]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/mtd/nand/raw/fsl_elbc_nand.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[mirror_ubuntu-focal-kernel.git] / drivers / mtd / nand / raw / fsl_elbc_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Freescale Enhanced Local Bus Controller NAND driver
3 *
4 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 *
6 * Authors: Nick Spence <nick.spence@freescale.com>,
7 * Scott Wood <scottwood@freescale.com>
8 * Jack Lan <jack.lan@freescale.com>
9 * Roy Zang <tie-fei.zang@freescale.com>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/ioport.h>
17 #include <linux/of_address.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/nand_ecc.h>
26 #include <linux/mtd/partitions.h>
27
28 #include <asm/io.h>
29 #include <asm/fsl_lbc.h>
30
31 #define MAX_BANKS 8
32 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
33 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
34
35 /* mtd information per set */
36
37 struct fsl_elbc_mtd {
38 struct nand_chip chip;
39 struct fsl_lbc_ctrl *ctrl;
40
41 struct device *dev;
42 int bank; /* Chip select bank number */
43 u8 __iomem *vbase; /* Chip select base virtual address */
44 int page_size; /* NAND page size (0=512, 1=2048) */
45 unsigned int fmr; /* FCM Flash Mode Register value */
46 };
47
48 /* Freescale eLBC FCM controller information */
49
50 struct fsl_elbc_fcm_ctrl {
51 struct nand_controller controller;
52 struct fsl_elbc_mtd *chips[MAX_BANKS];
53
54 u8 __iomem *addr; /* Address of assigned FCM buffer */
55 unsigned int page; /* Last page written to / read from */
56 unsigned int read_bytes; /* Number of bytes read during command */
57 unsigned int column; /* Saved column from SEQIN */
58 unsigned int index; /* Pointer to next byte to 'read' */
59 unsigned int status; /* status read from LTESR after last op */
60 unsigned int mdr; /* UPM/FCM Data Register value */
61 unsigned int use_mdr; /* Non zero if the MDR is to be set */
62 unsigned int oob; /* Non zero if operating on OOB data */
63 unsigned int counter; /* counter for the initializations */
64 unsigned int max_bitflips; /* Saved during READ0 cmd */
65 };
66
67 /* These map to the positions used by the FCM hardware ECC generator */
68
69 static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
70 struct mtd_oob_region *oobregion)
71 {
72 struct nand_chip *chip = mtd_to_nand(mtd);
73 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
74
75 if (section >= chip->ecc.steps)
76 return -ERANGE;
77
78 oobregion->offset = (16 * section) + 6;
79 if (priv->fmr & FMR_ECCM)
80 oobregion->offset += 2;
81
82 oobregion->length = chip->ecc.bytes;
83
84 return 0;
85 }
86
87 static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
88 struct mtd_oob_region *oobregion)
89 {
90 struct nand_chip *chip = mtd_to_nand(mtd);
91 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
92
93 if (section > chip->ecc.steps)
94 return -ERANGE;
95
96 if (!section) {
97 oobregion->offset = 0;
98 if (mtd->writesize > 512)
99 oobregion->offset++;
100 oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
101 } else {
102 oobregion->offset = (16 * section) -
103 ((priv->fmr & FMR_ECCM) ? 5 : 7);
104 if (section < chip->ecc.steps)
105 oobregion->length = 13;
106 else
107 oobregion->length = mtd->oobsize - oobregion->offset;
108 }
109
110 return 0;
111 }
112
113 static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
114 .ecc = fsl_elbc_ooblayout_ecc,
115 .free = fsl_elbc_ooblayout_free,
116 };
117
118 /*
119 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
120 * interfere with ECC positions, that's why we implement our own descriptors.
121 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
122 */
123 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
124 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
125
126 static struct nand_bbt_descr bbt_main_descr = {
127 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
128 NAND_BBT_2BIT | NAND_BBT_VERSION,
129 .offs = 11,
130 .len = 4,
131 .veroffs = 15,
132 .maxblocks = 4,
133 .pattern = bbt_pattern,
134 };
135
136 static struct nand_bbt_descr bbt_mirror_descr = {
137 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
138 NAND_BBT_2BIT | NAND_BBT_VERSION,
139 .offs = 11,
140 .len = 4,
141 .veroffs = 15,
142 .maxblocks = 4,
143 .pattern = mirror_pattern,
144 };
145
146 /*=================================*/
147
148 /*
149 * Set up the FCM hardware block and page address fields, and the fcm
150 * structure addr field to point to the correct FCM buffer in memory
151 */
152 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
153 {
154 struct nand_chip *chip = mtd_to_nand(mtd);
155 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
156 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
157 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
158 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
159 int buf_num;
160
161 elbc_fcm_ctrl->page = page_addr;
162
163 if (priv->page_size) {
164 /*
165 * large page size chip : FPAR[PI] save the lowest 6 bits,
166 * FBAR[BLK] save the other bits.
167 */
168 out_be32(&lbc->fbar, page_addr >> 6);
169 out_be32(&lbc->fpar,
170 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
171 (oob ? FPAR_LP_MS : 0) | column);
172 buf_num = (page_addr & 1) << 2;
173 } else {
174 /*
175 * small page size chip : FPAR[PI] save the lowest 5 bits,
176 * FBAR[BLK] save the other bits.
177 */
178 out_be32(&lbc->fbar, page_addr >> 5);
179 out_be32(&lbc->fpar,
180 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
181 (oob ? FPAR_SP_MS : 0) | column);
182 buf_num = page_addr & 7;
183 }
184
185 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
186 elbc_fcm_ctrl->index = column;
187
188 /* for OOB data point to the second half of the buffer */
189 if (oob)
190 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191
192 dev_vdbg(priv->dev, "set_addr: bank=%d, "
193 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194 "index %x, pes %d ps %d\n",
195 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
196 elbc_fcm_ctrl->index,
197 chip->phys_erase_shift, chip->page_shift);
198 }
199
200 /*
201 * execute FCM command and wait for it to complete
202 */
203 static int fsl_elbc_run_command(struct mtd_info *mtd)
204 {
205 struct nand_chip *chip = mtd_to_nand(mtd);
206 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
207 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
208 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc->fmr, priv->fmr | 3);
213 if (elbc_fcm_ctrl->use_mdr)
214 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215
216 dev_vdbg(priv->dev,
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 dev_vdbg(priv->dev,
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 in_be32(&lbc->fbcr), priv->bank);
224
225 ctrl->irq_status = 0;
226 /* execute special operation */
227 out_be32(&lbc->lsor, priv->bank);
228
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 FCM_TIMEOUT_MSECS * HZ/1000);
232 elbc_fcm_ctrl->status = ctrl->irq_status;
233 /* store mdr value in case it was needed */
234 if (elbc_fcm_ctrl->use_mdr)
235 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236
237 elbc_fcm_ctrl->use_mdr = 0;
238
239 if (elbc_fcm_ctrl->status != LTESR_CC) {
240 dev_info(priv->dev,
241 "command failed: fir %x fcr %x status %x mdr %x\n",
242 in_be32(&lbc->fir), in_be32(&lbc->fcr),
243 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244 return -EIO;
245 }
246
247 if (chip->ecc.mode != NAND_ECC_HW)
248 return 0;
249
250 elbc_fcm_ctrl->max_bitflips = 0;
251
252 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
253 uint32_t lteccr = in_be32(&lbc->lteccr);
254 /*
255 * if command was a full page read and the ELBC
256 * has the LTECCR register, then bits 12-15 (ppc order) of
257 * LTECCR indicates which 512 byte sub-pages had fixed errors.
258 * bits 28-31 are uncorrectable errors, marked elsewhere.
259 * for small page nand only 1 bit is used.
260 * if the ELBC doesn't have the lteccr register it reads 0
261 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
262 * count the number of sub-pages with bitflips and update
263 * ecc_stats.corrected accordingly.
264 */
265 if (lteccr & 0x000F000F)
266 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
267 if (lteccr & 0x000F0000) {
268 mtd->ecc_stats.corrected++;
269 elbc_fcm_ctrl->max_bitflips = 1;
270 }
271 }
272
273 return 0;
274 }
275
276 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
277 {
278 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
279 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
280 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
281
282 if (priv->page_size) {
283 out_be32(&lbc->fir,
284 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
285 (FIR_OP_CA << FIR_OP1_SHIFT) |
286 (FIR_OP_PA << FIR_OP2_SHIFT) |
287 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
288 (FIR_OP_RBW << FIR_OP4_SHIFT));
289
290 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
291 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
292 } else {
293 out_be32(&lbc->fir,
294 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
295 (FIR_OP_CA << FIR_OP1_SHIFT) |
296 (FIR_OP_PA << FIR_OP2_SHIFT) |
297 (FIR_OP_RBW << FIR_OP3_SHIFT));
298
299 if (oob)
300 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
301 else
302 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
303 }
304 }
305
306 /* cmdfunc send commands to the FCM */
307 static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
308 int column, int page_addr)
309 {
310 struct mtd_info *mtd = nand_to_mtd(chip);
311 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
312 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
313 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
314 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
315
316 elbc_fcm_ctrl->use_mdr = 0;
317
318 /* clear the read buffer */
319 elbc_fcm_ctrl->read_bytes = 0;
320 if (command != NAND_CMD_PAGEPROG)
321 elbc_fcm_ctrl->index = 0;
322
323 switch (command) {
324 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
325 case NAND_CMD_READ1:
326 column += 256;
327
328 /* fall-through */
329 case NAND_CMD_READ0:
330 dev_dbg(priv->dev,
331 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
332 " 0x%x, column: 0x%x.\n", page_addr, column);
333
334
335 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
336 set_addr(mtd, 0, page_addr, 0);
337
338 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
339 elbc_fcm_ctrl->index += column;
340
341 fsl_elbc_do_read(chip, 0);
342 fsl_elbc_run_command(mtd);
343 return;
344
345 /* RNDOUT moves the pointer inside the page */
346 case NAND_CMD_RNDOUT:
347 dev_dbg(priv->dev,
348 "fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
349 column);
350
351 elbc_fcm_ctrl->index = column;
352 return;
353
354 /* READOOB reads only the OOB because no ECC is performed. */
355 case NAND_CMD_READOOB:
356 dev_vdbg(priv->dev,
357 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
358 " 0x%x, column: 0x%x.\n", page_addr, column);
359
360 out_be32(&lbc->fbcr, mtd->oobsize - column);
361 set_addr(mtd, column, page_addr, 1);
362
363 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
364
365 fsl_elbc_do_read(chip, 1);
366 fsl_elbc_run_command(mtd);
367 return;
368
369 case NAND_CMD_READID:
370 case NAND_CMD_PARAM:
371 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
372
373 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
374 (FIR_OP_UA << FIR_OP1_SHIFT) |
375 (FIR_OP_RBW << FIR_OP2_SHIFT));
376 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
377 /*
378 * although currently it's 8 bytes for READID, we always read
379 * the maximum 256 bytes(for PARAM)
380 */
381 out_be32(&lbc->fbcr, 256);
382 elbc_fcm_ctrl->read_bytes = 256;
383 elbc_fcm_ctrl->use_mdr = 1;
384 elbc_fcm_ctrl->mdr = column;
385 set_addr(mtd, 0, 0, 0);
386 fsl_elbc_run_command(mtd);
387 return;
388
389 /* ERASE1 stores the block and page address */
390 case NAND_CMD_ERASE1:
391 dev_vdbg(priv->dev,
392 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
393 "page_addr: 0x%x.\n", page_addr);
394 set_addr(mtd, 0, page_addr, 0);
395 return;
396
397 /* ERASE2 uses the block and page address from ERASE1 */
398 case NAND_CMD_ERASE2:
399 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
400
401 out_be32(&lbc->fir,
402 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
403 (FIR_OP_PA << FIR_OP1_SHIFT) |
404 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
405 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
406 (FIR_OP_RS << FIR_OP4_SHIFT));
407
408 out_be32(&lbc->fcr,
409 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
410 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
411 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
412
413 out_be32(&lbc->fbcr, 0);
414 elbc_fcm_ctrl->read_bytes = 0;
415 elbc_fcm_ctrl->use_mdr = 1;
416
417 fsl_elbc_run_command(mtd);
418 return;
419
420 /* SEQIN sets up the addr buffer and all registers except the length */
421 case NAND_CMD_SEQIN: {
422 __be32 fcr;
423 dev_vdbg(priv->dev,
424 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
425 "page_addr: 0x%x, column: 0x%x.\n",
426 page_addr, column);
427
428 elbc_fcm_ctrl->column = column;
429 elbc_fcm_ctrl->use_mdr = 1;
430
431 if (column >= mtd->writesize) {
432 /* OOB area */
433 column -= mtd->writesize;
434 elbc_fcm_ctrl->oob = 1;
435 } else {
436 WARN_ON(column != 0);
437 elbc_fcm_ctrl->oob = 0;
438 }
439
440 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
441 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
442 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
443
444 if (priv->page_size) {
445 out_be32(&lbc->fir,
446 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
447 (FIR_OP_CA << FIR_OP1_SHIFT) |
448 (FIR_OP_PA << FIR_OP2_SHIFT) |
449 (FIR_OP_WB << FIR_OP3_SHIFT) |
450 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
451 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
452 (FIR_OP_RS << FIR_OP6_SHIFT));
453 } else {
454 out_be32(&lbc->fir,
455 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
456 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
457 (FIR_OP_CA << FIR_OP2_SHIFT) |
458 (FIR_OP_PA << FIR_OP3_SHIFT) |
459 (FIR_OP_WB << FIR_OP4_SHIFT) |
460 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
461 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
462 (FIR_OP_RS << FIR_OP7_SHIFT));
463
464 if (elbc_fcm_ctrl->oob)
465 /* OOB area --> READOOB */
466 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
467 else
468 /* First 256 bytes --> READ0 */
469 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
470 }
471
472 out_be32(&lbc->fcr, fcr);
473 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
474 return;
475 }
476
477 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
478 case NAND_CMD_PAGEPROG: {
479 dev_vdbg(priv->dev,
480 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
481 "writing %d bytes.\n", elbc_fcm_ctrl->index);
482
483 /* if the write did not start at 0 or is not a full page
484 * then set the exact length, otherwise use a full page
485 * write so the HW generates the ECC.
486 */
487 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
488 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
489 out_be32(&lbc->fbcr,
490 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
491 else
492 out_be32(&lbc->fbcr, 0);
493
494 fsl_elbc_run_command(mtd);
495 return;
496 }
497
498 /* CMD_STATUS must read the status byte while CEB is active */
499 /* Note - it does not wait for the ready line */
500 case NAND_CMD_STATUS:
501 out_be32(&lbc->fir,
502 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
503 (FIR_OP_RBW << FIR_OP1_SHIFT));
504 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
505 out_be32(&lbc->fbcr, 1);
506 set_addr(mtd, 0, 0, 0);
507 elbc_fcm_ctrl->read_bytes = 1;
508
509 fsl_elbc_run_command(mtd);
510
511 /* The chip always seems to report that it is
512 * write-protected, even when it is not.
513 */
514 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
515 return;
516
517 /* RESET without waiting for the ready line */
518 case NAND_CMD_RESET:
519 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
520 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
521 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
522 fsl_elbc_run_command(mtd);
523 return;
524
525 default:
526 dev_err(priv->dev,
527 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
528 command);
529 }
530 }
531
532 static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
533 {
534 /* The hardware does not seem to support multiple
535 * chips per bank.
536 */
537 }
538
539 /*
540 * Write buf to the FCM Controller Data Buffer
541 */
542 static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
543 {
544 struct mtd_info *mtd = nand_to_mtd(chip);
545 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
546 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
547 unsigned int bufsize = mtd->writesize + mtd->oobsize;
548
549 if (len <= 0) {
550 dev_err(priv->dev, "write_buf of %d bytes", len);
551 elbc_fcm_ctrl->status = 0;
552 return;
553 }
554
555 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
556 dev_err(priv->dev,
557 "write_buf beyond end of buffer "
558 "(%d requested, %u available)\n",
559 len, bufsize - elbc_fcm_ctrl->index);
560 len = bufsize - elbc_fcm_ctrl->index;
561 }
562
563 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
564 /*
565 * This is workaround for the weird elbc hangs during nand write,
566 * Scott Wood says: "...perhaps difference in how long it takes a
567 * write to make it through the localbus compared to a write to IMMR
568 * is causing problems, and sync isn't helping for some reason."
569 * Reading back the last byte helps though.
570 */
571 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
572
573 elbc_fcm_ctrl->index += len;
574 }
575
576 /*
577 * read a byte from either the FCM hardware buffer if it has any data left
578 * otherwise issue a command to read a single byte.
579 */
580 static u8 fsl_elbc_read_byte(struct nand_chip *chip)
581 {
582 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
583 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
584
585 /* If there are still bytes in the FCM, then use the next byte. */
586 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
587 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
588
589 dev_err(priv->dev, "read_byte beyond end of buffer\n");
590 return ERR_BYTE;
591 }
592
593 /*
594 * Read from the FCM Controller Data Buffer
595 */
596 static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
597 {
598 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
599 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
600 int avail;
601
602 if (len < 0)
603 return;
604
605 avail = min((unsigned int)len,
606 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
607 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
608 elbc_fcm_ctrl->index += avail;
609
610 if (len > avail)
611 dev_err(priv->dev,
612 "read_buf beyond end of buffer "
613 "(%d requested, %d available)\n",
614 len, avail);
615 }
616
617 /* This function is called after Program and Erase Operations to
618 * check for success or failure.
619 */
620 static int fsl_elbc_wait(struct nand_chip *chip)
621 {
622 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
623 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
624
625 if (elbc_fcm_ctrl->status != LTESR_CC)
626 return NAND_STATUS_FAIL;
627
628 /* The chip always seems to report that it is
629 * write-protected, even when it is not.
630 */
631 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
632 }
633
634 static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
635 int oob_required, int page)
636 {
637 struct mtd_info *mtd = nand_to_mtd(chip);
638 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
639 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
640 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
641
642 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
643 if (oob_required)
644 fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
645
646 if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
647 mtd->ecc_stats.failed++;
648
649 return elbc_fcm_ctrl->max_bitflips;
650 }
651
652 /* ECC will be calculated automatically, and errors will be detected in
653 * waitfunc.
654 */
655 static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
656 int oob_required, int page)
657 {
658 struct mtd_info *mtd = nand_to_mtd(chip);
659
660 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
661 fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
662
663 return nand_prog_page_end_op(chip);
664 }
665
666 /* ECC will be calculated automatically, and errors will be detected in
667 * waitfunc.
668 */
669 static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
670 uint32_t data_len, const uint8_t *buf,
671 int oob_required, int page)
672 {
673 struct mtd_info *mtd = nand_to_mtd(chip);
674
675 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
676 fsl_elbc_write_buf(chip, buf, mtd->writesize);
677 fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
678 return nand_prog_page_end_op(chip);
679 }
680
681 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
682 {
683 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
684 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
685 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
686 struct nand_chip *chip = &priv->chip;
687 struct mtd_info *mtd = nand_to_mtd(chip);
688
689 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
690
691 /* Fill in fsl_elbc_mtd structure */
692 mtd->dev.parent = priv->dev;
693 nand_set_flash_node(chip, priv->dev->of_node);
694
695 /* set timeout to maximum */
696 priv->fmr = 15 << FMR_CWTO_SHIFT;
697 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
698 priv->fmr |= FMR_ECCM;
699
700 /* fill in nand_chip structure */
701 /* set up function call table */
702 chip->legacy.read_byte = fsl_elbc_read_byte;
703 chip->legacy.write_buf = fsl_elbc_write_buf;
704 chip->legacy.read_buf = fsl_elbc_read_buf;
705 chip->legacy.select_chip = fsl_elbc_select_chip;
706 chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
707 chip->legacy.waitfunc = fsl_elbc_wait;
708 chip->legacy.set_features = nand_get_set_features_notsupp;
709 chip->legacy.get_features = nand_get_set_features_notsupp;
710
711 chip->bbt_td = &bbt_main_descr;
712 chip->bbt_md = &bbt_mirror_descr;
713
714 /* set up nand options */
715 chip->bbt_options = NAND_BBT_USE_FLASH;
716
717 chip->controller = &elbc_fcm_ctrl->controller;
718 nand_set_controller_data(chip, priv);
719
720 return 0;
721 }
722
723 static int fsl_elbc_attach_chip(struct nand_chip *chip)
724 {
725 struct mtd_info *mtd = nand_to_mtd(chip);
726 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
727 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
728 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
729 unsigned int al;
730
731 switch (chip->ecc.mode) {
732 /*
733 * if ECC was not chosen in DT, decide whether to use HW or SW ECC from
734 * CS Base Register
735 */
736 case NAND_ECC_NONE:
737 /* If CS Base Register selects full hardware ECC then use it */
738 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
739 BR_DECC_CHK_GEN) {
740 chip->ecc.read_page = fsl_elbc_read_page;
741 chip->ecc.write_page = fsl_elbc_write_page;
742 chip->ecc.write_subpage = fsl_elbc_write_subpage;
743
744 chip->ecc.mode = NAND_ECC_HW;
745 mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
746 chip->ecc.size = 512;
747 chip->ecc.bytes = 3;
748 chip->ecc.strength = 1;
749 } else {
750 /* otherwise fall back to default software ECC */
751 chip->ecc.mode = NAND_ECC_SOFT;
752 chip->ecc.algo = NAND_ECC_HAMMING;
753 }
754 break;
755
756 /* if SW ECC was chosen in DT, we do not need to set anything here */
757 case NAND_ECC_SOFT:
758 break;
759
760 /* should we also implement NAND_ECC_HW to do as the code above? */
761 default:
762 return -EINVAL;
763 }
764
765 /* calculate FMR Address Length field */
766 al = 0;
767 if (chip->pagemask & 0xffff0000)
768 al++;
769 if (chip->pagemask & 0xff000000)
770 al++;
771
772 priv->fmr |= al << FMR_AL_SHIFT;
773
774 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
775 nanddev_ntargets(&chip->base));
776 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
777 nanddev_target_size(&chip->base));
778 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
779 chip->pagemask);
780 dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
781 chip->legacy.chip_delay);
782 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
783 chip->badblockpos);
784 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
785 chip->chip_shift);
786 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
787 chip->page_shift);
788 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
789 chip->phys_erase_shift);
790 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
791 chip->ecc.mode);
792 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
793 chip->ecc.steps);
794 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
795 chip->ecc.bytes);
796 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
797 chip->ecc.total);
798 dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
799 mtd->ooblayout);
800 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
801 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
802 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
803 mtd->erasesize);
804 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
805 mtd->writesize);
806 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
807 mtd->oobsize);
808
809 /* adjust Option Register and ECC to match Flash page size */
810 if (mtd->writesize == 512) {
811 priv->page_size = 0;
812 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
813 } else if (mtd->writesize == 2048) {
814 priv->page_size = 1;
815 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
816 } else {
817 dev_err(priv->dev,
818 "fsl_elbc_init: page size %d is not supported\n",
819 mtd->writesize);
820 return -ENOTSUPP;
821 }
822
823 return 0;
824 }
825
826 static const struct nand_controller_ops fsl_elbc_controller_ops = {
827 .attach_chip = fsl_elbc_attach_chip,
828 };
829
830 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
831 {
832 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
833 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
834
835 kfree(mtd->name);
836
837 if (priv->vbase)
838 iounmap(priv->vbase);
839
840 elbc_fcm_ctrl->chips[priv->bank] = NULL;
841 kfree(priv);
842 return 0;
843 }
844
845 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
846
847 static int fsl_elbc_nand_probe(struct platform_device *pdev)
848 {
849 struct fsl_lbc_regs __iomem *lbc;
850 struct fsl_elbc_mtd *priv;
851 struct resource res;
852 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
853 static const char *part_probe_types[]
854 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
855 int ret;
856 int bank;
857 struct device *dev;
858 struct device_node *node = pdev->dev.of_node;
859 struct mtd_info *mtd;
860
861 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
862 return -ENODEV;
863 lbc = fsl_lbc_ctrl_dev->regs;
864 dev = fsl_lbc_ctrl_dev->dev;
865
866 /* get, allocate and map the memory resource */
867 ret = of_address_to_resource(node, 0, &res);
868 if (ret) {
869 dev_err(dev, "failed to get resource\n");
870 return ret;
871 }
872
873 /* find which chip select it is connected to */
874 for (bank = 0; bank < MAX_BANKS; bank++)
875 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
876 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
877 (in_be32(&lbc->bank[bank].br) &
878 in_be32(&lbc->bank[bank].or) & BR_BA)
879 == fsl_lbc_addr(res.start))
880 break;
881
882 if (bank >= MAX_BANKS) {
883 dev_err(dev, "address did not match any chip selects\n");
884 return -ENODEV;
885 }
886
887 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
888 if (!priv)
889 return -ENOMEM;
890
891 mutex_lock(&fsl_elbc_nand_mutex);
892 if (!fsl_lbc_ctrl_dev->nand) {
893 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
894 if (!elbc_fcm_ctrl) {
895 mutex_unlock(&fsl_elbc_nand_mutex);
896 ret = -ENOMEM;
897 goto err;
898 }
899 elbc_fcm_ctrl->counter++;
900
901 nand_controller_init(&elbc_fcm_ctrl->controller);
902 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
903 } else {
904 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
905 }
906 mutex_unlock(&fsl_elbc_nand_mutex);
907
908 elbc_fcm_ctrl->chips[bank] = priv;
909 priv->bank = bank;
910 priv->ctrl = fsl_lbc_ctrl_dev;
911 priv->dev = &pdev->dev;
912 dev_set_drvdata(priv->dev, priv);
913
914 priv->vbase = ioremap(res.start, resource_size(&res));
915 if (!priv->vbase) {
916 dev_err(dev, "failed to map chip region\n");
917 ret = -ENOMEM;
918 goto err;
919 }
920
921 mtd = nand_to_mtd(&priv->chip);
922 mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
923 if (!nand_to_mtd(&priv->chip)->name) {
924 ret = -ENOMEM;
925 goto err;
926 }
927
928 ret = fsl_elbc_chip_init(priv);
929 if (ret)
930 goto err;
931
932 priv->chip.controller->ops = &fsl_elbc_controller_ops;
933 ret = nand_scan(&priv->chip, 1);
934 if (ret)
935 goto err;
936
937 /* First look for RedBoot table or partitions on the command
938 * line, these take precedence over device tree information */
939 ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
940 if (ret)
941 goto cleanup_nand;
942
943 pr_info("eLBC NAND device at 0x%llx, bank %d\n",
944 (unsigned long long)res.start, priv->bank);
945
946 return 0;
947
948 cleanup_nand:
949 nand_cleanup(&priv->chip);
950 err:
951 fsl_elbc_chip_remove(priv);
952
953 return ret;
954 }
955
956 static int fsl_elbc_nand_remove(struct platform_device *pdev)
957 {
958 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
959 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
960
961 nand_release(&priv->chip);
962 fsl_elbc_chip_remove(priv);
963
964 mutex_lock(&fsl_elbc_nand_mutex);
965 elbc_fcm_ctrl->counter--;
966 if (!elbc_fcm_ctrl->counter) {
967 fsl_lbc_ctrl_dev->nand = NULL;
968 kfree(elbc_fcm_ctrl);
969 }
970 mutex_unlock(&fsl_elbc_nand_mutex);
971
972 return 0;
973
974 }
975
976 static const struct of_device_id fsl_elbc_nand_match[] = {
977 { .compatible = "fsl,elbc-fcm-nand", },
978 {}
979 };
980 MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
981
982 static struct platform_driver fsl_elbc_nand_driver = {
983 .driver = {
984 .name = "fsl,elbc-fcm-nand",
985 .of_match_table = fsl_elbc_nand_match,
986 },
987 .probe = fsl_elbc_nand_probe,
988 .remove = fsl_elbc_nand_remove,
989 };
990
991 module_platform_driver(fsl_elbc_nand_driver);
992
993 MODULE_LICENSE("GPL");
994 MODULE_AUTHOR("Freescale");
995 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");