]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/nand/raw/nand_base.c
Merge branch 'mount.part1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/mtd/partitions.h>
47 #include <linux/of.h>
48 #include <linux/gpio/consumer.h>
49
50 #include "internals.h"
51
52 /* Define default oob placement schemes for large and small page devices */
53 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
54 struct mtd_oob_region *oobregion)
55 {
56 struct nand_chip *chip = mtd_to_nand(mtd);
57 struct nand_ecc_ctrl *ecc = &chip->ecc;
58
59 if (section > 1)
60 return -ERANGE;
61
62 if (!section) {
63 oobregion->offset = 0;
64 if (mtd->oobsize == 16)
65 oobregion->length = 4;
66 else
67 oobregion->length = 3;
68 } else {
69 if (mtd->oobsize == 8)
70 return -ERANGE;
71
72 oobregion->offset = 6;
73 oobregion->length = ecc->total - 4;
74 }
75
76 return 0;
77 }
78
79 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
80 struct mtd_oob_region *oobregion)
81 {
82 if (section > 1)
83 return -ERANGE;
84
85 if (mtd->oobsize == 16) {
86 if (section)
87 return -ERANGE;
88
89 oobregion->length = 8;
90 oobregion->offset = 8;
91 } else {
92 oobregion->length = 2;
93 if (!section)
94 oobregion->offset = 3;
95 else
96 oobregion->offset = 6;
97 }
98
99 return 0;
100 }
101
102 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
103 .ecc = nand_ooblayout_ecc_sp,
104 .free = nand_ooblayout_free_sp,
105 };
106 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
107
108 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
109 struct mtd_oob_region *oobregion)
110 {
111 struct nand_chip *chip = mtd_to_nand(mtd);
112 struct nand_ecc_ctrl *ecc = &chip->ecc;
113
114 if (section || !ecc->total)
115 return -ERANGE;
116
117 oobregion->length = ecc->total;
118 oobregion->offset = mtd->oobsize - oobregion->length;
119
120 return 0;
121 }
122
123 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
124 struct mtd_oob_region *oobregion)
125 {
126 struct nand_chip *chip = mtd_to_nand(mtd);
127 struct nand_ecc_ctrl *ecc = &chip->ecc;
128
129 if (section)
130 return -ERANGE;
131
132 oobregion->length = mtd->oobsize - ecc->total - 2;
133 oobregion->offset = 2;
134
135 return 0;
136 }
137
138 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
139 .ecc = nand_ooblayout_ecc_lp,
140 .free = nand_ooblayout_free_lp,
141 };
142 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
143
144 /*
145 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
146 * are placed at a fixed offset.
147 */
148 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
149 struct mtd_oob_region *oobregion)
150 {
151 struct nand_chip *chip = mtd_to_nand(mtd);
152 struct nand_ecc_ctrl *ecc = &chip->ecc;
153
154 if (section)
155 return -ERANGE;
156
157 switch (mtd->oobsize) {
158 case 64:
159 oobregion->offset = 40;
160 break;
161 case 128:
162 oobregion->offset = 80;
163 break;
164 default:
165 return -EINVAL;
166 }
167
168 oobregion->length = ecc->total;
169 if (oobregion->offset + oobregion->length > mtd->oobsize)
170 return -ERANGE;
171
172 return 0;
173 }
174
175 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
176 struct mtd_oob_region *oobregion)
177 {
178 struct nand_chip *chip = mtd_to_nand(mtd);
179 struct nand_ecc_ctrl *ecc = &chip->ecc;
180 int ecc_offset = 0;
181
182 if (section < 0 || section > 1)
183 return -ERANGE;
184
185 switch (mtd->oobsize) {
186 case 64:
187 ecc_offset = 40;
188 break;
189 case 128:
190 ecc_offset = 80;
191 break;
192 default:
193 return -EINVAL;
194 }
195
196 if (section == 0) {
197 oobregion->offset = 2;
198 oobregion->length = ecc_offset - 2;
199 } else {
200 oobregion->offset = ecc_offset + ecc->total;
201 oobregion->length = mtd->oobsize - oobregion->offset;
202 }
203
204 return 0;
205 }
206
207 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
208 .ecc = nand_ooblayout_ecc_lp_hamming,
209 .free = nand_ooblayout_free_lp_hamming,
210 };
211
212 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
213 {
214 int ret = 0;
215
216 /* Start address must align on block boundary */
217 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
218 pr_debug("%s: unaligned address\n", __func__);
219 ret = -EINVAL;
220 }
221
222 /* Length must align on block boundary */
223 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
224 pr_debug("%s: length not block aligned\n", __func__);
225 ret = -EINVAL;
226 }
227
228 return ret;
229 }
230
231 /**
232 * nand_select_target() - Select a NAND target (A.K.A. die)
233 * @chip: NAND chip object
234 * @cs: the CS line to select. Note that this CS id is always from the chip
235 * PoV, not the controller one
236 *
237 * Select a NAND target so that further operations executed on @chip go to the
238 * selected NAND target.
239 */
240 void nand_select_target(struct nand_chip *chip, unsigned int cs)
241 {
242 /*
243 * cs should always lie between 0 and chip->numchips, when that's not
244 * the case it's a bug and the caller should be fixed.
245 */
246 if (WARN_ON(cs > chip->numchips))
247 return;
248
249 chip->cur_cs = cs;
250
251 if (chip->legacy.select_chip)
252 chip->legacy.select_chip(chip, cs);
253 }
254 EXPORT_SYMBOL_GPL(nand_select_target);
255
256 /**
257 * nand_deselect_target() - Deselect the currently selected target
258 * @chip: NAND chip object
259 *
260 * Deselect the currently selected NAND target. The result of operations
261 * executed on @chip after the target has been deselected is undefined.
262 */
263 void nand_deselect_target(struct nand_chip *chip)
264 {
265 if (chip->legacy.select_chip)
266 chip->legacy.select_chip(chip, -1);
267
268 chip->cur_cs = -1;
269 }
270 EXPORT_SYMBOL_GPL(nand_deselect_target);
271
272 /**
273 * nand_release_device - [GENERIC] release chip
274 * @chip: NAND chip object
275 *
276 * Release chip lock and wake up anyone waiting on the device.
277 */
278 static void nand_release_device(struct nand_chip *chip)
279 {
280 /* Release the controller and the chip */
281 spin_lock(&chip->controller->lock);
282 chip->controller->active = NULL;
283 chip->state = FL_READY;
284 wake_up(&chip->controller->wq);
285 spin_unlock(&chip->controller->lock);
286 }
287
288 /**
289 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
290 * @chip: NAND chip object
291 * @ofs: offset from device start
292 *
293 * Check, if the block is bad.
294 */
295 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
296 {
297 struct mtd_info *mtd = nand_to_mtd(chip);
298 int page, page_end, res;
299 u8 bad;
300
301 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
302 ofs += mtd->erasesize - mtd->writesize;
303
304 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
305 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
306
307 for (; page < page_end; page++) {
308 res = chip->ecc.read_oob(chip, page);
309 if (res < 0)
310 return res;
311
312 bad = chip->oob_poi[chip->badblockpos];
313
314 if (likely(chip->badblockbits == 8))
315 res = bad != 0xFF;
316 else
317 res = hweight8(bad) < chip->badblockbits;
318 if (res)
319 return res;
320 }
321
322 return 0;
323 }
324
325 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
326 {
327 if (chip->legacy.block_bad)
328 return chip->legacy.block_bad(chip, ofs);
329
330 return nand_block_bad(chip, ofs);
331 }
332
333 /**
334 * panic_nand_get_device - [GENERIC] Get chip for selected access
335 * @chip: the nand chip descriptor
336 * @new_state: the state which is requested
337 *
338 * Used when in panic, no locks are taken.
339 */
340 static void panic_nand_get_device(struct nand_chip *chip, int new_state)
341 {
342 /* Hardware controller shared among independent devices */
343 chip->controller->active = chip;
344 chip->state = new_state;
345 }
346
347 /**
348 * nand_get_device - [GENERIC] Get chip for selected access
349 * @chip: NAND chip structure
350 * @new_state: the state which is requested
351 *
352 * Get the device and lock it for exclusive access
353 */
354 static int
355 nand_get_device(struct nand_chip *chip, int new_state)
356 {
357 spinlock_t *lock = &chip->controller->lock;
358 wait_queue_head_t *wq = &chip->controller->wq;
359 DECLARE_WAITQUEUE(wait, current);
360 retry:
361 spin_lock(lock);
362
363 /* Hardware controller shared among independent devices */
364 if (!chip->controller->active)
365 chip->controller->active = chip;
366
367 if (chip->controller->active == chip && chip->state == FL_READY) {
368 chip->state = new_state;
369 spin_unlock(lock);
370 return 0;
371 }
372 if (new_state == FL_PM_SUSPENDED) {
373 if (chip->controller->active->state == FL_PM_SUSPENDED) {
374 chip->state = FL_PM_SUSPENDED;
375 spin_unlock(lock);
376 return 0;
377 }
378 }
379 set_current_state(TASK_UNINTERRUPTIBLE);
380 add_wait_queue(wq, &wait);
381 spin_unlock(lock);
382 schedule();
383 remove_wait_queue(wq, &wait);
384 goto retry;
385 }
386
387 /**
388 * nand_check_wp - [GENERIC] check if the chip is write protected
389 * @chip: NAND chip object
390 *
391 * Check, if the device is write protected. The function expects, that the
392 * device is already selected.
393 */
394 static int nand_check_wp(struct nand_chip *chip)
395 {
396 u8 status;
397 int ret;
398
399 /* Broken xD cards report WP despite being writable */
400 if (chip->options & NAND_BROKEN_XD)
401 return 0;
402
403 /* Check the WP bit */
404 ret = nand_status_op(chip, &status);
405 if (ret)
406 return ret;
407
408 return status & NAND_STATUS_WP ? 0 : 1;
409 }
410
411 /**
412 * nand_fill_oob - [INTERN] Transfer client buffer to oob
413 * @oob: oob data buffer
414 * @len: oob data write length
415 * @ops: oob ops structure
416 */
417 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
418 struct mtd_oob_ops *ops)
419 {
420 struct mtd_info *mtd = nand_to_mtd(chip);
421 int ret;
422
423 /*
424 * Initialise to all 0xFF, to avoid the possibility of left over OOB
425 * data from a previous OOB read.
426 */
427 memset(chip->oob_poi, 0xff, mtd->oobsize);
428
429 switch (ops->mode) {
430
431 case MTD_OPS_PLACE_OOB:
432 case MTD_OPS_RAW:
433 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
434 return oob + len;
435
436 case MTD_OPS_AUTO_OOB:
437 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
438 ops->ooboffs, len);
439 BUG_ON(ret);
440 return oob + len;
441
442 default:
443 BUG();
444 }
445 return NULL;
446 }
447
448 /**
449 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
450 * @chip: NAND chip object
451 * @to: offset to write to
452 * @ops: oob operation description structure
453 *
454 * NAND write out-of-band.
455 */
456 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
457 struct mtd_oob_ops *ops)
458 {
459 struct mtd_info *mtd = nand_to_mtd(chip);
460 int chipnr, page, status, len;
461
462 pr_debug("%s: to = 0x%08x, len = %i\n",
463 __func__, (unsigned int)to, (int)ops->ooblen);
464
465 len = mtd_oobavail(mtd, ops);
466
467 /* Do not allow write past end of page */
468 if ((ops->ooboffs + ops->ooblen) > len) {
469 pr_debug("%s: attempt to write past end of page\n",
470 __func__);
471 return -EINVAL;
472 }
473
474 chipnr = (int)(to >> chip->chip_shift);
475
476 /*
477 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
478 * of my DiskOnChip 2000 test units) will clear the whole data page too
479 * if we don't do this. I have no clue why, but I seem to have 'fixed'
480 * it in the doc2000 driver in August 1999. dwmw2.
481 */
482 nand_reset(chip, chipnr);
483
484 nand_select_target(chip, chipnr);
485
486 /* Shift to get page */
487 page = (int)(to >> chip->page_shift);
488
489 /* Check, if it is write protected */
490 if (nand_check_wp(chip)) {
491 nand_deselect_target(chip);
492 return -EROFS;
493 }
494
495 /* Invalidate the page cache, if we write to the cached page */
496 if (page == chip->pagebuf)
497 chip->pagebuf = -1;
498
499 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
500
501 if (ops->mode == MTD_OPS_RAW)
502 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
503 else
504 status = chip->ecc.write_oob(chip, page & chip->pagemask);
505
506 nand_deselect_target(chip);
507
508 if (status)
509 return status;
510
511 ops->oobretlen = ops->ooblen;
512
513 return 0;
514 }
515
516 /**
517 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
518 * @chip: NAND chip object
519 * @ofs: offset from device start
520 *
521 * This is the default implementation, which can be overridden by a hardware
522 * specific driver. It provides the details for writing a bad block marker to a
523 * block.
524 */
525 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
526 {
527 struct mtd_info *mtd = nand_to_mtd(chip);
528 struct mtd_oob_ops ops;
529 uint8_t buf[2] = { 0, 0 };
530 int ret = 0, res, i = 0;
531
532 memset(&ops, 0, sizeof(ops));
533 ops.oobbuf = buf;
534 ops.ooboffs = chip->badblockpos;
535 if (chip->options & NAND_BUSWIDTH_16) {
536 ops.ooboffs &= ~0x01;
537 ops.len = ops.ooblen = 2;
538 } else {
539 ops.len = ops.ooblen = 1;
540 }
541 ops.mode = MTD_OPS_PLACE_OOB;
542
543 /* Write to first/last page(s) if necessary */
544 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
545 ofs += mtd->erasesize - mtd->writesize;
546 do {
547 res = nand_do_write_oob(chip, ofs, &ops);
548 if (!ret)
549 ret = res;
550
551 i++;
552 ofs += mtd->writesize;
553 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
554
555 return ret;
556 }
557
558 /**
559 * nand_markbad_bbm - mark a block by updating the BBM
560 * @chip: NAND chip object
561 * @ofs: offset of the block to mark bad
562 */
563 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
564 {
565 if (chip->legacy.block_markbad)
566 return chip->legacy.block_markbad(chip, ofs);
567
568 return nand_default_block_markbad(chip, ofs);
569 }
570
571 /**
572 * nand_block_markbad_lowlevel - mark a block bad
573 * @chip: NAND chip object
574 * @ofs: offset from device start
575 *
576 * This function performs the generic NAND bad block marking steps (i.e., bad
577 * block table(s) and/or marker(s)). We only allow the hardware driver to
578 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
579 *
580 * We try operations in the following order:
581 *
582 * (1) erase the affected block, to allow OOB marker to be written cleanly
583 * (2) write bad block marker to OOB area of affected block (unless flag
584 * NAND_BBT_NO_OOB_BBM is present)
585 * (3) update the BBT
586 *
587 * Note that we retain the first error encountered in (2) or (3), finish the
588 * procedures, and dump the error in the end.
589 */
590 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
591 {
592 struct mtd_info *mtd = nand_to_mtd(chip);
593 int res, ret = 0;
594
595 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
596 struct erase_info einfo;
597
598 /* Attempt erase before marking OOB */
599 memset(&einfo, 0, sizeof(einfo));
600 einfo.addr = ofs;
601 einfo.len = 1ULL << chip->phys_erase_shift;
602 nand_erase_nand(chip, &einfo, 0);
603
604 /* Write bad block marker to OOB */
605 nand_get_device(chip, FL_WRITING);
606 ret = nand_markbad_bbm(chip, ofs);
607 nand_release_device(chip);
608 }
609
610 /* Mark block bad in BBT */
611 if (chip->bbt) {
612 res = nand_markbad_bbt(chip, ofs);
613 if (!ret)
614 ret = res;
615 }
616
617 if (!ret)
618 mtd->ecc_stats.badblocks++;
619
620 return ret;
621 }
622
623 /**
624 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
625 * @mtd: MTD device structure
626 * @ofs: offset from device start
627 *
628 * Check if the block is marked as reserved.
629 */
630 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
631 {
632 struct nand_chip *chip = mtd_to_nand(mtd);
633
634 if (!chip->bbt)
635 return 0;
636 /* Return info from the table */
637 return nand_isreserved_bbt(chip, ofs);
638 }
639
640 /**
641 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
642 * @chip: NAND chip object
643 * @ofs: offset from device start
644 * @allowbbt: 1, if its allowed to access the bbt area
645 *
646 * Check, if the block is bad. Either by reading the bad block table or
647 * calling of the scan function.
648 */
649 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
650 {
651 /* Return info from the table */
652 if (chip->bbt)
653 return nand_isbad_bbt(chip, ofs, allowbbt);
654
655 return nand_isbad_bbm(chip, ofs);
656 }
657
658 /**
659 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
660 * @chip: NAND chip structure
661 * @timeout_ms: Timeout in ms
662 *
663 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
664 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
665 * returned.
666 *
667 * This helper is intended to be used when the controller does not have access
668 * to the NAND R/B pin.
669 *
670 * Be aware that calling this helper from an ->exec_op() implementation means
671 * ->exec_op() must be re-entrant.
672 *
673 * Return 0 if the NAND chip is ready, a negative error otherwise.
674 */
675 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
676 {
677 const struct nand_sdr_timings *timings;
678 u8 status = 0;
679 int ret;
680
681 if (!nand_has_exec_op(chip))
682 return -ENOTSUPP;
683
684 /* Wait tWB before polling the STATUS reg. */
685 timings = nand_get_sdr_timings(&chip->data_interface);
686 ndelay(PSEC_TO_NSEC(timings->tWB_max));
687
688 ret = nand_status_op(chip, NULL);
689 if (ret)
690 return ret;
691
692 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
693 do {
694 ret = nand_read_data_op(chip, &status, sizeof(status), true);
695 if (ret)
696 break;
697
698 if (status & NAND_STATUS_READY)
699 break;
700
701 /*
702 * Typical lowest execution time for a tR on most NANDs is 10us,
703 * use this as polling delay before doing something smarter (ie.
704 * deriving a delay from the timeout value, timeout_ms/ratio).
705 */
706 udelay(10);
707 } while (time_before(jiffies, timeout_ms));
708
709 /*
710 * We have to exit READ_STATUS mode in order to read real data on the
711 * bus in case the WAITRDY instruction is preceding a DATA_IN
712 * instruction.
713 */
714 nand_exit_status_op(chip);
715
716 if (ret)
717 return ret;
718
719 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
720 };
721 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
722
723 /**
724 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
725 * @chip: NAND chip structure
726 * @gpiod: GPIO descriptor of R/B pin
727 * @timeout_ms: Timeout in ms
728 *
729 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
730 * whitin the specified timeout, -ETIMEDOUT is returned.
731 *
732 * This helper is intended to be used when the controller has access to the
733 * NAND R/B pin over GPIO.
734 *
735 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
736 */
737 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
738 unsigned long timeout_ms)
739 {
740 /* Wait until R/B pin indicates chip is ready or timeout occurs */
741 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
742 do {
743 if (gpiod_get_value_cansleep(gpiod))
744 return 0;
745
746 cond_resched();
747 } while (time_before(jiffies, timeout_ms));
748
749 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
750 };
751 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
752
753 /**
754 * panic_nand_wait - [GENERIC] wait until the command is done
755 * @chip: NAND chip structure
756 * @timeo: timeout
757 *
758 * Wait for command done. This is a helper function for nand_wait used when
759 * we are in interrupt context. May happen when in panic and trying to write
760 * an oops through mtdoops.
761 */
762 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
763 {
764 int i;
765 for (i = 0; i < timeo; i++) {
766 if (chip->legacy.dev_ready) {
767 if (chip->legacy.dev_ready(chip))
768 break;
769 } else {
770 int ret;
771 u8 status;
772
773 ret = nand_read_data_op(chip, &status, sizeof(status),
774 true);
775 if (ret)
776 return;
777
778 if (status & NAND_STATUS_READY)
779 break;
780 }
781 mdelay(1);
782 }
783 }
784
785 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
786 {
787 return (chip->parameters.supports_set_get_features &&
788 test_bit(addr, chip->parameters.get_feature_list));
789 }
790
791 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
792 {
793 return (chip->parameters.supports_set_get_features &&
794 test_bit(addr, chip->parameters.set_feature_list));
795 }
796
797 /**
798 * nand_reset_data_interface - Reset data interface and timings
799 * @chip: The NAND chip
800 * @chipnr: Internal die id
801 *
802 * Reset the Data interface and timings to ONFI mode 0.
803 *
804 * Returns 0 for success or negative error code otherwise.
805 */
806 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
807 {
808 int ret;
809
810 if (!nand_has_setup_data_iface(chip))
811 return 0;
812
813 /*
814 * The ONFI specification says:
815 * "
816 * To transition from NV-DDR or NV-DDR2 to the SDR data
817 * interface, the host shall use the Reset (FFh) command
818 * using SDR timing mode 0. A device in any timing mode is
819 * required to recognize Reset (FFh) command issued in SDR
820 * timing mode 0.
821 * "
822 *
823 * Configure the data interface in SDR mode and set the
824 * timings to timing mode 0.
825 */
826
827 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
828 ret = chip->controller->ops->setup_data_interface(chip, chipnr,
829 &chip->data_interface);
830 if (ret)
831 pr_err("Failed to configure data interface to SDR timing mode 0\n");
832
833 return ret;
834 }
835
836 /**
837 * nand_setup_data_interface - Setup the best data interface and timings
838 * @chip: The NAND chip
839 * @chipnr: Internal die id
840 *
841 * Find and configure the best data interface and NAND timings supported by
842 * the chip and the driver.
843 * First tries to retrieve supported timing modes from ONFI information,
844 * and if the NAND chip does not support ONFI, relies on the
845 * ->onfi_timing_mode_default specified in the nand_ids table.
846 *
847 * Returns 0 for success or negative error code otherwise.
848 */
849 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
850 {
851 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
852 chip->onfi_timing_mode_default,
853 };
854 int ret;
855
856 if (!nand_has_setup_data_iface(chip))
857 return 0;
858
859 /* Change the mode on the chip side (if supported by the NAND chip) */
860 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
861 nand_select_target(chip, chipnr);
862 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
863 tmode_param);
864 nand_deselect_target(chip);
865 if (ret)
866 return ret;
867 }
868
869 /* Change the mode on the controller side */
870 ret = chip->controller->ops->setup_data_interface(chip, chipnr,
871 &chip->data_interface);
872 if (ret)
873 return ret;
874
875 /* Check the mode has been accepted by the chip, if supported */
876 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
877 return 0;
878
879 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
880 nand_select_target(chip, chipnr);
881 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
882 tmode_param);
883 nand_deselect_target(chip);
884 if (ret)
885 goto err_reset_chip;
886
887 if (tmode_param[0] != chip->onfi_timing_mode_default) {
888 pr_warn("timing mode %d not acknowledged by the NAND chip\n",
889 chip->onfi_timing_mode_default);
890 goto err_reset_chip;
891 }
892
893 return 0;
894
895 err_reset_chip:
896 /*
897 * Fallback to mode 0 if the chip explicitly did not ack the chosen
898 * timing mode.
899 */
900 nand_reset_data_interface(chip, chipnr);
901 nand_select_target(chip, chipnr);
902 nand_reset_op(chip);
903 nand_deselect_target(chip);
904
905 return ret;
906 }
907
908 /**
909 * nand_init_data_interface - find the best data interface and timings
910 * @chip: The NAND chip
911 *
912 * Find the best data interface and NAND timings supported by the chip
913 * and the driver.
914 * First tries to retrieve supported timing modes from ONFI information,
915 * and if the NAND chip does not support ONFI, relies on the
916 * ->onfi_timing_mode_default specified in the nand_ids table. After this
917 * function nand_chip->data_interface is initialized with the best timing mode
918 * available.
919 *
920 * Returns 0 for success or negative error code otherwise.
921 */
922 static int nand_init_data_interface(struct nand_chip *chip)
923 {
924 int modes, mode, ret;
925
926 if (!nand_has_setup_data_iface(chip))
927 return 0;
928
929 /*
930 * First try to identify the best timings from ONFI parameters and
931 * if the NAND does not support ONFI, fallback to the default ONFI
932 * timing mode.
933 */
934 if (chip->parameters.onfi) {
935 modes = chip->parameters.onfi->async_timing_mode;
936 } else {
937 if (!chip->onfi_timing_mode_default)
938 return 0;
939
940 modes = GENMASK(chip->onfi_timing_mode_default, 0);
941 }
942
943 for (mode = fls(modes) - 1; mode >= 0; mode--) {
944 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
945 if (ret)
946 continue;
947
948 /*
949 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
950 * controller supports the requested timings.
951 */
952 ret = chip->controller->ops->setup_data_interface(chip,
953 NAND_DATA_IFACE_CHECK_ONLY,
954 &chip->data_interface);
955 if (!ret) {
956 chip->onfi_timing_mode_default = mode;
957 break;
958 }
959 }
960
961 return 0;
962 }
963
964 /**
965 * nand_fill_column_cycles - fill the column cycles of an address
966 * @chip: The NAND chip
967 * @addrs: Array of address cycles to fill
968 * @offset_in_page: The offset in the page
969 *
970 * Fills the first or the first two bytes of the @addrs field depending
971 * on the NAND bus width and the page size.
972 *
973 * Returns the number of cycles needed to encode the column, or a negative
974 * error code in case one of the arguments is invalid.
975 */
976 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
977 unsigned int offset_in_page)
978 {
979 struct mtd_info *mtd = nand_to_mtd(chip);
980
981 /* Make sure the offset is less than the actual page size. */
982 if (offset_in_page > mtd->writesize + mtd->oobsize)
983 return -EINVAL;
984
985 /*
986 * On small page NANDs, there's a dedicated command to access the OOB
987 * area, and the column address is relative to the start of the OOB
988 * area, not the start of the page. Asjust the address accordingly.
989 */
990 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
991 offset_in_page -= mtd->writesize;
992
993 /*
994 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
995 * wide, then it must be divided by 2.
996 */
997 if (chip->options & NAND_BUSWIDTH_16) {
998 if (WARN_ON(offset_in_page % 2))
999 return -EINVAL;
1000
1001 offset_in_page /= 2;
1002 }
1003
1004 addrs[0] = offset_in_page;
1005
1006 /*
1007 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1008 * need 2
1009 */
1010 if (mtd->writesize <= 512)
1011 return 1;
1012
1013 addrs[1] = offset_in_page >> 8;
1014
1015 return 2;
1016 }
1017
1018 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1019 unsigned int offset_in_page, void *buf,
1020 unsigned int len)
1021 {
1022 struct mtd_info *mtd = nand_to_mtd(chip);
1023 const struct nand_sdr_timings *sdr =
1024 nand_get_sdr_timings(&chip->data_interface);
1025 u8 addrs[4];
1026 struct nand_op_instr instrs[] = {
1027 NAND_OP_CMD(NAND_CMD_READ0, 0),
1028 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1029 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1030 PSEC_TO_NSEC(sdr->tRR_min)),
1031 NAND_OP_DATA_IN(len, buf, 0),
1032 };
1033 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1034 int ret;
1035
1036 /* Drop the DATA_IN instruction if len is set to 0. */
1037 if (!len)
1038 op.ninstrs--;
1039
1040 if (offset_in_page >= mtd->writesize)
1041 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1042 else if (offset_in_page >= 256 &&
1043 !(chip->options & NAND_BUSWIDTH_16))
1044 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1045
1046 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1047 if (ret < 0)
1048 return ret;
1049
1050 addrs[1] = page;
1051 addrs[2] = page >> 8;
1052
1053 if (chip->options & NAND_ROW_ADDR_3) {
1054 addrs[3] = page >> 16;
1055 instrs[1].ctx.addr.naddrs++;
1056 }
1057
1058 return nand_exec_op(chip, &op);
1059 }
1060
1061 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1062 unsigned int offset_in_page, void *buf,
1063 unsigned int len)
1064 {
1065 const struct nand_sdr_timings *sdr =
1066 nand_get_sdr_timings(&chip->data_interface);
1067 u8 addrs[5];
1068 struct nand_op_instr instrs[] = {
1069 NAND_OP_CMD(NAND_CMD_READ0, 0),
1070 NAND_OP_ADDR(4, addrs, 0),
1071 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1072 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1073 PSEC_TO_NSEC(sdr->tRR_min)),
1074 NAND_OP_DATA_IN(len, buf, 0),
1075 };
1076 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1077 int ret;
1078
1079 /* Drop the DATA_IN instruction if len is set to 0. */
1080 if (!len)
1081 op.ninstrs--;
1082
1083 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1084 if (ret < 0)
1085 return ret;
1086
1087 addrs[2] = page;
1088 addrs[3] = page >> 8;
1089
1090 if (chip->options & NAND_ROW_ADDR_3) {
1091 addrs[4] = page >> 16;
1092 instrs[1].ctx.addr.naddrs++;
1093 }
1094
1095 return nand_exec_op(chip, &op);
1096 }
1097
1098 /**
1099 * nand_read_page_op - Do a READ PAGE operation
1100 * @chip: The NAND chip
1101 * @page: page to read
1102 * @offset_in_page: offset within the page
1103 * @buf: buffer used to store the data
1104 * @len: length of the buffer
1105 *
1106 * This function issues a READ PAGE operation.
1107 * This function does not select/unselect the CS line.
1108 *
1109 * Returns 0 on success, a negative error code otherwise.
1110 */
1111 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1112 unsigned int offset_in_page, void *buf, unsigned int len)
1113 {
1114 struct mtd_info *mtd = nand_to_mtd(chip);
1115
1116 if (len && !buf)
1117 return -EINVAL;
1118
1119 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1120 return -EINVAL;
1121
1122 if (nand_has_exec_op(chip)) {
1123 if (mtd->writesize > 512)
1124 return nand_lp_exec_read_page_op(chip, page,
1125 offset_in_page, buf,
1126 len);
1127
1128 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1129 buf, len);
1130 }
1131
1132 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1133 if (len)
1134 chip->legacy.read_buf(chip, buf, len);
1135
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(nand_read_page_op);
1139
1140 /**
1141 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1142 * @chip: The NAND chip
1143 * @page: parameter page to read
1144 * @buf: buffer used to store the data
1145 * @len: length of the buffer
1146 *
1147 * This function issues a READ PARAMETER PAGE operation.
1148 * This function does not select/unselect the CS line.
1149 *
1150 * Returns 0 on success, a negative error code otherwise.
1151 */
1152 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1153 unsigned int len)
1154 {
1155 unsigned int i;
1156 u8 *p = buf;
1157
1158 if (len && !buf)
1159 return -EINVAL;
1160
1161 if (nand_has_exec_op(chip)) {
1162 const struct nand_sdr_timings *sdr =
1163 nand_get_sdr_timings(&chip->data_interface);
1164 struct nand_op_instr instrs[] = {
1165 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1166 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1167 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1168 PSEC_TO_NSEC(sdr->tRR_min)),
1169 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1170 };
1171 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1172
1173 /* Drop the DATA_IN instruction if len is set to 0. */
1174 if (!len)
1175 op.ninstrs--;
1176
1177 return nand_exec_op(chip, &op);
1178 }
1179
1180 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1181 for (i = 0; i < len; i++)
1182 p[i] = chip->legacy.read_byte(chip);
1183
1184 return 0;
1185 }
1186
1187 /**
1188 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1189 * @chip: The NAND chip
1190 * @offset_in_page: offset within the page
1191 * @buf: buffer used to store the data
1192 * @len: length of the buffer
1193 * @force_8bit: force 8-bit bus access
1194 *
1195 * This function issues a CHANGE READ COLUMN operation.
1196 * This function does not select/unselect the CS line.
1197 *
1198 * Returns 0 on success, a negative error code otherwise.
1199 */
1200 int nand_change_read_column_op(struct nand_chip *chip,
1201 unsigned int offset_in_page, void *buf,
1202 unsigned int len, bool force_8bit)
1203 {
1204 struct mtd_info *mtd = nand_to_mtd(chip);
1205
1206 if (len && !buf)
1207 return -EINVAL;
1208
1209 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1210 return -EINVAL;
1211
1212 /* Small page NANDs do not support column change. */
1213 if (mtd->writesize <= 512)
1214 return -ENOTSUPP;
1215
1216 if (nand_has_exec_op(chip)) {
1217 const struct nand_sdr_timings *sdr =
1218 nand_get_sdr_timings(&chip->data_interface);
1219 u8 addrs[2] = {};
1220 struct nand_op_instr instrs[] = {
1221 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1222 NAND_OP_ADDR(2, addrs, 0),
1223 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1224 PSEC_TO_NSEC(sdr->tCCS_min)),
1225 NAND_OP_DATA_IN(len, buf, 0),
1226 };
1227 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1228 int ret;
1229
1230 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1231 if (ret < 0)
1232 return ret;
1233
1234 /* Drop the DATA_IN instruction if len is set to 0. */
1235 if (!len)
1236 op.ninstrs--;
1237
1238 instrs[3].ctx.data.force_8bit = force_8bit;
1239
1240 return nand_exec_op(chip, &op);
1241 }
1242
1243 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1244 if (len)
1245 chip->legacy.read_buf(chip, buf, len);
1246
1247 return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1250
1251 /**
1252 * nand_read_oob_op - Do a READ OOB operation
1253 * @chip: The NAND chip
1254 * @page: page to read
1255 * @offset_in_oob: offset within the OOB area
1256 * @buf: buffer used to store the data
1257 * @len: length of the buffer
1258 *
1259 * This function issues a READ OOB operation.
1260 * This function does not select/unselect the CS line.
1261 *
1262 * Returns 0 on success, a negative error code otherwise.
1263 */
1264 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1265 unsigned int offset_in_oob, void *buf, unsigned int len)
1266 {
1267 struct mtd_info *mtd = nand_to_mtd(chip);
1268
1269 if (len && !buf)
1270 return -EINVAL;
1271
1272 if (offset_in_oob + len > mtd->oobsize)
1273 return -EINVAL;
1274
1275 if (nand_has_exec_op(chip))
1276 return nand_read_page_op(chip, page,
1277 mtd->writesize + offset_in_oob,
1278 buf, len);
1279
1280 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1281 if (len)
1282 chip->legacy.read_buf(chip, buf, len);
1283
1284 return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1287
1288 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1289 unsigned int offset_in_page, const void *buf,
1290 unsigned int len, bool prog)
1291 {
1292 struct mtd_info *mtd = nand_to_mtd(chip);
1293 const struct nand_sdr_timings *sdr =
1294 nand_get_sdr_timings(&chip->data_interface);
1295 u8 addrs[5] = {};
1296 struct nand_op_instr instrs[] = {
1297 /*
1298 * The first instruction will be dropped if we're dealing
1299 * with a large page NAND and adjusted if we're dealing
1300 * with a small page NAND and the page offset is > 255.
1301 */
1302 NAND_OP_CMD(NAND_CMD_READ0, 0),
1303 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1304 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1305 NAND_OP_DATA_OUT(len, buf, 0),
1306 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1307 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1308 };
1309 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1310 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1311 int ret;
1312 u8 status;
1313
1314 if (naddrs < 0)
1315 return naddrs;
1316
1317 addrs[naddrs++] = page;
1318 addrs[naddrs++] = page >> 8;
1319 if (chip->options & NAND_ROW_ADDR_3)
1320 addrs[naddrs++] = page >> 16;
1321
1322 instrs[2].ctx.addr.naddrs = naddrs;
1323
1324 /* Drop the last two instructions if we're not programming the page. */
1325 if (!prog) {
1326 op.ninstrs -= 2;
1327 /* Also drop the DATA_OUT instruction if empty. */
1328 if (!len)
1329 op.ninstrs--;
1330 }
1331
1332 if (mtd->writesize <= 512) {
1333 /*
1334 * Small pages need some more tweaking: we have to adjust the
1335 * first instruction depending on the page offset we're trying
1336 * to access.
1337 */
1338 if (offset_in_page >= mtd->writesize)
1339 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1340 else if (offset_in_page >= 256 &&
1341 !(chip->options & NAND_BUSWIDTH_16))
1342 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1343 } else {
1344 /*
1345 * Drop the first command if we're dealing with a large page
1346 * NAND.
1347 */
1348 op.instrs++;
1349 op.ninstrs--;
1350 }
1351
1352 ret = nand_exec_op(chip, &op);
1353 if (!prog || ret)
1354 return ret;
1355
1356 ret = nand_status_op(chip, &status);
1357 if (ret)
1358 return ret;
1359
1360 return status;
1361 }
1362
1363 /**
1364 * nand_prog_page_begin_op - starts a PROG PAGE operation
1365 * @chip: The NAND chip
1366 * @page: page to write
1367 * @offset_in_page: offset within the page
1368 * @buf: buffer containing the data to write to the page
1369 * @len: length of the buffer
1370 *
1371 * This function issues the first half of a PROG PAGE operation.
1372 * This function does not select/unselect the CS line.
1373 *
1374 * Returns 0 on success, a negative error code otherwise.
1375 */
1376 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1377 unsigned int offset_in_page, const void *buf,
1378 unsigned int len)
1379 {
1380 struct mtd_info *mtd = nand_to_mtd(chip);
1381
1382 if (len && !buf)
1383 return -EINVAL;
1384
1385 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1386 return -EINVAL;
1387
1388 if (nand_has_exec_op(chip))
1389 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1390 len, false);
1391
1392 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1393
1394 if (buf)
1395 chip->legacy.write_buf(chip, buf, len);
1396
1397 return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1400
1401 /**
1402 * nand_prog_page_end_op - ends a PROG PAGE operation
1403 * @chip: The NAND chip
1404 *
1405 * This function issues the second half of a PROG PAGE operation.
1406 * This function does not select/unselect the CS line.
1407 *
1408 * Returns 0 on success, a negative error code otherwise.
1409 */
1410 int nand_prog_page_end_op(struct nand_chip *chip)
1411 {
1412 int ret;
1413 u8 status;
1414
1415 if (nand_has_exec_op(chip)) {
1416 const struct nand_sdr_timings *sdr =
1417 nand_get_sdr_timings(&chip->data_interface);
1418 struct nand_op_instr instrs[] = {
1419 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1420 PSEC_TO_NSEC(sdr->tWB_max)),
1421 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1422 };
1423 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1424
1425 ret = nand_exec_op(chip, &op);
1426 if (ret)
1427 return ret;
1428
1429 ret = nand_status_op(chip, &status);
1430 if (ret)
1431 return ret;
1432 } else {
1433 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1434 ret = chip->legacy.waitfunc(chip);
1435 if (ret < 0)
1436 return ret;
1437
1438 status = ret;
1439 }
1440
1441 if (status & NAND_STATUS_FAIL)
1442 return -EIO;
1443
1444 return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1447
1448 /**
1449 * nand_prog_page_op - Do a full PROG PAGE operation
1450 * @chip: The NAND chip
1451 * @page: page to write
1452 * @offset_in_page: offset within the page
1453 * @buf: buffer containing the data to write to the page
1454 * @len: length of the buffer
1455 *
1456 * This function issues a full PROG PAGE operation.
1457 * This function does not select/unselect the CS line.
1458 *
1459 * Returns 0 on success, a negative error code otherwise.
1460 */
1461 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1462 unsigned int offset_in_page, const void *buf,
1463 unsigned int len)
1464 {
1465 struct mtd_info *mtd = nand_to_mtd(chip);
1466 int status;
1467
1468 if (!len || !buf)
1469 return -EINVAL;
1470
1471 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1472 return -EINVAL;
1473
1474 if (nand_has_exec_op(chip)) {
1475 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1476 len, true);
1477 } else {
1478 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1479 page);
1480 chip->legacy.write_buf(chip, buf, len);
1481 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1482 status = chip->legacy.waitfunc(chip);
1483 }
1484
1485 if (status & NAND_STATUS_FAIL)
1486 return -EIO;
1487
1488 return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1491
1492 /**
1493 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1494 * @chip: The NAND chip
1495 * @offset_in_page: offset within the page
1496 * @buf: buffer containing the data to send to the NAND
1497 * @len: length of the buffer
1498 * @force_8bit: force 8-bit bus access
1499 *
1500 * This function issues a CHANGE WRITE COLUMN operation.
1501 * This function does not select/unselect the CS line.
1502 *
1503 * Returns 0 on success, a negative error code otherwise.
1504 */
1505 int nand_change_write_column_op(struct nand_chip *chip,
1506 unsigned int offset_in_page,
1507 const void *buf, unsigned int len,
1508 bool force_8bit)
1509 {
1510 struct mtd_info *mtd = nand_to_mtd(chip);
1511
1512 if (len && !buf)
1513 return -EINVAL;
1514
1515 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1516 return -EINVAL;
1517
1518 /* Small page NANDs do not support column change. */
1519 if (mtd->writesize <= 512)
1520 return -ENOTSUPP;
1521
1522 if (nand_has_exec_op(chip)) {
1523 const struct nand_sdr_timings *sdr =
1524 nand_get_sdr_timings(&chip->data_interface);
1525 u8 addrs[2];
1526 struct nand_op_instr instrs[] = {
1527 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1528 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1529 NAND_OP_DATA_OUT(len, buf, 0),
1530 };
1531 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1532 int ret;
1533
1534 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1535 if (ret < 0)
1536 return ret;
1537
1538 instrs[2].ctx.data.force_8bit = force_8bit;
1539
1540 /* Drop the DATA_OUT instruction if len is set to 0. */
1541 if (!len)
1542 op.ninstrs--;
1543
1544 return nand_exec_op(chip, &op);
1545 }
1546
1547 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1548 if (len)
1549 chip->legacy.write_buf(chip, buf, len);
1550
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1554
1555 /**
1556 * nand_readid_op - Do a READID operation
1557 * @chip: The NAND chip
1558 * @addr: address cycle to pass after the READID command
1559 * @buf: buffer used to store the ID
1560 * @len: length of the buffer
1561 *
1562 * This function sends a READID command and reads back the ID returned by the
1563 * NAND.
1564 * This function does not select/unselect the CS line.
1565 *
1566 * Returns 0 on success, a negative error code otherwise.
1567 */
1568 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1569 unsigned int len)
1570 {
1571 unsigned int i;
1572 u8 *id = buf;
1573
1574 if (len && !buf)
1575 return -EINVAL;
1576
1577 if (nand_has_exec_op(chip)) {
1578 const struct nand_sdr_timings *sdr =
1579 nand_get_sdr_timings(&chip->data_interface);
1580 struct nand_op_instr instrs[] = {
1581 NAND_OP_CMD(NAND_CMD_READID, 0),
1582 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1583 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1584 };
1585 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1586
1587 /* Drop the DATA_IN instruction if len is set to 0. */
1588 if (!len)
1589 op.ninstrs--;
1590
1591 return nand_exec_op(chip, &op);
1592 }
1593
1594 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1595
1596 for (i = 0; i < len; i++)
1597 id[i] = chip->legacy.read_byte(chip);
1598
1599 return 0;
1600 }
1601 EXPORT_SYMBOL_GPL(nand_readid_op);
1602
1603 /**
1604 * nand_status_op - Do a STATUS operation
1605 * @chip: The NAND chip
1606 * @status: out variable to store the NAND status
1607 *
1608 * This function sends a STATUS command and reads back the status returned by
1609 * the NAND.
1610 * This function does not select/unselect the CS line.
1611 *
1612 * Returns 0 on success, a negative error code otherwise.
1613 */
1614 int nand_status_op(struct nand_chip *chip, u8 *status)
1615 {
1616 if (nand_has_exec_op(chip)) {
1617 const struct nand_sdr_timings *sdr =
1618 nand_get_sdr_timings(&chip->data_interface);
1619 struct nand_op_instr instrs[] = {
1620 NAND_OP_CMD(NAND_CMD_STATUS,
1621 PSEC_TO_NSEC(sdr->tADL_min)),
1622 NAND_OP_8BIT_DATA_IN(1, status, 0),
1623 };
1624 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1625
1626 if (!status)
1627 op.ninstrs--;
1628
1629 return nand_exec_op(chip, &op);
1630 }
1631
1632 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1633 if (status)
1634 *status = chip->legacy.read_byte(chip);
1635
1636 return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(nand_status_op);
1639
1640 /**
1641 * nand_exit_status_op - Exit a STATUS operation
1642 * @chip: The NAND chip
1643 *
1644 * This function sends a READ0 command to cancel the effect of the STATUS
1645 * command to avoid reading only the status until a new read command is sent.
1646 *
1647 * This function does not select/unselect the CS line.
1648 *
1649 * Returns 0 on success, a negative error code otherwise.
1650 */
1651 int nand_exit_status_op(struct nand_chip *chip)
1652 {
1653 if (nand_has_exec_op(chip)) {
1654 struct nand_op_instr instrs[] = {
1655 NAND_OP_CMD(NAND_CMD_READ0, 0),
1656 };
1657 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1658
1659 return nand_exec_op(chip, &op);
1660 }
1661
1662 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1663
1664 return 0;
1665 }
1666
1667 /**
1668 * nand_erase_op - Do an erase operation
1669 * @chip: The NAND chip
1670 * @eraseblock: block to erase
1671 *
1672 * This function sends an ERASE command and waits for the NAND to be ready
1673 * before returning.
1674 * This function does not select/unselect the CS line.
1675 *
1676 * Returns 0 on success, a negative error code otherwise.
1677 */
1678 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1679 {
1680 unsigned int page = eraseblock <<
1681 (chip->phys_erase_shift - chip->page_shift);
1682 int ret;
1683 u8 status;
1684
1685 if (nand_has_exec_op(chip)) {
1686 const struct nand_sdr_timings *sdr =
1687 nand_get_sdr_timings(&chip->data_interface);
1688 u8 addrs[3] = { page, page >> 8, page >> 16 };
1689 struct nand_op_instr instrs[] = {
1690 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1691 NAND_OP_ADDR(2, addrs, 0),
1692 NAND_OP_CMD(NAND_CMD_ERASE2,
1693 PSEC_TO_MSEC(sdr->tWB_max)),
1694 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1695 };
1696 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1697
1698 if (chip->options & NAND_ROW_ADDR_3)
1699 instrs[1].ctx.addr.naddrs++;
1700
1701 ret = nand_exec_op(chip, &op);
1702 if (ret)
1703 return ret;
1704
1705 ret = nand_status_op(chip, &status);
1706 if (ret)
1707 return ret;
1708 } else {
1709 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1710 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1711
1712 ret = chip->legacy.waitfunc(chip);
1713 if (ret < 0)
1714 return ret;
1715
1716 status = ret;
1717 }
1718
1719 if (status & NAND_STATUS_FAIL)
1720 return -EIO;
1721
1722 return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(nand_erase_op);
1725
1726 /**
1727 * nand_set_features_op - Do a SET FEATURES operation
1728 * @chip: The NAND chip
1729 * @feature: feature id
1730 * @data: 4 bytes of data
1731 *
1732 * This function sends a SET FEATURES command and waits for the NAND to be
1733 * ready before returning.
1734 * This function does not select/unselect the CS line.
1735 *
1736 * Returns 0 on success, a negative error code otherwise.
1737 */
1738 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1739 const void *data)
1740 {
1741 const u8 *params = data;
1742 int i, ret;
1743
1744 if (nand_has_exec_op(chip)) {
1745 const struct nand_sdr_timings *sdr =
1746 nand_get_sdr_timings(&chip->data_interface);
1747 struct nand_op_instr instrs[] = {
1748 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1749 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1750 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1751 PSEC_TO_NSEC(sdr->tWB_max)),
1752 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1753 };
1754 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1755
1756 return nand_exec_op(chip, &op);
1757 }
1758
1759 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1760 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1761 chip->legacy.write_byte(chip, params[i]);
1762
1763 ret = chip->legacy.waitfunc(chip);
1764 if (ret < 0)
1765 return ret;
1766
1767 if (ret & NAND_STATUS_FAIL)
1768 return -EIO;
1769
1770 return 0;
1771 }
1772
1773 /**
1774 * nand_get_features_op - Do a GET FEATURES operation
1775 * @chip: The NAND chip
1776 * @feature: feature id
1777 * @data: 4 bytes of data
1778 *
1779 * This function sends a GET FEATURES command and waits for the NAND to be
1780 * ready before returning.
1781 * This function does not select/unselect the CS line.
1782 *
1783 * Returns 0 on success, a negative error code otherwise.
1784 */
1785 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1786 void *data)
1787 {
1788 u8 *params = data;
1789 int i;
1790
1791 if (nand_has_exec_op(chip)) {
1792 const struct nand_sdr_timings *sdr =
1793 nand_get_sdr_timings(&chip->data_interface);
1794 struct nand_op_instr instrs[] = {
1795 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1796 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1797 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1798 PSEC_TO_NSEC(sdr->tRR_min)),
1799 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1800 data, 0),
1801 };
1802 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1803
1804 return nand_exec_op(chip, &op);
1805 }
1806
1807 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1808 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1809 params[i] = chip->legacy.read_byte(chip);
1810
1811 return 0;
1812 }
1813
1814 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1815 unsigned int delay_ns)
1816 {
1817 if (nand_has_exec_op(chip)) {
1818 struct nand_op_instr instrs[] = {
1819 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1820 PSEC_TO_NSEC(delay_ns)),
1821 };
1822 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1823
1824 return nand_exec_op(chip, &op);
1825 }
1826
1827 /* Apply delay or wait for ready/busy pin */
1828 if (!chip->legacy.dev_ready)
1829 udelay(chip->legacy.chip_delay);
1830 else
1831 nand_wait_ready(chip);
1832
1833 return 0;
1834 }
1835
1836 /**
1837 * nand_reset_op - Do a reset operation
1838 * @chip: The NAND chip
1839 *
1840 * This function sends a RESET command and waits for the NAND to be ready
1841 * before returning.
1842 * This function does not select/unselect the CS line.
1843 *
1844 * Returns 0 on success, a negative error code otherwise.
1845 */
1846 int nand_reset_op(struct nand_chip *chip)
1847 {
1848 if (nand_has_exec_op(chip)) {
1849 const struct nand_sdr_timings *sdr =
1850 nand_get_sdr_timings(&chip->data_interface);
1851 struct nand_op_instr instrs[] = {
1852 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1853 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1854 };
1855 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1856
1857 return nand_exec_op(chip, &op);
1858 }
1859
1860 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1861
1862 return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(nand_reset_op);
1865
1866 /**
1867 * nand_read_data_op - Read data from the NAND
1868 * @chip: The NAND chip
1869 * @buf: buffer used to store the data
1870 * @len: length of the buffer
1871 * @force_8bit: force 8-bit bus access
1872 *
1873 * This function does a raw data read on the bus. Usually used after launching
1874 * another NAND operation like nand_read_page_op().
1875 * This function does not select/unselect the CS line.
1876 *
1877 * Returns 0 on success, a negative error code otherwise.
1878 */
1879 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1880 bool force_8bit)
1881 {
1882 if (!len || !buf)
1883 return -EINVAL;
1884
1885 if (nand_has_exec_op(chip)) {
1886 struct nand_op_instr instrs[] = {
1887 NAND_OP_DATA_IN(len, buf, 0),
1888 };
1889 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1890
1891 instrs[0].ctx.data.force_8bit = force_8bit;
1892
1893 return nand_exec_op(chip, &op);
1894 }
1895
1896 if (force_8bit) {
1897 u8 *p = buf;
1898 unsigned int i;
1899
1900 for (i = 0; i < len; i++)
1901 p[i] = chip->legacy.read_byte(chip);
1902 } else {
1903 chip->legacy.read_buf(chip, buf, len);
1904 }
1905
1906 return 0;
1907 }
1908 EXPORT_SYMBOL_GPL(nand_read_data_op);
1909
1910 /**
1911 * nand_write_data_op - Write data from the NAND
1912 * @chip: The NAND chip
1913 * @buf: buffer containing the data to send on the bus
1914 * @len: length of the buffer
1915 * @force_8bit: force 8-bit bus access
1916 *
1917 * This function does a raw data write on the bus. Usually used after launching
1918 * another NAND operation like nand_write_page_begin_op().
1919 * This function does not select/unselect the CS line.
1920 *
1921 * Returns 0 on success, a negative error code otherwise.
1922 */
1923 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1924 unsigned int len, bool force_8bit)
1925 {
1926 if (!len || !buf)
1927 return -EINVAL;
1928
1929 if (nand_has_exec_op(chip)) {
1930 struct nand_op_instr instrs[] = {
1931 NAND_OP_DATA_OUT(len, buf, 0),
1932 };
1933 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1934
1935 instrs[0].ctx.data.force_8bit = force_8bit;
1936
1937 return nand_exec_op(chip, &op);
1938 }
1939
1940 if (force_8bit) {
1941 const u8 *p = buf;
1942 unsigned int i;
1943
1944 for (i = 0; i < len; i++)
1945 chip->legacy.write_byte(chip, p[i]);
1946 } else {
1947 chip->legacy.write_buf(chip, buf, len);
1948 }
1949
1950 return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(nand_write_data_op);
1953
1954 /**
1955 * struct nand_op_parser_ctx - Context used by the parser
1956 * @instrs: array of all the instructions that must be addressed
1957 * @ninstrs: length of the @instrs array
1958 * @subop: Sub-operation to be passed to the NAND controller
1959 *
1960 * This structure is used by the core to split NAND operations into
1961 * sub-operations that can be handled by the NAND controller.
1962 */
1963 struct nand_op_parser_ctx {
1964 const struct nand_op_instr *instrs;
1965 unsigned int ninstrs;
1966 struct nand_subop subop;
1967 };
1968
1969 /**
1970 * nand_op_parser_must_split_instr - Checks if an instruction must be split
1971 * @pat: the parser pattern element that matches @instr
1972 * @instr: pointer to the instruction to check
1973 * @start_offset: this is an in/out parameter. If @instr has already been
1974 * split, then @start_offset is the offset from which to start
1975 * (either an address cycle or an offset in the data buffer).
1976 * Conversely, if the function returns true (ie. instr must be
1977 * split), this parameter is updated to point to the first
1978 * data/address cycle that has not been taken care of.
1979 *
1980 * Some NAND controllers are limited and cannot send X address cycles with a
1981 * unique operation, or cannot read/write more than Y bytes at the same time.
1982 * In this case, split the instruction that does not fit in a single
1983 * controller-operation into two or more chunks.
1984 *
1985 * Returns true if the instruction must be split, false otherwise.
1986 * The @start_offset parameter is also updated to the offset at which the next
1987 * bundle of instruction must start (if an address or a data instruction).
1988 */
1989 static bool
1990 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1991 const struct nand_op_instr *instr,
1992 unsigned int *start_offset)
1993 {
1994 switch (pat->type) {
1995 case NAND_OP_ADDR_INSTR:
1996 if (!pat->ctx.addr.maxcycles)
1997 break;
1998
1999 if (instr->ctx.addr.naddrs - *start_offset >
2000 pat->ctx.addr.maxcycles) {
2001 *start_offset += pat->ctx.addr.maxcycles;
2002 return true;
2003 }
2004 break;
2005
2006 case NAND_OP_DATA_IN_INSTR:
2007 case NAND_OP_DATA_OUT_INSTR:
2008 if (!pat->ctx.data.maxlen)
2009 break;
2010
2011 if (instr->ctx.data.len - *start_offset >
2012 pat->ctx.data.maxlen) {
2013 *start_offset += pat->ctx.data.maxlen;
2014 return true;
2015 }
2016 break;
2017
2018 default:
2019 break;
2020 }
2021
2022 return false;
2023 }
2024
2025 /**
2026 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2027 * remaining in the parser context
2028 * @pat: the pattern to test
2029 * @ctx: the parser context structure to match with the pattern @pat
2030 *
2031 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2032 * Returns true if this is the case, false ortherwise. When true is returned,
2033 * @ctx->subop is updated with the set of instructions to be passed to the
2034 * controller driver.
2035 */
2036 static bool
2037 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2038 struct nand_op_parser_ctx *ctx)
2039 {
2040 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2041 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2042 const struct nand_op_instr *instr = ctx->subop.instrs;
2043 unsigned int i, ninstrs;
2044
2045 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2046 /*
2047 * The pattern instruction does not match the operation
2048 * instruction. If the instruction is marked optional in the
2049 * pattern definition, we skip the pattern element and continue
2050 * to the next one. If the element is mandatory, there's no
2051 * match and we can return false directly.
2052 */
2053 if (instr->type != pat->elems[i].type) {
2054 if (!pat->elems[i].optional)
2055 return false;
2056
2057 continue;
2058 }
2059
2060 /*
2061 * Now check the pattern element constraints. If the pattern is
2062 * not able to handle the whole instruction in a single step,
2063 * we have to split it.
2064 * The last_instr_end_off value comes back updated to point to
2065 * the position where we have to split the instruction (the
2066 * start of the next subop chunk).
2067 */
2068 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2069 &instr_offset)) {
2070 ninstrs++;
2071 i++;
2072 break;
2073 }
2074
2075 instr++;
2076 ninstrs++;
2077 instr_offset = 0;
2078 }
2079
2080 /*
2081 * This can happen if all instructions of a pattern are optional.
2082 * Still, if there's not at least one instruction handled by this
2083 * pattern, this is not a match, and we should try the next one (if
2084 * any).
2085 */
2086 if (!ninstrs)
2087 return false;
2088
2089 /*
2090 * We had a match on the pattern head, but the pattern may be longer
2091 * than the instructions we're asked to execute. We need to make sure
2092 * there's no mandatory elements in the pattern tail.
2093 */
2094 for (; i < pat->nelems; i++) {
2095 if (!pat->elems[i].optional)
2096 return false;
2097 }
2098
2099 /*
2100 * We have a match: update the subop structure accordingly and return
2101 * true.
2102 */
2103 ctx->subop.ninstrs = ninstrs;
2104 ctx->subop.last_instr_end_off = instr_offset;
2105
2106 return true;
2107 }
2108
2109 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2110 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2111 {
2112 const struct nand_op_instr *instr;
2113 char *prefix = " ";
2114 unsigned int i;
2115
2116 pr_debug("executing subop:\n");
2117
2118 for (i = 0; i < ctx->ninstrs; i++) {
2119 instr = &ctx->instrs[i];
2120
2121 if (instr == &ctx->subop.instrs[0])
2122 prefix = " ->";
2123
2124 switch (instr->type) {
2125 case NAND_OP_CMD_INSTR:
2126 pr_debug("%sCMD [0x%02x]\n", prefix,
2127 instr->ctx.cmd.opcode);
2128 break;
2129 case NAND_OP_ADDR_INSTR:
2130 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
2131 instr->ctx.addr.naddrs,
2132 instr->ctx.addr.naddrs < 64 ?
2133 instr->ctx.addr.naddrs : 64,
2134 instr->ctx.addr.addrs);
2135 break;
2136 case NAND_OP_DATA_IN_INSTR:
2137 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
2138 instr->ctx.data.len,
2139 instr->ctx.data.force_8bit ?
2140 ", force 8-bit" : "");
2141 break;
2142 case NAND_OP_DATA_OUT_INSTR:
2143 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2144 instr->ctx.data.len,
2145 instr->ctx.data.force_8bit ?
2146 ", force 8-bit" : "");
2147 break;
2148 case NAND_OP_WAITRDY_INSTR:
2149 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
2150 instr->ctx.waitrdy.timeout_ms);
2151 break;
2152 }
2153
2154 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2155 prefix = " ";
2156 }
2157 }
2158 #else
2159 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2160 {
2161 /* NOP */
2162 }
2163 #endif
2164
2165 /**
2166 * nand_op_parser_exec_op - exec_op parser
2167 * @chip: the NAND chip
2168 * @parser: patterns description provided by the controller driver
2169 * @op: the NAND operation to address
2170 * @check_only: when true, the function only checks if @op can be handled but
2171 * does not execute the operation
2172 *
2173 * Helper function designed to ease integration of NAND controller drivers that
2174 * only support a limited set of instruction sequences. The supported sequences
2175 * are described in @parser, and the framework takes care of splitting @op into
2176 * multiple sub-operations (if required) and pass them back to the ->exec()
2177 * callback of the matching pattern if @check_only is set to false.
2178 *
2179 * NAND controller drivers should call this function from their own ->exec_op()
2180 * implementation.
2181 *
2182 * Returns 0 on success, a negative error code otherwise. A failure can be
2183 * caused by an unsupported operation (none of the supported patterns is able
2184 * to handle the requested operation), or an error returned by one of the
2185 * matching pattern->exec() hook.
2186 */
2187 int nand_op_parser_exec_op(struct nand_chip *chip,
2188 const struct nand_op_parser *parser,
2189 const struct nand_operation *op, bool check_only)
2190 {
2191 struct nand_op_parser_ctx ctx = {
2192 .subop.instrs = op->instrs,
2193 .instrs = op->instrs,
2194 .ninstrs = op->ninstrs,
2195 };
2196 unsigned int i;
2197
2198 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2199 int ret;
2200
2201 for (i = 0; i < parser->npatterns; i++) {
2202 const struct nand_op_parser_pattern *pattern;
2203
2204 pattern = &parser->patterns[i];
2205 if (!nand_op_parser_match_pat(pattern, &ctx))
2206 continue;
2207
2208 nand_op_parser_trace(&ctx);
2209
2210 if (check_only)
2211 break;
2212
2213 ret = pattern->exec(chip, &ctx.subop);
2214 if (ret)
2215 return ret;
2216
2217 break;
2218 }
2219
2220 if (i == parser->npatterns) {
2221 pr_debug("->exec_op() parser: pattern not found!\n");
2222 return -ENOTSUPP;
2223 }
2224
2225 /*
2226 * Update the context structure by pointing to the start of the
2227 * next subop.
2228 */
2229 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2230 if (ctx.subop.last_instr_end_off)
2231 ctx.subop.instrs -= 1;
2232
2233 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2234 }
2235
2236 return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2239
2240 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2241 {
2242 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2243 instr->type == NAND_OP_DATA_OUT_INSTR);
2244 }
2245
2246 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2247 unsigned int instr_idx)
2248 {
2249 return subop && instr_idx < subop->ninstrs;
2250 }
2251
2252 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2253 unsigned int instr_idx)
2254 {
2255 if (instr_idx)
2256 return 0;
2257
2258 return subop->first_instr_start_off;
2259 }
2260
2261 /**
2262 * nand_subop_get_addr_start_off - Get the start offset in an address array
2263 * @subop: The entire sub-operation
2264 * @instr_idx: Index of the instruction inside the sub-operation
2265 *
2266 * During driver development, one could be tempted to directly use the
2267 * ->addr.addrs field of address instructions. This is wrong as address
2268 * instructions might be split.
2269 *
2270 * Given an address instruction, returns the offset of the first cycle to issue.
2271 */
2272 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2273 unsigned int instr_idx)
2274 {
2275 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2276 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2277 return 0;
2278
2279 return nand_subop_get_start_off(subop, instr_idx);
2280 }
2281 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2282
2283 /**
2284 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2285 * @subop: The entire sub-operation
2286 * @instr_idx: Index of the instruction inside the sub-operation
2287 *
2288 * During driver development, one could be tempted to directly use the
2289 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2290 * might be split.
2291 *
2292 * Given an address instruction, returns the number of address cycle to issue.
2293 */
2294 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2295 unsigned int instr_idx)
2296 {
2297 int start_off, end_off;
2298
2299 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2300 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2301 return 0;
2302
2303 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2304
2305 if (instr_idx == subop->ninstrs - 1 &&
2306 subop->last_instr_end_off)
2307 end_off = subop->last_instr_end_off;
2308 else
2309 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2310
2311 return end_off - start_off;
2312 }
2313 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2314
2315 /**
2316 * nand_subop_get_data_start_off - Get the start offset in a data array
2317 * @subop: The entire sub-operation
2318 * @instr_idx: Index of the instruction inside the sub-operation
2319 *
2320 * During driver development, one could be tempted to directly use the
2321 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2322 * instructions might be split.
2323 *
2324 * Given a data instruction, returns the offset to start from.
2325 */
2326 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2327 unsigned int instr_idx)
2328 {
2329 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2330 !nand_instr_is_data(&subop->instrs[instr_idx])))
2331 return 0;
2332
2333 return nand_subop_get_start_off(subop, instr_idx);
2334 }
2335 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2336
2337 /**
2338 * nand_subop_get_data_len - Get the number of bytes to retrieve
2339 * @subop: The entire sub-operation
2340 * @instr_idx: Index of the instruction inside the sub-operation
2341 *
2342 * During driver development, one could be tempted to directly use the
2343 * ->data->len field of a data instruction. This is wrong as data instructions
2344 * might be split.
2345 *
2346 * Returns the length of the chunk of data to send/receive.
2347 */
2348 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2349 unsigned int instr_idx)
2350 {
2351 int start_off = 0, end_off;
2352
2353 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2354 !nand_instr_is_data(&subop->instrs[instr_idx])))
2355 return 0;
2356
2357 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2358
2359 if (instr_idx == subop->ninstrs - 1 &&
2360 subop->last_instr_end_off)
2361 end_off = subop->last_instr_end_off;
2362 else
2363 end_off = subop->instrs[instr_idx].ctx.data.len;
2364
2365 return end_off - start_off;
2366 }
2367 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2368
2369 /**
2370 * nand_reset - Reset and initialize a NAND device
2371 * @chip: The NAND chip
2372 * @chipnr: Internal die id
2373 *
2374 * Save the timings data structure, then apply SDR timings mode 0 (see
2375 * nand_reset_data_interface for details), do the reset operation, and
2376 * apply back the previous timings.
2377 *
2378 * Returns 0 on success, a negative error code otherwise.
2379 */
2380 int nand_reset(struct nand_chip *chip, int chipnr)
2381 {
2382 struct nand_data_interface saved_data_intf = chip->data_interface;
2383 int ret;
2384
2385 ret = nand_reset_data_interface(chip, chipnr);
2386 if (ret)
2387 return ret;
2388
2389 /*
2390 * The CS line has to be released before we can apply the new NAND
2391 * interface settings, hence this weird nand_select_target()
2392 * nand_deselect_target() dance.
2393 */
2394 nand_select_target(chip, chipnr);
2395 ret = nand_reset_op(chip);
2396 nand_deselect_target(chip);
2397 if (ret)
2398 return ret;
2399
2400 /*
2401 * A nand_reset_data_interface() put both the NAND chip and the NAND
2402 * controller in timings mode 0. If the default mode for this chip is
2403 * also 0, no need to proceed to the change again. Plus, at probe time,
2404 * nand_setup_data_interface() uses ->set/get_features() which would
2405 * fail anyway as the parameter page is not available yet.
2406 */
2407 if (!chip->onfi_timing_mode_default)
2408 return 0;
2409
2410 chip->data_interface = saved_data_intf;
2411 ret = nand_setup_data_interface(chip, chipnr);
2412 if (ret)
2413 return ret;
2414
2415 return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(nand_reset);
2418
2419 /**
2420 * nand_get_features - wrapper to perform a GET_FEATURE
2421 * @chip: NAND chip info structure
2422 * @addr: feature address
2423 * @subfeature_param: the subfeature parameters, a four bytes array
2424 *
2425 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2426 * operation cannot be handled.
2427 */
2428 int nand_get_features(struct nand_chip *chip, int addr,
2429 u8 *subfeature_param)
2430 {
2431 if (!nand_supports_get_features(chip, addr))
2432 return -ENOTSUPP;
2433
2434 if (chip->legacy.get_features)
2435 return chip->legacy.get_features(chip, addr, subfeature_param);
2436
2437 return nand_get_features_op(chip, addr, subfeature_param);
2438 }
2439
2440 /**
2441 * nand_set_features - wrapper to perform a SET_FEATURE
2442 * @chip: NAND chip info structure
2443 * @addr: feature address
2444 * @subfeature_param: the subfeature parameters, a four bytes array
2445 *
2446 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2447 * operation cannot be handled.
2448 */
2449 int nand_set_features(struct nand_chip *chip, int addr,
2450 u8 *subfeature_param)
2451 {
2452 if (!nand_supports_set_features(chip, addr))
2453 return -ENOTSUPP;
2454
2455 if (chip->legacy.set_features)
2456 return chip->legacy.set_features(chip, addr, subfeature_param);
2457
2458 return nand_set_features_op(chip, addr, subfeature_param);
2459 }
2460
2461 /**
2462 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2463 * @buf: buffer to test
2464 * @len: buffer length
2465 * @bitflips_threshold: maximum number of bitflips
2466 *
2467 * Check if a buffer contains only 0xff, which means the underlying region
2468 * has been erased and is ready to be programmed.
2469 * The bitflips_threshold specify the maximum number of bitflips before
2470 * considering the region is not erased.
2471 * Note: The logic of this function has been extracted from the memweight
2472 * implementation, except that nand_check_erased_buf function exit before
2473 * testing the whole buffer if the number of bitflips exceed the
2474 * bitflips_threshold value.
2475 *
2476 * Returns a positive number of bitflips less than or equal to
2477 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2478 * threshold.
2479 */
2480 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2481 {
2482 const unsigned char *bitmap = buf;
2483 int bitflips = 0;
2484 int weight;
2485
2486 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2487 len--, bitmap++) {
2488 weight = hweight8(*bitmap);
2489 bitflips += BITS_PER_BYTE - weight;
2490 if (unlikely(bitflips > bitflips_threshold))
2491 return -EBADMSG;
2492 }
2493
2494 for (; len >= sizeof(long);
2495 len -= sizeof(long), bitmap += sizeof(long)) {
2496 unsigned long d = *((unsigned long *)bitmap);
2497 if (d == ~0UL)
2498 continue;
2499 weight = hweight_long(d);
2500 bitflips += BITS_PER_LONG - weight;
2501 if (unlikely(bitflips > bitflips_threshold))
2502 return -EBADMSG;
2503 }
2504
2505 for (; len > 0; len--, bitmap++) {
2506 weight = hweight8(*bitmap);
2507 bitflips += BITS_PER_BYTE - weight;
2508 if (unlikely(bitflips > bitflips_threshold))
2509 return -EBADMSG;
2510 }
2511
2512 return bitflips;
2513 }
2514
2515 /**
2516 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2517 * 0xff data
2518 * @data: data buffer to test
2519 * @datalen: data length
2520 * @ecc: ECC buffer
2521 * @ecclen: ECC length
2522 * @extraoob: extra OOB buffer
2523 * @extraooblen: extra OOB length
2524 * @bitflips_threshold: maximum number of bitflips
2525 *
2526 * Check if a data buffer and its associated ECC and OOB data contains only
2527 * 0xff pattern, which means the underlying region has been erased and is
2528 * ready to be programmed.
2529 * The bitflips_threshold specify the maximum number of bitflips before
2530 * considering the region as not erased.
2531 *
2532 * Note:
2533 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2534 * different from the NAND page size. When fixing bitflips, ECC engines will
2535 * report the number of errors per chunk, and the NAND core infrastructure
2536 * expect you to return the maximum number of bitflips for the whole page.
2537 * This is why you should always use this function on a single chunk and
2538 * not on the whole page. After checking each chunk you should update your
2539 * max_bitflips value accordingly.
2540 * 2/ When checking for bitflips in erased pages you should not only check
2541 * the payload data but also their associated ECC data, because a user might
2542 * have programmed almost all bits to 1 but a few. In this case, we
2543 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2544 * this case.
2545 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2546 * data are protected by the ECC engine.
2547 * It could also be used if you support subpages and want to attach some
2548 * extra OOB data to an ECC chunk.
2549 *
2550 * Returns a positive number of bitflips less than or equal to
2551 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2552 * threshold. In case of success, the passed buffers are filled with 0xff.
2553 */
2554 int nand_check_erased_ecc_chunk(void *data, int datalen,
2555 void *ecc, int ecclen,
2556 void *extraoob, int extraooblen,
2557 int bitflips_threshold)
2558 {
2559 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2560
2561 data_bitflips = nand_check_erased_buf(data, datalen,
2562 bitflips_threshold);
2563 if (data_bitflips < 0)
2564 return data_bitflips;
2565
2566 bitflips_threshold -= data_bitflips;
2567
2568 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2569 if (ecc_bitflips < 0)
2570 return ecc_bitflips;
2571
2572 bitflips_threshold -= ecc_bitflips;
2573
2574 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2575 bitflips_threshold);
2576 if (extraoob_bitflips < 0)
2577 return extraoob_bitflips;
2578
2579 if (data_bitflips)
2580 memset(data, 0xff, datalen);
2581
2582 if (ecc_bitflips)
2583 memset(ecc, 0xff, ecclen);
2584
2585 if (extraoob_bitflips)
2586 memset(extraoob, 0xff, extraooblen);
2587
2588 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2589 }
2590 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2591
2592 /**
2593 * nand_read_page_raw_notsupp - dummy read raw page function
2594 * @chip: nand chip info structure
2595 * @buf: buffer to store read data
2596 * @oob_required: caller requires OOB data read to chip->oob_poi
2597 * @page: page number to read
2598 *
2599 * Returns -ENOTSUPP unconditionally.
2600 */
2601 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2602 int oob_required, int page)
2603 {
2604 return -ENOTSUPP;
2605 }
2606
2607 /**
2608 * nand_read_page_raw - [INTERN] read raw page data without ecc
2609 * @chip: nand chip info structure
2610 * @buf: buffer to store read data
2611 * @oob_required: caller requires OOB data read to chip->oob_poi
2612 * @page: page number to read
2613 *
2614 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2615 */
2616 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2617 int page)
2618 {
2619 struct mtd_info *mtd = nand_to_mtd(chip);
2620 int ret;
2621
2622 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2623 if (ret)
2624 return ret;
2625
2626 if (oob_required) {
2627 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2628 false);
2629 if (ret)
2630 return ret;
2631 }
2632
2633 return 0;
2634 }
2635 EXPORT_SYMBOL(nand_read_page_raw);
2636
2637 /**
2638 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2639 * @chip: nand chip info structure
2640 * @buf: buffer to store read data
2641 * @oob_required: caller requires OOB data read to chip->oob_poi
2642 * @page: page number to read
2643 *
2644 * We need a special oob layout and handling even when OOB isn't used.
2645 */
2646 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2647 int oob_required, int page)
2648 {
2649 struct mtd_info *mtd = nand_to_mtd(chip);
2650 int eccsize = chip->ecc.size;
2651 int eccbytes = chip->ecc.bytes;
2652 uint8_t *oob = chip->oob_poi;
2653 int steps, size, ret;
2654
2655 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2656 if (ret)
2657 return ret;
2658
2659 for (steps = chip->ecc.steps; steps > 0; steps--) {
2660 ret = nand_read_data_op(chip, buf, eccsize, false);
2661 if (ret)
2662 return ret;
2663
2664 buf += eccsize;
2665
2666 if (chip->ecc.prepad) {
2667 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2668 false);
2669 if (ret)
2670 return ret;
2671
2672 oob += chip->ecc.prepad;
2673 }
2674
2675 ret = nand_read_data_op(chip, oob, eccbytes, false);
2676 if (ret)
2677 return ret;
2678
2679 oob += eccbytes;
2680
2681 if (chip->ecc.postpad) {
2682 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2683 false);
2684 if (ret)
2685 return ret;
2686
2687 oob += chip->ecc.postpad;
2688 }
2689 }
2690
2691 size = mtd->oobsize - (oob - chip->oob_poi);
2692 if (size) {
2693 ret = nand_read_data_op(chip, oob, size, false);
2694 if (ret)
2695 return ret;
2696 }
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2703 * @chip: nand chip info structure
2704 * @buf: buffer to store read data
2705 * @oob_required: caller requires OOB data read to chip->oob_poi
2706 * @page: page number to read
2707 */
2708 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2709 int oob_required, int page)
2710 {
2711 struct mtd_info *mtd = nand_to_mtd(chip);
2712 int i, eccsize = chip->ecc.size, ret;
2713 int eccbytes = chip->ecc.bytes;
2714 int eccsteps = chip->ecc.steps;
2715 uint8_t *p = buf;
2716 uint8_t *ecc_calc = chip->ecc.calc_buf;
2717 uint8_t *ecc_code = chip->ecc.code_buf;
2718 unsigned int max_bitflips = 0;
2719
2720 chip->ecc.read_page_raw(chip, buf, 1, page);
2721
2722 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2723 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2724
2725 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2726 chip->ecc.total);
2727 if (ret)
2728 return ret;
2729
2730 eccsteps = chip->ecc.steps;
2731 p = buf;
2732
2733 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2734 int stat;
2735
2736 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2737 if (stat < 0) {
2738 mtd->ecc_stats.failed++;
2739 } else {
2740 mtd->ecc_stats.corrected += stat;
2741 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2742 }
2743 }
2744 return max_bitflips;
2745 }
2746
2747 /**
2748 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2749 * @chip: nand chip info structure
2750 * @data_offs: offset of requested data within the page
2751 * @readlen: data length
2752 * @bufpoi: buffer to store read data
2753 * @page: page number to read
2754 */
2755 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2756 uint32_t readlen, uint8_t *bufpoi, int page)
2757 {
2758 struct mtd_info *mtd = nand_to_mtd(chip);
2759 int start_step, end_step, num_steps, ret;
2760 uint8_t *p;
2761 int data_col_addr, i, gaps = 0;
2762 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2763 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2764 int index, section = 0;
2765 unsigned int max_bitflips = 0;
2766 struct mtd_oob_region oobregion = { };
2767
2768 /* Column address within the page aligned to ECC size (256bytes) */
2769 start_step = data_offs / chip->ecc.size;
2770 end_step = (data_offs + readlen - 1) / chip->ecc.size;
2771 num_steps = end_step - start_step + 1;
2772 index = start_step * chip->ecc.bytes;
2773
2774 /* Data size aligned to ECC ecc.size */
2775 datafrag_len = num_steps * chip->ecc.size;
2776 eccfrag_len = num_steps * chip->ecc.bytes;
2777
2778 data_col_addr = start_step * chip->ecc.size;
2779 /* If we read not a page aligned data */
2780 p = bufpoi + data_col_addr;
2781 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2782 if (ret)
2783 return ret;
2784
2785 /* Calculate ECC */
2786 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2787 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2788
2789 /*
2790 * The performance is faster if we position offsets according to
2791 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2792 */
2793 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2794 if (ret)
2795 return ret;
2796
2797 if (oobregion.length < eccfrag_len)
2798 gaps = 1;
2799
2800 if (gaps) {
2801 ret = nand_change_read_column_op(chip, mtd->writesize,
2802 chip->oob_poi, mtd->oobsize,
2803 false);
2804 if (ret)
2805 return ret;
2806 } else {
2807 /*
2808 * Send the command to read the particular ECC bytes take care
2809 * about buswidth alignment in read_buf.
2810 */
2811 aligned_pos = oobregion.offset & ~(busw - 1);
2812 aligned_len = eccfrag_len;
2813 if (oobregion.offset & (busw - 1))
2814 aligned_len++;
2815 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2816 (busw - 1))
2817 aligned_len++;
2818
2819 ret = nand_change_read_column_op(chip,
2820 mtd->writesize + aligned_pos,
2821 &chip->oob_poi[aligned_pos],
2822 aligned_len, false);
2823 if (ret)
2824 return ret;
2825 }
2826
2827 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2828 chip->oob_poi, index, eccfrag_len);
2829 if (ret)
2830 return ret;
2831
2832 p = bufpoi + data_col_addr;
2833 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2834 int stat;
2835
2836 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2837 &chip->ecc.calc_buf[i]);
2838 if (stat == -EBADMSG &&
2839 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2840 /* check for empty pages with bitflips */
2841 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2842 &chip->ecc.code_buf[i],
2843 chip->ecc.bytes,
2844 NULL, 0,
2845 chip->ecc.strength);
2846 }
2847
2848 if (stat < 0) {
2849 mtd->ecc_stats.failed++;
2850 } else {
2851 mtd->ecc_stats.corrected += stat;
2852 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2853 }
2854 }
2855 return max_bitflips;
2856 }
2857
2858 /**
2859 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2860 * @chip: nand chip info structure
2861 * @buf: buffer to store read data
2862 * @oob_required: caller requires OOB data read to chip->oob_poi
2863 * @page: page number to read
2864 *
2865 * Not for syndrome calculating ECC controllers which need a special oob layout.
2866 */
2867 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2868 int oob_required, int page)
2869 {
2870 struct mtd_info *mtd = nand_to_mtd(chip);
2871 int i, eccsize = chip->ecc.size, ret;
2872 int eccbytes = chip->ecc.bytes;
2873 int eccsteps = chip->ecc.steps;
2874 uint8_t *p = buf;
2875 uint8_t *ecc_calc = chip->ecc.calc_buf;
2876 uint8_t *ecc_code = chip->ecc.code_buf;
2877 unsigned int max_bitflips = 0;
2878
2879 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2880 if (ret)
2881 return ret;
2882
2883 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2884 chip->ecc.hwctl(chip, NAND_ECC_READ);
2885
2886 ret = nand_read_data_op(chip, p, eccsize, false);
2887 if (ret)
2888 return ret;
2889
2890 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2891 }
2892
2893 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2894 if (ret)
2895 return ret;
2896
2897 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2898 chip->ecc.total);
2899 if (ret)
2900 return ret;
2901
2902 eccsteps = chip->ecc.steps;
2903 p = buf;
2904
2905 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2906 int stat;
2907
2908 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2909 if (stat == -EBADMSG &&
2910 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2911 /* check for empty pages with bitflips */
2912 stat = nand_check_erased_ecc_chunk(p, eccsize,
2913 &ecc_code[i], eccbytes,
2914 NULL, 0,
2915 chip->ecc.strength);
2916 }
2917
2918 if (stat < 0) {
2919 mtd->ecc_stats.failed++;
2920 } else {
2921 mtd->ecc_stats.corrected += stat;
2922 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2923 }
2924 }
2925 return max_bitflips;
2926 }
2927
2928 /**
2929 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2930 * @chip: nand chip info structure
2931 * @buf: buffer to store read data
2932 * @oob_required: caller requires OOB data read to chip->oob_poi
2933 * @page: page number to read
2934 *
2935 * Hardware ECC for large page chips, require OOB to be read first. For this
2936 * ECC mode, the write_page method is re-used from ECC_HW. These methods
2937 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2938 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2939 * the data area, by overwriting the NAND manufacturer bad block markings.
2940 */
2941 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2942 int oob_required, int page)
2943 {
2944 struct mtd_info *mtd = nand_to_mtd(chip);
2945 int i, eccsize = chip->ecc.size, ret;
2946 int eccbytes = chip->ecc.bytes;
2947 int eccsteps = chip->ecc.steps;
2948 uint8_t *p = buf;
2949 uint8_t *ecc_code = chip->ecc.code_buf;
2950 uint8_t *ecc_calc = chip->ecc.calc_buf;
2951 unsigned int max_bitflips = 0;
2952
2953 /* Read the OOB area first */
2954 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2955 if (ret)
2956 return ret;
2957
2958 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2959 if (ret)
2960 return ret;
2961
2962 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2963 chip->ecc.total);
2964 if (ret)
2965 return ret;
2966
2967 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2968 int stat;
2969
2970 chip->ecc.hwctl(chip, NAND_ECC_READ);
2971
2972 ret = nand_read_data_op(chip, p, eccsize, false);
2973 if (ret)
2974 return ret;
2975
2976 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2977
2978 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2979 if (stat == -EBADMSG &&
2980 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2981 /* check for empty pages with bitflips */
2982 stat = nand_check_erased_ecc_chunk(p, eccsize,
2983 &ecc_code[i], eccbytes,
2984 NULL, 0,
2985 chip->ecc.strength);
2986 }
2987
2988 if (stat < 0) {
2989 mtd->ecc_stats.failed++;
2990 } else {
2991 mtd->ecc_stats.corrected += stat;
2992 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2993 }
2994 }
2995 return max_bitflips;
2996 }
2997
2998 /**
2999 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3000 * @chip: nand chip info structure
3001 * @buf: buffer to store read data
3002 * @oob_required: caller requires OOB data read to chip->oob_poi
3003 * @page: page number to read
3004 *
3005 * The hw generator calculates the error syndrome automatically. Therefore we
3006 * need a special oob layout and handling.
3007 */
3008 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3009 int oob_required, int page)
3010 {
3011 struct mtd_info *mtd = nand_to_mtd(chip);
3012 int ret, i, eccsize = chip->ecc.size;
3013 int eccbytes = chip->ecc.bytes;
3014 int eccsteps = chip->ecc.steps;
3015 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3016 uint8_t *p = buf;
3017 uint8_t *oob = chip->oob_poi;
3018 unsigned int max_bitflips = 0;
3019
3020 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3021 if (ret)
3022 return ret;
3023
3024 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3025 int stat;
3026
3027 chip->ecc.hwctl(chip, NAND_ECC_READ);
3028
3029 ret = nand_read_data_op(chip, p, eccsize, false);
3030 if (ret)
3031 return ret;
3032
3033 if (chip->ecc.prepad) {
3034 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3035 false);
3036 if (ret)
3037 return ret;
3038
3039 oob += chip->ecc.prepad;
3040 }
3041
3042 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3043
3044 ret = nand_read_data_op(chip, oob, eccbytes, false);
3045 if (ret)
3046 return ret;
3047
3048 stat = chip->ecc.correct(chip, p, oob, NULL);
3049
3050 oob += eccbytes;
3051
3052 if (chip->ecc.postpad) {
3053 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3054 false);
3055 if (ret)
3056 return ret;
3057
3058 oob += chip->ecc.postpad;
3059 }
3060
3061 if (stat == -EBADMSG &&
3062 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3063 /* check for empty pages with bitflips */
3064 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3065 oob - eccpadbytes,
3066 eccpadbytes,
3067 NULL, 0,
3068 chip->ecc.strength);
3069 }
3070
3071 if (stat < 0) {
3072 mtd->ecc_stats.failed++;
3073 } else {
3074 mtd->ecc_stats.corrected += stat;
3075 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3076 }
3077 }
3078
3079 /* Calculate remaining oob bytes */
3080 i = mtd->oobsize - (oob - chip->oob_poi);
3081 if (i) {
3082 ret = nand_read_data_op(chip, oob, i, false);
3083 if (ret)
3084 return ret;
3085 }
3086
3087 return max_bitflips;
3088 }
3089
3090 /**
3091 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3092 * @chip: NAND chip object
3093 * @oob: oob destination address
3094 * @ops: oob ops structure
3095 * @len: size of oob to transfer
3096 */
3097 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3098 struct mtd_oob_ops *ops, size_t len)
3099 {
3100 struct mtd_info *mtd = nand_to_mtd(chip);
3101 int ret;
3102
3103 switch (ops->mode) {
3104
3105 case MTD_OPS_PLACE_OOB:
3106 case MTD_OPS_RAW:
3107 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3108 return oob + len;
3109
3110 case MTD_OPS_AUTO_OOB:
3111 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3112 ops->ooboffs, len);
3113 BUG_ON(ret);
3114 return oob + len;
3115
3116 default:
3117 BUG();
3118 }
3119 return NULL;
3120 }
3121
3122 /**
3123 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3124 * @chip: NAND chip object
3125 * @retry_mode: the retry mode to use
3126 *
3127 * Some vendors supply a special command to shift the Vt threshold, to be used
3128 * when there are too many bitflips in a page (i.e., ECC error). After setting
3129 * a new threshold, the host should retry reading the page.
3130 */
3131 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3132 {
3133 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3134
3135 if (retry_mode >= chip->read_retries)
3136 return -EINVAL;
3137
3138 if (!chip->setup_read_retry)
3139 return -EOPNOTSUPP;
3140
3141 return chip->setup_read_retry(chip, retry_mode);
3142 }
3143
3144 static void nand_wait_readrdy(struct nand_chip *chip)
3145 {
3146 const struct nand_sdr_timings *sdr;
3147
3148 if (!(chip->options & NAND_NEED_READRDY))
3149 return;
3150
3151 sdr = nand_get_sdr_timings(&chip->data_interface);
3152 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3153 }
3154
3155 /**
3156 * nand_do_read_ops - [INTERN] Read data with ECC
3157 * @chip: NAND chip object
3158 * @from: offset to read from
3159 * @ops: oob ops structure
3160 *
3161 * Internal function. Called with chip held.
3162 */
3163 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3164 struct mtd_oob_ops *ops)
3165 {
3166 int chipnr, page, realpage, col, bytes, aligned, oob_required;
3167 struct mtd_info *mtd = nand_to_mtd(chip);
3168 int ret = 0;
3169 uint32_t readlen = ops->len;
3170 uint32_t oobreadlen = ops->ooblen;
3171 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3172
3173 uint8_t *bufpoi, *oob, *buf;
3174 int use_bufpoi;
3175 unsigned int max_bitflips = 0;
3176 int retry_mode = 0;
3177 bool ecc_fail = false;
3178
3179 chipnr = (int)(from >> chip->chip_shift);
3180 nand_select_target(chip, chipnr);
3181
3182 realpage = (int)(from >> chip->page_shift);
3183 page = realpage & chip->pagemask;
3184
3185 col = (int)(from & (mtd->writesize - 1));
3186
3187 buf = ops->datbuf;
3188 oob = ops->oobbuf;
3189 oob_required = oob ? 1 : 0;
3190
3191 while (1) {
3192 unsigned int ecc_failures = mtd->ecc_stats.failed;
3193
3194 bytes = min(mtd->writesize - col, readlen);
3195 aligned = (bytes == mtd->writesize);
3196
3197 if (!aligned)
3198 use_bufpoi = 1;
3199 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3200 use_bufpoi = !virt_addr_valid(buf) ||
3201 !IS_ALIGNED((unsigned long)buf,
3202 chip->buf_align);
3203 else
3204 use_bufpoi = 0;
3205
3206 /* Is the current page in the buffer? */
3207 if (realpage != chip->pagebuf || oob) {
3208 bufpoi = use_bufpoi ? chip->data_buf : buf;
3209
3210 if (use_bufpoi && aligned)
3211 pr_debug("%s: using read bounce buffer for buf@%p\n",
3212 __func__, buf);
3213
3214 read_retry:
3215 /*
3216 * Now read the page into the buffer. Absent an error,
3217 * the read methods return max bitflips per ecc step.
3218 */
3219 if (unlikely(ops->mode == MTD_OPS_RAW))
3220 ret = chip->ecc.read_page_raw(chip, bufpoi,
3221 oob_required,
3222 page);
3223 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3224 !oob)
3225 ret = chip->ecc.read_subpage(chip, col, bytes,
3226 bufpoi, page);
3227 else
3228 ret = chip->ecc.read_page(chip, bufpoi,
3229 oob_required, page);
3230 if (ret < 0) {
3231 if (use_bufpoi)
3232 /* Invalidate page cache */
3233 chip->pagebuf = -1;
3234 break;
3235 }
3236
3237 /* Transfer not aligned data */
3238 if (use_bufpoi) {
3239 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3240 !(mtd->ecc_stats.failed - ecc_failures) &&
3241 (ops->mode != MTD_OPS_RAW)) {
3242 chip->pagebuf = realpage;
3243 chip->pagebuf_bitflips = ret;
3244 } else {
3245 /* Invalidate page cache */
3246 chip->pagebuf = -1;
3247 }
3248 memcpy(buf, chip->data_buf + col, bytes);
3249 }
3250
3251 if (unlikely(oob)) {
3252 int toread = min(oobreadlen, max_oobsize);
3253
3254 if (toread) {
3255 oob = nand_transfer_oob(chip, oob, ops,
3256 toread);
3257 oobreadlen -= toread;
3258 }
3259 }
3260
3261 nand_wait_readrdy(chip);
3262
3263 if (mtd->ecc_stats.failed - ecc_failures) {
3264 if (retry_mode + 1 < chip->read_retries) {
3265 retry_mode++;
3266 ret = nand_setup_read_retry(chip,
3267 retry_mode);
3268 if (ret < 0)
3269 break;
3270
3271 /* Reset failures; retry */
3272 mtd->ecc_stats.failed = ecc_failures;
3273 goto read_retry;
3274 } else {
3275 /* No more retry modes; real failure */
3276 ecc_fail = true;
3277 }
3278 }
3279
3280 buf += bytes;
3281 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3282 } else {
3283 memcpy(buf, chip->data_buf + col, bytes);
3284 buf += bytes;
3285 max_bitflips = max_t(unsigned int, max_bitflips,
3286 chip->pagebuf_bitflips);
3287 }
3288
3289 readlen -= bytes;
3290
3291 /* Reset to retry mode 0 */
3292 if (retry_mode) {
3293 ret = nand_setup_read_retry(chip, 0);
3294 if (ret < 0)
3295 break;
3296 retry_mode = 0;
3297 }
3298
3299 if (!readlen)
3300 break;
3301
3302 /* For subsequent reads align to page boundary */
3303 col = 0;
3304 /* Increment page address */
3305 realpage++;
3306
3307 page = realpage & chip->pagemask;
3308 /* Check, if we cross a chip boundary */
3309 if (!page) {
3310 chipnr++;
3311 nand_deselect_target(chip);
3312 nand_select_target(chip, chipnr);
3313 }
3314 }
3315 nand_deselect_target(chip);
3316
3317 ops->retlen = ops->len - (size_t) readlen;
3318 if (oob)
3319 ops->oobretlen = ops->ooblen - oobreadlen;
3320
3321 if (ret < 0)
3322 return ret;
3323
3324 if (ecc_fail)
3325 return -EBADMSG;
3326
3327 return max_bitflips;
3328 }
3329
3330 /**
3331 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3332 * @chip: nand chip info structure
3333 * @page: page number to read
3334 */
3335 int nand_read_oob_std(struct nand_chip *chip, int page)
3336 {
3337 struct mtd_info *mtd = nand_to_mtd(chip);
3338
3339 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3340 }
3341 EXPORT_SYMBOL(nand_read_oob_std);
3342
3343 /**
3344 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3345 * with syndromes
3346 * @chip: nand chip info structure
3347 * @page: page number to read
3348 */
3349 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3350 {
3351 struct mtd_info *mtd = nand_to_mtd(chip);
3352 int length = mtd->oobsize;
3353 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3354 int eccsize = chip->ecc.size;
3355 uint8_t *bufpoi = chip->oob_poi;
3356 int i, toread, sndrnd = 0, pos, ret;
3357
3358 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3359 if (ret)
3360 return ret;
3361
3362 for (i = 0; i < chip->ecc.steps; i++) {
3363 if (sndrnd) {
3364 int ret;
3365
3366 pos = eccsize + i * (eccsize + chunk);
3367 if (mtd->writesize > 512)
3368 ret = nand_change_read_column_op(chip, pos,
3369 NULL, 0,
3370 false);
3371 else
3372 ret = nand_read_page_op(chip, page, pos, NULL,
3373 0);
3374
3375 if (ret)
3376 return ret;
3377 } else
3378 sndrnd = 1;
3379 toread = min_t(int, length, chunk);
3380
3381 ret = nand_read_data_op(chip, bufpoi, toread, false);
3382 if (ret)
3383 return ret;
3384
3385 bufpoi += toread;
3386 length -= toread;
3387 }
3388 if (length > 0) {
3389 ret = nand_read_data_op(chip, bufpoi, length, false);
3390 if (ret)
3391 return ret;
3392 }
3393
3394 return 0;
3395 }
3396
3397 /**
3398 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3399 * @chip: nand chip info structure
3400 * @page: page number to write
3401 */
3402 int nand_write_oob_std(struct nand_chip *chip, int page)
3403 {
3404 struct mtd_info *mtd = nand_to_mtd(chip);
3405
3406 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3407 mtd->oobsize);
3408 }
3409 EXPORT_SYMBOL(nand_write_oob_std);
3410
3411 /**
3412 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3413 * with syndrome - only for large page flash
3414 * @chip: nand chip info structure
3415 * @page: page number to write
3416 */
3417 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3418 {
3419 struct mtd_info *mtd = nand_to_mtd(chip);
3420 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3421 int eccsize = chip->ecc.size, length = mtd->oobsize;
3422 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3423 const uint8_t *bufpoi = chip->oob_poi;
3424
3425 /*
3426 * data-ecc-data-ecc ... ecc-oob
3427 * or
3428 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3429 */
3430 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3431 pos = steps * (eccsize + chunk);
3432 steps = 0;
3433 } else
3434 pos = eccsize;
3435
3436 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3437 if (ret)
3438 return ret;
3439
3440 for (i = 0; i < steps; i++) {
3441 if (sndcmd) {
3442 if (mtd->writesize <= 512) {
3443 uint32_t fill = 0xFFFFFFFF;
3444
3445 len = eccsize;
3446 while (len > 0) {
3447 int num = min_t(int, len, 4);
3448
3449 ret = nand_write_data_op(chip, &fill,
3450 num, false);
3451 if (ret)
3452 return ret;
3453
3454 len -= num;
3455 }
3456 } else {
3457 pos = eccsize + i * (eccsize + chunk);
3458 ret = nand_change_write_column_op(chip, pos,
3459 NULL, 0,
3460 false);
3461 if (ret)
3462 return ret;
3463 }
3464 } else
3465 sndcmd = 1;
3466 len = min_t(int, length, chunk);
3467
3468 ret = nand_write_data_op(chip, bufpoi, len, false);
3469 if (ret)
3470 return ret;
3471
3472 bufpoi += len;
3473 length -= len;
3474 }
3475 if (length > 0) {
3476 ret = nand_write_data_op(chip, bufpoi, length, false);
3477 if (ret)
3478 return ret;
3479 }
3480
3481 return nand_prog_page_end_op(chip);
3482 }
3483
3484 /**
3485 * nand_do_read_oob - [INTERN] NAND read out-of-band
3486 * @chip: NAND chip object
3487 * @from: offset to read from
3488 * @ops: oob operations description structure
3489 *
3490 * NAND read out-of-band data from the spare area.
3491 */
3492 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3493 struct mtd_oob_ops *ops)
3494 {
3495 struct mtd_info *mtd = nand_to_mtd(chip);
3496 unsigned int max_bitflips = 0;
3497 int page, realpage, chipnr;
3498 struct mtd_ecc_stats stats;
3499 int readlen = ops->ooblen;
3500 int len;
3501 uint8_t *buf = ops->oobbuf;
3502 int ret = 0;
3503
3504 pr_debug("%s: from = 0x%08Lx, len = %i\n",
3505 __func__, (unsigned long long)from, readlen);
3506
3507 stats = mtd->ecc_stats;
3508
3509 len = mtd_oobavail(mtd, ops);
3510
3511 chipnr = (int)(from >> chip->chip_shift);
3512 nand_select_target(chip, chipnr);
3513
3514 /* Shift to get page */
3515 realpage = (int)(from >> chip->page_shift);
3516 page = realpage & chip->pagemask;
3517
3518 while (1) {
3519 if (ops->mode == MTD_OPS_RAW)
3520 ret = chip->ecc.read_oob_raw(chip, page);
3521 else
3522 ret = chip->ecc.read_oob(chip, page);
3523
3524 if (ret < 0)
3525 break;
3526
3527 len = min(len, readlen);
3528 buf = nand_transfer_oob(chip, buf, ops, len);
3529
3530 nand_wait_readrdy(chip);
3531
3532 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3533
3534 readlen -= len;
3535 if (!readlen)
3536 break;
3537
3538 /* Increment page address */
3539 realpage++;
3540
3541 page = realpage & chip->pagemask;
3542 /* Check, if we cross a chip boundary */
3543 if (!page) {
3544 chipnr++;
3545 nand_deselect_target(chip);
3546 nand_select_target(chip, chipnr);
3547 }
3548 }
3549 nand_deselect_target(chip);
3550
3551 ops->oobretlen = ops->ooblen - readlen;
3552
3553 if (ret < 0)
3554 return ret;
3555
3556 if (mtd->ecc_stats.failed - stats.failed)
3557 return -EBADMSG;
3558
3559 return max_bitflips;
3560 }
3561
3562 /**
3563 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3564 * @mtd: MTD device structure
3565 * @from: offset to read from
3566 * @ops: oob operation description structure
3567 *
3568 * NAND read data and/or out-of-band data.
3569 */
3570 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3571 struct mtd_oob_ops *ops)
3572 {
3573 struct nand_chip *chip = mtd_to_nand(mtd);
3574 int ret;
3575
3576 ops->retlen = 0;
3577
3578 if (ops->mode != MTD_OPS_PLACE_OOB &&
3579 ops->mode != MTD_OPS_AUTO_OOB &&
3580 ops->mode != MTD_OPS_RAW)
3581 return -ENOTSUPP;
3582
3583 nand_get_device(chip, FL_READING);
3584
3585 if (!ops->datbuf)
3586 ret = nand_do_read_oob(chip, from, ops);
3587 else
3588 ret = nand_do_read_ops(chip, from, ops);
3589
3590 nand_release_device(chip);
3591 return ret;
3592 }
3593
3594 /**
3595 * nand_write_page_raw_notsupp - dummy raw page write function
3596 * @chip: nand chip info structure
3597 * @buf: data buffer
3598 * @oob_required: must write chip->oob_poi to OOB
3599 * @page: page number to write
3600 *
3601 * Returns -ENOTSUPP unconditionally.
3602 */
3603 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3604 int oob_required, int page)
3605 {
3606 return -ENOTSUPP;
3607 }
3608
3609 /**
3610 * nand_write_page_raw - [INTERN] raw page write function
3611 * @chip: nand chip info structure
3612 * @buf: data buffer
3613 * @oob_required: must write chip->oob_poi to OOB
3614 * @page: page number to write
3615 *
3616 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3617 */
3618 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3619 int oob_required, int page)
3620 {
3621 struct mtd_info *mtd = nand_to_mtd(chip);
3622 int ret;
3623
3624 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3625 if (ret)
3626 return ret;
3627
3628 if (oob_required) {
3629 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3630 false);
3631 if (ret)
3632 return ret;
3633 }
3634
3635 return nand_prog_page_end_op(chip);
3636 }
3637 EXPORT_SYMBOL(nand_write_page_raw);
3638
3639 /**
3640 * nand_write_page_raw_syndrome - [INTERN] raw page write function
3641 * @chip: nand chip info structure
3642 * @buf: data buffer
3643 * @oob_required: must write chip->oob_poi to OOB
3644 * @page: page number to write
3645 *
3646 * We need a special oob layout and handling even when ECC isn't checked.
3647 */
3648 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3649 const uint8_t *buf, int oob_required,
3650 int page)
3651 {
3652 struct mtd_info *mtd = nand_to_mtd(chip);
3653 int eccsize = chip->ecc.size;
3654 int eccbytes = chip->ecc.bytes;
3655 uint8_t *oob = chip->oob_poi;
3656 int steps, size, ret;
3657
3658 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3659 if (ret)
3660 return ret;
3661
3662 for (steps = chip->ecc.steps; steps > 0; steps--) {
3663 ret = nand_write_data_op(chip, buf, eccsize, false);
3664 if (ret)
3665 return ret;
3666
3667 buf += eccsize;
3668
3669 if (chip->ecc.prepad) {
3670 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3671 false);
3672 if (ret)
3673 return ret;
3674
3675 oob += chip->ecc.prepad;
3676 }
3677
3678 ret = nand_write_data_op(chip, oob, eccbytes, false);
3679 if (ret)
3680 return ret;
3681
3682 oob += eccbytes;
3683
3684 if (chip->ecc.postpad) {
3685 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3686 false);
3687 if (ret)
3688 return ret;
3689
3690 oob += chip->ecc.postpad;
3691 }
3692 }
3693
3694 size = mtd->oobsize - (oob - chip->oob_poi);
3695 if (size) {
3696 ret = nand_write_data_op(chip, oob, size, false);
3697 if (ret)
3698 return ret;
3699 }
3700
3701 return nand_prog_page_end_op(chip);
3702 }
3703 /**
3704 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3705 * @chip: nand chip info structure
3706 * @buf: data buffer
3707 * @oob_required: must write chip->oob_poi to OOB
3708 * @page: page number to write
3709 */
3710 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3711 int oob_required, int page)
3712 {
3713 struct mtd_info *mtd = nand_to_mtd(chip);
3714 int i, eccsize = chip->ecc.size, ret;
3715 int eccbytes = chip->ecc.bytes;
3716 int eccsteps = chip->ecc.steps;
3717 uint8_t *ecc_calc = chip->ecc.calc_buf;
3718 const uint8_t *p = buf;
3719
3720 /* Software ECC calculation */
3721 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3722 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3723
3724 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3725 chip->ecc.total);
3726 if (ret)
3727 return ret;
3728
3729 return chip->ecc.write_page_raw(chip, buf, 1, page);
3730 }
3731
3732 /**
3733 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3734 * @chip: nand chip info structure
3735 * @buf: data buffer
3736 * @oob_required: must write chip->oob_poi to OOB
3737 * @page: page number to write
3738 */
3739 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3740 int oob_required, int page)
3741 {
3742 struct mtd_info *mtd = nand_to_mtd(chip);
3743 int i, eccsize = chip->ecc.size, ret;
3744 int eccbytes = chip->ecc.bytes;
3745 int eccsteps = chip->ecc.steps;
3746 uint8_t *ecc_calc = chip->ecc.calc_buf;
3747 const uint8_t *p = buf;
3748
3749 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3750 if (ret)
3751 return ret;
3752
3753 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3754 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3755
3756 ret = nand_write_data_op(chip, p, eccsize, false);
3757 if (ret)
3758 return ret;
3759
3760 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3761 }
3762
3763 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3764 chip->ecc.total);
3765 if (ret)
3766 return ret;
3767
3768 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3769 if (ret)
3770 return ret;
3771
3772 return nand_prog_page_end_op(chip);
3773 }
3774
3775
3776 /**
3777 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3778 * @chip: nand chip info structure
3779 * @offset: column address of subpage within the page
3780 * @data_len: data length
3781 * @buf: data buffer
3782 * @oob_required: must write chip->oob_poi to OOB
3783 * @page: page number to write
3784 */
3785 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3786 uint32_t data_len, const uint8_t *buf,
3787 int oob_required, int page)
3788 {
3789 struct mtd_info *mtd = nand_to_mtd(chip);
3790 uint8_t *oob_buf = chip->oob_poi;
3791 uint8_t *ecc_calc = chip->ecc.calc_buf;
3792 int ecc_size = chip->ecc.size;
3793 int ecc_bytes = chip->ecc.bytes;
3794 int ecc_steps = chip->ecc.steps;
3795 uint32_t start_step = offset / ecc_size;
3796 uint32_t end_step = (offset + data_len - 1) / ecc_size;
3797 int oob_bytes = mtd->oobsize / ecc_steps;
3798 int step, ret;
3799
3800 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3801 if (ret)
3802 return ret;
3803
3804 for (step = 0; step < ecc_steps; step++) {
3805 /* configure controller for WRITE access */
3806 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3807
3808 /* write data (untouched subpages already masked by 0xFF) */
3809 ret = nand_write_data_op(chip, buf, ecc_size, false);
3810 if (ret)
3811 return ret;
3812
3813 /* mask ECC of un-touched subpages by padding 0xFF */
3814 if ((step < start_step) || (step > end_step))
3815 memset(ecc_calc, 0xff, ecc_bytes);
3816 else
3817 chip->ecc.calculate(chip, buf, ecc_calc);
3818
3819 /* mask OOB of un-touched subpages by padding 0xFF */
3820 /* if oob_required, preserve OOB metadata of written subpage */
3821 if (!oob_required || (step < start_step) || (step > end_step))
3822 memset(oob_buf, 0xff, oob_bytes);
3823
3824 buf += ecc_size;
3825 ecc_calc += ecc_bytes;
3826 oob_buf += oob_bytes;
3827 }
3828
3829 /* copy calculated ECC for whole page to chip->buffer->oob */
3830 /* this include masked-value(0xFF) for unwritten subpages */
3831 ecc_calc = chip->ecc.calc_buf;
3832 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3833 chip->ecc.total);
3834 if (ret)
3835 return ret;
3836
3837 /* write OOB buffer to NAND device */
3838 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3839 if (ret)
3840 return ret;
3841
3842 return nand_prog_page_end_op(chip);
3843 }
3844
3845
3846 /**
3847 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3848 * @chip: nand chip info structure
3849 * @buf: data buffer
3850 * @oob_required: must write chip->oob_poi to OOB
3851 * @page: page number to write
3852 *
3853 * The hw generator calculates the error syndrome automatically. Therefore we
3854 * need a special oob layout and handling.
3855 */
3856 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3857 int oob_required, int page)
3858 {
3859 struct mtd_info *mtd = nand_to_mtd(chip);
3860 int i, eccsize = chip->ecc.size;
3861 int eccbytes = chip->ecc.bytes;
3862 int eccsteps = chip->ecc.steps;
3863 const uint8_t *p = buf;
3864 uint8_t *oob = chip->oob_poi;
3865 int ret;
3866
3867 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3868 if (ret)
3869 return ret;
3870
3871 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3872 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3873
3874 ret = nand_write_data_op(chip, p, eccsize, false);
3875 if (ret)
3876 return ret;
3877
3878 if (chip->ecc.prepad) {
3879 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3880 false);
3881 if (ret)
3882 return ret;
3883
3884 oob += chip->ecc.prepad;
3885 }
3886
3887 chip->ecc.calculate(chip, p, oob);
3888
3889 ret = nand_write_data_op(chip, oob, eccbytes, false);
3890 if (ret)
3891 return ret;
3892
3893 oob += eccbytes;
3894
3895 if (chip->ecc.postpad) {
3896 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3897 false);
3898 if (ret)
3899 return ret;
3900
3901 oob += chip->ecc.postpad;
3902 }
3903 }
3904
3905 /* Calculate remaining oob bytes */
3906 i = mtd->oobsize - (oob - chip->oob_poi);
3907 if (i) {
3908 ret = nand_write_data_op(chip, oob, i, false);
3909 if (ret)
3910 return ret;
3911 }
3912
3913 return nand_prog_page_end_op(chip);
3914 }
3915
3916 /**
3917 * nand_write_page - write one page
3918 * @chip: NAND chip descriptor
3919 * @offset: address offset within the page
3920 * @data_len: length of actual data to be written
3921 * @buf: the data to write
3922 * @oob_required: must write chip->oob_poi to OOB
3923 * @page: page number to write
3924 * @raw: use _raw version of write_page
3925 */
3926 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3927 int data_len, const uint8_t *buf, int oob_required,
3928 int page, int raw)
3929 {
3930 struct mtd_info *mtd = nand_to_mtd(chip);
3931 int status, subpage;
3932
3933 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3934 chip->ecc.write_subpage)
3935 subpage = offset || (data_len < mtd->writesize);
3936 else
3937 subpage = 0;
3938
3939 if (unlikely(raw))
3940 status = chip->ecc.write_page_raw(chip, buf, oob_required,
3941 page);
3942 else if (subpage)
3943 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3944 oob_required, page);
3945 else
3946 status = chip->ecc.write_page(chip, buf, oob_required, page);
3947
3948 if (status < 0)
3949 return status;
3950
3951 return 0;
3952 }
3953
3954 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
3955
3956 /**
3957 * nand_do_write_ops - [INTERN] NAND write with ECC
3958 * @chip: NAND chip object
3959 * @to: offset to write to
3960 * @ops: oob operations description structure
3961 *
3962 * NAND write with ECC.
3963 */
3964 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3965 struct mtd_oob_ops *ops)
3966 {
3967 struct mtd_info *mtd = nand_to_mtd(chip);
3968 int chipnr, realpage, page, column;
3969 uint32_t writelen = ops->len;
3970
3971 uint32_t oobwritelen = ops->ooblen;
3972 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3973
3974 uint8_t *oob = ops->oobbuf;
3975 uint8_t *buf = ops->datbuf;
3976 int ret;
3977 int oob_required = oob ? 1 : 0;
3978
3979 ops->retlen = 0;
3980 if (!writelen)
3981 return 0;
3982
3983 /* Reject writes, which are not page aligned */
3984 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3985 pr_notice("%s: attempt to write non page aligned data\n",
3986 __func__);
3987 return -EINVAL;
3988 }
3989
3990 column = to & (mtd->writesize - 1);
3991
3992 chipnr = (int)(to >> chip->chip_shift);
3993 nand_select_target(chip, chipnr);
3994
3995 /* Check, if it is write protected */
3996 if (nand_check_wp(chip)) {
3997 ret = -EIO;
3998 goto err_out;
3999 }
4000
4001 realpage = (int)(to >> chip->page_shift);
4002 page = realpage & chip->pagemask;
4003
4004 /* Invalidate the page cache, when we write to the cached page */
4005 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4006 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
4007 chip->pagebuf = -1;
4008
4009 /* Don't allow multipage oob writes with offset */
4010 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4011 ret = -EINVAL;
4012 goto err_out;
4013 }
4014
4015 while (1) {
4016 int bytes = mtd->writesize;
4017 uint8_t *wbuf = buf;
4018 int use_bufpoi;
4019 int part_pagewr = (column || writelen < mtd->writesize);
4020
4021 if (part_pagewr)
4022 use_bufpoi = 1;
4023 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4024 use_bufpoi = !virt_addr_valid(buf) ||
4025 !IS_ALIGNED((unsigned long)buf,
4026 chip->buf_align);
4027 else
4028 use_bufpoi = 0;
4029
4030 /* Partial page write?, or need to use bounce buffer */
4031 if (use_bufpoi) {
4032 pr_debug("%s: using write bounce buffer for buf@%p\n",
4033 __func__, buf);
4034 if (part_pagewr)
4035 bytes = min_t(int, bytes - column, writelen);
4036 chip->pagebuf = -1;
4037 memset(chip->data_buf, 0xff, mtd->writesize);
4038 memcpy(&chip->data_buf[column], buf, bytes);
4039 wbuf = chip->data_buf;
4040 }
4041
4042 if (unlikely(oob)) {
4043 size_t len = min(oobwritelen, oobmaxlen);
4044 oob = nand_fill_oob(chip, oob, len, ops);
4045 oobwritelen -= len;
4046 } else {
4047 /* We still need to erase leftover OOB data */
4048 memset(chip->oob_poi, 0xff, mtd->oobsize);
4049 }
4050
4051 ret = nand_write_page(chip, column, bytes, wbuf,
4052 oob_required, page,
4053 (ops->mode == MTD_OPS_RAW));
4054 if (ret)
4055 break;
4056
4057 writelen -= bytes;
4058 if (!writelen)
4059 break;
4060
4061 column = 0;
4062 buf += bytes;
4063 realpage++;
4064
4065 page = realpage & chip->pagemask;
4066 /* Check, if we cross a chip boundary */
4067 if (!page) {
4068 chipnr++;
4069 nand_deselect_target(chip);
4070 nand_select_target(chip, chipnr);
4071 }
4072 }
4073
4074 ops->retlen = ops->len - writelen;
4075 if (unlikely(oob))
4076 ops->oobretlen = ops->ooblen;
4077
4078 err_out:
4079 nand_deselect_target(chip);
4080 return ret;
4081 }
4082
4083 /**
4084 * panic_nand_write - [MTD Interface] NAND write with ECC
4085 * @mtd: MTD device structure
4086 * @to: offset to write to
4087 * @len: number of bytes to write
4088 * @retlen: pointer to variable to store the number of written bytes
4089 * @buf: the data to write
4090 *
4091 * NAND write with ECC. Used when performing writes in interrupt context, this
4092 * may for example be called by mtdoops when writing an oops while in panic.
4093 */
4094 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4095 size_t *retlen, const uint8_t *buf)
4096 {
4097 struct nand_chip *chip = mtd_to_nand(mtd);
4098 int chipnr = (int)(to >> chip->chip_shift);
4099 struct mtd_oob_ops ops;
4100 int ret;
4101
4102 /* Grab the device */
4103 panic_nand_get_device(chip, FL_WRITING);
4104
4105 nand_select_target(chip, chipnr);
4106
4107 /* Wait for the device to get ready */
4108 panic_nand_wait(chip, 400);
4109
4110 memset(&ops, 0, sizeof(ops));
4111 ops.len = len;
4112 ops.datbuf = (uint8_t *)buf;
4113 ops.mode = MTD_OPS_PLACE_OOB;
4114
4115 ret = nand_do_write_ops(chip, to, &ops);
4116
4117 *retlen = ops.retlen;
4118 return ret;
4119 }
4120
4121 /**
4122 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4123 * @mtd: MTD device structure
4124 * @to: offset to write to
4125 * @ops: oob operation description structure
4126 */
4127 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4128 struct mtd_oob_ops *ops)
4129 {
4130 struct nand_chip *chip = mtd_to_nand(mtd);
4131 int ret = -ENOTSUPP;
4132
4133 ops->retlen = 0;
4134
4135 nand_get_device(chip, FL_WRITING);
4136
4137 switch (ops->mode) {
4138 case MTD_OPS_PLACE_OOB:
4139 case MTD_OPS_AUTO_OOB:
4140 case MTD_OPS_RAW:
4141 break;
4142
4143 default:
4144 goto out;
4145 }
4146
4147 if (!ops->datbuf)
4148 ret = nand_do_write_oob(chip, to, ops);
4149 else
4150 ret = nand_do_write_ops(chip, to, ops);
4151
4152 out:
4153 nand_release_device(chip);
4154 return ret;
4155 }
4156
4157 /**
4158 * single_erase - [GENERIC] NAND standard block erase command function
4159 * @chip: NAND chip object
4160 * @page: the page address of the block which will be erased
4161 *
4162 * Standard erase command for NAND chips. Returns NAND status.
4163 */
4164 static int single_erase(struct nand_chip *chip, int page)
4165 {
4166 unsigned int eraseblock;
4167
4168 /* Send commands to erase a block */
4169 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
4170
4171 return nand_erase_op(chip, eraseblock);
4172 }
4173
4174 /**
4175 * nand_erase - [MTD Interface] erase block(s)
4176 * @mtd: MTD device structure
4177 * @instr: erase instruction
4178 *
4179 * Erase one ore more blocks.
4180 */
4181 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4182 {
4183 return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4184 }
4185
4186 /**
4187 * nand_erase_nand - [INTERN] erase block(s)
4188 * @chip: NAND chip object
4189 * @instr: erase instruction
4190 * @allowbbt: allow erasing the bbt area
4191 *
4192 * Erase one ore more blocks.
4193 */
4194 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4195 int allowbbt)
4196 {
4197 int page, status, pages_per_block, ret, chipnr;
4198 loff_t len;
4199
4200 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4201 __func__, (unsigned long long)instr->addr,
4202 (unsigned long long)instr->len);
4203
4204 if (check_offs_len(chip, instr->addr, instr->len))
4205 return -EINVAL;
4206
4207 /* Grab the lock and see if the device is available */
4208 nand_get_device(chip, FL_ERASING);
4209
4210 /* Shift to get first page */
4211 page = (int)(instr->addr >> chip->page_shift);
4212 chipnr = (int)(instr->addr >> chip->chip_shift);
4213
4214 /* Calculate pages in each block */
4215 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4216
4217 /* Select the NAND device */
4218 nand_select_target(chip, chipnr);
4219
4220 /* Check, if it is write protected */
4221 if (nand_check_wp(chip)) {
4222 pr_debug("%s: device is write protected!\n",
4223 __func__);
4224 ret = -EIO;
4225 goto erase_exit;
4226 }
4227
4228 /* Loop through the pages */
4229 len = instr->len;
4230
4231 while (len) {
4232 /* Check if we have a bad block, we do not erase bad blocks! */
4233 if (nand_block_checkbad(chip, ((loff_t) page) <<
4234 chip->page_shift, allowbbt)) {
4235 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4236 __func__, page);
4237 ret = -EIO;
4238 goto erase_exit;
4239 }
4240
4241 /*
4242 * Invalidate the page cache, if we erase the block which
4243 * contains the current cached page.
4244 */
4245 if (page <= chip->pagebuf && chip->pagebuf <
4246 (page + pages_per_block))
4247 chip->pagebuf = -1;
4248
4249 if (chip->legacy.erase)
4250 status = chip->legacy.erase(chip,
4251 page & chip->pagemask);
4252 else
4253 status = single_erase(chip, page & chip->pagemask);
4254
4255 /* See if block erase succeeded */
4256 if (status) {
4257 pr_debug("%s: failed erase, page 0x%08x\n",
4258 __func__, page);
4259 ret = -EIO;
4260 instr->fail_addr =
4261 ((loff_t)page << chip->page_shift);
4262 goto erase_exit;
4263 }
4264
4265 /* Increment page address and decrement length */
4266 len -= (1ULL << chip->phys_erase_shift);
4267 page += pages_per_block;
4268
4269 /* Check, if we cross a chip boundary */
4270 if (len && !(page & chip->pagemask)) {
4271 chipnr++;
4272 nand_deselect_target(chip);
4273 nand_select_target(chip, chipnr);
4274 }
4275 }
4276
4277 ret = 0;
4278 erase_exit:
4279
4280 /* Deselect and wake up anyone waiting on the device */
4281 nand_deselect_target(chip);
4282 nand_release_device(chip);
4283
4284 /* Return more or less happy */
4285 return ret;
4286 }
4287
4288 /**
4289 * nand_sync - [MTD Interface] sync
4290 * @mtd: MTD device structure
4291 *
4292 * Sync is actually a wait for chip ready function.
4293 */
4294 static void nand_sync(struct mtd_info *mtd)
4295 {
4296 struct nand_chip *chip = mtd_to_nand(mtd);
4297
4298 pr_debug("%s: called\n", __func__);
4299
4300 /* Grab the lock and see if the device is available */
4301 nand_get_device(chip, FL_SYNCING);
4302 /* Release it and go back */
4303 nand_release_device(chip);
4304 }
4305
4306 /**
4307 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4308 * @mtd: MTD device structure
4309 * @offs: offset relative to mtd start
4310 */
4311 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4312 {
4313 struct nand_chip *chip = mtd_to_nand(mtd);
4314 int chipnr = (int)(offs >> chip->chip_shift);
4315 int ret;
4316
4317 /* Select the NAND device */
4318 nand_get_device(chip, FL_READING);
4319 nand_select_target(chip, chipnr);
4320
4321 ret = nand_block_checkbad(chip, offs, 0);
4322
4323 nand_deselect_target(chip);
4324 nand_release_device(chip);
4325
4326 return ret;
4327 }
4328
4329 /**
4330 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4331 * @mtd: MTD device structure
4332 * @ofs: offset relative to mtd start
4333 */
4334 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4335 {
4336 int ret;
4337
4338 ret = nand_block_isbad(mtd, ofs);
4339 if (ret) {
4340 /* If it was bad already, return success and do nothing */
4341 if (ret > 0)
4342 return 0;
4343 return ret;
4344 }
4345
4346 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4347 }
4348
4349 /**
4350 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4351 * @mtd: MTD device structure
4352 * @ofs: offset relative to mtd start
4353 * @len: length of mtd
4354 */
4355 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4356 {
4357 struct nand_chip *chip = mtd_to_nand(mtd);
4358 u32 part_start_block;
4359 u32 part_end_block;
4360 u32 part_start_die;
4361 u32 part_end_die;
4362
4363 /*
4364 * max_bb_per_die and blocks_per_die used to determine
4365 * the maximum bad block count.
4366 */
4367 if (!chip->max_bb_per_die || !chip->blocks_per_die)
4368 return -ENOTSUPP;
4369
4370 /* Get the start and end of the partition in erase blocks. */
4371 part_start_block = mtd_div_by_eb(ofs, mtd);
4372 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4373
4374 /* Get the start and end LUNs of the partition. */
4375 part_start_die = part_start_block / chip->blocks_per_die;
4376 part_end_die = part_end_block / chip->blocks_per_die;
4377
4378 /*
4379 * Look up the bad blocks per unit and multiply by the number of units
4380 * that the partition spans.
4381 */
4382 return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4383 }
4384
4385 /**
4386 * nand_suspend - [MTD Interface] Suspend the NAND flash
4387 * @mtd: MTD device structure
4388 */
4389 static int nand_suspend(struct mtd_info *mtd)
4390 {
4391 return nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED);
4392 }
4393
4394 /**
4395 * nand_resume - [MTD Interface] Resume the NAND flash
4396 * @mtd: MTD device structure
4397 */
4398 static void nand_resume(struct mtd_info *mtd)
4399 {
4400 struct nand_chip *chip = mtd_to_nand(mtd);
4401
4402 if (chip->state == FL_PM_SUSPENDED)
4403 nand_release_device(chip);
4404 else
4405 pr_err("%s called for a chip which is not in suspended state\n",
4406 __func__);
4407 }
4408
4409 /**
4410 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4411 * prevent further operations
4412 * @mtd: MTD device structure
4413 */
4414 static void nand_shutdown(struct mtd_info *mtd)
4415 {
4416 nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED);
4417 }
4418
4419 /* Set default functions */
4420 static void nand_set_defaults(struct nand_chip *chip)
4421 {
4422 /* If no controller is provided, use the dummy, legacy one. */
4423 if (!chip->controller) {
4424 chip->controller = &chip->legacy.dummy_controller;
4425 nand_controller_init(chip->controller);
4426 }
4427
4428 nand_legacy_set_defaults(chip);
4429
4430 if (!chip->buf_align)
4431 chip->buf_align = 1;
4432 }
4433
4434 /* Sanitize ONFI strings so we can safely print them */
4435 void sanitize_string(uint8_t *s, size_t len)
4436 {
4437 ssize_t i;
4438
4439 /* Null terminate */
4440 s[len - 1] = 0;
4441
4442 /* Remove non printable chars */
4443 for (i = 0; i < len - 1; i++) {
4444 if (s[i] < ' ' || s[i] > 127)
4445 s[i] = '?';
4446 }
4447
4448 /* Remove trailing spaces */
4449 strim(s);
4450 }
4451
4452 /*
4453 * nand_id_has_period - Check if an ID string has a given wraparound period
4454 * @id_data: the ID string
4455 * @arrlen: the length of the @id_data array
4456 * @period: the period of repitition
4457 *
4458 * Check if an ID string is repeated within a given sequence of bytes at
4459 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4460 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4461 * if the repetition has a period of @period; otherwise, returns zero.
4462 */
4463 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4464 {
4465 int i, j;
4466 for (i = 0; i < period; i++)
4467 for (j = i + period; j < arrlen; j += period)
4468 if (id_data[i] != id_data[j])
4469 return 0;
4470 return 1;
4471 }
4472
4473 /*
4474 * nand_id_len - Get the length of an ID string returned by CMD_READID
4475 * @id_data: the ID string
4476 * @arrlen: the length of the @id_data array
4477
4478 * Returns the length of the ID string, according to known wraparound/trailing
4479 * zero patterns. If no pattern exists, returns the length of the array.
4480 */
4481 static int nand_id_len(u8 *id_data, int arrlen)
4482 {
4483 int last_nonzero, period;
4484
4485 /* Find last non-zero byte */
4486 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4487 if (id_data[last_nonzero])
4488 break;
4489
4490 /* All zeros */
4491 if (last_nonzero < 0)
4492 return 0;
4493
4494 /* Calculate wraparound period */
4495 for (period = 1; period < arrlen; period++)
4496 if (nand_id_has_period(id_data, arrlen, period))
4497 break;
4498
4499 /* There's a repeated pattern */
4500 if (period < arrlen)
4501 return period;
4502
4503 /* There are trailing zeros */
4504 if (last_nonzero < arrlen - 1)
4505 return last_nonzero + 1;
4506
4507 /* No pattern detected */
4508 return arrlen;
4509 }
4510
4511 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4512 static int nand_get_bits_per_cell(u8 cellinfo)
4513 {
4514 int bits;
4515
4516 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4517 bits >>= NAND_CI_CELLTYPE_SHIFT;
4518 return bits + 1;
4519 }
4520
4521 /*
4522 * Many new NAND share similar device ID codes, which represent the size of the
4523 * chip. The rest of the parameters must be decoded according to generic or
4524 * manufacturer-specific "extended ID" decoding patterns.
4525 */
4526 void nand_decode_ext_id(struct nand_chip *chip)
4527 {
4528 struct mtd_info *mtd = nand_to_mtd(chip);
4529 int extid;
4530 u8 *id_data = chip->id.data;
4531 /* The 3rd id byte holds MLC / multichip data */
4532 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4533 /* The 4th id byte is the important one */
4534 extid = id_data[3];
4535
4536 /* Calc pagesize */
4537 mtd->writesize = 1024 << (extid & 0x03);
4538 extid >>= 2;
4539 /* Calc oobsize */
4540 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4541 extid >>= 2;
4542 /* Calc blocksize. Blocksize is multiples of 64KiB */
4543 mtd->erasesize = (64 * 1024) << (extid & 0x03);
4544 extid >>= 2;
4545 /* Get buswidth information */
4546 if (extid & 0x1)
4547 chip->options |= NAND_BUSWIDTH_16;
4548 }
4549 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4550
4551 /*
4552 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4553 * decodes a matching ID table entry and assigns the MTD size parameters for
4554 * the chip.
4555 */
4556 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4557 {
4558 struct mtd_info *mtd = nand_to_mtd(chip);
4559
4560 mtd->erasesize = type->erasesize;
4561 mtd->writesize = type->pagesize;
4562 mtd->oobsize = mtd->writesize / 32;
4563
4564 /* All legacy ID NAND are small-page, SLC */
4565 chip->bits_per_cell = 1;
4566 }
4567
4568 /*
4569 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4570 * heuristic patterns using various detected parameters (e.g., manufacturer,
4571 * page size, cell-type information).
4572 */
4573 static void nand_decode_bbm_options(struct nand_chip *chip)
4574 {
4575 struct mtd_info *mtd = nand_to_mtd(chip);
4576
4577 /* Set the bad block position */
4578 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4579 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
4580 else
4581 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
4582 }
4583
4584 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4585 {
4586 return type->id_len;
4587 }
4588
4589 static bool find_full_id_nand(struct nand_chip *chip,
4590 struct nand_flash_dev *type)
4591 {
4592 struct mtd_info *mtd = nand_to_mtd(chip);
4593 u8 *id_data = chip->id.data;
4594
4595 if (!strncmp(type->id, id_data, type->id_len)) {
4596 mtd->writesize = type->pagesize;
4597 mtd->erasesize = type->erasesize;
4598 mtd->oobsize = type->oobsize;
4599
4600 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4601 chip->chipsize = (uint64_t)type->chipsize << 20;
4602 chip->options |= type->options;
4603 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
4604 chip->ecc_step_ds = NAND_ECC_STEP(type);
4605 chip->onfi_timing_mode_default =
4606 type->onfi_timing_mode_default;
4607
4608 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4609 if (!chip->parameters.model)
4610 return false;
4611
4612 return true;
4613 }
4614 return false;
4615 }
4616
4617 /*
4618 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4619 * compliant and does not have a full-id or legacy-id entry in the nand_ids
4620 * table.
4621 */
4622 static void nand_manufacturer_detect(struct nand_chip *chip)
4623 {
4624 /*
4625 * Try manufacturer detection if available and use
4626 * nand_decode_ext_id() otherwise.
4627 */
4628 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4629 chip->manufacturer.desc->ops->detect) {
4630 /* The 3rd id byte holds MLC / multichip data */
4631 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4632 chip->manufacturer.desc->ops->detect(chip);
4633 } else {
4634 nand_decode_ext_id(chip);
4635 }
4636 }
4637
4638 /*
4639 * Manufacturer initialization. This function is called for all NANDs including
4640 * ONFI and JEDEC compliant ones.
4641 * Manufacturer drivers should put all their specific initialization code in
4642 * their ->init() hook.
4643 */
4644 static int nand_manufacturer_init(struct nand_chip *chip)
4645 {
4646 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4647 !chip->manufacturer.desc->ops->init)
4648 return 0;
4649
4650 return chip->manufacturer.desc->ops->init(chip);
4651 }
4652
4653 /*
4654 * Manufacturer cleanup. This function is called for all NANDs including
4655 * ONFI and JEDEC compliant ones.
4656 * Manufacturer drivers should put all their specific cleanup code in their
4657 * ->cleanup() hook.
4658 */
4659 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4660 {
4661 /* Release manufacturer private data */
4662 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4663 chip->manufacturer.desc->ops->cleanup)
4664 chip->manufacturer.desc->ops->cleanup(chip);
4665 }
4666
4667 static const char *
4668 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4669 {
4670 return manufacturer ? manufacturer->name : "Unknown";
4671 }
4672
4673 /*
4674 * Get the flash and manufacturer id and lookup if the type is supported.
4675 */
4676 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4677 {
4678 const struct nand_manufacturer *manufacturer;
4679 struct mtd_info *mtd = nand_to_mtd(chip);
4680 int busw, ret;
4681 u8 *id_data = chip->id.data;
4682 u8 maf_id, dev_id;
4683
4684 /*
4685 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4686 * after power-up.
4687 */
4688 ret = nand_reset(chip, 0);
4689 if (ret)
4690 return ret;
4691
4692 /* Select the device */
4693 nand_select_target(chip, 0);
4694
4695 /* Send the command for reading device ID */
4696 ret = nand_readid_op(chip, 0, id_data, 2);
4697 if (ret)
4698 return ret;
4699
4700 /* Read manufacturer and device IDs */
4701 maf_id = id_data[0];
4702 dev_id = id_data[1];
4703
4704 /*
4705 * Try again to make sure, as some systems the bus-hold or other
4706 * interface concerns can cause random data which looks like a
4707 * possibly credible NAND flash to appear. If the two results do
4708 * not match, ignore the device completely.
4709 */
4710
4711 /* Read entire ID string */
4712 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4713 if (ret)
4714 return ret;
4715
4716 if (id_data[0] != maf_id || id_data[1] != dev_id) {
4717 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4718 maf_id, dev_id, id_data[0], id_data[1]);
4719 return -ENODEV;
4720 }
4721
4722 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4723
4724 /* Try to identify manufacturer */
4725 manufacturer = nand_get_manufacturer(maf_id);
4726 chip->manufacturer.desc = manufacturer;
4727
4728 if (!type)
4729 type = nand_flash_ids;
4730
4731 /*
4732 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4733 * override it.
4734 * This is required to make sure initial NAND bus width set by the
4735 * NAND controller driver is coherent with the real NAND bus width
4736 * (extracted by auto-detection code).
4737 */
4738 busw = chip->options & NAND_BUSWIDTH_16;
4739
4740 /*
4741 * The flag is only set (never cleared), reset it to its default value
4742 * before starting auto-detection.
4743 */
4744 chip->options &= ~NAND_BUSWIDTH_16;
4745
4746 for (; type->name != NULL; type++) {
4747 if (is_full_id_nand(type)) {
4748 if (find_full_id_nand(chip, type))
4749 goto ident_done;
4750 } else if (dev_id == type->dev_id) {
4751 break;
4752 }
4753 }
4754
4755 if (!type->name || !type->pagesize) {
4756 /* Check if the chip is ONFI compliant */
4757 ret = nand_onfi_detect(chip);
4758 if (ret < 0)
4759 return ret;
4760 else if (ret)
4761 goto ident_done;
4762
4763 /* Check if the chip is JEDEC compliant */
4764 ret = nand_jedec_detect(chip);
4765 if (ret < 0)
4766 return ret;
4767 else if (ret)
4768 goto ident_done;
4769 }
4770
4771 if (!type->name)
4772 return -ENODEV;
4773
4774 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4775 if (!chip->parameters.model)
4776 return -ENOMEM;
4777
4778 chip->chipsize = (uint64_t)type->chipsize << 20;
4779
4780 if (!type->pagesize)
4781 nand_manufacturer_detect(chip);
4782 else
4783 nand_decode_id(chip, type);
4784
4785 /* Get chip options */
4786 chip->options |= type->options;
4787
4788 ident_done:
4789 if (!mtd->name)
4790 mtd->name = chip->parameters.model;
4791
4792 if (chip->options & NAND_BUSWIDTH_AUTO) {
4793 WARN_ON(busw & NAND_BUSWIDTH_16);
4794 nand_set_defaults(chip);
4795 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4796 /*
4797 * Check, if buswidth is correct. Hardware drivers should set
4798 * chip correct!
4799 */
4800 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4801 maf_id, dev_id);
4802 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4803 mtd->name);
4804 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4805 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4806 ret = -EINVAL;
4807
4808 goto free_detect_allocation;
4809 }
4810
4811 nand_decode_bbm_options(chip);
4812
4813 /* Calculate the address shift from the page size */
4814 chip->page_shift = ffs(mtd->writesize) - 1;
4815 /* Convert chipsize to number of pages per chip -1 */
4816 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4817
4818 chip->bbt_erase_shift = chip->phys_erase_shift =
4819 ffs(mtd->erasesize) - 1;
4820 if (chip->chipsize & 0xffffffff)
4821 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4822 else {
4823 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4824 chip->chip_shift += 32 - 1;
4825 }
4826
4827 if (chip->chip_shift - chip->page_shift > 16)
4828 chip->options |= NAND_ROW_ADDR_3;
4829
4830 chip->badblockbits = 8;
4831
4832 nand_legacy_adjust_cmdfunc(chip);
4833
4834 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4835 maf_id, dev_id);
4836 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4837 chip->parameters.model);
4838 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4839 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4840 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4841 return 0;
4842
4843 free_detect_allocation:
4844 kfree(chip->parameters.model);
4845
4846 return ret;
4847 }
4848
4849 static const char * const nand_ecc_modes[] = {
4850 [NAND_ECC_NONE] = "none",
4851 [NAND_ECC_SOFT] = "soft",
4852 [NAND_ECC_HW] = "hw",
4853 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
4854 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4855 [NAND_ECC_ON_DIE] = "on-die",
4856 };
4857
4858 static int of_get_nand_ecc_mode(struct device_node *np)
4859 {
4860 const char *pm;
4861 int err, i;
4862
4863 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4864 if (err < 0)
4865 return err;
4866
4867 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4868 if (!strcasecmp(pm, nand_ecc_modes[i]))
4869 return i;
4870
4871 /*
4872 * For backward compatibility we support few obsoleted values that don't
4873 * have their mappings into nand_ecc_modes_t anymore (they were merged
4874 * with other enums).
4875 */
4876 if (!strcasecmp(pm, "soft_bch"))
4877 return NAND_ECC_SOFT;
4878
4879 return -ENODEV;
4880 }
4881
4882 static const char * const nand_ecc_algos[] = {
4883 [NAND_ECC_HAMMING] = "hamming",
4884 [NAND_ECC_BCH] = "bch",
4885 [NAND_ECC_RS] = "rs",
4886 };
4887
4888 static int of_get_nand_ecc_algo(struct device_node *np)
4889 {
4890 const char *pm;
4891 int err, i;
4892
4893 err = of_property_read_string(np, "nand-ecc-algo", &pm);
4894 if (!err) {
4895 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4896 if (!strcasecmp(pm, nand_ecc_algos[i]))
4897 return i;
4898 return -ENODEV;
4899 }
4900
4901 /*
4902 * For backward compatibility we also read "nand-ecc-mode" checking
4903 * for some obsoleted values that were specifying ECC algorithm.
4904 */
4905 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4906 if (err < 0)
4907 return err;
4908
4909 if (!strcasecmp(pm, "soft"))
4910 return NAND_ECC_HAMMING;
4911 else if (!strcasecmp(pm, "soft_bch"))
4912 return NAND_ECC_BCH;
4913
4914 return -ENODEV;
4915 }
4916
4917 static int of_get_nand_ecc_step_size(struct device_node *np)
4918 {
4919 int ret;
4920 u32 val;
4921
4922 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4923 return ret ? ret : val;
4924 }
4925
4926 static int of_get_nand_ecc_strength(struct device_node *np)
4927 {
4928 int ret;
4929 u32 val;
4930
4931 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4932 return ret ? ret : val;
4933 }
4934
4935 static int of_get_nand_bus_width(struct device_node *np)
4936 {
4937 u32 val;
4938
4939 if (of_property_read_u32(np, "nand-bus-width", &val))
4940 return 8;
4941
4942 switch (val) {
4943 case 8:
4944 case 16:
4945 return val;
4946 default:
4947 return -EIO;
4948 }
4949 }
4950
4951 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4952 {
4953 return of_property_read_bool(np, "nand-on-flash-bbt");
4954 }
4955
4956 static int nand_dt_init(struct nand_chip *chip)
4957 {
4958 struct device_node *dn = nand_get_flash_node(chip);
4959 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4960
4961 if (!dn)
4962 return 0;
4963
4964 if (of_get_nand_bus_width(dn) == 16)
4965 chip->options |= NAND_BUSWIDTH_16;
4966
4967 if (of_property_read_bool(dn, "nand-is-boot-medium"))
4968 chip->options |= NAND_IS_BOOT_MEDIUM;
4969
4970 if (of_get_nand_on_flash_bbt(dn))
4971 chip->bbt_options |= NAND_BBT_USE_FLASH;
4972
4973 ecc_mode = of_get_nand_ecc_mode(dn);
4974 ecc_algo = of_get_nand_ecc_algo(dn);
4975 ecc_strength = of_get_nand_ecc_strength(dn);
4976 ecc_step = of_get_nand_ecc_step_size(dn);
4977
4978 if (ecc_mode >= 0)
4979 chip->ecc.mode = ecc_mode;
4980
4981 if (ecc_algo >= 0)
4982 chip->ecc.algo = ecc_algo;
4983
4984 if (ecc_strength >= 0)
4985 chip->ecc.strength = ecc_strength;
4986
4987 if (ecc_step > 0)
4988 chip->ecc.size = ecc_step;
4989
4990 if (of_property_read_bool(dn, "nand-ecc-maximize"))
4991 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4992
4993 return 0;
4994 }
4995
4996 /**
4997 * nand_scan_ident - Scan for the NAND device
4998 * @chip: NAND chip object
4999 * @maxchips: number of chips to scan for
5000 * @table: alternative NAND ID table
5001 *
5002 * This is the first phase of the normal nand_scan() function. It reads the
5003 * flash ID and sets up MTD fields accordingly.
5004 *
5005 * This helper used to be called directly from controller drivers that needed
5006 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5007 * prevented dynamic allocations during this phase which was unconvenient and
5008 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5009 */
5010 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5011 struct nand_flash_dev *table)
5012 {
5013 struct mtd_info *mtd = nand_to_mtd(chip);
5014 int nand_maf_id, nand_dev_id;
5015 unsigned int i;
5016 int ret;
5017
5018 /* Assume all dies are deselected when we enter nand_scan_ident(). */
5019 chip->cur_cs = -1;
5020
5021 /* Enforce the right timings for reset/detection */
5022 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5023
5024 ret = nand_dt_init(chip);
5025 if (ret)
5026 return ret;
5027
5028 if (!mtd->name && mtd->dev.parent)
5029 mtd->name = dev_name(mtd->dev.parent);
5030
5031 /*
5032 * Start with chips->numchips = maxchips to let nand_select_target() do
5033 * its job. chip->numchips will be adjusted after.
5034 */
5035 chip->numchips = maxchips;
5036
5037 /* Set the default functions */
5038 nand_set_defaults(chip);
5039
5040 ret = nand_legacy_check_hooks(chip);
5041 if (ret)
5042 return ret;
5043
5044 /* Read the flash type */
5045 ret = nand_detect(chip, table);
5046 if (ret) {
5047 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5048 pr_warn("No NAND device found\n");
5049 nand_deselect_target(chip);
5050 return ret;
5051 }
5052
5053 nand_maf_id = chip->id.data[0];
5054 nand_dev_id = chip->id.data[1];
5055
5056 nand_deselect_target(chip);
5057
5058 /* Check for a chip array */
5059 for (i = 1; i < maxchips; i++) {
5060 u8 id[2];
5061
5062 /* See comment in nand_get_flash_type for reset */
5063 nand_reset(chip, i);
5064
5065 nand_select_target(chip, i);
5066 /* Send the command for reading device ID */
5067 nand_readid_op(chip, 0, id, sizeof(id));
5068 /* Read manufacturer and device IDs */
5069 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5070 nand_deselect_target(chip);
5071 break;
5072 }
5073 nand_deselect_target(chip);
5074 }
5075 if (i > 1)
5076 pr_info("%d chips detected\n", i);
5077
5078 /* Store the number of chips and calc total size for mtd */
5079 chip->numchips = i;
5080 mtd->size = i * chip->chipsize;
5081
5082 return 0;
5083 }
5084
5085 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5086 {
5087 kfree(chip->parameters.model);
5088 kfree(chip->parameters.onfi);
5089 }
5090
5091 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5092 {
5093 struct mtd_info *mtd = nand_to_mtd(chip);
5094 struct nand_ecc_ctrl *ecc = &chip->ecc;
5095
5096 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5097 return -EINVAL;
5098
5099 switch (ecc->algo) {
5100 case NAND_ECC_HAMMING:
5101 ecc->calculate = nand_calculate_ecc;
5102 ecc->correct = nand_correct_data;
5103 ecc->read_page = nand_read_page_swecc;
5104 ecc->read_subpage = nand_read_subpage;
5105 ecc->write_page = nand_write_page_swecc;
5106 ecc->read_page_raw = nand_read_page_raw;
5107 ecc->write_page_raw = nand_write_page_raw;
5108 ecc->read_oob = nand_read_oob_std;
5109 ecc->write_oob = nand_write_oob_std;
5110 if (!ecc->size)
5111 ecc->size = 256;
5112 ecc->bytes = 3;
5113 ecc->strength = 1;
5114
5115 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC))
5116 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5117
5118 return 0;
5119 case NAND_ECC_BCH:
5120 if (!mtd_nand_has_bch()) {
5121 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5122 return -EINVAL;
5123 }
5124 ecc->calculate = nand_bch_calculate_ecc;
5125 ecc->correct = nand_bch_correct_data;
5126 ecc->read_page = nand_read_page_swecc;
5127 ecc->read_subpage = nand_read_subpage;
5128 ecc->write_page = nand_write_page_swecc;
5129 ecc->read_page_raw = nand_read_page_raw;
5130 ecc->write_page_raw = nand_write_page_raw;
5131 ecc->read_oob = nand_read_oob_std;
5132 ecc->write_oob = nand_write_oob_std;
5133
5134 /*
5135 * Board driver should supply ecc.size and ecc.strength
5136 * values to select how many bits are correctable.
5137 * Otherwise, default to 4 bits for large page devices.
5138 */
5139 if (!ecc->size && (mtd->oobsize >= 64)) {
5140 ecc->size = 512;
5141 ecc->strength = 4;
5142 }
5143
5144 /*
5145 * if no ecc placement scheme was provided pickup the default
5146 * large page one.
5147 */
5148 if (!mtd->ooblayout) {
5149 /* handle large page devices only */
5150 if (mtd->oobsize < 64) {
5151 WARN(1, "OOB layout is required when using software BCH on small pages\n");
5152 return -EINVAL;
5153 }
5154
5155 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5156
5157 }
5158
5159 /*
5160 * We can only maximize ECC config when the default layout is
5161 * used, otherwise we don't know how many bytes can really be
5162 * used.
5163 */
5164 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5165 ecc->options & NAND_ECC_MAXIMIZE) {
5166 int steps, bytes;
5167
5168 /* Always prefer 1k blocks over 512bytes ones */
5169 ecc->size = 1024;
5170 steps = mtd->writesize / ecc->size;
5171
5172 /* Reserve 2 bytes for the BBM */
5173 bytes = (mtd->oobsize - 2) / steps;
5174 ecc->strength = bytes * 8 / fls(8 * ecc->size);
5175 }
5176
5177 /* See nand_bch_init() for details. */
5178 ecc->bytes = 0;
5179 ecc->priv = nand_bch_init(mtd);
5180 if (!ecc->priv) {
5181 WARN(1, "BCH ECC initialization failed!\n");
5182 return -EINVAL;
5183 }
5184 return 0;
5185 default:
5186 WARN(1, "Unsupported ECC algorithm!\n");
5187 return -EINVAL;
5188 }
5189 }
5190
5191 /**
5192 * nand_check_ecc_caps - check the sanity of preset ECC settings
5193 * @chip: nand chip info structure
5194 * @caps: ECC caps info structure
5195 * @oobavail: OOB size that the ECC engine can use
5196 *
5197 * When ECC step size and strength are already set, check if they are supported
5198 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5199 * On success, the calculated ECC bytes is set.
5200 */
5201 static int
5202 nand_check_ecc_caps(struct nand_chip *chip,
5203 const struct nand_ecc_caps *caps, int oobavail)
5204 {
5205 struct mtd_info *mtd = nand_to_mtd(chip);
5206 const struct nand_ecc_step_info *stepinfo;
5207 int preset_step = chip->ecc.size;
5208 int preset_strength = chip->ecc.strength;
5209 int ecc_bytes, nsteps = mtd->writesize / preset_step;
5210 int i, j;
5211
5212 for (i = 0; i < caps->nstepinfos; i++) {
5213 stepinfo = &caps->stepinfos[i];
5214
5215 if (stepinfo->stepsize != preset_step)
5216 continue;
5217
5218 for (j = 0; j < stepinfo->nstrengths; j++) {
5219 if (stepinfo->strengths[j] != preset_strength)
5220 continue;
5221
5222 ecc_bytes = caps->calc_ecc_bytes(preset_step,
5223 preset_strength);
5224 if (WARN_ON_ONCE(ecc_bytes < 0))
5225 return ecc_bytes;
5226
5227 if (ecc_bytes * nsteps > oobavail) {
5228 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5229 preset_step, preset_strength);
5230 return -ENOSPC;
5231 }
5232
5233 chip->ecc.bytes = ecc_bytes;
5234
5235 return 0;
5236 }
5237 }
5238
5239 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5240 preset_step, preset_strength);
5241
5242 return -ENOTSUPP;
5243 }
5244
5245 /**
5246 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5247 * @chip: nand chip info structure
5248 * @caps: ECC engine caps info structure
5249 * @oobavail: OOB size that the ECC engine can use
5250 *
5251 * If a chip's ECC requirement is provided, try to meet it with the least
5252 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5253 * On success, the chosen ECC settings are set.
5254 */
5255 static int
5256 nand_match_ecc_req(struct nand_chip *chip,
5257 const struct nand_ecc_caps *caps, int oobavail)
5258 {
5259 struct mtd_info *mtd = nand_to_mtd(chip);
5260 const struct nand_ecc_step_info *stepinfo;
5261 int req_step = chip->ecc_step_ds;
5262 int req_strength = chip->ecc_strength_ds;
5263 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5264 int best_step, best_strength, best_ecc_bytes;
5265 int best_ecc_bytes_total = INT_MAX;
5266 int i, j;
5267
5268 /* No information provided by the NAND chip */
5269 if (!req_step || !req_strength)
5270 return -ENOTSUPP;
5271
5272 /* number of correctable bits the chip requires in a page */
5273 req_corr = mtd->writesize / req_step * req_strength;
5274
5275 for (i = 0; i < caps->nstepinfos; i++) {
5276 stepinfo = &caps->stepinfos[i];
5277 step_size = stepinfo->stepsize;
5278
5279 for (j = 0; j < stepinfo->nstrengths; j++) {
5280 strength = stepinfo->strengths[j];
5281
5282 /*
5283 * If both step size and strength are smaller than the
5284 * chip's requirement, it is not easy to compare the
5285 * resulted reliability.
5286 */
5287 if (step_size < req_step && strength < req_strength)
5288 continue;
5289
5290 if (mtd->writesize % step_size)
5291 continue;
5292
5293 nsteps = mtd->writesize / step_size;
5294
5295 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5296 if (WARN_ON_ONCE(ecc_bytes < 0))
5297 continue;
5298 ecc_bytes_total = ecc_bytes * nsteps;
5299
5300 if (ecc_bytes_total > oobavail ||
5301 strength * nsteps < req_corr)
5302 continue;
5303
5304 /*
5305 * We assume the best is to meet the chip's requrement
5306 * with the least number of ECC bytes.
5307 */
5308 if (ecc_bytes_total < best_ecc_bytes_total) {
5309 best_ecc_bytes_total = ecc_bytes_total;
5310 best_step = step_size;
5311 best_strength = strength;
5312 best_ecc_bytes = ecc_bytes;
5313 }
5314 }
5315 }
5316
5317 if (best_ecc_bytes_total == INT_MAX)
5318 return -ENOTSUPP;
5319
5320 chip->ecc.size = best_step;
5321 chip->ecc.strength = best_strength;
5322 chip->ecc.bytes = best_ecc_bytes;
5323
5324 return 0;
5325 }
5326
5327 /**
5328 * nand_maximize_ecc - choose the max ECC strength available
5329 * @chip: nand chip info structure
5330 * @caps: ECC engine caps info structure
5331 * @oobavail: OOB size that the ECC engine can use
5332 *
5333 * Choose the max ECC strength that is supported on the controller, and can fit
5334 * within the chip's OOB. On success, the chosen ECC settings are set.
5335 */
5336 static int
5337 nand_maximize_ecc(struct nand_chip *chip,
5338 const struct nand_ecc_caps *caps, int oobavail)
5339 {
5340 struct mtd_info *mtd = nand_to_mtd(chip);
5341 const struct nand_ecc_step_info *stepinfo;
5342 int step_size, strength, nsteps, ecc_bytes, corr;
5343 int best_corr = 0;
5344 int best_step = 0;
5345 int best_strength, best_ecc_bytes;
5346 int i, j;
5347
5348 for (i = 0; i < caps->nstepinfos; i++) {
5349 stepinfo = &caps->stepinfos[i];
5350 step_size = stepinfo->stepsize;
5351
5352 /* If chip->ecc.size is already set, respect it */
5353 if (chip->ecc.size && step_size != chip->ecc.size)
5354 continue;
5355
5356 for (j = 0; j < stepinfo->nstrengths; j++) {
5357 strength = stepinfo->strengths[j];
5358
5359 if (mtd->writesize % step_size)
5360 continue;
5361
5362 nsteps = mtd->writesize / step_size;
5363
5364 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5365 if (WARN_ON_ONCE(ecc_bytes < 0))
5366 continue;
5367
5368 if (ecc_bytes * nsteps > oobavail)
5369 continue;
5370
5371 corr = strength * nsteps;
5372
5373 /*
5374 * If the number of correctable bits is the same,
5375 * bigger step_size has more reliability.
5376 */
5377 if (corr > best_corr ||
5378 (corr == best_corr && step_size > best_step)) {
5379 best_corr = corr;
5380 best_step = step_size;
5381 best_strength = strength;
5382 best_ecc_bytes = ecc_bytes;
5383 }
5384 }
5385 }
5386
5387 if (!best_corr)
5388 return -ENOTSUPP;
5389
5390 chip->ecc.size = best_step;
5391 chip->ecc.strength = best_strength;
5392 chip->ecc.bytes = best_ecc_bytes;
5393
5394 return 0;
5395 }
5396
5397 /**
5398 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5399 * @chip: nand chip info structure
5400 * @caps: ECC engine caps info structure
5401 * @oobavail: OOB size that the ECC engine can use
5402 *
5403 * Choose the ECC configuration according to following logic
5404 *
5405 * 1. If both ECC step size and ECC strength are already set (usually by DT)
5406 * then check if it is supported by this controller.
5407 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5408 * 3. Otherwise, try to match the ECC step size and ECC strength closest
5409 * to the chip's requirement. If available OOB size can't fit the chip
5410 * requirement then fallback to the maximum ECC step size and ECC strength.
5411 *
5412 * On success, the chosen ECC settings are set.
5413 */
5414 int nand_ecc_choose_conf(struct nand_chip *chip,
5415 const struct nand_ecc_caps *caps, int oobavail)
5416 {
5417 struct mtd_info *mtd = nand_to_mtd(chip);
5418
5419 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5420 return -EINVAL;
5421
5422 if (chip->ecc.size && chip->ecc.strength)
5423 return nand_check_ecc_caps(chip, caps, oobavail);
5424
5425 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5426 return nand_maximize_ecc(chip, caps, oobavail);
5427
5428 if (!nand_match_ecc_req(chip, caps, oobavail))
5429 return 0;
5430
5431 return nand_maximize_ecc(chip, caps, oobavail);
5432 }
5433 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5434
5435 /*
5436 * Check if the chip configuration meet the datasheet requirements.
5437
5438 * If our configuration corrects A bits per B bytes and the minimum
5439 * required correction level is X bits per Y bytes, then we must ensure
5440 * both of the following are true:
5441 *
5442 * (1) A / B >= X / Y
5443 * (2) A >= X
5444 *
5445 * Requirement (1) ensures we can correct for the required bitflip density.
5446 * Requirement (2) ensures we can correct even when all bitflips are clumped
5447 * in the same sector.
5448 */
5449 static bool nand_ecc_strength_good(struct nand_chip *chip)
5450 {
5451 struct mtd_info *mtd = nand_to_mtd(chip);
5452 struct nand_ecc_ctrl *ecc = &chip->ecc;
5453 int corr, ds_corr;
5454
5455 if (ecc->size == 0 || chip->ecc_step_ds == 0)
5456 /* Not enough information */
5457 return true;
5458
5459 /*
5460 * We get the number of corrected bits per page to compare
5461 * the correction density.
5462 */
5463 corr = (mtd->writesize * ecc->strength) / ecc->size;
5464 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
5465
5466 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
5467 }
5468
5469 /**
5470 * nand_scan_tail - Scan for the NAND device
5471 * @chip: NAND chip object
5472 *
5473 * This is the second phase of the normal nand_scan() function. It fills out
5474 * all the uninitialized function pointers with the defaults and scans for a
5475 * bad block table if appropriate.
5476 */
5477 static int nand_scan_tail(struct nand_chip *chip)
5478 {
5479 struct mtd_info *mtd = nand_to_mtd(chip);
5480 struct nand_ecc_ctrl *ecc = &chip->ecc;
5481 int ret, i;
5482
5483 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
5484 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5485 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5486 return -EINVAL;
5487 }
5488
5489 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5490 if (!chip->data_buf)
5491 return -ENOMEM;
5492
5493 /*
5494 * FIXME: some NAND manufacturer drivers expect the first die to be
5495 * selected when manufacturer->init() is called. They should be fixed
5496 * to explictly select the relevant die when interacting with the NAND
5497 * chip.
5498 */
5499 nand_select_target(chip, 0);
5500 ret = nand_manufacturer_init(chip);
5501 nand_deselect_target(chip);
5502 if (ret)
5503 goto err_free_buf;
5504
5505 /* Set the internal oob buffer location, just after the page data */
5506 chip->oob_poi = chip->data_buf + mtd->writesize;
5507
5508 /*
5509 * If no default placement scheme is given, select an appropriate one.
5510 */
5511 if (!mtd->ooblayout &&
5512 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5513 switch (mtd->oobsize) {
5514 case 8:
5515 case 16:
5516 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5517 break;
5518 case 64:
5519 case 128:
5520 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5521 break;
5522 default:
5523 /*
5524 * Expose the whole OOB area to users if ECC_NONE
5525 * is passed. We could do that for all kind of
5526 * ->oobsize, but we must keep the old large/small
5527 * page with ECC layout when ->oobsize <= 128 for
5528 * compatibility reasons.
5529 */
5530 if (ecc->mode == NAND_ECC_NONE) {
5531 mtd_set_ooblayout(mtd,
5532 &nand_ooblayout_lp_ops);
5533 break;
5534 }
5535
5536 WARN(1, "No oob scheme defined for oobsize %d\n",
5537 mtd->oobsize);
5538 ret = -EINVAL;
5539 goto err_nand_manuf_cleanup;
5540 }
5541 }
5542
5543 /*
5544 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5545 * selected and we have 256 byte pagesize fallback to software ECC
5546 */
5547
5548 switch (ecc->mode) {
5549 case NAND_ECC_HW_OOB_FIRST:
5550 /* Similar to NAND_ECC_HW, but a separate read_page handle */
5551 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5552 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5553 ret = -EINVAL;
5554 goto err_nand_manuf_cleanup;
5555 }
5556 if (!ecc->read_page)
5557 ecc->read_page = nand_read_page_hwecc_oob_first;
5558
5559 case NAND_ECC_HW:
5560 /* Use standard hwecc read page function? */
5561 if (!ecc->read_page)
5562 ecc->read_page = nand_read_page_hwecc;
5563 if (!ecc->write_page)
5564 ecc->write_page = nand_write_page_hwecc;
5565 if (!ecc->read_page_raw)
5566 ecc->read_page_raw = nand_read_page_raw;
5567 if (!ecc->write_page_raw)
5568 ecc->write_page_raw = nand_write_page_raw;
5569 if (!ecc->read_oob)
5570 ecc->read_oob = nand_read_oob_std;
5571 if (!ecc->write_oob)
5572 ecc->write_oob = nand_write_oob_std;
5573 if (!ecc->read_subpage)
5574 ecc->read_subpage = nand_read_subpage;
5575 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5576 ecc->write_subpage = nand_write_subpage_hwecc;
5577
5578 case NAND_ECC_HW_SYNDROME:
5579 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5580 (!ecc->read_page ||
5581 ecc->read_page == nand_read_page_hwecc ||
5582 !ecc->write_page ||
5583 ecc->write_page == nand_write_page_hwecc)) {
5584 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5585 ret = -EINVAL;
5586 goto err_nand_manuf_cleanup;
5587 }
5588 /* Use standard syndrome read/write page function? */
5589 if (!ecc->read_page)
5590 ecc->read_page = nand_read_page_syndrome;
5591 if (!ecc->write_page)
5592 ecc->write_page = nand_write_page_syndrome;
5593 if (!ecc->read_page_raw)
5594 ecc->read_page_raw = nand_read_page_raw_syndrome;
5595 if (!ecc->write_page_raw)
5596 ecc->write_page_raw = nand_write_page_raw_syndrome;
5597 if (!ecc->read_oob)
5598 ecc->read_oob = nand_read_oob_syndrome;
5599 if (!ecc->write_oob)
5600 ecc->write_oob = nand_write_oob_syndrome;
5601
5602 if (mtd->writesize >= ecc->size) {
5603 if (!ecc->strength) {
5604 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5605 ret = -EINVAL;
5606 goto err_nand_manuf_cleanup;
5607 }
5608 break;
5609 }
5610 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5611 ecc->size, mtd->writesize);
5612 ecc->mode = NAND_ECC_SOFT;
5613 ecc->algo = NAND_ECC_HAMMING;
5614
5615 case NAND_ECC_SOFT:
5616 ret = nand_set_ecc_soft_ops(chip);
5617 if (ret) {
5618 ret = -EINVAL;
5619 goto err_nand_manuf_cleanup;
5620 }
5621 break;
5622
5623 case NAND_ECC_ON_DIE:
5624 if (!ecc->read_page || !ecc->write_page) {
5625 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5626 ret = -EINVAL;
5627 goto err_nand_manuf_cleanup;
5628 }
5629 if (!ecc->read_oob)
5630 ecc->read_oob = nand_read_oob_std;
5631 if (!ecc->write_oob)
5632 ecc->write_oob = nand_write_oob_std;
5633 break;
5634
5635 case NAND_ECC_NONE:
5636 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5637 ecc->read_page = nand_read_page_raw;
5638 ecc->write_page = nand_write_page_raw;
5639 ecc->read_oob = nand_read_oob_std;
5640 ecc->read_page_raw = nand_read_page_raw;
5641 ecc->write_page_raw = nand_write_page_raw;
5642 ecc->write_oob = nand_write_oob_std;
5643 ecc->size = mtd->writesize;
5644 ecc->bytes = 0;
5645 ecc->strength = 0;
5646 break;
5647
5648 default:
5649 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5650 ret = -EINVAL;
5651 goto err_nand_manuf_cleanup;
5652 }
5653
5654 if (ecc->correct || ecc->calculate) {
5655 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5656 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5657 if (!ecc->calc_buf || !ecc->code_buf) {
5658 ret = -ENOMEM;
5659 goto err_nand_manuf_cleanup;
5660 }
5661 }
5662
5663 /* For many systems, the standard OOB write also works for raw */
5664 if (!ecc->read_oob_raw)
5665 ecc->read_oob_raw = ecc->read_oob;
5666 if (!ecc->write_oob_raw)
5667 ecc->write_oob_raw = ecc->write_oob;
5668
5669 /* propagate ecc info to mtd_info */
5670 mtd->ecc_strength = ecc->strength;
5671 mtd->ecc_step_size = ecc->size;
5672
5673 /*
5674 * Set the number of read / write steps for one page depending on ECC
5675 * mode.
5676 */
5677 ecc->steps = mtd->writesize / ecc->size;
5678 if (ecc->steps * ecc->size != mtd->writesize) {
5679 WARN(1, "Invalid ECC parameters\n");
5680 ret = -EINVAL;
5681 goto err_nand_manuf_cleanup;
5682 }
5683 ecc->total = ecc->steps * ecc->bytes;
5684 if (ecc->total > mtd->oobsize) {
5685 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5686 ret = -EINVAL;
5687 goto err_nand_manuf_cleanup;
5688 }
5689
5690 /*
5691 * The number of bytes available for a client to place data into
5692 * the out of band area.
5693 */
5694 ret = mtd_ooblayout_count_freebytes(mtd);
5695 if (ret < 0)
5696 ret = 0;
5697
5698 mtd->oobavail = ret;
5699
5700 /* ECC sanity check: warn if it's too weak */
5701 if (!nand_ecc_strength_good(chip))
5702 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5703 mtd->name);
5704
5705 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5706 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5707 switch (ecc->steps) {
5708 case 2:
5709 mtd->subpage_sft = 1;
5710 break;
5711 case 4:
5712 case 8:
5713 case 16:
5714 mtd->subpage_sft = 2;
5715 break;
5716 }
5717 }
5718 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5719
5720 /* Initialize state */
5721 chip->state = FL_READY;
5722
5723 /* Invalidate the pagebuffer reference */
5724 chip->pagebuf = -1;
5725
5726 /* Large page NAND with SOFT_ECC should support subpage reads */
5727 switch (ecc->mode) {
5728 case NAND_ECC_SOFT:
5729 if (chip->page_shift > 9)
5730 chip->options |= NAND_SUBPAGE_READ;
5731 break;
5732
5733 default:
5734 break;
5735 }
5736
5737 /* Fill in remaining MTD driver data */
5738 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
5739 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5740 MTD_CAP_NANDFLASH;
5741 mtd->_erase = nand_erase;
5742 mtd->_point = NULL;
5743 mtd->_unpoint = NULL;
5744 mtd->_panic_write = panic_nand_write;
5745 mtd->_read_oob = nand_read_oob;
5746 mtd->_write_oob = nand_write_oob;
5747 mtd->_sync = nand_sync;
5748 mtd->_lock = NULL;
5749 mtd->_unlock = NULL;
5750 mtd->_suspend = nand_suspend;
5751 mtd->_resume = nand_resume;
5752 mtd->_reboot = nand_shutdown;
5753 mtd->_block_isreserved = nand_block_isreserved;
5754 mtd->_block_isbad = nand_block_isbad;
5755 mtd->_block_markbad = nand_block_markbad;
5756 mtd->_max_bad_blocks = nand_max_bad_blocks;
5757 mtd->writebufsize = mtd->writesize;
5758
5759 /*
5760 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5761 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5762 * properly set.
5763 */
5764 if (!mtd->bitflip_threshold)
5765 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5766
5767 /* Initialize the ->data_interface field. */
5768 ret = nand_init_data_interface(chip);
5769 if (ret)
5770 goto err_nand_manuf_cleanup;
5771
5772 /* Enter fastest possible mode on all dies. */
5773 for (i = 0; i < chip->numchips; i++) {
5774 ret = nand_setup_data_interface(chip, i);
5775 if (ret)
5776 goto err_nand_manuf_cleanup;
5777 }
5778
5779 /* Check, if we should skip the bad block table scan */
5780 if (chip->options & NAND_SKIP_BBTSCAN)
5781 return 0;
5782
5783 /* Build bad block table */
5784 ret = nand_create_bbt(chip);
5785 if (ret)
5786 goto err_nand_manuf_cleanup;
5787
5788 return 0;
5789
5790
5791 err_nand_manuf_cleanup:
5792 nand_manufacturer_cleanup(chip);
5793
5794 err_free_buf:
5795 kfree(chip->data_buf);
5796 kfree(ecc->code_buf);
5797 kfree(ecc->calc_buf);
5798
5799 return ret;
5800 }
5801
5802 static int nand_attach(struct nand_chip *chip)
5803 {
5804 if (chip->controller->ops && chip->controller->ops->attach_chip)
5805 return chip->controller->ops->attach_chip(chip);
5806
5807 return 0;
5808 }
5809
5810 static void nand_detach(struct nand_chip *chip)
5811 {
5812 if (chip->controller->ops && chip->controller->ops->detach_chip)
5813 chip->controller->ops->detach_chip(chip);
5814 }
5815
5816 /**
5817 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5818 * @chip: NAND chip object
5819 * @maxchips: number of chips to scan for.
5820 * @ids: optional flash IDs table
5821 *
5822 * This fills out all the uninitialized function pointers with the defaults.
5823 * The flash ID is read and the mtd/chip structures are filled with the
5824 * appropriate values.
5825 */
5826 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5827 struct nand_flash_dev *ids)
5828 {
5829 int ret;
5830
5831 if (!maxchips)
5832 return -EINVAL;
5833
5834 ret = nand_scan_ident(chip, maxchips, ids);
5835 if (ret)
5836 return ret;
5837
5838 ret = nand_attach(chip);
5839 if (ret)
5840 goto cleanup_ident;
5841
5842 ret = nand_scan_tail(chip);
5843 if (ret)
5844 goto detach_chip;
5845
5846 return 0;
5847
5848 detach_chip:
5849 nand_detach(chip);
5850 cleanup_ident:
5851 nand_scan_ident_cleanup(chip);
5852
5853 return ret;
5854 }
5855 EXPORT_SYMBOL(nand_scan_with_ids);
5856
5857 /**
5858 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5859 * @chip: NAND chip object
5860 */
5861 void nand_cleanup(struct nand_chip *chip)
5862 {
5863 if (chip->ecc.mode == NAND_ECC_SOFT &&
5864 chip->ecc.algo == NAND_ECC_BCH)
5865 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5866
5867 /* Free bad block table memory */
5868 kfree(chip->bbt);
5869 kfree(chip->data_buf);
5870 kfree(chip->ecc.code_buf);
5871 kfree(chip->ecc.calc_buf);
5872
5873 /* Free bad block descriptor memory */
5874 if (chip->badblock_pattern && chip->badblock_pattern->options
5875 & NAND_BBT_DYNAMICSTRUCT)
5876 kfree(chip->badblock_pattern);
5877
5878 /* Free manufacturer priv data. */
5879 nand_manufacturer_cleanup(chip);
5880
5881 /* Free controller specific allocations after chip identification */
5882 nand_detach(chip);
5883
5884 /* Free identification phase allocations */
5885 nand_scan_ident_cleanup(chip);
5886 }
5887
5888 EXPORT_SYMBOL_GPL(nand_cleanup);
5889
5890 /**
5891 * nand_release - [NAND Interface] Unregister the MTD device and free resources
5892 * held by the NAND device
5893 * @chip: NAND chip object
5894 */
5895 void nand_release(struct nand_chip *chip)
5896 {
5897 mtd_device_unregister(nand_to_mtd(chip));
5898 nand_cleanup(chip);
5899 }
5900 EXPORT_SYMBOL_GPL(nand_release);
5901
5902 MODULE_LICENSE("GPL");
5903 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5904 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5905 MODULE_DESCRIPTION("Generic NAND flash driver code");