]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mtd/nand/raw/fsmc_nand.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ST Microelectronics
4 * Flexible Static Memory Controller (FSMC)
5 * Driver for NAND portions
6 *
7 * Copyright © 2010 ST Microelectronics
8 * Vipin Kumar <vipin.kumar@st.com>
9 * Ashish Priyadarshi
10 *
11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12 * Copyright © 2007 STMicroelectronics Pvt. Ltd.
13 * Copyright © 2009 Alessandro Rubini
14 */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/nand_ecc.h>
30 #include <linux/platform_device.h>
31 #include <linux/of.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/io.h>
34 #include <linux/slab.h>
35 #include <linux/amba/bus.h>
36 #include <mtd/mtd-abi.h>
37
38 /* fsmc controller registers for NOR flash */
39 #define CTRL 0x0
40 /* ctrl register definitions */
41 #define BANK_ENABLE BIT(0)
42 #define MUXED BIT(1)
43 #define NOR_DEV (2 << 2)
44 #define WIDTH_16 BIT(4)
45 #define RSTPWRDWN BIT(6)
46 #define WPROT BIT(7)
47 #define WRT_ENABLE BIT(12)
48 #define WAIT_ENB BIT(13)
49
50 #define CTRL_TIM 0x4
51 /* ctrl_tim register definitions */
52
53 #define FSMC_NOR_BANK_SZ 0x8
54 #define FSMC_NOR_REG_SIZE 0x40
55
56 #define FSMC_NOR_REG(base, bank, reg) ((base) + \
57 (FSMC_NOR_BANK_SZ * (bank)) + \
58 (reg))
59
60 /* fsmc controller registers for NAND flash */
61 #define FSMC_PC 0x00
62 /* pc register definitions */
63 #define FSMC_RESET BIT(0)
64 #define FSMC_WAITON BIT(1)
65 #define FSMC_ENABLE BIT(2)
66 #define FSMC_DEVTYPE_NAND BIT(3)
67 #define FSMC_DEVWID_16 BIT(4)
68 #define FSMC_ECCEN BIT(6)
69 #define FSMC_ECCPLEN_256 BIT(7)
70 #define FSMC_TCLR_SHIFT (9)
71 #define FSMC_TCLR_MASK (0xF)
72 #define FSMC_TAR_SHIFT (13)
73 #define FSMC_TAR_MASK (0xF)
74 #define STS 0x04
75 /* sts register definitions */
76 #define FSMC_CODE_RDY BIT(15)
77 #define COMM 0x08
78 /* comm register definitions */
79 #define FSMC_TSET_SHIFT 0
80 #define FSMC_TSET_MASK 0xFF
81 #define FSMC_TWAIT_SHIFT 8
82 #define FSMC_TWAIT_MASK 0xFF
83 #define FSMC_THOLD_SHIFT 16
84 #define FSMC_THOLD_MASK 0xFF
85 #define FSMC_THIZ_SHIFT 24
86 #define FSMC_THIZ_MASK 0xFF
87 #define ATTRIB 0x0C
88 #define IOATA 0x10
89 #define ECC1 0x14
90 #define ECC2 0x18
91 #define ECC3 0x1C
92 #define FSMC_NAND_BANK_SZ 0x20
93
94 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
95
96 struct fsmc_nand_timings {
97 u8 tclr;
98 u8 tar;
99 u8 thiz;
100 u8 thold;
101 u8 twait;
102 u8 tset;
103 };
104
105 enum access_mode {
106 USE_DMA_ACCESS = 1,
107 USE_WORD_ACCESS,
108 };
109
110 /**
111 * struct fsmc_nand_data - structure for FSMC NAND device state
112 *
113 * @base: Inherit from the nand_controller struct
114 * @pid: Part ID on the AMBA PrimeCell format
115 * @nand: Chip related info for a NAND flash.
116 *
117 * @bank: Bank number for probed device.
118 * @dev: Parent device
119 * @mode: Access mode
120 * @clk: Clock structure for FSMC.
121 *
122 * @read_dma_chan: DMA channel for read access
123 * @write_dma_chan: DMA channel for write access to NAND
124 * @dma_access_complete: Completion structure
125 *
126 * @dev_timings: NAND timings
127 *
128 * @data_pa: NAND Physical port for Data.
129 * @data_va: NAND port for Data.
130 * @cmd_va: NAND port for Command.
131 * @addr_va: NAND port for Address.
132 * @regs_va: Registers base address for a given bank.
133 */
134 struct fsmc_nand_data {
135 struct nand_controller base;
136 u32 pid;
137 struct nand_chip nand;
138
139 unsigned int bank;
140 struct device *dev;
141 enum access_mode mode;
142 struct clk *clk;
143
144 /* DMA related objects */
145 struct dma_chan *read_dma_chan;
146 struct dma_chan *write_dma_chan;
147 struct completion dma_access_complete;
148
149 struct fsmc_nand_timings *dev_timings;
150
151 dma_addr_t data_pa;
152 void __iomem *data_va;
153 void __iomem *cmd_va;
154 void __iomem *addr_va;
155 void __iomem *regs_va;
156 };
157
158 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
159 struct mtd_oob_region *oobregion)
160 {
161 struct nand_chip *chip = mtd_to_nand(mtd);
162
163 if (section >= chip->ecc.steps)
164 return -ERANGE;
165
166 oobregion->offset = (section * 16) + 2;
167 oobregion->length = 3;
168
169 return 0;
170 }
171
172 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
173 struct mtd_oob_region *oobregion)
174 {
175 struct nand_chip *chip = mtd_to_nand(mtd);
176
177 if (section >= chip->ecc.steps)
178 return -ERANGE;
179
180 oobregion->offset = (section * 16) + 8;
181
182 if (section < chip->ecc.steps - 1)
183 oobregion->length = 8;
184 else
185 oobregion->length = mtd->oobsize - oobregion->offset;
186
187 return 0;
188 }
189
190 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
191 .ecc = fsmc_ecc1_ooblayout_ecc,
192 .free = fsmc_ecc1_ooblayout_free,
193 };
194
195 /*
196 * ECC placement definitions in oobfree type format.
197 * There are 13 bytes of ecc for every 512 byte block and it has to be read
198 * consecutively and immediately after the 512 byte data block for hardware to
199 * generate the error bit offsets in 512 byte data.
200 */
201 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
202 struct mtd_oob_region *oobregion)
203 {
204 struct nand_chip *chip = mtd_to_nand(mtd);
205
206 if (section >= chip->ecc.steps)
207 return -ERANGE;
208
209 oobregion->length = chip->ecc.bytes;
210
211 if (!section && mtd->writesize <= 512)
212 oobregion->offset = 0;
213 else
214 oobregion->offset = (section * 16) + 2;
215
216 return 0;
217 }
218
219 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
220 struct mtd_oob_region *oobregion)
221 {
222 struct nand_chip *chip = mtd_to_nand(mtd);
223
224 if (section >= chip->ecc.steps)
225 return -ERANGE;
226
227 oobregion->offset = (section * 16) + 15;
228
229 if (section < chip->ecc.steps - 1)
230 oobregion->length = 3;
231 else
232 oobregion->length = mtd->oobsize - oobregion->offset;
233
234 return 0;
235 }
236
237 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
238 .ecc = fsmc_ecc4_ooblayout_ecc,
239 .free = fsmc_ecc4_ooblayout_free,
240 };
241
242 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
243 {
244 return container_of(chip, struct fsmc_nand_data, nand);
245 }
246
247 /*
248 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249 *
250 * This routine initializes timing parameters related to NAND memory access in
251 * FSMC registers
252 */
253 static void fsmc_nand_setup(struct fsmc_nand_data *host,
254 struct fsmc_nand_timings *tims)
255 {
256 u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
257 u32 tclr, tar, thiz, thold, twait, tset;
258
259 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
260 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
261 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
262 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
263 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
264 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
265
266 if (host->nand.options & NAND_BUSWIDTH_16)
267 value |= FSMC_DEVWID_16;
268
269 writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
270 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
271 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
272 }
273
274 static int fsmc_calc_timings(struct fsmc_nand_data *host,
275 const struct nand_sdr_timings *sdrt,
276 struct fsmc_nand_timings *tims)
277 {
278 unsigned long hclk = clk_get_rate(host->clk);
279 unsigned long hclkn = NSEC_PER_SEC / hclk;
280 u32 thiz, thold, twait, tset;
281
282 if (sdrt->tRC_min < 30000)
283 return -EOPNOTSUPP;
284
285 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
286 if (tims->tar > FSMC_TAR_MASK)
287 tims->tar = FSMC_TAR_MASK;
288 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
289 if (tims->tclr > FSMC_TCLR_MASK)
290 tims->tclr = FSMC_TCLR_MASK;
291
292 thiz = sdrt->tCS_min - sdrt->tWP_min;
293 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294
295 thold = sdrt->tDH_min;
296 if (thold < sdrt->tCH_min)
297 thold = sdrt->tCH_min;
298 if (thold < sdrt->tCLH_min)
299 thold = sdrt->tCLH_min;
300 if (thold < sdrt->tWH_min)
301 thold = sdrt->tWH_min;
302 if (thold < sdrt->tALH_min)
303 thold = sdrt->tALH_min;
304 if (thold < sdrt->tREH_min)
305 thold = sdrt->tREH_min;
306 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
307 if (tims->thold == 0)
308 tims->thold = 1;
309 else if (tims->thold > FSMC_THOLD_MASK)
310 tims->thold = FSMC_THOLD_MASK;
311
312 twait = max(sdrt->tRP_min, sdrt->tWP_min);
313 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
314 if (tims->twait == 0)
315 tims->twait = 1;
316 else if (tims->twait > FSMC_TWAIT_MASK)
317 tims->twait = FSMC_TWAIT_MASK;
318
319 tset = max(sdrt->tCS_min - sdrt->tWP_min,
320 sdrt->tCEA_max - sdrt->tREA_max);
321 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
322 if (tims->tset == 0)
323 tims->tset = 1;
324 else if (tims->tset > FSMC_TSET_MASK)
325 tims->tset = FSMC_TSET_MASK;
326
327 return 0;
328 }
329
330 static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
331 const struct nand_data_interface *conf)
332 {
333 struct fsmc_nand_data *host = nand_to_fsmc(nand);
334 struct fsmc_nand_timings tims;
335 const struct nand_sdr_timings *sdrt;
336 int ret;
337
338 sdrt = nand_get_sdr_timings(conf);
339 if (IS_ERR(sdrt))
340 return PTR_ERR(sdrt);
341
342 ret = fsmc_calc_timings(host, sdrt, &tims);
343 if (ret)
344 return ret;
345
346 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
347 return 0;
348
349 fsmc_nand_setup(host, &tims);
350
351 return 0;
352 }
353
354 /*
355 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356 */
357 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
358 {
359 struct fsmc_nand_data *host = nand_to_fsmc(chip);
360
361 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
362 host->regs_va + FSMC_PC);
363 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
364 host->regs_va + FSMC_PC);
365 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
366 host->regs_va + FSMC_PC);
367 }
368
369 /*
370 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
371 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
372 * max of 8-bits)
373 */
374 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
375 u8 *ecc)
376 {
377 struct fsmc_nand_data *host = nand_to_fsmc(chip);
378 u32 ecc_tmp;
379 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
380
381 do {
382 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
383 break;
384
385 cond_resched();
386 } while (!time_after_eq(jiffies, deadline));
387
388 if (time_after_eq(jiffies, deadline)) {
389 dev_err(host->dev, "calculate ecc timed out\n");
390 return -ETIMEDOUT;
391 }
392
393 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
394 ecc[0] = ecc_tmp;
395 ecc[1] = ecc_tmp >> 8;
396 ecc[2] = ecc_tmp >> 16;
397 ecc[3] = ecc_tmp >> 24;
398
399 ecc_tmp = readl_relaxed(host->regs_va + ECC2);
400 ecc[4] = ecc_tmp;
401 ecc[5] = ecc_tmp >> 8;
402 ecc[6] = ecc_tmp >> 16;
403 ecc[7] = ecc_tmp >> 24;
404
405 ecc_tmp = readl_relaxed(host->regs_va + ECC3);
406 ecc[8] = ecc_tmp;
407 ecc[9] = ecc_tmp >> 8;
408 ecc[10] = ecc_tmp >> 16;
409 ecc[11] = ecc_tmp >> 24;
410
411 ecc_tmp = readl_relaxed(host->regs_va + STS);
412 ecc[12] = ecc_tmp >> 16;
413
414 return 0;
415 }
416
417 /*
418 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
419 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
420 * max of 1-bit)
421 */
422 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
423 u8 *ecc)
424 {
425 struct fsmc_nand_data *host = nand_to_fsmc(chip);
426 u32 ecc_tmp;
427
428 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
429 ecc[0] = ecc_tmp;
430 ecc[1] = ecc_tmp >> 8;
431 ecc[2] = ecc_tmp >> 16;
432
433 return 0;
434 }
435
436 /* Count the number of 0's in buff upto a max of max_bits */
437 static int count_written_bits(u8 *buff, int size, int max_bits)
438 {
439 int k, written_bits = 0;
440
441 for (k = 0; k < size; k++) {
442 written_bits += hweight8(~buff[k]);
443 if (written_bits > max_bits)
444 break;
445 }
446
447 return written_bits;
448 }
449
450 static void dma_complete(void *param)
451 {
452 struct fsmc_nand_data *host = param;
453
454 complete(&host->dma_access_complete);
455 }
456
457 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
458 enum dma_data_direction direction)
459 {
460 struct dma_chan *chan;
461 struct dma_device *dma_dev;
462 struct dma_async_tx_descriptor *tx;
463 dma_addr_t dma_dst, dma_src, dma_addr;
464 dma_cookie_t cookie;
465 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
466 int ret;
467 unsigned long time_left;
468
469 if (direction == DMA_TO_DEVICE)
470 chan = host->write_dma_chan;
471 else if (direction == DMA_FROM_DEVICE)
472 chan = host->read_dma_chan;
473 else
474 return -EINVAL;
475
476 dma_dev = chan->device;
477 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
478
479 if (direction == DMA_TO_DEVICE) {
480 dma_src = dma_addr;
481 dma_dst = host->data_pa;
482 } else {
483 dma_src = host->data_pa;
484 dma_dst = dma_addr;
485 }
486
487 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
488 len, flags);
489 if (!tx) {
490 dev_err(host->dev, "device_prep_dma_memcpy error\n");
491 ret = -EIO;
492 goto unmap_dma;
493 }
494
495 tx->callback = dma_complete;
496 tx->callback_param = host;
497 cookie = tx->tx_submit(tx);
498
499 ret = dma_submit_error(cookie);
500 if (ret) {
501 dev_err(host->dev, "dma_submit_error %d\n", cookie);
502 goto unmap_dma;
503 }
504
505 dma_async_issue_pending(chan);
506
507 time_left =
508 wait_for_completion_timeout(&host->dma_access_complete,
509 msecs_to_jiffies(3000));
510 if (time_left == 0) {
511 dmaengine_terminate_all(chan);
512 dev_err(host->dev, "wait_for_completion_timeout\n");
513 ret = -ETIMEDOUT;
514 goto unmap_dma;
515 }
516
517 ret = 0;
518
519 unmap_dma:
520 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
521
522 return ret;
523 }
524
525 /*
526 * fsmc_write_buf - write buffer to chip
527 * @host: FSMC NAND controller
528 * @buf: data buffer
529 * @len: number of bytes to write
530 */
531 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
532 int len)
533 {
534 int i;
535
536 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
537 IS_ALIGNED(len, sizeof(u32))) {
538 u32 *p = (u32 *)buf;
539
540 len = len >> 2;
541 for (i = 0; i < len; i++)
542 writel_relaxed(p[i], host->data_va);
543 } else {
544 for (i = 0; i < len; i++)
545 writeb_relaxed(buf[i], host->data_va);
546 }
547 }
548
549 /*
550 * fsmc_read_buf - read chip data into buffer
551 * @host: FSMC NAND controller
552 * @buf: buffer to store date
553 * @len: number of bytes to read
554 */
555 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
556 {
557 int i;
558
559 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
560 IS_ALIGNED(len, sizeof(u32))) {
561 u32 *p = (u32 *)buf;
562
563 len = len >> 2;
564 for (i = 0; i < len; i++)
565 p[i] = readl_relaxed(host->data_va);
566 } else {
567 for (i = 0; i < len; i++)
568 buf[i] = readb_relaxed(host->data_va);
569 }
570 }
571
572 /*
573 * fsmc_read_buf_dma - read chip data into buffer
574 * @host: FSMC NAND controller
575 * @buf: buffer to store date
576 * @len: number of bytes to read
577 */
578 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
579 int len)
580 {
581 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
582 }
583
584 /*
585 * fsmc_write_buf_dma - write buffer to chip
586 * @host: FSMC NAND controller
587 * @buf: data buffer
588 * @len: number of bytes to write
589 */
590 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
591 int len)
592 {
593 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
594 }
595
596 /*
597 * fsmc_exec_op - hook called by the core to execute NAND operations
598 *
599 * This controller is simple enough and thus does not need to use the parser
600 * provided by the core, instead, handle every situation here.
601 */
602 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
603 bool check_only)
604 {
605 struct fsmc_nand_data *host = nand_to_fsmc(chip);
606 const struct nand_op_instr *instr = NULL;
607 int ret = 0;
608 unsigned int op_id;
609 int i;
610
611 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
612
613 for (op_id = 0; op_id < op->ninstrs; op_id++) {
614 instr = &op->instrs[op_id];
615
616 switch (instr->type) {
617 case NAND_OP_CMD_INSTR:
618 pr_debug(" ->CMD [0x%02x]\n",
619 instr->ctx.cmd.opcode);
620
621 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
622 break;
623
624 case NAND_OP_ADDR_INSTR:
625 pr_debug(" ->ADDR [%d cyc]",
626 instr->ctx.addr.naddrs);
627
628 for (i = 0; i < instr->ctx.addr.naddrs; i++)
629 writeb_relaxed(instr->ctx.addr.addrs[i],
630 host->addr_va);
631 break;
632
633 case NAND_OP_DATA_IN_INSTR:
634 pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
635 instr->ctx.data.force_8bit ?
636 ", force 8-bit" : "");
637
638 if (host->mode == USE_DMA_ACCESS)
639 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
640 instr->ctx.data.len);
641 else
642 fsmc_read_buf(host, instr->ctx.data.buf.in,
643 instr->ctx.data.len);
644 break;
645
646 case NAND_OP_DATA_OUT_INSTR:
647 pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
648 instr->ctx.data.force_8bit ?
649 ", force 8-bit" : "");
650
651 if (host->mode == USE_DMA_ACCESS)
652 fsmc_write_buf_dma(host,
653 instr->ctx.data.buf.out,
654 instr->ctx.data.len);
655 else
656 fsmc_write_buf(host, instr->ctx.data.buf.out,
657 instr->ctx.data.len);
658 break;
659
660 case NAND_OP_WAITRDY_INSTR:
661 pr_debug(" ->WAITRDY [max %d ms]\n",
662 instr->ctx.waitrdy.timeout_ms);
663
664 ret = nand_soft_waitrdy(chip,
665 instr->ctx.waitrdy.timeout_ms);
666 break;
667 }
668 }
669
670 return ret;
671 }
672
673 /*
674 * fsmc_read_page_hwecc
675 * @chip: nand chip info structure
676 * @buf: buffer to store read data
677 * @oob_required: caller expects OOB data read to chip->oob_poi
678 * @page: page number to read
679 *
680 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
681 * performed in a strict sequence as follows:
682 * data(512 byte) -> ecc(13 byte)
683 * After this read, fsmc hardware generates and reports error data bits(up to a
684 * max of 8 bits)
685 */
686 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
687 int oob_required, int page)
688 {
689 struct mtd_info *mtd = nand_to_mtd(chip);
690 int i, j, s, stat, eccsize = chip->ecc.size;
691 int eccbytes = chip->ecc.bytes;
692 int eccsteps = chip->ecc.steps;
693 u8 *p = buf;
694 u8 *ecc_calc = chip->ecc.calc_buf;
695 u8 *ecc_code = chip->ecc.code_buf;
696 int off, len, ret, group = 0;
697 /*
698 * ecc_oob is intentionally taken as u16. In 16bit devices, we
699 * end up reading 14 bytes (7 words) from oob. The local array is
700 * to maintain word alignment
701 */
702 u16 ecc_oob[7];
703 u8 *oob = (u8 *)&ecc_oob[0];
704 unsigned int max_bitflips = 0;
705
706 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
707 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
708 chip->ecc.hwctl(chip, NAND_ECC_READ);
709 ret = nand_read_data_op(chip, p, eccsize, false);
710 if (ret)
711 return ret;
712
713 for (j = 0; j < eccbytes;) {
714 struct mtd_oob_region oobregion;
715
716 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
717 if (ret)
718 return ret;
719
720 off = oobregion.offset;
721 len = oobregion.length;
722
723 /*
724 * length is intentionally kept a higher multiple of 2
725 * to read at least 13 bytes even in case of 16 bit NAND
726 * devices
727 */
728 if (chip->options & NAND_BUSWIDTH_16)
729 len = roundup(len, 2);
730
731 nand_read_oob_op(chip, page, off, oob + j, len);
732 j += len;
733 }
734
735 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
736 chip->ecc.calculate(chip, p, &ecc_calc[i]);
737
738 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
739 if (stat < 0) {
740 mtd->ecc_stats.failed++;
741 } else {
742 mtd->ecc_stats.corrected += stat;
743 max_bitflips = max_t(unsigned int, max_bitflips, stat);
744 }
745 }
746
747 return max_bitflips;
748 }
749
750 /*
751 * fsmc_bch8_correct_data
752 * @mtd: mtd info structure
753 * @dat: buffer of read data
754 * @read_ecc: ecc read from device spare area
755 * @calc_ecc: ecc calculated from read data
756 *
757 * calc_ecc is a 104 bit information containing maximum of 8 error
758 * offset information of 13 bits each in 512 bytes of read data.
759 */
760 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
761 u8 *read_ecc, u8 *calc_ecc)
762 {
763 struct fsmc_nand_data *host = nand_to_fsmc(chip);
764 u32 err_idx[8];
765 u32 num_err, i;
766 u32 ecc1, ecc2, ecc3, ecc4;
767
768 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
769
770 /* no bit flipping */
771 if (likely(num_err == 0))
772 return 0;
773
774 /* too many errors */
775 if (unlikely(num_err > 8)) {
776 /*
777 * This is a temporary erase check. A newly erased page read
778 * would result in an ecc error because the oob data is also
779 * erased to FF and the calculated ecc for an FF data is not
780 * FF..FF.
781 * This is a workaround to skip performing correction in case
782 * data is FF..FF
783 *
784 * Logic:
785 * For every page, each bit written as 0 is counted until these
786 * number of bits are greater than 8 (the maximum correction
787 * capability of FSMC for each 512 + 13 bytes)
788 */
789
790 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
791 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
792
793 if ((bits_ecc + bits_data) <= 8) {
794 if (bits_data)
795 memset(dat, 0xff, chip->ecc.size);
796 return bits_data;
797 }
798
799 return -EBADMSG;
800 }
801
802 /*
803 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
804 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
805 *
806 * calc_ecc is a 104 bit information containing maximum of 8 error
807 * offset information of 13 bits each. calc_ecc is copied into a
808 * u64 array and error offset indexes are populated in err_idx
809 * array
810 */
811 ecc1 = readl_relaxed(host->regs_va + ECC1);
812 ecc2 = readl_relaxed(host->regs_va + ECC2);
813 ecc3 = readl_relaxed(host->regs_va + ECC3);
814 ecc4 = readl_relaxed(host->regs_va + STS);
815
816 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
817 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
818 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
819 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
820 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
821 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
822 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
823 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
824
825 i = 0;
826 while (num_err--) {
827 change_bit(0, (unsigned long *)&err_idx[i]);
828 change_bit(1, (unsigned long *)&err_idx[i]);
829
830 if (err_idx[i] < chip->ecc.size * 8) {
831 change_bit(err_idx[i], (unsigned long *)dat);
832 i++;
833 }
834 }
835 return i;
836 }
837
838 static bool filter(struct dma_chan *chan, void *slave)
839 {
840 chan->private = slave;
841 return true;
842 }
843
844 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
845 struct fsmc_nand_data *host,
846 struct nand_chip *nand)
847 {
848 struct device_node *np = pdev->dev.of_node;
849 u32 val;
850 int ret;
851
852 nand->options = 0;
853
854 if (!of_property_read_u32(np, "bank-width", &val)) {
855 if (val == 2) {
856 nand->options |= NAND_BUSWIDTH_16;
857 } else if (val != 1) {
858 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
859 return -EINVAL;
860 }
861 }
862
863 if (of_get_property(np, "nand-skip-bbtscan", NULL))
864 nand->options |= NAND_SKIP_BBTSCAN;
865
866 host->dev_timings = devm_kzalloc(&pdev->dev,
867 sizeof(*host->dev_timings),
868 GFP_KERNEL);
869 if (!host->dev_timings)
870 return -ENOMEM;
871
872 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
873 sizeof(*host->dev_timings));
874 if (ret)
875 host->dev_timings = NULL;
876
877 /* Set default NAND bank to 0 */
878 host->bank = 0;
879 if (!of_property_read_u32(np, "bank", &val)) {
880 if (val > 3) {
881 dev_err(&pdev->dev, "invalid bank %u\n", val);
882 return -EINVAL;
883 }
884 host->bank = val;
885 }
886 return 0;
887 }
888
889 static int fsmc_nand_attach_chip(struct nand_chip *nand)
890 {
891 struct mtd_info *mtd = nand_to_mtd(nand);
892 struct fsmc_nand_data *host = nand_to_fsmc(nand);
893
894 if (AMBA_REV_BITS(host->pid) >= 8) {
895 switch (mtd->oobsize) {
896 case 16:
897 case 64:
898 case 128:
899 case 224:
900 case 256:
901 break;
902 default:
903 dev_warn(host->dev,
904 "No oob scheme defined for oobsize %d\n",
905 mtd->oobsize);
906 return -EINVAL;
907 }
908
909 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
910
911 return 0;
912 }
913
914 switch (nand->ecc.mode) {
915 case NAND_ECC_HW:
916 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
917 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
918 nand->ecc.correct = nand_correct_data;
919 nand->ecc.bytes = 3;
920 nand->ecc.strength = 1;
921 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
922 break;
923
924 case NAND_ECC_SOFT:
925 if (nand->ecc.algo == NAND_ECC_BCH) {
926 dev_info(host->dev,
927 "Using 4-bit SW BCH ECC scheme\n");
928 break;
929 }
930
931 case NAND_ECC_ON_DIE:
932 break;
933
934 default:
935 dev_err(host->dev, "Unsupported ECC mode!\n");
936 return -ENOTSUPP;
937 }
938
939 /*
940 * Don't set layout for BCH4 SW ECC. This will be
941 * generated later in nand_bch_init() later.
942 */
943 if (nand->ecc.mode == NAND_ECC_HW) {
944 switch (mtd->oobsize) {
945 case 16:
946 case 64:
947 case 128:
948 mtd_set_ooblayout(mtd,
949 &fsmc_ecc1_ooblayout_ops);
950 break;
951 default:
952 dev_warn(host->dev,
953 "No oob scheme defined for oobsize %d\n",
954 mtd->oobsize);
955 return -EINVAL;
956 }
957 }
958
959 return 0;
960 }
961
962 static const struct nand_controller_ops fsmc_nand_controller_ops = {
963 .attach_chip = fsmc_nand_attach_chip,
964 .exec_op = fsmc_exec_op,
965 .setup_data_interface = fsmc_setup_data_interface,
966 };
967
968 /*
969 * fsmc_nand_probe - Probe function
970 * @pdev: platform device structure
971 */
972 static int __init fsmc_nand_probe(struct platform_device *pdev)
973 {
974 struct fsmc_nand_data *host;
975 struct mtd_info *mtd;
976 struct nand_chip *nand;
977 struct resource *res;
978 void __iomem *base;
979 dma_cap_mask_t mask;
980 int ret = 0;
981 u32 pid;
982 int i;
983
984 /* Allocate memory for the device structure (and zero it) */
985 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
986 if (!host)
987 return -ENOMEM;
988
989 nand = &host->nand;
990
991 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
992 if (ret)
993 return ret;
994
995 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
996 host->data_va = devm_ioremap_resource(&pdev->dev, res);
997 if (IS_ERR(host->data_va))
998 return PTR_ERR(host->data_va);
999
1000 host->data_pa = (dma_addr_t)res->start;
1001
1002 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1003 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1004 if (IS_ERR(host->addr_va))
1005 return PTR_ERR(host->addr_va);
1006
1007 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1008 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1009 if (IS_ERR(host->cmd_va))
1010 return PTR_ERR(host->cmd_va);
1011
1012 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1013 base = devm_ioremap_resource(&pdev->dev, res);
1014 if (IS_ERR(base))
1015 return PTR_ERR(base);
1016
1017 host->regs_va = base + FSMC_NOR_REG_SIZE +
1018 (host->bank * FSMC_NAND_BANK_SZ);
1019
1020 host->clk = devm_clk_get(&pdev->dev, NULL);
1021 if (IS_ERR(host->clk)) {
1022 dev_err(&pdev->dev, "failed to fetch block clock\n");
1023 return PTR_ERR(host->clk);
1024 }
1025
1026 ret = clk_prepare_enable(host->clk);
1027 if (ret)
1028 return ret;
1029
1030 /*
1031 * This device ID is actually a common AMBA ID as used on the
1032 * AMBA PrimeCell bus. However it is not a PrimeCell.
1033 */
1034 for (pid = 0, i = 0; i < 4; i++)
1035 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1036 255) << (i * 8);
1037
1038 host->pid = pid;
1039
1040 dev_info(&pdev->dev,
1041 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1042 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1043 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1044
1045 host->dev = &pdev->dev;
1046
1047 if (host->mode == USE_DMA_ACCESS)
1048 init_completion(&host->dma_access_complete);
1049
1050 /* Link all private pointers */
1051 mtd = nand_to_mtd(&host->nand);
1052 nand_set_flash_node(nand, pdev->dev.of_node);
1053
1054 mtd->dev.parent = &pdev->dev;
1055
1056 /*
1057 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1058 * can overwrite this value if the DT provides a different value.
1059 */
1060 nand->ecc.mode = NAND_ECC_HW;
1061 nand->ecc.hwctl = fsmc_enable_hwecc;
1062 nand->ecc.size = 512;
1063 nand->badblockbits = 7;
1064
1065 if (host->mode == USE_DMA_ACCESS) {
1066 dma_cap_zero(mask);
1067 dma_cap_set(DMA_MEMCPY, mask);
1068 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1069 if (!host->read_dma_chan) {
1070 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1071 goto disable_clk;
1072 }
1073 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1074 if (!host->write_dma_chan) {
1075 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1076 goto release_dma_read_chan;
1077 }
1078 }
1079
1080 if (host->dev_timings) {
1081 fsmc_nand_setup(host, host->dev_timings);
1082 nand->options |= NAND_KEEP_TIMINGS;
1083 }
1084
1085 if (AMBA_REV_BITS(host->pid) >= 8) {
1086 nand->ecc.read_page = fsmc_read_page_hwecc;
1087 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1088 nand->ecc.correct = fsmc_bch8_correct_data;
1089 nand->ecc.bytes = 13;
1090 nand->ecc.strength = 8;
1091 }
1092
1093 nand_controller_init(&host->base);
1094 host->base.ops = &fsmc_nand_controller_ops;
1095 nand->controller = &host->base;
1096
1097 /*
1098 * Scan to find existence of the device
1099 */
1100 ret = nand_scan(nand, 1);
1101 if (ret)
1102 goto release_dma_write_chan;
1103
1104 mtd->name = "nand";
1105 ret = mtd_device_register(mtd, NULL, 0);
1106 if (ret)
1107 goto cleanup_nand;
1108
1109 platform_set_drvdata(pdev, host);
1110 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1111
1112 return 0;
1113
1114 cleanup_nand:
1115 nand_cleanup(nand);
1116 release_dma_write_chan:
1117 if (host->mode == USE_DMA_ACCESS)
1118 dma_release_channel(host->write_dma_chan);
1119 release_dma_read_chan:
1120 if (host->mode == USE_DMA_ACCESS)
1121 dma_release_channel(host->read_dma_chan);
1122 disable_clk:
1123 clk_disable_unprepare(host->clk);
1124
1125 return ret;
1126 }
1127
1128 /*
1129 * Clean up routine
1130 */
1131 static int fsmc_nand_remove(struct platform_device *pdev)
1132 {
1133 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1134
1135 if (host) {
1136 nand_release(&host->nand);
1137
1138 if (host->mode == USE_DMA_ACCESS) {
1139 dma_release_channel(host->write_dma_chan);
1140 dma_release_channel(host->read_dma_chan);
1141 }
1142 clk_disable_unprepare(host->clk);
1143 }
1144
1145 return 0;
1146 }
1147
1148 #ifdef CONFIG_PM_SLEEP
1149 static int fsmc_nand_suspend(struct device *dev)
1150 {
1151 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1152
1153 if (host)
1154 clk_disable_unprepare(host->clk);
1155
1156 return 0;
1157 }
1158
1159 static int fsmc_nand_resume(struct device *dev)
1160 {
1161 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1162
1163 if (host) {
1164 clk_prepare_enable(host->clk);
1165 if (host->dev_timings)
1166 fsmc_nand_setup(host, host->dev_timings);
1167 }
1168
1169 return 0;
1170 }
1171 #endif
1172
1173 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1174
1175 static const struct of_device_id fsmc_nand_id_table[] = {
1176 { .compatible = "st,spear600-fsmc-nand" },
1177 { .compatible = "stericsson,fsmc-nand" },
1178 {}
1179 };
1180 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1181
1182 static struct platform_driver fsmc_nand_driver = {
1183 .remove = fsmc_nand_remove,
1184 .driver = {
1185 .name = "fsmc-nand",
1186 .of_match_table = fsmc_nand_id_table,
1187 .pm = &fsmc_nand_pm_ops,
1188 },
1189 };
1190
1191 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1192
1193 MODULE_LICENSE("GPL v2");
1194 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1195 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");