]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/nand/raw/lpc32xx_slc.c
163f976353f8e0685a758ff311551cdcb8bae204
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / raw / lpc32xx_slc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NXP LPC32XX NAND SLC driver
4 *
5 * Authors:
6 * Kevin Wells <kevin.wells@nxp.com>
7 * Roland Stigge <stigge@antcom.de>
8 *
9 * Copyright © 2011 NXP Semiconductors
10 * Copyright © 2012 Roland Stigge
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/delay.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/mtd/nand_ecc.h>
27 #include <linux/gpio.h>
28 #include <linux/of.h>
29 #include <linux/of_gpio.h>
30 #include <linux/mtd/lpc32xx_slc.h>
31
32 #define LPC32XX_MODNAME "lpc32xx-nand"
33
34 /**********************************************************************
35 * SLC NAND controller register offsets
36 **********************************************************************/
37
38 #define SLC_DATA(x) (x + 0x000)
39 #define SLC_ADDR(x) (x + 0x004)
40 #define SLC_CMD(x) (x + 0x008)
41 #define SLC_STOP(x) (x + 0x00C)
42 #define SLC_CTRL(x) (x + 0x010)
43 #define SLC_CFG(x) (x + 0x014)
44 #define SLC_STAT(x) (x + 0x018)
45 #define SLC_INT_STAT(x) (x + 0x01C)
46 #define SLC_IEN(x) (x + 0x020)
47 #define SLC_ISR(x) (x + 0x024)
48 #define SLC_ICR(x) (x + 0x028)
49 #define SLC_TAC(x) (x + 0x02C)
50 #define SLC_TC(x) (x + 0x030)
51 #define SLC_ECC(x) (x + 0x034)
52 #define SLC_DMA_DATA(x) (x + 0x038)
53
54 /**********************************************************************
55 * slc_ctrl register definitions
56 **********************************************************************/
57 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
58 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
59 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
60
61 /**********************************************************************
62 * slc_cfg register definitions
63 **********************************************************************/
64 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
65 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
66 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
67 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
68 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
69 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
70
71 /**********************************************************************
72 * slc_stat register definitions
73 **********************************************************************/
74 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
75 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
76 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
77
78 /**********************************************************************
79 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
80 **********************************************************************/
81 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
82 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
83
84 /**********************************************************************
85 * slc_tac register definitions
86 **********************************************************************/
87 /* Computation of clock cycles on basis of controller and device clock rates */
88 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
89
90 /* Clock setting for RDY write sample wait time in 2*n clocks */
91 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
92 /* Write pulse width in clock cycles, 1 to 16 clocks */
93 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
94 /* Write hold time of control and data signals, 1 to 16 clocks */
95 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
96 /* Write setup time of control and data signals, 1 to 16 clocks */
97 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
98 /* Clock setting for RDY read sample wait time in 2*n clocks */
99 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
100 /* Read pulse width in clock cycles, 1 to 16 clocks */
101 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
102 /* Read hold time of control and data signals, 1 to 16 clocks */
103 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
104 /* Read setup time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
106
107 /**********************************************************************
108 * slc_ecc register definitions
109 **********************************************************************/
110 /* ECC line party fetch macro */
111 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
112 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
113
114 /*
115 * DMA requires storage space for the DMA local buffer and the hardware ECC
116 * storage area. The DMA local buffer is only used if DMA mapping fails
117 * during runtime.
118 */
119 #define LPC32XX_DMA_DATA_SIZE 4096
120 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
121
122 /* Number of bytes used for ECC stored in NAND per 256 bytes */
123 #define LPC32XX_SLC_DEV_ECC_BYTES 3
124
125 /*
126 * If the NAND base clock frequency can't be fetched, this frequency will be
127 * used instead as the base. This rate is used to setup the timing registers
128 * used for NAND accesses.
129 */
130 #define LPC32XX_DEF_BUS_RATE 133250000
131
132 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
133 #define LPC32XX_DMA_TIMEOUT 100
134
135 /*
136 * NAND ECC Layout for small page NAND devices
137 * Note: For large and huge page devices, the default layouts are used
138 */
139 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
140 struct mtd_oob_region *oobregion)
141 {
142 if (section)
143 return -ERANGE;
144
145 oobregion->length = 6;
146 oobregion->offset = 10;
147
148 return 0;
149 }
150
151 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
152 struct mtd_oob_region *oobregion)
153 {
154 if (section > 1)
155 return -ERANGE;
156
157 if (!section) {
158 oobregion->offset = 0;
159 oobregion->length = 4;
160 } else {
161 oobregion->offset = 6;
162 oobregion->length = 4;
163 }
164
165 return 0;
166 }
167
168 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
169 .ecc = lpc32xx_ooblayout_ecc,
170 .free = lpc32xx_ooblayout_free,
171 };
172
173 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
174 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
175
176 /*
177 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
178 * Note: Large page devices used the default layout
179 */
180 static struct nand_bbt_descr bbt_smallpage_main_descr = {
181 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
182 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
183 .offs = 0,
184 .len = 4,
185 .veroffs = 6,
186 .maxblocks = 4,
187 .pattern = bbt_pattern
188 };
189
190 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
191 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
192 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
193 .offs = 0,
194 .len = 4,
195 .veroffs = 6,
196 .maxblocks = 4,
197 .pattern = mirror_pattern
198 };
199
200 /*
201 * NAND platform configuration structure
202 */
203 struct lpc32xx_nand_cfg_slc {
204 uint32_t wdr_clks;
205 uint32_t wwidth;
206 uint32_t whold;
207 uint32_t wsetup;
208 uint32_t rdr_clks;
209 uint32_t rwidth;
210 uint32_t rhold;
211 uint32_t rsetup;
212 int wp_gpio;
213 struct mtd_partition *parts;
214 unsigned num_parts;
215 };
216
217 struct lpc32xx_nand_host {
218 struct nand_chip nand_chip;
219 struct lpc32xx_slc_platform_data *pdata;
220 struct clk *clk;
221 void __iomem *io_base;
222 struct lpc32xx_nand_cfg_slc *ncfg;
223
224 struct completion comp;
225 struct dma_chan *dma_chan;
226 uint32_t dma_buf_len;
227 struct dma_slave_config dma_slave_config;
228 struct scatterlist sgl;
229
230 /*
231 * DMA and CPU addresses of ECC work area and data buffer
232 */
233 uint32_t *ecc_buf;
234 uint8_t *data_buf;
235 dma_addr_t io_base_dma;
236 };
237
238 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
239 {
240 uint32_t clkrate, tmp;
241
242 /* Reset SLC controller */
243 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
244 udelay(1000);
245
246 /* Basic setup */
247 writel(0, SLC_CFG(host->io_base));
248 writel(0, SLC_IEN(host->io_base));
249 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
250 SLC_ICR(host->io_base));
251
252 /* Get base clock for SLC block */
253 clkrate = clk_get_rate(host->clk);
254 if (clkrate == 0)
255 clkrate = LPC32XX_DEF_BUS_RATE;
256
257 /* Compute clock setup values */
258 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
259 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
260 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
261 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
262 SLCTAC_RDR(host->ncfg->rdr_clks) |
263 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
264 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
265 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
266 writel(tmp, SLC_TAC(host->io_base));
267 }
268
269 /*
270 * Hardware specific access to control lines
271 */
272 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
273 unsigned int ctrl)
274 {
275 uint32_t tmp;
276 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
277
278 /* Does CE state need to be changed? */
279 tmp = readl(SLC_CFG(host->io_base));
280 if (ctrl & NAND_NCE)
281 tmp |= SLCCFG_CE_LOW;
282 else
283 tmp &= ~SLCCFG_CE_LOW;
284 writel(tmp, SLC_CFG(host->io_base));
285
286 if (cmd != NAND_CMD_NONE) {
287 if (ctrl & NAND_CLE)
288 writel(cmd, SLC_CMD(host->io_base));
289 else
290 writel(cmd, SLC_ADDR(host->io_base));
291 }
292 }
293
294 /*
295 * Read the Device Ready pin
296 */
297 static int lpc32xx_nand_device_ready(struct nand_chip *chip)
298 {
299 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
300 int rdy = 0;
301
302 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
303 rdy = 1;
304
305 return rdy;
306 }
307
308 /*
309 * Enable NAND write protect
310 */
311 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
312 {
313 if (gpio_is_valid(host->ncfg->wp_gpio))
314 gpio_set_value(host->ncfg->wp_gpio, 0);
315 }
316
317 /*
318 * Disable NAND write protect
319 */
320 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
321 {
322 if (gpio_is_valid(host->ncfg->wp_gpio))
323 gpio_set_value(host->ncfg->wp_gpio, 1);
324 }
325
326 /*
327 * Prepares SLC for transfers with H/W ECC enabled
328 */
329 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
330 {
331 /* Hardware ECC is enabled automatically in hardware as needed */
332 }
333
334 /*
335 * Calculates the ECC for the data
336 */
337 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
338 const unsigned char *buf,
339 unsigned char *code)
340 {
341 /*
342 * ECC is calculated automatically in hardware during syndrome read
343 * and write operations, so it doesn't need to be calculated here.
344 */
345 return 0;
346 }
347
348 /*
349 * Read a single byte from NAND device
350 */
351 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
352 {
353 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
354
355 return (uint8_t)readl(SLC_DATA(host->io_base));
356 }
357
358 /*
359 * Simple device read without ECC
360 */
361 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
362 {
363 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
364
365 /* Direct device read with no ECC */
366 while (len-- > 0)
367 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
368 }
369
370 /*
371 * Simple device write without ECC
372 */
373 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
374 int len)
375 {
376 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
377
378 /* Direct device write with no ECC */
379 while (len-- > 0)
380 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
381 }
382
383 /*
384 * Read the OOB data from the device without ECC using FIFO method
385 */
386 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
387 {
388 struct mtd_info *mtd = nand_to_mtd(chip);
389
390 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
391 }
392
393 /*
394 * Write the OOB data to the device without ECC using FIFO method
395 */
396 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
397 {
398 struct mtd_info *mtd = nand_to_mtd(chip);
399
400 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
401 mtd->oobsize);
402 }
403
404 /*
405 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
406 */
407 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
408 {
409 int i;
410
411 for (i = 0; i < (count * 3); i += 3) {
412 uint32_t ce = ecc[i / 3];
413 ce = ~(ce << 2) & 0xFFFFFF;
414 spare[i + 2] = (uint8_t)(ce & 0xFF);
415 ce >>= 8;
416 spare[i + 1] = (uint8_t)(ce & 0xFF);
417 ce >>= 8;
418 spare[i] = (uint8_t)(ce & 0xFF);
419 }
420 }
421
422 static void lpc32xx_dma_complete_func(void *completion)
423 {
424 complete(completion);
425 }
426
427 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
428 void *mem, int len, enum dma_transfer_direction dir)
429 {
430 struct nand_chip *chip = mtd_to_nand(mtd);
431 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
432 struct dma_async_tx_descriptor *desc;
433 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
434 int res;
435
436 host->dma_slave_config.direction = dir;
437 host->dma_slave_config.src_addr = dma;
438 host->dma_slave_config.dst_addr = dma;
439 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441 host->dma_slave_config.src_maxburst = 4;
442 host->dma_slave_config.dst_maxburst = 4;
443 /* DMA controller does flow control: */
444 host->dma_slave_config.device_fc = false;
445 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
446 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
447 return -ENXIO;
448 }
449
450 sg_init_one(&host->sgl, mem, len);
451
452 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
453 DMA_BIDIRECTIONAL);
454 if (res != 1) {
455 dev_err(mtd->dev.parent, "Failed to map sg list\n");
456 return -ENXIO;
457 }
458 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
459 flags);
460 if (!desc) {
461 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
462 goto out1;
463 }
464
465 init_completion(&host->comp);
466 desc->callback = lpc32xx_dma_complete_func;
467 desc->callback_param = &host->comp;
468
469 dmaengine_submit(desc);
470 dma_async_issue_pending(host->dma_chan);
471
472 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
473
474 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
475 DMA_BIDIRECTIONAL);
476
477 return 0;
478 out1:
479 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
480 DMA_BIDIRECTIONAL);
481 return -ENXIO;
482 }
483
484 /*
485 * DMA read/write transfers with ECC support
486 */
487 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
488 int read)
489 {
490 struct nand_chip *chip = mtd_to_nand(mtd);
491 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
492 int i, status = 0;
493 unsigned long timeout;
494 int res;
495 enum dma_transfer_direction dir =
496 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
497 uint8_t *dma_buf;
498 bool dma_mapped;
499
500 if ((void *)buf <= high_memory) {
501 dma_buf = buf;
502 dma_mapped = true;
503 } else {
504 dma_buf = host->data_buf;
505 dma_mapped = false;
506 if (!read)
507 memcpy(host->data_buf, buf, mtd->writesize);
508 }
509
510 if (read) {
511 writel(readl(SLC_CFG(host->io_base)) |
512 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
513 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
514 } else {
515 writel((readl(SLC_CFG(host->io_base)) |
516 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
517 ~SLCCFG_DMA_DIR,
518 SLC_CFG(host->io_base));
519 }
520
521 /* Clear initial ECC */
522 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
523
524 /* Transfer size is data area only */
525 writel(mtd->writesize, SLC_TC(host->io_base));
526
527 /* Start transfer in the NAND controller */
528 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
529 SLC_CTRL(host->io_base));
530
531 for (i = 0; i < chip->ecc.steps; i++) {
532 /* Data */
533 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
534 dma_buf + i * chip->ecc.size,
535 mtd->writesize / chip->ecc.steps, dir);
536 if (res)
537 return res;
538
539 /* Always _read_ ECC */
540 if (i == chip->ecc.steps - 1)
541 break;
542 if (!read) /* ECC availability delayed on write */
543 udelay(10);
544 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
545 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
546 if (res)
547 return res;
548 }
549
550 /*
551 * According to NXP, the DMA can be finished here, but the NAND
552 * controller may still have buffered data. After porting to using the
553 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
554 * appears to be always true, according to tests. Keeping the check for
555 * safety reasons for now.
556 */
557 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
558 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
559 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
560 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
561 time_before(jiffies, timeout))
562 cpu_relax();
563 if (!time_before(jiffies, timeout)) {
564 dev_err(mtd->dev.parent, "FIFO held data too long\n");
565 status = -EIO;
566 }
567 }
568
569 /* Read last calculated ECC value */
570 if (!read)
571 udelay(10);
572 host->ecc_buf[chip->ecc.steps - 1] =
573 readl(SLC_ECC(host->io_base));
574
575 /* Flush DMA */
576 dmaengine_terminate_all(host->dma_chan);
577
578 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
579 readl(SLC_TC(host->io_base))) {
580 /* Something is left in the FIFO, something is wrong */
581 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
582 status = -EIO;
583 }
584
585 /* Stop DMA & HW ECC */
586 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
587 SLC_CTRL(host->io_base));
588 writel(readl(SLC_CFG(host->io_base)) &
589 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
590 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
591
592 if (!dma_mapped && read)
593 memcpy(buf, host->data_buf, mtd->writesize);
594
595 return status;
596 }
597
598 /*
599 * Read the data and OOB data from the device, use ECC correction with the
600 * data, disable ECC for the OOB data
601 */
602 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
603 int oob_required, int page)
604 {
605 struct mtd_info *mtd = nand_to_mtd(chip);
606 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
607 struct mtd_oob_region oobregion = { };
608 int stat, i, status, error;
609 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610
611 /* Issue read command */
612 nand_read_page_op(chip, page, 0, NULL, 0);
613
614 /* Read data and oob, calculate ECC */
615 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616
617 /* Get OOB data */
618 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
619
620 /* Convert to stored ECC format */
621 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622
623 /* Pointer to ECC data retrieved from NAND spare area */
624 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
625 if (error)
626 return error;
627
628 oobecc = chip->oob_poi + oobregion.offset;
629
630 for (i = 0; i < chip->ecc.steps; i++) {
631 stat = chip->ecc.correct(chip, buf, oobecc,
632 &tmpecc[i * chip->ecc.bytes]);
633 if (stat < 0)
634 mtd->ecc_stats.failed++;
635 else
636 mtd->ecc_stats.corrected += stat;
637
638 buf += chip->ecc.size;
639 oobecc += chip->ecc.bytes;
640 }
641
642 return status;
643 }
644
645 /*
646 * Read the data and OOB data from the device, no ECC correction with the
647 * data or OOB data
648 */
649 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
650 uint8_t *buf, int oob_required,
651 int page)
652 {
653 struct mtd_info *mtd = nand_to_mtd(chip);
654
655 /* Issue read command */
656 nand_read_page_op(chip, page, 0, NULL, 0);
657
658 /* Raw reads can just use the FIFO interface */
659 chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
660 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
661
662 return 0;
663 }
664
665 /*
666 * Write the data and OOB data to the device, use ECC with the data,
667 * disable ECC for the OOB data
668 */
669 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
670 const uint8_t *buf,
671 int oob_required, int page)
672 {
673 struct mtd_info *mtd = nand_to_mtd(chip);
674 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
675 struct mtd_oob_region oobregion = { };
676 uint8_t *pb;
677 int error;
678
679 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
680
681 /* Write data, calculate ECC on outbound data */
682 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
683 if (error)
684 return error;
685
686 /*
687 * The calculated ECC needs some manual work done to it before
688 * committing it to NAND. Process the calculated ECC and place
689 * the resultant values directly into the OOB buffer. */
690 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
691 if (error)
692 return error;
693
694 pb = chip->oob_poi + oobregion.offset;
695 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
696
697 /* Write ECC data to device */
698 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
699
700 return nand_prog_page_end_op(chip);
701 }
702
703 /*
704 * Write the data and OOB data to the device, no ECC correction with the
705 * data or OOB data
706 */
707 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
708 const uint8_t *buf,
709 int oob_required, int page)
710 {
711 struct mtd_info *mtd = nand_to_mtd(chip);
712
713 /* Raw writes can just use the FIFO interface */
714 nand_prog_page_begin_op(chip, page, 0, buf,
715 chip->ecc.size * chip->ecc.steps);
716 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
717
718 return nand_prog_page_end_op(chip);
719 }
720
721 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
722 {
723 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
724 dma_cap_mask_t mask;
725
726 if (!host->pdata || !host->pdata->dma_filter) {
727 dev_err(mtd->dev.parent, "no DMA platform data\n");
728 return -ENOENT;
729 }
730
731 dma_cap_zero(mask);
732 dma_cap_set(DMA_SLAVE, mask);
733 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
734 "nand-slc");
735 if (!host->dma_chan) {
736 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
737 return -EBUSY;
738 }
739
740 return 0;
741 }
742
743 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
744 {
745 struct lpc32xx_nand_cfg_slc *ncfg;
746 struct device_node *np = dev->of_node;
747
748 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
749 if (!ncfg)
750 return NULL;
751
752 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
753 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
754 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
755 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
756 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
757 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
758 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
759 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
760
761 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
762 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
763 !ncfg->rhold || !ncfg->rsetup) {
764 dev_err(dev, "chip parameters not specified correctly\n");
765 return NULL;
766 }
767
768 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
769
770 return ncfg;
771 }
772
773 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
774 {
775 struct mtd_info *mtd = nand_to_mtd(chip);
776 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
777
778 /* OOB and ECC CPU and DMA work areas */
779 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
780
781 /*
782 * Small page FLASH has a unique OOB layout, but large and huge
783 * page FLASH use the standard layout. Small page FLASH uses a
784 * custom BBT marker layout.
785 */
786 if (mtd->writesize <= 512)
787 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
788
789 /* These sizes remain the same regardless of page size */
790 chip->ecc.size = 256;
791 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
792 chip->ecc.prepad = 0;
793 chip->ecc.postpad = 0;
794
795 /*
796 * Use a custom BBT marker setup for small page FLASH that
797 * won't interfere with the ECC layout. Large and huge page
798 * FLASH use the standard layout.
799 */
800 if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
801 mtd->writesize <= 512) {
802 chip->bbt_td = &bbt_smallpage_main_descr;
803 chip->bbt_md = &bbt_smallpage_mirror_descr;
804 }
805
806 return 0;
807 }
808
809 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
810 .attach_chip = lpc32xx_nand_attach_chip,
811 };
812
813 /*
814 * Probe for NAND controller
815 */
816 static int lpc32xx_nand_probe(struct platform_device *pdev)
817 {
818 struct lpc32xx_nand_host *host;
819 struct mtd_info *mtd;
820 struct nand_chip *chip;
821 struct resource *rc;
822 int res;
823
824 /* Allocate memory for the device structure (and zero it) */
825 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
826 if (!host)
827 return -ENOMEM;
828
829 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
830 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
831 if (IS_ERR(host->io_base))
832 return PTR_ERR(host->io_base);
833
834 host->io_base_dma = rc->start;
835 if (pdev->dev.of_node)
836 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
837 if (!host->ncfg) {
838 dev_err(&pdev->dev,
839 "Missing or bad NAND config from device tree\n");
840 return -ENOENT;
841 }
842 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
843 return -EPROBE_DEFER;
844 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
845 host->ncfg->wp_gpio, "NAND WP")) {
846 dev_err(&pdev->dev, "GPIO not available\n");
847 return -EBUSY;
848 }
849 lpc32xx_wp_disable(host);
850
851 host->pdata = dev_get_platdata(&pdev->dev);
852
853 chip = &host->nand_chip;
854 mtd = nand_to_mtd(chip);
855 nand_set_controller_data(chip, host);
856 nand_set_flash_node(chip, pdev->dev.of_node);
857 mtd->owner = THIS_MODULE;
858 mtd->dev.parent = &pdev->dev;
859
860 /* Get NAND clock */
861 host->clk = devm_clk_get(&pdev->dev, NULL);
862 if (IS_ERR(host->clk)) {
863 dev_err(&pdev->dev, "Clock failure\n");
864 res = -ENOENT;
865 goto enable_wp;
866 }
867 res = clk_prepare_enable(host->clk);
868 if (res)
869 goto enable_wp;
870
871 /* Set NAND IO addresses and command/ready functions */
872 chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
873 chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
874 chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
875 chip->legacy.dev_ready = lpc32xx_nand_device_ready;
876 chip->legacy.chip_delay = 20; /* 20us command delay time */
877
878 /* Init NAND controller */
879 lpc32xx_nand_setup(host);
880
881 platform_set_drvdata(pdev, host);
882
883 /* NAND callbacks for LPC32xx SLC hardware */
884 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
885 chip->legacy.read_byte = lpc32xx_nand_read_byte;
886 chip->legacy.read_buf = lpc32xx_nand_read_buf;
887 chip->legacy.write_buf = lpc32xx_nand_write_buf;
888 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
889 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
890 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
891 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
892 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
893 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
894 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
895 chip->ecc.correct = nand_correct_data;
896 chip->ecc.strength = 1;
897 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
898
899 /*
900 * Allocate a large enough buffer for a single huge page plus
901 * extra space for the spare area and ECC storage area
902 */
903 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
904 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
905 GFP_KERNEL);
906 if (host->data_buf == NULL) {
907 res = -ENOMEM;
908 goto unprepare_clk;
909 }
910
911 res = lpc32xx_nand_dma_setup(host);
912 if (res) {
913 res = -EIO;
914 goto unprepare_clk;
915 }
916
917 /* Find NAND device */
918 chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
919 res = nand_scan(chip, 1);
920 if (res)
921 goto release_dma;
922
923 mtd->name = "nxp_lpc3220_slc";
924 res = mtd_device_register(mtd, host->ncfg->parts,
925 host->ncfg->num_parts);
926 if (res)
927 goto cleanup_nand;
928
929 return 0;
930
931 cleanup_nand:
932 nand_cleanup(chip);
933 release_dma:
934 dma_release_channel(host->dma_chan);
935 unprepare_clk:
936 clk_disable_unprepare(host->clk);
937 enable_wp:
938 lpc32xx_wp_enable(host);
939
940 return res;
941 }
942
943 /*
944 * Remove NAND device.
945 */
946 static int lpc32xx_nand_remove(struct platform_device *pdev)
947 {
948 uint32_t tmp;
949 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
950
951 nand_release(&host->nand_chip);
952 dma_release_channel(host->dma_chan);
953
954 /* Force CE high */
955 tmp = readl(SLC_CTRL(host->io_base));
956 tmp &= ~SLCCFG_CE_LOW;
957 writel(tmp, SLC_CTRL(host->io_base));
958
959 clk_disable_unprepare(host->clk);
960 lpc32xx_wp_enable(host);
961
962 return 0;
963 }
964
965 #ifdef CONFIG_PM
966 static int lpc32xx_nand_resume(struct platform_device *pdev)
967 {
968 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
969 int ret;
970
971 /* Re-enable NAND clock */
972 ret = clk_prepare_enable(host->clk);
973 if (ret)
974 return ret;
975
976 /* Fresh init of NAND controller */
977 lpc32xx_nand_setup(host);
978
979 /* Disable write protect */
980 lpc32xx_wp_disable(host);
981
982 return 0;
983 }
984
985 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
986 {
987 uint32_t tmp;
988 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
989
990 /* Force CE high */
991 tmp = readl(SLC_CTRL(host->io_base));
992 tmp &= ~SLCCFG_CE_LOW;
993 writel(tmp, SLC_CTRL(host->io_base));
994
995 /* Enable write protect for safety */
996 lpc32xx_wp_enable(host);
997
998 /* Disable clock */
999 clk_disable_unprepare(host->clk);
1000
1001 return 0;
1002 }
1003
1004 #else
1005 #define lpc32xx_nand_resume NULL
1006 #define lpc32xx_nand_suspend NULL
1007 #endif
1008
1009 static const struct of_device_id lpc32xx_nand_match[] = {
1010 { .compatible = "nxp,lpc3220-slc" },
1011 { /* sentinel */ },
1012 };
1013 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1014
1015 static struct platform_driver lpc32xx_nand_driver = {
1016 .probe = lpc32xx_nand_probe,
1017 .remove = lpc32xx_nand_remove,
1018 .resume = lpc32xx_nand_resume,
1019 .suspend = lpc32xx_nand_suspend,
1020 .driver = {
1021 .name = LPC32XX_MODNAME,
1022 .of_match_table = lpc32xx_nand_match,
1023 },
1024 };
1025
1026 module_platform_driver(lpc32xx_nand_driver);
1027
1028 MODULE_LICENSE("GPL");
1029 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1030 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1031 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");