0;
375
376 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
377 cafe_readl(cafe, NAND_ECC_RESULT),
378 cafe_readl(cafe, NAND_ECC_SYN01));
379
380 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
381 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
382
383 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
384 unsigned short syn[8], pat[4];
385 int pos[4];
386 u8 *oob = chip->oob_poi;
387 int i, n;
388
389 for (i=0; i<8; i+=2) {
390 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
391
392 syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
393 syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
394 }
395
396 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
397 pat);
398
399 for (i = 0; i < n; i++) {
400 int p = pos[i];
401
402 /* The 12-bit symbols are mapped to bytes here */
403
404 if (p > 1374) {
405 /* out of range */
406 n = -1374;
407 } else if (p == 0) {
408 /* high four bits do not correspond to data */
409 if (pat[i] > 0xff)
410 n = -2048;
411 else
412 buf[0] ^= pat[i];
413 } else if (p == 1365) {
414 buf[2047] ^= pat[i] >> 4;
415 oob[0] ^= pat[i] << 4;
416 } else if (p > 1365) {
417 if ((p & 1) == 1) {
418 oob[3*p/2 - 2048] ^= pat[i] >> 4;
419 oob[3*p/2 - 2047] ^= pat[i] << 4;
420 } else {
421 oob[3*p/2 - 2049] ^= pat[i] >> 8;
422 oob[3*p/2 - 2048] ^= pat[i];
423 }
424 } else if ((p & 1) == 1) {
425 buf[3*p/2] ^= pat[i] >> 4;
426 buf[3*p/2 + 1] ^= pat[i] << 4;
427 } else {
428 buf[3*p/2 - 1] ^= pat[i] >> 8;
429 buf[3*p/2] ^= pat[i];
430 }
431 }
432
433 if (n < 0) {
434 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
435 cafe_readl(cafe, NAND_ADDR2) * 2048);
436 for (i = 0; i < 0x5c; i += 4)
437 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
438 mtd->ecc_stats.failed++;
439 } else {
440 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
441 mtd->ecc_stats.corrected += n;
442 max_bitflips = max_t(unsigned int, max_bitflips, n);
443 }
444 }
445
446 return max_bitflips;
447 }
448
449 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
450 struct mtd_oob_region *oobregion)
451 {
452 struct nand_chip *chip = mtd_to_nand(mtd);
453
454 if (section)
455 return -ERANGE;
456
457 oobregion->offset = 0;
458 oobregion->length = chip->ecc.total;
459
460 return 0;
461 }
462
463 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
464 struct mtd_oob_region *oobregion)
465 {
466 struct nand_chip *chip = mtd_to_nand(mtd);
467
468 if (section)
469 return -ERANGE;
470
471 oobregion->offset = chip->ecc.total;
472 oobregion->length = mtd->oobsize - chip->ecc.total;
473
474 return 0;
475 }
476
477 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
478 .ecc = cafe_ooblayout_ecc,
479 .free = cafe_ooblayout_free,
480 };
481
482 /* Ick. The BBT code really ought to be able to work this bit out
483 for itself from the above, at least for the 2KiB case */
484 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
485 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
486
487 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
488 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
489
490
491 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
492 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
493 | NAND_BBT_2BIT | NAND_BBT_VERSION,
494 .offs = 14,
495 .len = 4,
496 .veroffs = 18,
497 .maxblocks = 4,
498 .pattern = cafe_bbt_pattern_2048
499 };
500
501 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
502 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503 | NAND_BBT_2BIT | NAND_BBT_VERSION,
504 .offs = 14,
505 .len = 4,
506 .veroffs = 18,
507 .maxblocks = 4,
508 .pattern = cafe_mirror_pattern_2048
509 };
510
511 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
512 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513 | NAND_BBT_2BIT | NAND_BBT_VERSION,
514 .offs = 14,
515 .len = 1,
516 .veroffs = 15,
517 .maxblocks = 4,
518 .pattern = cafe_bbt_pattern_512
519 };
520
521 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
522 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
523 | NAND_BBT_2BIT | NAND_BBT_VERSION,
524 .offs = 14,
525 .len = 1,
526 .veroffs = 15,
527 .maxblocks = 4,
528 .pattern = cafe_mirror_pattern_512
529 };
530
531
532 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
533 const uint8_t *buf, int oob_required,
534 int page)
535 {
536 struct mtd_info *mtd = nand_to_mtd(chip);
537 struct cafe_priv *cafe = nand_get_controller_data(chip);
538
539 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
540 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
541
542 /* Set up ECC autogeneration */
543 cafe->ctl2 |= (1<<30);
544
545 return nand_prog_page_end_op(chip);
546 }
547
548 static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
549 {
550 return 0;
551 }
552
553 /* F_2[X]/(X**6+X+1) */
554 static unsigned short gf64_mul(u8 a, u8 b)
555 {
556 u8 c;
557 unsigned int i;
558
559 c = 0;
560 for (i = 0; i < 6; i++) {
561 if (a & 1)
562 c ^= b;
563 a >>= 1;
564 b <<= 1;
565 if ((b & 0x40) != 0)
566 b ^= 0x43;
567 }
568
569 return c;
570 }
571
572 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
573 static u16 gf4096_mul(u16 a, u16 b)
574 {
575 u8 ah, al, bh, bl, ch, cl;
576
577 ah = a >> 6;
578 al = a & 0x3f;
579 bh = b >> 6;
580 bl = b & 0x3f;
581
582 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
583 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
584
585 return (ch << 6) ^ cl;
586 }
587
588 static int cafe_mul(int x)
589 {
590 if (x == 0)
591 return 1;
592 return gf4096_mul(x, 0xe01);
593 }
594
595 static int cafe_nand_attach_chip(struct nand_chip *chip)
596 {
597 struct mtd_info *mtd = nand_to_mtd(chip);
598 struct cafe_priv *cafe = nand_get_controller_data(chip);
599 int err = 0;
600
601 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
602 &cafe->dmaaddr, GFP_KERNEL);
603 if (!cafe->dmabuf)
604 return -ENOMEM;
605
606 /* Set up DMA address */
607 cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
608 cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
609
610 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
611 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
612
613 /* Restore the DMA flag */
614 cafe->usedma = usedma;
615
616 cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
617 if (mtd->writesize == 2048)
618 cafe->ctl2 |= BIT(29); /* 2KiB page size */
619
620 /* Set up ECC according to the type of chip we found */
621 mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
622 if (mtd->writesize == 2048) {
623 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
624 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
625 } else if (mtd->writesize == 512) {
626 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
627 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
628 } else {
629 dev_warn(&cafe->pdev->dev,
630 "Unexpected NAND flash writesize %d. Aborting\n",
631 mtd->writesize);
632 err = -ENOTSUPP;
633 goto out_free_dma;
634 }
635
636 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
637 cafe->nand.ecc.size = mtd->writesize;
638 cafe->nand.ecc.bytes = 14;
639 cafe->nand.ecc.strength = 4;
640 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
641 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
642 cafe->nand.ecc.read_page = cafe_nand_read_page;
643 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
644
645 return 0;
646
647 out_free_dma:
648 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
649
650 return err;
651 }
652
653 static void cafe_nand_detach_chip(struct nand_chip *chip)
654 {
655 struct cafe_priv *cafe = nand_get_controller_data(chip);
656
657 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
658 }
659
660 static const struct nand_controller_ops cafe_nand_controller_ops = {
661 .attach_chip = cafe_nand_attach_chip,
662 .detach_chip = cafe_nand_detach_chip,
663 };
664
665 static int cafe_nand_probe(struct pci_dev *pdev,
666 const struct pci_device_id *ent)
667 {
668 struct mtd_info *mtd;
669 struct cafe_priv *cafe;
670 uint32_t ctrl;
671 int err = 0;
672
673 /* Very old versions shared the same PCI ident for all three
674 functions on the chip. Verify the class too... */
675 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
676 return -ENODEV;
677
678 err = pci_enable_device(pdev);
679 if (err)
680 return err;
681
682 pci_set_master(pdev);
683
684 cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
685 if (!cafe)
686 return -ENOMEM;
687
688 mtd = nand_to_mtd(&cafe->nand);
689 mtd->dev.parent = &pdev->dev;
690 nand_set_controller_data(&cafe->nand, cafe);
691
692 cafe->pdev = pdev;
693 cafe->mmio = pci_iomap(pdev, 0, 0);
694 if (!cafe->mmio) {
695 dev_warn(&pdev->dev, "failed to iomap\n");
696 err = -ENOMEM;
697 goto out_free_mtd;
698 }
699
700 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
701 if (!cafe->rs) {
702 err = -ENOMEM;
703 goto out_ior;
704 }
705
706 cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
707 cafe->nand.legacy.dev_ready = cafe_device_ready;
708 cafe->nand.legacy.read_byte = cafe_read_byte;
709 cafe->nand.legacy.read_buf = cafe_read_buf;
710 cafe->nand.legacy.write_buf = cafe_write_buf;
711 cafe->nand.legacy.select_chip = cafe_select_chip;
712 cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
713 cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
714
715 cafe->nand.legacy.chip_delay = 0;
716
717 /* Enable the following for a flash based bad block table */
718 cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
719
720 if (skipbbt) {
721 cafe->nand.options |= NAND_SKIP_BBTSCAN;
722 cafe->nand.legacy.block_bad = cafe_nand_block_bad;
723 }
724
725 if (numtimings && numtimings != 3) {
726 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
727 }
728
729 if (numtimings == 3) {
730 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
731 timing[0], timing[1], timing[2]);
732 } else {
733 timing[0] = cafe_readl(cafe, NAND_TIMING1);
734 timing[1] = cafe_readl(cafe, NAND_TIMING2);
735 timing[2] = cafe_readl(cafe, NAND_TIMING3);
736
737 if (timing[0] | timing[1] | timing[2]) {
738 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
739 timing[0], timing[1], timing[2]);
740 } else {
741 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
742 timing[0] = timing[1] = timing[2] = 0xffffffff;
743 }
744 }
745
746 /* Start off by resetting the NAND controller completely */
747 cafe_writel(cafe, 1, NAND_RESET);
748 cafe_writel(cafe, 0, NAND_RESET);
749
750 cafe_writel(cafe, timing[0], NAND_TIMING1);
751 cafe_writel(cafe, timing[1], NAND_TIMING2);
752 cafe_writel(cafe, timing[2], NAND_TIMING3);
753
754 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
755 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
756 "CAFE NAND", mtd);
757 if (err) {
758 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
759 goto out_ior;
760 }
761
762 /* Disable master reset, enable NAND clock */
763 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
764 ctrl &= 0xffffeff0;
765 ctrl |= 0x00007000;
766 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
767 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
768 cafe_writel(cafe, 0, NAND_DMA_CTRL);
769
770 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
771 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
772
773 /* Enable NAND IRQ in global IRQ mask register */
774 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
775 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
776 cafe_readl(cafe, GLOBAL_CTRL),
777 cafe_readl(cafe, GLOBAL_IRQ_MASK));
778
779 /* Do not use the DMA during the NAND identification */
780 cafe->usedma = 0;
781
782 /* Scan to find existence of the device */
783 cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
784 err = nand_scan(&cafe->nand, 2);
785 if (err)
786 goto out_irq;
787
788 pci_set_drvdata(pdev, mtd);
789
790 mtd->name = "cafe_nand";
791 err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
792 if (err)
793 goto out_cleanup_nand;
794
795 goto out;
796
797 out_cleanup_nand:
798 nand_cleanup(&cafe->nand);
799 out_irq:
800 /* Disable NAND IRQ in global IRQ mask register */
801 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
802 free_irq(pdev->irq, mtd);
803 out_ior:
804 pci_iounmap(pdev, cafe->mmio);
805 out_free_mtd:
806 kfree(cafe);
807 out:
808 return err;
809 }
810
811 static void cafe_nand_remove(struct pci_dev *pdev)
812 {
813 struct mtd_info *mtd = pci_get_drvdata(pdev);
814 struct nand_chip *chip = mtd_to_nand(mtd);
815 struct cafe_priv *cafe = nand_get_controller_data(chip);
816
817 /* Disable NAND IRQ in global IRQ mask register */
818 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
819 free_irq(pdev->irq, mtd);
820 nand_release(chip);
821 free_rs(cafe->rs);
822 pci_iounmap(pdev, cafe->mmio);
823 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
824 kfree(cafe);
825 }
826
827 static const struct pci_device_id cafe_nand_tbl[] = {
828 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
829 PCI_ANY_ID, PCI_ANY_ID },
830 { }
831 };
832
833 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
834
835 static int cafe_nand_resume(struct pci_dev *pdev)
836 {
837 uint32_t ctrl;
838 struct mtd_info *mtd = pci_get_drvdata(pdev);
839 struct nand_chip *chip = mtd_to_nand(mtd);
840 struct cafe_priv *cafe = nand_get_controller_data(chip);
841
842 /* Start off by resetting the NAND controller completely */
843 cafe_writel(cafe, 1, NAND_RESET);
844 cafe_writel(cafe, 0, NAND_RESET);
845 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
846
847 /* Restore timing configuration */
848 cafe_writel(cafe, timing[0], NAND_TIMING1);
849 cafe_writel(cafe, timing[1], NAND_TIMING2);
850 cafe_writel(cafe, timing[2], NAND_TIMING3);
851
852 /* Disable master reset, enable NAND clock */
853 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
854 ctrl &= 0xffffeff0;
855 ctrl |= 0x00007000;
856 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
857 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
858 cafe_writel(cafe, 0, NAND_DMA_CTRL);
859 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
860 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
861
862 /* Set up DMA address */
863 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
864 if (sizeof(cafe->dmaaddr) > 4)
865 /* Shift in two parts to shut the compiler up */
866 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
867 else
868 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
869
870 /* Enable NAND IRQ in global IRQ mask register */
871 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
872 return 0;
873 }
874
875 static struct pci_driver cafe_nand_pci_driver = {
876 .name = "CAFÉ NAND",
877 .id_table = cafe_nand_tbl,
878 .probe = cafe_nand_probe,
879 .remove = cafe_nand_remove,
880 .resume = cafe_nand_resume,
881 };
882
883 module_pci_driver(cafe_nand_pci_driver);
884
885 MODULE_LICENSE("GPL");
886 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
887 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");