]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/nand/raw/nand_micron.c
Merge branch 'mount.part1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / nand_micron.c
1 /*
2 * Copyright (C) 2017 Free Electrons
3 * Copyright (C) 2017 NextThing Co
4 *
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/slab.h>
19
20 #include "internals.h"
21
22 /*
23 * Special Micron status bit 3 indicates that the block has been
24 * corrected by on-die ECC and should be rewritten.
25 */
26 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
27
28 /*
29 * On chips with 8-bit ECC and additional bit can be used to distinguish
30 * cases where a errors were corrected without needing a rewrite
31 *
32 * Bit 4 Bit 3 Bit 0 Description
33 * ----- ----- ----- -----------
34 * 0 0 0 No Errors
35 * 0 0 1 Multiple uncorrected errors
36 * 0 1 0 4 - 6 errors corrected, recommend rewrite
37 * 0 1 1 Reserved
38 * 1 0 0 1 - 3 errors corrected
39 * 1 0 1 Reserved
40 * 1 1 0 7 - 8 errors corrected, recommend rewrite
41 */
42 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
43 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
44 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
45 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
46 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
47
48 struct nand_onfi_vendor_micron {
49 u8 two_plane_read;
50 u8 read_cache;
51 u8 read_unique_id;
52 u8 dq_imped;
53 u8 dq_imped_num_settings;
54 u8 dq_imped_feat_addr;
55 u8 rb_pulldown_strength;
56 u8 rb_pulldown_strength_feat_addr;
57 u8 rb_pulldown_strength_num_settings;
58 u8 otp_mode;
59 u8 otp_page_start;
60 u8 otp_data_prot_addr;
61 u8 otp_num_pages;
62 u8 otp_feat_addr;
63 u8 read_retry_options;
64 u8 reserved[72];
65 u8 param_revision;
66 } __packed;
67
68 struct micron_on_die_ecc {
69 bool forced;
70 bool enabled;
71 void *rawbuf;
72 };
73
74 struct micron_nand {
75 struct micron_on_die_ecc ecc;
76 };
77
78 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
79 {
80 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
81
82 return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 }
84
85 /*
86 * Configure chip properties from Micron vendor-specific ONFI table
87 */
88 static int micron_nand_onfi_init(struct nand_chip *chip)
89 {
90 struct nand_parameters *p = &chip->parameters;
91
92 if (p->onfi) {
93 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
94
95 chip->read_retries = micron->read_retry_options;
96 chip->setup_read_retry = micron_nand_setup_read_retry;
97 }
98
99 if (p->supports_set_get_features) {
100 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104 }
105
106 return 0;
107 }
108
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110 int section,
111 struct mtd_oob_region *oobregion)
112 {
113 if (section >= 4)
114 return -ERANGE;
115
116 oobregion->offset = (section * 16) + 8;
117 oobregion->length = 8;
118
119 return 0;
120 }
121
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123 int section,
124 struct mtd_oob_region *oobregion)
125 {
126 if (section >= 4)
127 return -ERANGE;
128
129 oobregion->offset = (section * 16) + 2;
130 oobregion->length = 6;
131
132 return 0;
133 }
134
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136 .ecc = micron_nand_on_die_4_ooblayout_ecc,
137 .free = micron_nand_on_die_4_ooblayout_free,
138 };
139
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141 int section,
142 struct mtd_oob_region *oobregion)
143 {
144 struct nand_chip *chip = mtd_to_nand(mtd);
145
146 if (section)
147 return -ERANGE;
148
149 oobregion->offset = mtd->oobsize - chip->ecc.total;
150 oobregion->length = chip->ecc.total;
151
152 return 0;
153 }
154
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156 int section,
157 struct mtd_oob_region *oobregion)
158 {
159 struct nand_chip *chip = mtd_to_nand(mtd);
160
161 if (section)
162 return -ERANGE;
163
164 oobregion->offset = 2;
165 oobregion->length = mtd->oobsize - chip->ecc.total - 2;
166
167 return 0;
168 }
169
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171 .ecc = micron_nand_on_die_8_ooblayout_ecc,
172 .free = micron_nand_on_die_8_ooblayout_free,
173 };
174
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
176 {
177 struct micron_nand *micron = nand_get_manufacturer_data(chip);
178 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179 int ret;
180
181 if (micron->ecc.forced)
182 return 0;
183
184 if (micron->ecc.enabled == enable)
185 return 0;
186
187 if (enable)
188 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
189
190 ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191 if (!ret)
192 micron->ecc.enabled = enable;
193
194 return ret;
195 }
196
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198 void *buf, int page,
199 int oob_required)
200 {
201 struct micron_nand *micron = nand_get_manufacturer_data(chip);
202 struct mtd_info *mtd = nand_to_mtd(chip);
203 unsigned int step, max_bitflips = 0;
204 int ret;
205
206 if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207 if (status & NAND_STATUS_FAIL)
208 mtd->ecc_stats.failed++;
209
210 return 0;
211 }
212
213 /*
214 * The internal ECC doesn't tell us the number of bitflips that have
215 * been corrected, but tells us if it recommends to rewrite the block.
216 * If it's the case, we need to read the page in raw mode and compare
217 * its content to the corrected version to extract the actual number of
218 * bitflips.
219 * But before we do that, we must make sure we have all OOB bytes read
220 * in non-raw mode, even if the user did not request those bytes.
221 */
222 if (!oob_required) {
223 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224 false);
225 if (ret)
226 return ret;
227 }
228
229 micron_nand_on_die_ecc_setup(chip, false);
230
231 ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232 mtd->writesize + mtd->oobsize);
233 if (ret)
234 return ret;
235
236 for (step = 0; step < chip->ecc.steps; step++) {
237 unsigned int offs, i, nbitflips = 0;
238 u8 *rawbuf, *corrbuf;
239
240 offs = step * chip->ecc.size;
241 rawbuf = micron->ecc.rawbuf + offs;
242 corrbuf = buf + offs;
243
244 for (i = 0; i < chip->ecc.size; i++)
245 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
246
247 offs = (step * 16) + 4;
248 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249 corrbuf = chip->oob_poi + offs;
250
251 for (i = 0; i < chip->ecc.bytes + 4; i++)
252 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
253
254 if (WARN_ON(nbitflips > chip->ecc.strength))
255 return -EINVAL;
256
257 max_bitflips = max(nbitflips, max_bitflips);
258 mtd->ecc_stats.corrected += nbitflips;
259 }
260
261 return max_bitflips;
262 }
263
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
265 {
266 struct mtd_info *mtd = nand_to_mtd(chip);
267
268 /*
269 * With 8/512 we have more information but still don't know precisely
270 * how many bit-flips were seen.
271 */
272 switch (status & NAND_ECC_STATUS_MASK) {
273 case NAND_ECC_STATUS_UNCORRECTABLE:
274 mtd->ecc_stats.failed++;
275 return 0;
276 case NAND_ECC_STATUS_1_3_CORRECTED:
277 mtd->ecc_stats.corrected += 3;
278 return 3;
279 case NAND_ECC_STATUS_4_6_CORRECTED:
280 mtd->ecc_stats.corrected += 6;
281 /* rewrite recommended */
282 return 6;
283 case NAND_ECC_STATUS_7_8_CORRECTED:
284 mtd->ecc_stats.corrected += 8;
285 /* rewrite recommended */
286 return 8;
287 default:
288 return 0;
289 }
290 }
291
292 static int
293 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
294 int oob_required, int page)
295 {
296 struct mtd_info *mtd = nand_to_mtd(chip);
297 u8 status;
298 int ret, max_bitflips = 0;
299
300 ret = micron_nand_on_die_ecc_setup(chip, true);
301 if (ret)
302 return ret;
303
304 ret = nand_read_page_op(chip, page, 0, NULL, 0);
305 if (ret)
306 goto out;
307
308 ret = nand_status_op(chip, &status);
309 if (ret)
310 goto out;
311
312 ret = nand_exit_status_op(chip);
313 if (ret)
314 goto out;
315
316 ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317 if (!ret && oob_required)
318 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319 false);
320
321 if (chip->ecc.strength == 4)
322 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323 buf, page,
324 oob_required);
325 else
326 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
327
328 out:
329 micron_nand_on_die_ecc_setup(chip, false);
330
331 return ret ? ret : max_bitflips;
332 }
333
334 static int
335 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
336 int oob_required, int page)
337 {
338 int ret;
339
340 ret = micron_nand_on_die_ecc_setup(chip, true);
341 if (ret)
342 return ret;
343
344 ret = nand_write_page_raw(chip, buf, oob_required, page);
345 micron_nand_on_die_ecc_setup(chip, false);
346
347 return ret;
348 }
349
350 enum {
351 /* The NAND flash doesn't support on-die ECC */
352 MICRON_ON_DIE_UNSUPPORTED,
353
354 /*
355 * The NAND flash supports on-die ECC and it can be
356 * enabled/disabled by a set features command.
357 */
358 MICRON_ON_DIE_SUPPORTED,
359
360 /*
361 * The NAND flash supports on-die ECC, and it cannot be
362 * disabled.
363 */
364 MICRON_ON_DIE_MANDATORY,
365 };
366
367 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
368 #define MICRON_ID_ECC_ENABLED BIT(7)
369
370 /*
371 * Try to detect if the NAND support on-die ECC. To do this, we enable
372 * the feature, and read back if it has been enabled as expected. We
373 * also check if it can be disabled, because some Micron NANDs do not
374 * allow disabling the on-die ECC and we don't support such NANDs for
375 * now.
376 *
377 * This function also has the side effect of disabling on-die ECC if
378 * it had been left enabled by the firmware/bootloader.
379 */
380 static int micron_supports_on_die_ecc(struct nand_chip *chip)
381 {
382 u8 id[5];
383 int ret;
384
385 if (!chip->parameters.onfi)
386 return MICRON_ON_DIE_UNSUPPORTED;
387
388 if (chip->bits_per_cell != 1)
389 return MICRON_ON_DIE_UNSUPPORTED;
390
391 /*
392 * We only support on-die ECC of 4/512 or 8/512
393 */
394 if (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
395 return MICRON_ON_DIE_UNSUPPORTED;
396
397 /* 0x2 means on-die ECC is available. */
398 if (chip->id.len != 5 ||
399 (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
400 return MICRON_ON_DIE_UNSUPPORTED;
401
402 ret = micron_nand_on_die_ecc_setup(chip, true);
403 if (ret)
404 return MICRON_ON_DIE_UNSUPPORTED;
405
406 ret = nand_readid_op(chip, 0, id, sizeof(id));
407 if (ret)
408 return MICRON_ON_DIE_UNSUPPORTED;
409
410 if (!(id[4] & MICRON_ID_ECC_ENABLED))
411 return MICRON_ON_DIE_UNSUPPORTED;
412
413 ret = micron_nand_on_die_ecc_setup(chip, false);
414 if (ret)
415 return MICRON_ON_DIE_UNSUPPORTED;
416
417 ret = nand_readid_op(chip, 0, id, sizeof(id));
418 if (ret)
419 return MICRON_ON_DIE_UNSUPPORTED;
420
421 if (id[4] & MICRON_ID_ECC_ENABLED)
422 return MICRON_ON_DIE_MANDATORY;
423
424 /*
425 * We only support on-die ECC of 4/512 or 8/512
426 */
427 if (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
428 return MICRON_ON_DIE_UNSUPPORTED;
429
430 return MICRON_ON_DIE_SUPPORTED;
431 }
432
433 static int micron_nand_init(struct nand_chip *chip)
434 {
435 struct mtd_info *mtd = nand_to_mtd(chip);
436 struct micron_nand *micron;
437 int ondie;
438 int ret;
439
440 micron = kzalloc(sizeof(*micron), GFP_KERNEL);
441 if (!micron)
442 return -ENOMEM;
443
444 nand_set_manufacturer_data(chip, micron);
445
446 ret = micron_nand_onfi_init(chip);
447 if (ret)
448 goto err_free_manuf_data;
449
450 if (mtd->writesize == 2048)
451 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
452
453 ondie = micron_supports_on_die_ecc(chip);
454
455 if (ondie == MICRON_ON_DIE_MANDATORY &&
456 chip->ecc.mode != NAND_ECC_ON_DIE) {
457 pr_err("On-die ECC forcefully enabled, not supported\n");
458 ret = -EINVAL;
459 goto err_free_manuf_data;
460 }
461
462 if (chip->ecc.mode == NAND_ECC_ON_DIE) {
463 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
464 pr_err("On-die ECC selected but not supported\n");
465 ret = -EINVAL;
466 goto err_free_manuf_data;
467 }
468
469 if (ondie == MICRON_ON_DIE_MANDATORY) {
470 micron->ecc.forced = true;
471 micron->ecc.enabled = true;
472 }
473
474 /*
475 * In case of 4bit on-die ECC, we need a buffer to store a
476 * page dumped in raw mode so that we can compare its content
477 * to the same page after ECC correction happened and extract
478 * the real number of bitflips from this comparison.
479 * That's not needed for 8-bit ECC, because the status expose
480 * a better approximation of the number of bitflips in a page.
481 */
482 if (chip->ecc_strength_ds == 4) {
483 micron->ecc.rawbuf = kmalloc(mtd->writesize +
484 mtd->oobsize,
485 GFP_KERNEL);
486 if (!micron->ecc.rawbuf) {
487 ret = -ENOMEM;
488 goto err_free_manuf_data;
489 }
490 }
491
492 if (chip->ecc_strength_ds == 4)
493 mtd_set_ooblayout(mtd,
494 &micron_nand_on_die_4_ooblayout_ops);
495 else
496 mtd_set_ooblayout(mtd,
497 &micron_nand_on_die_8_ooblayout_ops);
498
499 chip->ecc.bytes = chip->ecc_strength_ds * 2;
500 chip->ecc.size = 512;
501 chip->ecc.strength = chip->ecc_strength_ds;
502 chip->ecc.algo = NAND_ECC_BCH;
503 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
504 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
505
506 if (ondie == MICRON_ON_DIE_MANDATORY) {
507 chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
508 chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
509 } else {
510 chip->ecc.read_page_raw = nand_read_page_raw;
511 chip->ecc.write_page_raw = nand_write_page_raw;
512 }
513 }
514
515 return 0;
516
517 err_free_manuf_data:
518 kfree(micron->ecc.rawbuf);
519 kfree(micron);
520
521 return ret;
522 }
523
524 static void micron_nand_cleanup(struct nand_chip *chip)
525 {
526 struct micron_nand *micron = nand_get_manufacturer_data(chip);
527
528 kfree(micron->ecc.rawbuf);
529 kfree(micron);
530 }
531
532 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
533 struct nand_onfi_params *p)
534 {
535 /*
536 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
537 * revision number field of the ONFI parameter page. Assume ONFI
538 * version 1.0 if the revision number is 00 00.
539 */
540 if (le16_to_cpu(p->revision) == 0)
541 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
542 }
543
544 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
545 .init = micron_nand_init,
546 .cleanup = micron_nand_cleanup,
547 .fixup_onfi_param_page = micron_fixup_onfi_param_page,
548 };