]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/nand/raw/davinci_nand.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 61
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / davinci_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28 * This is a device driver for the NAND flash controller found on the
29 * various DaVinci family chips. It handles up to four SoC chipselects,
30 * and some flavors of secondary chipselect (e.g. based on A12) as used
31 * with multichip packages.
32 *
33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 * available on chips like the DM355 and OMAP-L137 and needed with the
35 * more error-prone MLC NAND chips.
36 *
37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38 * outputs in a "wire-AND" configuration, with no per-chip signals.
39 */
40 struct davinci_nand_info {
41 struct nand_chip chip;
42
43 struct platform_device *pdev;
44
45 bool is_readmode;
46
47 void __iomem *base;
48 void __iomem *vaddr;
49
50 void __iomem *current_cs;
51
52 uint32_t mask_chipsel;
53 uint32_t mask_ale;
54 uint32_t mask_cle;
55
56 uint32_t core_chipsel;
57
58 struct davinci_aemif_timing *timing;
59 };
60
61 static DEFINE_SPINLOCK(davinci_nand_lock);
62 static bool ecc4_busy;
63
64 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
65 {
66 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
67 }
68
69 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
70 int offset)
71 {
72 return __raw_readl(info->base + offset);
73 }
74
75 static inline void davinci_nand_writel(struct davinci_nand_info *info,
76 int offset, unsigned long value)
77 {
78 __raw_writel(value, info->base + offset);
79 }
80
81 /*----------------------------------------------------------------------*/
82
83 /*
84 * Access to hardware control lines: ALE, CLE, secondary chipselect.
85 */
86
87 static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
88 unsigned int ctrl)
89 {
90 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
91 void __iomem *addr = info->current_cs;
92
93 /* Did the control lines change? */
94 if (ctrl & NAND_CTRL_CHANGE) {
95 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
96 addr += info->mask_cle;
97 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
98 addr += info->mask_ale;
99
100 nand->legacy.IO_ADDR_W = addr;
101 }
102
103 if (cmd != NAND_CMD_NONE)
104 iowrite8(cmd, nand->legacy.IO_ADDR_W);
105 }
106
107 static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
108 {
109 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
110
111 info->current_cs = info->vaddr;
112
113 /* maybe kick in a second chipselect */
114 if (chip > 0)
115 info->current_cs += info->mask_chipsel;
116
117 info->chip.legacy.IO_ADDR_W = info->current_cs;
118 info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
119 }
120
121 /*----------------------------------------------------------------------*/
122
123 /*
124 * 1-bit hardware ECC ... context maintained for each core chipselect
125 */
126
127 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
128 {
129 struct davinci_nand_info *info = to_davinci_nand(mtd);
130
131 return davinci_nand_readl(info, NANDF1ECC_OFFSET
132 + 4 * info->core_chipsel);
133 }
134
135 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
136 {
137 struct davinci_nand_info *info;
138 uint32_t nandcfr;
139 unsigned long flags;
140
141 info = to_davinci_nand(nand_to_mtd(chip));
142
143 /* Reset ECC hardware */
144 nand_davinci_readecc_1bit(nand_to_mtd(chip));
145
146 spin_lock_irqsave(&davinci_nand_lock, flags);
147
148 /* Restart ECC hardware */
149 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
150 nandcfr |= BIT(8 + info->core_chipsel);
151 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
152
153 spin_unlock_irqrestore(&davinci_nand_lock, flags);
154 }
155
156 /*
157 * Read hardware ECC value and pack into three bytes
158 */
159 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
160 const u_char *dat, u_char *ecc_code)
161 {
162 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
163 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
164
165 /* invert so that erased block ecc is correct */
166 ecc24 = ~ecc24;
167 ecc_code[0] = (u_char)(ecc24);
168 ecc_code[1] = (u_char)(ecc24 >> 8);
169 ecc_code[2] = (u_char)(ecc24 >> 16);
170
171 return 0;
172 }
173
174 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
175 u_char *read_ecc, u_char *calc_ecc)
176 {
177 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
178 (read_ecc[2] << 16);
179 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
180 (calc_ecc[2] << 16);
181 uint32_t diff = eccCalc ^ eccNand;
182
183 if (diff) {
184 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
185 /* Correctable error */
186 if ((diff >> (12 + 3)) < chip->ecc.size) {
187 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
188 return 1;
189 } else {
190 return -EBADMSG;
191 }
192 } else if (!(diff & (diff - 1))) {
193 /* Single bit ECC error in the ECC itself,
194 * nothing to fix */
195 return 1;
196 } else {
197 /* Uncorrectable error */
198 return -EBADMSG;
199 }
200
201 }
202 return 0;
203 }
204
205 /*----------------------------------------------------------------------*/
206
207 /*
208 * 4-bit hardware ECC ... context maintained over entire AEMIF
209 *
210 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
211 * since that forces use of a problematic "infix OOB" layout.
212 * Among other things, it trashes manufacturer bad block markers.
213 * Also, and specific to this hardware, it ECC-protects the "prepad"
214 * in the OOB ... while having ECC protection for parts of OOB would
215 * seem useful, the current MTD stack sometimes wants to update the
216 * OOB without recomputing ECC.
217 */
218
219 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
220 {
221 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
222 unsigned long flags;
223 u32 val;
224
225 /* Reset ECC hardware */
226 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
227
228 spin_lock_irqsave(&davinci_nand_lock, flags);
229
230 /* Start 4-bit ECC calculation for read/write */
231 val = davinci_nand_readl(info, NANDFCR_OFFSET);
232 val &= ~(0x03 << 4);
233 val |= (info->core_chipsel << 4) | BIT(12);
234 davinci_nand_writel(info, NANDFCR_OFFSET, val);
235
236 info->is_readmode = (mode == NAND_ECC_READ);
237
238 spin_unlock_irqrestore(&davinci_nand_lock, flags);
239 }
240
241 /* Read raw ECC code after writing to NAND. */
242 static void
243 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
244 {
245 const u32 mask = 0x03ff03ff;
246
247 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
248 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
249 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
250 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
251 }
252
253 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
254 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
255 const u_char *dat, u_char *ecc_code)
256 {
257 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
258 u32 raw_ecc[4], *p;
259 unsigned i;
260
261 /* After a read, terminate ECC calculation by a dummy read
262 * of some 4-bit ECC register. ECC covers everything that
263 * was read; correct() just uses the hardware state, so
264 * ecc_code is not needed.
265 */
266 if (info->is_readmode) {
267 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
268 return 0;
269 }
270
271 /* Pack eight raw 10-bit ecc values into ten bytes, making
272 * two passes which each convert four values (in upper and
273 * lower halves of two 32-bit words) into five bytes. The
274 * ROM boot loader uses this same packing scheme.
275 */
276 nand_davinci_readecc_4bit(info, raw_ecc);
277 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
278 *ecc_code++ = p[0] & 0xff;
279 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
280 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
281 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
282 *ecc_code++ = (p[1] >> 18) & 0xff;
283 }
284
285 return 0;
286 }
287
288 /* Correct up to 4 bits in data we just read, using state left in the
289 * hardware plus the ecc_code computed when it was first written.
290 */
291 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
292 u_char *ecc_code, u_char *null)
293 {
294 int i;
295 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
296 unsigned short ecc10[8];
297 unsigned short *ecc16;
298 u32 syndrome[4];
299 u32 ecc_state;
300 unsigned num_errors, corrected;
301 unsigned long timeo;
302
303 /* Unpack ten bytes into eight 10 bit values. We know we're
304 * little-endian, and use type punning for less shifting/masking.
305 */
306 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
307 return -EINVAL;
308 ecc16 = (unsigned short *)ecc_code;
309
310 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
311 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
312 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
313 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
314 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
315 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
316 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
317 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
318
319 /* Tell ECC controller about the expected ECC codes. */
320 for (i = 7; i >= 0; i--)
321 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
322
323 /* Allow time for syndrome calculation ... then read it.
324 * A syndrome of all zeroes 0 means no detected errors.
325 */
326 davinci_nand_readl(info, NANDFSR_OFFSET);
327 nand_davinci_readecc_4bit(info, syndrome);
328 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
329 return 0;
330
331 /*
332 * Clear any previous address calculation by doing a dummy read of an
333 * error address register.
334 */
335 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
336
337 /* Start address calculation, and wait for it to complete.
338 * We _could_ start reading more data while this is working,
339 * to speed up the overall page read.
340 */
341 davinci_nand_writel(info, NANDFCR_OFFSET,
342 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
343
344 /*
345 * ECC_STATE field reads 0x3 (Error correction complete) immediately
346 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
347 * begin trying to poll for the state, you may fall right out of your
348 * loop without any of the correction calculations having taken place.
349 * The recommendation from the hardware team is to initially delay as
350 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
351 * correction state.
352 */
353 timeo = jiffies + usecs_to_jiffies(100);
354 do {
355 ecc_state = (davinci_nand_readl(info,
356 NANDFSR_OFFSET) >> 8) & 0x0f;
357 cpu_relax();
358 } while ((ecc_state < 4) && time_before(jiffies, timeo));
359
360 for (;;) {
361 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
362
363 switch ((fsr >> 8) & 0x0f) {
364 case 0: /* no error, should not happen */
365 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
366 return 0;
367 case 1: /* five or more errors detected */
368 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
369 return -EBADMSG;
370 case 2: /* error addresses computed */
371 case 3:
372 num_errors = 1 + ((fsr >> 16) & 0x03);
373 goto correct;
374 default: /* still working on it */
375 cpu_relax();
376 continue;
377 }
378 }
379
380 correct:
381 /* correct each error */
382 for (i = 0, corrected = 0; i < num_errors; i++) {
383 int error_address, error_value;
384
385 if (i > 1) {
386 error_address = davinci_nand_readl(info,
387 NAND_ERR_ADD2_OFFSET);
388 error_value = davinci_nand_readl(info,
389 NAND_ERR_ERRVAL2_OFFSET);
390 } else {
391 error_address = davinci_nand_readl(info,
392 NAND_ERR_ADD1_OFFSET);
393 error_value = davinci_nand_readl(info,
394 NAND_ERR_ERRVAL1_OFFSET);
395 }
396
397 if (i & 1) {
398 error_address >>= 16;
399 error_value >>= 16;
400 }
401 error_address &= 0x3ff;
402 error_address = (512 + 7) - error_address;
403
404 if (error_address < 512) {
405 data[error_address] ^= error_value;
406 corrected++;
407 }
408 }
409
410 return corrected;
411 }
412
413 /*----------------------------------------------------------------------*/
414
415 /*
416 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
417 * how these chips are normally wired. This translates to both 8 and 16
418 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
419 *
420 * For now we assume that configuration, or any other one which ignores
421 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
422 * and have that transparently morphed into multiple NAND operations.
423 */
424 static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
425 int len)
426 {
427 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
428 ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
429 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
430 ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
431 else
432 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
433 }
434
435 static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
436 int len)
437 {
438 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
439 iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
440 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
441 iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
442 else
443 iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
444 }
445
446 /*
447 * Check hardware register for wait status. Returns 1 if device is ready,
448 * 0 if it is still busy.
449 */
450 static int nand_davinci_dev_ready(struct nand_chip *chip)
451 {
452 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
453
454 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
455 }
456
457 /*----------------------------------------------------------------------*/
458
459 /* An ECC layout for using 4-bit ECC with small-page flash, storing
460 * ten ECC bytes plus the manufacturer's bad block marker byte, and
461 * and not overlapping the default BBT markers.
462 */
463 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
464 struct mtd_oob_region *oobregion)
465 {
466 if (section > 2)
467 return -ERANGE;
468
469 if (!section) {
470 oobregion->offset = 0;
471 oobregion->length = 5;
472 } else if (section == 1) {
473 oobregion->offset = 6;
474 oobregion->length = 2;
475 } else {
476 oobregion->offset = 13;
477 oobregion->length = 3;
478 }
479
480 return 0;
481 }
482
483 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
484 struct mtd_oob_region *oobregion)
485 {
486 if (section > 1)
487 return -ERANGE;
488
489 if (!section) {
490 oobregion->offset = 8;
491 oobregion->length = 5;
492 } else {
493 oobregion->offset = 16;
494 oobregion->length = mtd->oobsize - 16;
495 }
496
497 return 0;
498 }
499
500 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
501 .ecc = hwecc4_ooblayout_small_ecc,
502 .free = hwecc4_ooblayout_small_free,
503 };
504
505 #if defined(CONFIG_OF)
506 static const struct of_device_id davinci_nand_of_match[] = {
507 {.compatible = "ti,davinci-nand", },
508 {.compatible = "ti,keystone-nand", },
509 {},
510 };
511 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
512
513 static struct davinci_nand_pdata
514 *nand_davinci_get_pdata(struct platform_device *pdev)
515 {
516 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
517 struct davinci_nand_pdata *pdata;
518 const char *mode;
519 u32 prop;
520
521 pdata = devm_kzalloc(&pdev->dev,
522 sizeof(struct davinci_nand_pdata),
523 GFP_KERNEL);
524 pdev->dev.platform_data = pdata;
525 if (!pdata)
526 return ERR_PTR(-ENOMEM);
527 if (!of_property_read_u32(pdev->dev.of_node,
528 "ti,davinci-chipselect", &prop))
529 pdata->core_chipsel = prop;
530 else
531 return ERR_PTR(-EINVAL);
532
533 if (!of_property_read_u32(pdev->dev.of_node,
534 "ti,davinci-mask-ale", &prop))
535 pdata->mask_ale = prop;
536 if (!of_property_read_u32(pdev->dev.of_node,
537 "ti,davinci-mask-cle", &prop))
538 pdata->mask_cle = prop;
539 if (!of_property_read_u32(pdev->dev.of_node,
540 "ti,davinci-mask-chipsel", &prop))
541 pdata->mask_chipsel = prop;
542 if (!of_property_read_string(pdev->dev.of_node,
543 "ti,davinci-ecc-mode", &mode)) {
544 if (!strncmp("none", mode, 4))
545 pdata->ecc_mode = NAND_ECC_NONE;
546 if (!strncmp("soft", mode, 4))
547 pdata->ecc_mode = NAND_ECC_SOFT;
548 if (!strncmp("hw", mode, 2))
549 pdata->ecc_mode = NAND_ECC_HW;
550 }
551 if (!of_property_read_u32(pdev->dev.of_node,
552 "ti,davinci-ecc-bits", &prop))
553 pdata->ecc_bits = prop;
554
555 if (!of_property_read_u32(pdev->dev.of_node,
556 "ti,davinci-nand-buswidth", &prop) && prop == 16)
557 pdata->options |= NAND_BUSWIDTH_16;
558
559 if (of_property_read_bool(pdev->dev.of_node,
560 "ti,davinci-nand-use-bbt"))
561 pdata->bbt_options = NAND_BBT_USE_FLASH;
562
563 /*
564 * Since kernel v4.8, this driver has been fixed to enable
565 * use of 4-bit hardware ECC with subpages and verified on
566 * TI's keystone EVMs (K2L, K2HK and K2E).
567 * However, in the interest of not breaking systems using
568 * existing UBI partitions, sub-page writes are not being
569 * (re)enabled. If you want to use subpage writes on Keystone
570 * platforms (i.e. do not have any existing UBI partitions),
571 * then use "ti,davinci-nand" as the compatible in your
572 * device-tree file.
573 */
574 if (of_device_is_compatible(pdev->dev.of_node,
575 "ti,keystone-nand")) {
576 pdata->options |= NAND_NO_SUBPAGE_WRITE;
577 }
578 }
579
580 return dev_get_platdata(&pdev->dev);
581 }
582 #else
583 static struct davinci_nand_pdata
584 *nand_davinci_get_pdata(struct platform_device *pdev)
585 {
586 return dev_get_platdata(&pdev->dev);
587 }
588 #endif
589
590 static int davinci_nand_attach_chip(struct nand_chip *chip)
591 {
592 struct mtd_info *mtd = nand_to_mtd(chip);
593 struct davinci_nand_info *info = to_davinci_nand(mtd);
594 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
595 int ret = 0;
596
597 if (IS_ERR(pdata))
598 return PTR_ERR(pdata);
599
600 switch (info->chip.ecc.mode) {
601 case NAND_ECC_NONE:
602 pdata->ecc_bits = 0;
603 break;
604 case NAND_ECC_SOFT:
605 pdata->ecc_bits = 0;
606 /*
607 * This driver expects Hamming based ECC when ecc_mode is set
608 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
609 * avoid adding an extra ->ecc_algo field to
610 * davinci_nand_pdata.
611 */
612 info->chip.ecc.algo = NAND_ECC_HAMMING;
613 break;
614 case NAND_ECC_HW:
615 if (pdata->ecc_bits == 4) {
616 /*
617 * No sanity checks: CPUs must support this,
618 * and the chips may not use NAND_BUSWIDTH_16.
619 */
620
621 /* No sharing 4-bit hardware between chipselects yet */
622 spin_lock_irq(&davinci_nand_lock);
623 if (ecc4_busy)
624 ret = -EBUSY;
625 else
626 ecc4_busy = true;
627 spin_unlock_irq(&davinci_nand_lock);
628
629 if (ret == -EBUSY)
630 return ret;
631
632 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
633 info->chip.ecc.correct = nand_davinci_correct_4bit;
634 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
635 info->chip.ecc.bytes = 10;
636 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
637 info->chip.ecc.algo = NAND_ECC_BCH;
638 } else {
639 /* 1bit ecc hamming */
640 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
641 info->chip.ecc.correct = nand_davinci_correct_1bit;
642 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
643 info->chip.ecc.bytes = 3;
644 info->chip.ecc.algo = NAND_ECC_HAMMING;
645 }
646 info->chip.ecc.size = 512;
647 info->chip.ecc.strength = pdata->ecc_bits;
648 break;
649 default:
650 return -EINVAL;
651 }
652
653 /*
654 * Update ECC layout if needed ... for 1-bit HW ECC, the default
655 * is OK, but it allocates 6 bytes when only 3 are needed (for
656 * each 512 bytes). For the 4-bit HW ECC, that default is not
657 * usable: 10 bytes are needed, not 6.
658 */
659 if (pdata->ecc_bits == 4) {
660 int chunks = mtd->writesize / 512;
661
662 if (!chunks || mtd->oobsize < 16) {
663 dev_dbg(&info->pdev->dev, "too small\n");
664 return -EINVAL;
665 }
666
667 /* For small page chips, preserve the manufacturer's
668 * badblock marking data ... and make sure a flash BBT
669 * table marker fits in the free bytes.
670 */
671 if (chunks == 1) {
672 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
673 } else if (chunks == 4 || chunks == 8) {
674 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
675 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
676 } else {
677 return -EIO;
678 }
679 }
680
681 return ret;
682 }
683
684 static const struct nand_controller_ops davinci_nand_controller_ops = {
685 .attach_chip = davinci_nand_attach_chip,
686 };
687
688 static int nand_davinci_probe(struct platform_device *pdev)
689 {
690 struct davinci_nand_pdata *pdata;
691 struct davinci_nand_info *info;
692 struct resource *res1;
693 struct resource *res2;
694 void __iomem *vaddr;
695 void __iomem *base;
696 int ret;
697 uint32_t val;
698 struct mtd_info *mtd;
699
700 pdata = nand_davinci_get_pdata(pdev);
701 if (IS_ERR(pdata))
702 return PTR_ERR(pdata);
703
704 /* insist on board-specific configuration */
705 if (!pdata)
706 return -ENODEV;
707
708 /* which external chipselect will we be managing? */
709 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
710 return -ENODEV;
711
712 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713 if (!info)
714 return -ENOMEM;
715
716 platform_set_drvdata(pdev, info);
717
718 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
719 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
720 if (!res1 || !res2) {
721 dev_err(&pdev->dev, "resource missing\n");
722 return -EINVAL;
723 }
724
725 vaddr = devm_ioremap_resource(&pdev->dev, res1);
726 if (IS_ERR(vaddr))
727 return PTR_ERR(vaddr);
728
729 /*
730 * This registers range is used to setup NAND settings. In case with
731 * TI AEMIF driver, the same memory address range is requested already
732 * by AEMIF, so we cannot request it twice, just ioremap.
733 * The AEMIF and NAND drivers not use the same registers in this range.
734 */
735 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
736 if (!base) {
737 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
738 return -EADDRNOTAVAIL;
739 }
740
741 info->pdev = pdev;
742 info->base = base;
743 info->vaddr = vaddr;
744
745 mtd = nand_to_mtd(&info->chip);
746 mtd->dev.parent = &pdev->dev;
747 nand_set_flash_node(&info->chip, pdev->dev.of_node);
748
749 info->chip.legacy.IO_ADDR_R = vaddr;
750 info->chip.legacy.IO_ADDR_W = vaddr;
751 info->chip.legacy.chip_delay = 0;
752 info->chip.legacy.select_chip = nand_davinci_select_chip;
753
754 /* options such as NAND_BBT_USE_FLASH */
755 info->chip.bbt_options = pdata->bbt_options;
756 /* options such as 16-bit widths */
757 info->chip.options = pdata->options;
758 info->chip.bbt_td = pdata->bbt_td;
759 info->chip.bbt_md = pdata->bbt_md;
760 info->timing = pdata->timing;
761
762 info->current_cs = info->vaddr;
763 info->core_chipsel = pdata->core_chipsel;
764 info->mask_chipsel = pdata->mask_chipsel;
765
766 /* use nandboot-capable ALE/CLE masks by default */
767 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
768 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
769
770 /* Set address of hardware control function */
771 info->chip.legacy.cmd_ctrl = nand_davinci_hwcontrol;
772 info->chip.legacy.dev_ready = nand_davinci_dev_ready;
773
774 /* Speed up buffer I/O */
775 info->chip.legacy.read_buf = nand_davinci_read_buf;
776 info->chip.legacy.write_buf = nand_davinci_write_buf;
777
778 /* Use board-specific ECC config */
779 info->chip.ecc.mode = pdata->ecc_mode;
780
781 spin_lock_irq(&davinci_nand_lock);
782
783 /* put CSxNAND into NAND mode */
784 val = davinci_nand_readl(info, NANDFCR_OFFSET);
785 val |= BIT(info->core_chipsel);
786 davinci_nand_writel(info, NANDFCR_OFFSET, val);
787
788 spin_unlock_irq(&davinci_nand_lock);
789
790 /* Scan to find existence of the device(s) */
791 info->chip.legacy.dummy_controller.ops = &davinci_nand_controller_ops;
792 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
793 if (ret < 0) {
794 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
795 return ret;
796 }
797
798 if (pdata->parts)
799 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
800 else
801 ret = mtd_device_register(mtd, NULL, 0);
802 if (ret < 0)
803 goto err_cleanup_nand;
804
805 val = davinci_nand_readl(info, NRCSR_OFFSET);
806 dev_info(&pdev->dev, "controller rev. %d.%d\n",
807 (val >> 8) & 0xff, val & 0xff);
808
809 return 0;
810
811 err_cleanup_nand:
812 nand_cleanup(&info->chip);
813
814 return ret;
815 }
816
817 static int nand_davinci_remove(struct platform_device *pdev)
818 {
819 struct davinci_nand_info *info = platform_get_drvdata(pdev);
820
821 spin_lock_irq(&davinci_nand_lock);
822 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
823 ecc4_busy = false;
824 spin_unlock_irq(&davinci_nand_lock);
825
826 nand_release(&info->chip);
827
828 return 0;
829 }
830
831 static struct platform_driver nand_davinci_driver = {
832 .probe = nand_davinci_probe,
833 .remove = nand_davinci_remove,
834 .driver = {
835 .name = "davinci_nand",
836 .of_match_table = of_match_ptr(davinci_nand_of_match),
837 },
838 };
839 MODULE_ALIAS("platform:davinci_nand");
840
841 module_platform_driver(nand_davinci_driver);
842
843 MODULE_LICENSE("GPL");
844 MODULE_AUTHOR("Texas Instruments");
845 MODULE_DESCRIPTION("Davinci NAND flash driver");
846