]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/nand/raw/omap2.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / raw / omap2.c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/rawnand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
31
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
34
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
37
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
50
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
63
64 #define TF(value) (value ? 1 : 0)
65
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
107 #define CS_MASK 0x7
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
114 #define ECC1 0x1
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
120
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
124
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
131
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
136
137 #define BADBLOCK_MARKER_LENGTH 2
138
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146
147 struct omap_nand_info {
148 struct nand_chip nand;
149 struct platform_device *pdev;
150
151 int gpmc_cs;
152 bool dev_ready;
153 enum nand_io xfer_type;
154 int devsize;
155 enum omap_ecc ecc_opt;
156 struct device_node *elm_of_node;
157
158 unsigned long phys_base;
159 struct completion comp;
160 struct dma_chan *dma;
161 int gpmc_irq_fifo;
162 int gpmc_irq_count;
163 enum {
164 OMAP_NAND_IO_READ = 0, /* read */
165 OMAP_NAND_IO_WRITE, /* write */
166 } iomode;
167 u_char *buf;
168 int buf_len;
169 /* Interface to GPMC */
170 struct gpmc_nand_regs reg;
171 struct gpmc_nand_ops *ops;
172 bool flash_bbt;
173 /* fields specific for BCHx_HW ECC scheme */
174 struct device *elm_dev;
175 /* NAND ready gpio */
176 struct gpio_desc *ready_gpiod;
177 };
178
179 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
180 {
181 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
182 }
183
184 /**
185 * omap_prefetch_enable - configures and starts prefetch transfer
186 * @cs: cs (chip select) number
187 * @fifo_th: fifo threshold to be used for read/ write
188 * @dma_mode: dma mode enable (1) or disable (0)
189 * @u32_count: number of bytes to be transferred
190 * @is_write: prefetch read(0) or write post(1) mode
191 */
192 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
193 unsigned int u32_count, int is_write, struct omap_nand_info *info)
194 {
195 u32 val;
196
197 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
198 return -1;
199
200 if (readl(info->reg.gpmc_prefetch_control))
201 return -EBUSY;
202
203 /* Set the amount of bytes to be prefetched */
204 writel(u32_count, info->reg.gpmc_prefetch_config2);
205
206 /* Set dma/mpu mode, the prefetch read / post write and
207 * enable the engine. Set which cs is has requested for.
208 */
209 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
210 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
211 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
212 writel(val, info->reg.gpmc_prefetch_config1);
213
214 /* Start the prefetch engine */
215 writel(0x1, info->reg.gpmc_prefetch_control);
216
217 return 0;
218 }
219
220 /**
221 * omap_prefetch_reset - disables and stops the prefetch engine
222 */
223 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
224 {
225 u32 config1;
226
227 /* check if the same module/cs is trying to reset */
228 config1 = readl(info->reg.gpmc_prefetch_config1);
229 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
230 return -EINVAL;
231
232 /* Stop the PFPW engine */
233 writel(0x0, info->reg.gpmc_prefetch_control);
234
235 /* Reset/disable the PFPW engine */
236 writel(0x0, info->reg.gpmc_prefetch_config1);
237
238 return 0;
239 }
240
241 /**
242 * omap_hwcontrol - hardware specific access to control-lines
243 * @chip: NAND chip object
244 * @cmd: command to device
245 * @ctrl:
246 * NAND_NCE: bit 0 -> don't care
247 * NAND_CLE: bit 1 -> Command Latch
248 * NAND_ALE: bit 2 -> Address Latch
249 *
250 * NOTE: boards may use different bits for these!!
251 */
252 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
253 {
254 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
255
256 if (cmd != NAND_CMD_NONE) {
257 if (ctrl & NAND_CLE)
258 writeb(cmd, info->reg.gpmc_nand_command);
259
260 else if (ctrl & NAND_ALE)
261 writeb(cmd, info->reg.gpmc_nand_address);
262
263 else /* NAND_NCE */
264 writeb(cmd, info->reg.gpmc_nand_data);
265 }
266 }
267
268 /**
269 * omap_read_buf8 - read data from NAND controller into buffer
270 * @mtd: MTD device structure
271 * @buf: buffer to store date
272 * @len: number of bytes to read
273 */
274 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
275 {
276 struct nand_chip *nand = mtd_to_nand(mtd);
277
278 ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
279 }
280
281 /**
282 * omap_write_buf8 - write buffer to NAND controller
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
286 */
287 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
288 {
289 struct omap_nand_info *info = mtd_to_omap(mtd);
290 u_char *p = (u_char *)buf;
291 bool status;
292
293 while (len--) {
294 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
295 /* wait until buffer is available for write */
296 do {
297 status = info->ops->nand_writebuffer_empty();
298 } while (!status);
299 }
300 }
301
302 /**
303 * omap_read_buf16 - read data from NAND controller into buffer
304 * @mtd: MTD device structure
305 * @buf: buffer to store date
306 * @len: number of bytes to read
307 */
308 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
309 {
310 struct nand_chip *nand = mtd_to_nand(mtd);
311
312 ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
313 }
314
315 /**
316 * omap_write_buf16 - write buffer to NAND controller
317 * @mtd: MTD device structure
318 * @buf: data buffer
319 * @len: number of bytes to write
320 */
321 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
322 {
323 struct omap_nand_info *info = mtd_to_omap(mtd);
324 u16 *p = (u16 *) buf;
325 bool status;
326 /* FIXME try bursts of writesw() or DMA ... */
327 len >>= 1;
328
329 while (len--) {
330 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
331 /* wait until buffer is available for write */
332 do {
333 status = info->ops->nand_writebuffer_empty();
334 } while (!status);
335 }
336 }
337
338 /**
339 * omap_read_buf_pref - read data from NAND controller into buffer
340 * @chip: NAND chip object
341 * @buf: buffer to store date
342 * @len: number of bytes to read
343 */
344 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
345 {
346 struct mtd_info *mtd = nand_to_mtd(chip);
347 struct omap_nand_info *info = mtd_to_omap(mtd);
348 uint32_t r_count = 0;
349 int ret = 0;
350 u32 *p = (u32 *)buf;
351
352 /* take care of subpage reads */
353 if (len % 4) {
354 if (info->nand.options & NAND_BUSWIDTH_16)
355 omap_read_buf16(mtd, buf, len % 4);
356 else
357 omap_read_buf8(mtd, buf, len % 4);
358 p = (u32 *) (buf + len % 4);
359 len -= len % 4;
360 }
361
362 /* configure and start prefetch transfer */
363 ret = omap_prefetch_enable(info->gpmc_cs,
364 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
365 if (ret) {
366 /* PFPW engine is busy, use cpu copy method */
367 if (info->nand.options & NAND_BUSWIDTH_16)
368 omap_read_buf16(mtd, (u_char *)p, len);
369 else
370 omap_read_buf8(mtd, (u_char *)p, len);
371 } else {
372 do {
373 r_count = readl(info->reg.gpmc_prefetch_status);
374 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
375 r_count = r_count >> 2;
376 ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
377 p += r_count;
378 len -= r_count << 2;
379 } while (len);
380 /* disable and stop the PFPW engine */
381 omap_prefetch_reset(info->gpmc_cs, info);
382 }
383 }
384
385 /**
386 * omap_write_buf_pref - write buffer to NAND controller
387 * @chip: NAND chip object
388 * @buf: data buffer
389 * @len: number of bytes to write
390 */
391 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
392 int len)
393 {
394 struct mtd_info *mtd = nand_to_mtd(chip);
395 struct omap_nand_info *info = mtd_to_omap(mtd);
396 uint32_t w_count = 0;
397 int i = 0, ret = 0;
398 u16 *p = (u16 *)buf;
399 unsigned long tim, limit;
400 u32 val;
401
402 /* take care of subpage writes */
403 if (len % 2 != 0) {
404 writeb(*buf, info->nand.legacy.IO_ADDR_W);
405 p = (u16 *)(buf + 1);
406 len--;
407 }
408
409 /* configure and start prefetch transfer */
410 ret = omap_prefetch_enable(info->gpmc_cs,
411 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
412 if (ret) {
413 /* PFPW engine is busy, use cpu copy method */
414 if (info->nand.options & NAND_BUSWIDTH_16)
415 omap_write_buf16(mtd, (u_char *)p, len);
416 else
417 omap_write_buf8(mtd, (u_char *)p, len);
418 } else {
419 while (len) {
420 w_count = readl(info->reg.gpmc_prefetch_status);
421 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
422 w_count = w_count >> 1;
423 for (i = 0; (i < w_count) && len; i++, len -= 2)
424 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
425 }
426 /* wait for data to flushed-out before reset the prefetch */
427 tim = 0;
428 limit = (loops_per_jiffy *
429 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
430 do {
431 cpu_relax();
432 val = readl(info->reg.gpmc_prefetch_status);
433 val = PREFETCH_STATUS_COUNT(val);
434 } while (val && (tim++ < limit));
435
436 /* disable and stop the PFPW engine */
437 omap_prefetch_reset(info->gpmc_cs, info);
438 }
439 }
440
441 /*
442 * omap_nand_dma_callback: callback on the completion of dma transfer
443 * @data: pointer to completion data structure
444 */
445 static void omap_nand_dma_callback(void *data)
446 {
447 complete((struct completion *) data);
448 }
449
450 /*
451 * omap_nand_dma_transfer: configure and start dma transfer
452 * @mtd: MTD device structure
453 * @addr: virtual address in RAM of source/destination
454 * @len: number of data bytes to be transferred
455 * @is_write: flag for read/write operation
456 */
457 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
458 unsigned int len, int is_write)
459 {
460 struct omap_nand_info *info = mtd_to_omap(mtd);
461 struct dma_async_tx_descriptor *tx;
462 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
463 DMA_FROM_DEVICE;
464 struct scatterlist sg;
465 unsigned long tim, limit;
466 unsigned n;
467 int ret;
468 u32 val;
469
470 if (!virt_addr_valid(addr))
471 goto out_copy;
472
473 sg_init_one(&sg, addr, len);
474 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
475 if (n == 0) {
476 dev_err(&info->pdev->dev,
477 "Couldn't DMA map a %d byte buffer\n", len);
478 goto out_copy;
479 }
480
481 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
482 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
483 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
484 if (!tx)
485 goto out_copy_unmap;
486
487 tx->callback = omap_nand_dma_callback;
488 tx->callback_param = &info->comp;
489 dmaengine_submit(tx);
490
491 init_completion(&info->comp);
492
493 /* setup and start DMA using dma_addr */
494 dma_async_issue_pending(info->dma);
495
496 /* configure and start prefetch transfer */
497 ret = omap_prefetch_enable(info->gpmc_cs,
498 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
499 if (ret)
500 /* PFPW engine is busy, use cpu copy method */
501 goto out_copy_unmap;
502
503 wait_for_completion(&info->comp);
504 tim = 0;
505 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
506
507 do {
508 cpu_relax();
509 val = readl(info->reg.gpmc_prefetch_status);
510 val = PREFETCH_STATUS_COUNT(val);
511 } while (val && (tim++ < limit));
512
513 /* disable and stop the PFPW engine */
514 omap_prefetch_reset(info->gpmc_cs, info);
515
516 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
517 return 0;
518
519 out_copy_unmap:
520 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
521 out_copy:
522 if (info->nand.options & NAND_BUSWIDTH_16)
523 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
524 : omap_write_buf16(mtd, (u_char *) addr, len);
525 else
526 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
527 : omap_write_buf8(mtd, (u_char *) addr, len);
528 return 0;
529 }
530
531 /**
532 * omap_read_buf_dma_pref - read data from NAND controller into buffer
533 * @chip: NAND chip object
534 * @buf: buffer to store date
535 * @len: number of bytes to read
536 */
537 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
538 int len)
539 {
540 struct mtd_info *mtd = nand_to_mtd(chip);
541
542 if (len <= mtd->oobsize)
543 omap_read_buf_pref(chip, buf, len);
544 else
545 /* start transfer in DMA mode */
546 omap_nand_dma_transfer(mtd, buf, len, 0x0);
547 }
548
549 /**
550 * omap_write_buf_dma_pref - write buffer to NAND controller
551 * @chip: NAND chip object
552 * @buf: data buffer
553 * @len: number of bytes to write
554 */
555 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
556 int len)
557 {
558 struct mtd_info *mtd = nand_to_mtd(chip);
559
560 if (len <= mtd->oobsize)
561 omap_write_buf_pref(chip, buf, len);
562 else
563 /* start transfer in DMA mode */
564 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
565 }
566
567 /*
568 * omap_nand_irq - GPMC irq handler
569 * @this_irq: gpmc irq number
570 * @dev: omap_nand_info structure pointer is passed here
571 */
572 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
573 {
574 struct omap_nand_info *info = (struct omap_nand_info *) dev;
575 u32 bytes;
576
577 bytes = readl(info->reg.gpmc_prefetch_status);
578 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
579 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
580 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
581 if (this_irq == info->gpmc_irq_count)
582 goto done;
583
584 if (info->buf_len && (info->buf_len < bytes))
585 bytes = info->buf_len;
586 else if (!info->buf_len)
587 bytes = 0;
588 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
589 bytes >> 2);
590 info->buf = info->buf + bytes;
591 info->buf_len -= bytes;
592
593 } else {
594 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
595 bytes >> 2);
596 info->buf = info->buf + bytes;
597
598 if (this_irq == info->gpmc_irq_count)
599 goto done;
600 }
601
602 return IRQ_HANDLED;
603
604 done:
605 complete(&info->comp);
606
607 disable_irq_nosync(info->gpmc_irq_fifo);
608 disable_irq_nosync(info->gpmc_irq_count);
609
610 return IRQ_HANDLED;
611 }
612
613 /*
614 * omap_read_buf_irq_pref - read data from NAND controller into buffer
615 * @chip: NAND chip object
616 * @buf: buffer to store date
617 * @len: number of bytes to read
618 */
619 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
620 int len)
621 {
622 struct mtd_info *mtd = nand_to_mtd(chip);
623 struct omap_nand_info *info = mtd_to_omap(mtd);
624 int ret = 0;
625
626 if (len <= mtd->oobsize) {
627 omap_read_buf_pref(chip, buf, len);
628 return;
629 }
630
631 info->iomode = OMAP_NAND_IO_READ;
632 info->buf = buf;
633 init_completion(&info->comp);
634
635 /* configure and start prefetch transfer */
636 ret = omap_prefetch_enable(info->gpmc_cs,
637 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
638 if (ret)
639 /* PFPW engine is busy, use cpu copy method */
640 goto out_copy;
641
642 info->buf_len = len;
643
644 enable_irq(info->gpmc_irq_count);
645 enable_irq(info->gpmc_irq_fifo);
646
647 /* waiting for read to complete */
648 wait_for_completion(&info->comp);
649
650 /* disable and stop the PFPW engine */
651 omap_prefetch_reset(info->gpmc_cs, info);
652 return;
653
654 out_copy:
655 if (info->nand.options & NAND_BUSWIDTH_16)
656 omap_read_buf16(mtd, buf, len);
657 else
658 omap_read_buf8(mtd, buf, len);
659 }
660
661 /*
662 * omap_write_buf_irq_pref - write buffer to NAND controller
663 * @chip: NAND chip object
664 * @buf: data buffer
665 * @len: number of bytes to write
666 */
667 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
668 int len)
669 {
670 struct mtd_info *mtd = nand_to_mtd(chip);
671 struct omap_nand_info *info = mtd_to_omap(mtd);
672 int ret = 0;
673 unsigned long tim, limit;
674 u32 val;
675
676 if (len <= mtd->oobsize) {
677 omap_write_buf_pref(chip, buf, len);
678 return;
679 }
680
681 info->iomode = OMAP_NAND_IO_WRITE;
682 info->buf = (u_char *) buf;
683 init_completion(&info->comp);
684
685 /* configure and start prefetch transfer : size=24 */
686 ret = omap_prefetch_enable(info->gpmc_cs,
687 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
688 if (ret)
689 /* PFPW engine is busy, use cpu copy method */
690 goto out_copy;
691
692 info->buf_len = len;
693
694 enable_irq(info->gpmc_irq_count);
695 enable_irq(info->gpmc_irq_fifo);
696
697 /* waiting for write to complete */
698 wait_for_completion(&info->comp);
699
700 /* wait for data to flushed-out before reset the prefetch */
701 tim = 0;
702 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
703 do {
704 val = readl(info->reg.gpmc_prefetch_status);
705 val = PREFETCH_STATUS_COUNT(val);
706 cpu_relax();
707 } while (val && (tim++ < limit));
708
709 /* disable and stop the PFPW engine */
710 omap_prefetch_reset(info->gpmc_cs, info);
711 return;
712
713 out_copy:
714 if (info->nand.options & NAND_BUSWIDTH_16)
715 omap_write_buf16(mtd, buf, len);
716 else
717 omap_write_buf8(mtd, buf, len);
718 }
719
720 /**
721 * gen_true_ecc - This function will generate true ECC value
722 * @ecc_buf: buffer to store ecc code
723 *
724 * This generated true ECC value can be used when correcting
725 * data read from NAND flash memory core
726 */
727 static void gen_true_ecc(u8 *ecc_buf)
728 {
729 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
730 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
731
732 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
733 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
734 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
735 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
736 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
737 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
738 }
739
740 /**
741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742 * @ecc_data1: ecc code from nand spare area
743 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
744 * @page_data: page data
745 *
746 * This function compares two ECC's and indicates if there is an error.
747 * If the error can be corrected it will be corrected to the buffer.
748 * If there is no error, %0 is returned. If there is an error but it
749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
750 */
751 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
752 u8 *ecc_data2, /* read from register */
753 u8 *page_data)
754 {
755 uint i;
756 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
757 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
758 u8 ecc_bit[24];
759 u8 ecc_sum = 0;
760 u8 find_bit = 0;
761 uint find_byte = 0;
762 int isEccFF;
763
764 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
765
766 gen_true_ecc(ecc_data1);
767 gen_true_ecc(ecc_data2);
768
769 for (i = 0; i <= 2; i++) {
770 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
771 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
772 }
773
774 for (i = 0; i < 8; i++) {
775 tmp0_bit[i] = *ecc_data1 % 2;
776 *ecc_data1 = *ecc_data1 / 2;
777 }
778
779 for (i = 0; i < 8; i++) {
780 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
781 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
782 }
783
784 for (i = 0; i < 8; i++) {
785 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
786 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
787 }
788
789 for (i = 0; i < 8; i++) {
790 comp0_bit[i] = *ecc_data2 % 2;
791 *ecc_data2 = *ecc_data2 / 2;
792 }
793
794 for (i = 0; i < 8; i++) {
795 comp1_bit[i] = *(ecc_data2 + 1) % 2;
796 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
797 }
798
799 for (i = 0; i < 8; i++) {
800 comp2_bit[i] = *(ecc_data2 + 2) % 2;
801 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
802 }
803
804 for (i = 0; i < 6; i++)
805 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
806
807 for (i = 0; i < 8; i++)
808 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
809
810 for (i = 0; i < 8; i++)
811 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
812
813 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
814 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
815
816 for (i = 0; i < 24; i++)
817 ecc_sum += ecc_bit[i];
818
819 switch (ecc_sum) {
820 case 0:
821 /* Not reached because this function is not called if
822 * ECC values are equal
823 */
824 return 0;
825
826 case 1:
827 /* Uncorrectable error */
828 pr_debug("ECC UNCORRECTED_ERROR 1\n");
829 return -EBADMSG;
830
831 case 11:
832 /* UN-Correctable error */
833 pr_debug("ECC UNCORRECTED_ERROR B\n");
834 return -EBADMSG;
835
836 case 12:
837 /* Correctable error */
838 find_byte = (ecc_bit[23] << 8) +
839 (ecc_bit[21] << 7) +
840 (ecc_bit[19] << 6) +
841 (ecc_bit[17] << 5) +
842 (ecc_bit[15] << 4) +
843 (ecc_bit[13] << 3) +
844 (ecc_bit[11] << 2) +
845 (ecc_bit[9] << 1) +
846 ecc_bit[7];
847
848 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
849
850 pr_debug("Correcting single bit ECC error at offset: "
851 "%d, bit: %d\n", find_byte, find_bit);
852
853 page_data[find_byte] ^= (1 << find_bit);
854
855 return 1;
856 default:
857 if (isEccFF) {
858 if (ecc_data2[0] == 0 &&
859 ecc_data2[1] == 0 &&
860 ecc_data2[2] == 0)
861 return 0;
862 }
863 pr_debug("UNCORRECTED_ERROR default\n");
864 return -EBADMSG;
865 }
866 }
867
868 /**
869 * omap_correct_data - Compares the ECC read with HW generated ECC
870 * @chip: NAND chip object
871 * @dat: page data
872 * @read_ecc: ecc read from nand flash
873 * @calc_ecc: ecc read from HW ECC registers
874 *
875 * Compares the ecc read from nand spare area with ECC registers values
876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877 * detection and correction. If there are no errors, %0 is returned. If
878 * there were errors and all of the errors were corrected, the number of
879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
880 * returned.
881 */
882 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
883 u_char *read_ecc, u_char *calc_ecc)
884 {
885 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
886 int blockCnt = 0, i = 0, ret = 0;
887 int stat = 0;
888
889 /* Ex NAND_ECC_HW12_2048 */
890 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
891 (info->nand.ecc.size == 2048))
892 blockCnt = 4;
893 else
894 blockCnt = 1;
895
896 for (i = 0; i < blockCnt; i++) {
897 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
898 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
899 if (ret < 0)
900 return ret;
901 /* keep track of the number of corrected errors */
902 stat += ret;
903 }
904 read_ecc += 3;
905 calc_ecc += 3;
906 dat += 512;
907 }
908 return stat;
909 }
910
911 /**
912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
913 * @chip: NAND chip object
914 * @dat: The pointer to data on which ecc is computed
915 * @ecc_code: The ecc_code buffer
916 *
917 * Using noninverted ECC can be considered ugly since writing a blank
918 * page ie. padding will clear the ECC bytes. This is no problem as long
919 * nobody is trying to write data on the seemingly unused page. Reading
920 * an erased page will produce an ECC mismatch between generated and read
921 * ECC bytes that has to be dealt with separately.
922 */
923 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
924 u_char *ecc_code)
925 {
926 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
927 u32 val;
928
929 val = readl(info->reg.gpmc_ecc_config);
930 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
931 return -EINVAL;
932
933 /* read ecc result */
934 val = readl(info->reg.gpmc_ecc1_result);
935 *ecc_code++ = val; /* P128e, ..., P1e */
936 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
937 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
938 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
939
940 return 0;
941 }
942
943 /**
944 * omap_enable_hwecc - This function enables the hardware ecc functionality
945 * @mtd: MTD device structure
946 * @mode: Read/Write mode
947 */
948 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
949 {
950 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
951 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
952 u32 val;
953
954 /* clear ecc and enable bits */
955 val = ECCCLEAR | ECC1;
956 writel(val, info->reg.gpmc_ecc_control);
957
958 /* program ecc and result sizes */
959 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
960 ECC1RESULTSIZE);
961 writel(val, info->reg.gpmc_ecc_size_config);
962
963 switch (mode) {
964 case NAND_ECC_READ:
965 case NAND_ECC_WRITE:
966 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
967 break;
968 case NAND_ECC_READSYN:
969 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
970 break;
971 default:
972 dev_info(&info->pdev->dev,
973 "error: unrecognized Mode[%d]!\n", mode);
974 break;
975 }
976
977 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
978 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
979 writel(val, info->reg.gpmc_ecc_config);
980 }
981
982 /**
983 * omap_wait - wait until the command is done
984 * @this: NAND Chip structure
985 *
986 * Wait function is called during Program and erase operations and
987 * the way it is called from MTD layer, we should wait till the NAND
988 * chip is ready after the programming/erase operation has completed.
989 *
990 * Erase can take up to 400ms and program up to 20ms according to
991 * general NAND and SmartMedia specs
992 */
993 static int omap_wait(struct nand_chip *this)
994 {
995 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
996 unsigned long timeo = jiffies;
997 int status;
998
999 timeo += msecs_to_jiffies(400);
1000
1001 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1002 while (time_before(jiffies, timeo)) {
1003 status = readb(info->reg.gpmc_nand_data);
1004 if (status & NAND_STATUS_READY)
1005 break;
1006 cond_resched();
1007 }
1008
1009 status = readb(info->reg.gpmc_nand_data);
1010 return status;
1011 }
1012
1013 /**
1014 * omap_dev_ready - checks the NAND Ready GPIO line
1015 * @mtd: MTD device structure
1016 *
1017 * Returns true if ready and false if busy.
1018 */
1019 static int omap_dev_ready(struct nand_chip *chip)
1020 {
1021 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1022
1023 return gpiod_get_value(info->ready_gpiod);
1024 }
1025
1026 /**
1027 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1028 * @mtd: MTD device structure
1029 * @mode: Read/Write mode
1030 *
1031 * When using BCH with SW correction (i.e. no ELM), sector size is set
1032 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1033 * for both reading and writing with:
1034 * eccsize0 = 0 (no additional protected byte in spare area)
1035 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1036 */
1037 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1038 int mode)
1039 {
1040 unsigned int bch_type;
1041 unsigned int dev_width, nsectors;
1042 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1043 enum omap_ecc ecc_opt = info->ecc_opt;
1044 u32 val, wr_mode;
1045 unsigned int ecc_size1, ecc_size0;
1046
1047 /* GPMC configurations for calculating ECC */
1048 switch (ecc_opt) {
1049 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1050 bch_type = 0;
1051 nsectors = 1;
1052 wr_mode = BCH_WRAPMODE_6;
1053 ecc_size0 = BCH_ECC_SIZE0;
1054 ecc_size1 = BCH_ECC_SIZE1;
1055 break;
1056 case OMAP_ECC_BCH4_CODE_HW:
1057 bch_type = 0;
1058 nsectors = chip->ecc.steps;
1059 if (mode == NAND_ECC_READ) {
1060 wr_mode = BCH_WRAPMODE_1;
1061 ecc_size0 = BCH4R_ECC_SIZE0;
1062 ecc_size1 = BCH4R_ECC_SIZE1;
1063 } else {
1064 wr_mode = BCH_WRAPMODE_6;
1065 ecc_size0 = BCH_ECC_SIZE0;
1066 ecc_size1 = BCH_ECC_SIZE1;
1067 }
1068 break;
1069 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1070 bch_type = 1;
1071 nsectors = 1;
1072 wr_mode = BCH_WRAPMODE_6;
1073 ecc_size0 = BCH_ECC_SIZE0;
1074 ecc_size1 = BCH_ECC_SIZE1;
1075 break;
1076 case OMAP_ECC_BCH8_CODE_HW:
1077 bch_type = 1;
1078 nsectors = chip->ecc.steps;
1079 if (mode == NAND_ECC_READ) {
1080 wr_mode = BCH_WRAPMODE_1;
1081 ecc_size0 = BCH8R_ECC_SIZE0;
1082 ecc_size1 = BCH8R_ECC_SIZE1;
1083 } else {
1084 wr_mode = BCH_WRAPMODE_6;
1085 ecc_size0 = BCH_ECC_SIZE0;
1086 ecc_size1 = BCH_ECC_SIZE1;
1087 }
1088 break;
1089 case OMAP_ECC_BCH16_CODE_HW:
1090 bch_type = 0x2;
1091 nsectors = chip->ecc.steps;
1092 if (mode == NAND_ECC_READ) {
1093 wr_mode = 0x01;
1094 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1095 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1096 } else {
1097 wr_mode = 0x01;
1098 ecc_size0 = 0; /* extra bits in nibbles per sector */
1099 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1100 }
1101 break;
1102 default:
1103 return;
1104 }
1105
1106 writel(ECC1, info->reg.gpmc_ecc_control);
1107
1108 /* Configure ecc size for BCH */
1109 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1110 writel(val, info->reg.gpmc_ecc_size_config);
1111
1112 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1113
1114 /* BCH configuration */
1115 val = ((1 << 16) | /* enable BCH */
1116 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
1117 (wr_mode << 8) | /* wrap mode */
1118 (dev_width << 7) | /* bus width */
1119 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1120 (info->gpmc_cs << 1) | /* ECC CS */
1121 (0x1)); /* enable ECC */
1122
1123 writel(val, info->reg.gpmc_ecc_config);
1124
1125 /* Clear ecc and enable bits */
1126 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1127 }
1128
1129 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1130 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1131 0x97, 0x79, 0xe5, 0x24, 0xb5};
1132
1133 /**
1134 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1135 * @mtd: MTD device structure
1136 * @dat: The pointer to data on which ecc is computed
1137 * @ecc_code: The ecc_code buffer
1138 * @i: The sector number (for a multi sector page)
1139 *
1140 * Support calculating of BCH4/8/16 ECC vectors for one sector
1141 * within a page. Sector number is in @i.
1142 */
1143 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1144 const u_char *dat, u_char *ecc_calc, int i)
1145 {
1146 struct omap_nand_info *info = mtd_to_omap(mtd);
1147 int eccbytes = info->nand.ecc.bytes;
1148 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1149 u8 *ecc_code;
1150 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1151 u32 val;
1152 int j;
1153
1154 ecc_code = ecc_calc;
1155 switch (info->ecc_opt) {
1156 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1157 case OMAP_ECC_BCH8_CODE_HW:
1158 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1159 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1160 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1161 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1162 *ecc_code++ = (bch_val4 & 0xFF);
1163 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1164 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1165 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1166 *ecc_code++ = (bch_val3 & 0xFF);
1167 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1168 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1169 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1170 *ecc_code++ = (bch_val2 & 0xFF);
1171 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1172 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1173 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1174 *ecc_code++ = (bch_val1 & 0xFF);
1175 break;
1176 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1177 case OMAP_ECC_BCH4_CODE_HW:
1178 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1179 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1180 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1181 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1182 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1183 ((bch_val1 >> 28) & 0xF);
1184 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1185 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1186 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1187 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1188 break;
1189 case OMAP_ECC_BCH16_CODE_HW:
1190 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1191 ecc_code[0] = ((val >> 8) & 0xFF);
1192 ecc_code[1] = ((val >> 0) & 0xFF);
1193 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1194 ecc_code[2] = ((val >> 24) & 0xFF);
1195 ecc_code[3] = ((val >> 16) & 0xFF);
1196 ecc_code[4] = ((val >> 8) & 0xFF);
1197 ecc_code[5] = ((val >> 0) & 0xFF);
1198 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1199 ecc_code[6] = ((val >> 24) & 0xFF);
1200 ecc_code[7] = ((val >> 16) & 0xFF);
1201 ecc_code[8] = ((val >> 8) & 0xFF);
1202 ecc_code[9] = ((val >> 0) & 0xFF);
1203 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1204 ecc_code[10] = ((val >> 24) & 0xFF);
1205 ecc_code[11] = ((val >> 16) & 0xFF);
1206 ecc_code[12] = ((val >> 8) & 0xFF);
1207 ecc_code[13] = ((val >> 0) & 0xFF);
1208 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1209 ecc_code[14] = ((val >> 24) & 0xFF);
1210 ecc_code[15] = ((val >> 16) & 0xFF);
1211 ecc_code[16] = ((val >> 8) & 0xFF);
1212 ecc_code[17] = ((val >> 0) & 0xFF);
1213 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1214 ecc_code[18] = ((val >> 24) & 0xFF);
1215 ecc_code[19] = ((val >> 16) & 0xFF);
1216 ecc_code[20] = ((val >> 8) & 0xFF);
1217 ecc_code[21] = ((val >> 0) & 0xFF);
1218 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1219 ecc_code[22] = ((val >> 24) & 0xFF);
1220 ecc_code[23] = ((val >> 16) & 0xFF);
1221 ecc_code[24] = ((val >> 8) & 0xFF);
1222 ecc_code[25] = ((val >> 0) & 0xFF);
1223 break;
1224 default:
1225 return -EINVAL;
1226 }
1227
1228 /* ECC scheme specific syndrome customizations */
1229 switch (info->ecc_opt) {
1230 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1231 /* Add constant polynomial to remainder, so that
1232 * ECC of blank pages results in 0x0 on reading back
1233 */
1234 for (j = 0; j < eccbytes; j++)
1235 ecc_calc[j] ^= bch4_polynomial[j];
1236 break;
1237 case OMAP_ECC_BCH4_CODE_HW:
1238 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1239 ecc_calc[eccbytes - 1] = 0x0;
1240 break;
1241 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1242 /* Add constant polynomial to remainder, so that
1243 * ECC of blank pages results in 0x0 on reading back
1244 */
1245 for (j = 0; j < eccbytes; j++)
1246 ecc_calc[j] ^= bch8_polynomial[j];
1247 break;
1248 case OMAP_ECC_BCH8_CODE_HW:
1249 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1250 ecc_calc[eccbytes - 1] = 0x0;
1251 break;
1252 case OMAP_ECC_BCH16_CODE_HW:
1253 break;
1254 default:
1255 return -EINVAL;
1256 }
1257
1258 return 0;
1259 }
1260
1261 /**
1262 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1263 * @chip: NAND chip object
1264 * @dat: The pointer to data on which ecc is computed
1265 * @ecc_code: The ecc_code buffer
1266 *
1267 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1268 * when SW based correction is required as ECC is required for one sector
1269 * at a time.
1270 */
1271 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1272 const u_char *dat, u_char *ecc_calc)
1273 {
1274 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1275 }
1276
1277 /**
1278 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1279 * @mtd: MTD device structure
1280 * @dat: The pointer to data on which ecc is computed
1281 * @ecc_code: The ecc_code buffer
1282 *
1283 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1284 */
1285 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1286 const u_char *dat, u_char *ecc_calc)
1287 {
1288 struct omap_nand_info *info = mtd_to_omap(mtd);
1289 int eccbytes = info->nand.ecc.bytes;
1290 unsigned long nsectors;
1291 int i, ret;
1292
1293 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1294 for (i = 0; i < nsectors; i++) {
1295 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1296 if (ret)
1297 return ret;
1298
1299 ecc_calc += eccbytes;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /**
1306 * erased_sector_bitflips - count bit flips
1307 * @data: data sector buffer
1308 * @oob: oob buffer
1309 * @info: omap_nand_info
1310 *
1311 * Check the bit flips in erased page falls below correctable level.
1312 * If falls below, report the page as erased with correctable bit
1313 * flip, else report as uncorrectable page.
1314 */
1315 static int erased_sector_bitflips(u_char *data, u_char *oob,
1316 struct omap_nand_info *info)
1317 {
1318 int flip_bits = 0, i;
1319
1320 for (i = 0; i < info->nand.ecc.size; i++) {
1321 flip_bits += hweight8(~data[i]);
1322 if (flip_bits > info->nand.ecc.strength)
1323 return 0;
1324 }
1325
1326 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1327 flip_bits += hweight8(~oob[i]);
1328 if (flip_bits > info->nand.ecc.strength)
1329 return 0;
1330 }
1331
1332 /*
1333 * Bit flips falls in correctable level.
1334 * Fill data area with 0xFF
1335 */
1336 if (flip_bits) {
1337 memset(data, 0xFF, info->nand.ecc.size);
1338 memset(oob, 0xFF, info->nand.ecc.bytes);
1339 }
1340
1341 return flip_bits;
1342 }
1343
1344 /**
1345 * omap_elm_correct_data - corrects page data area in case error reported
1346 * @chip: NAND chip object
1347 * @data: page data
1348 * @read_ecc: ecc read from nand flash
1349 * @calc_ecc: ecc read from HW ECC registers
1350 *
1351 * Calculated ecc vector reported as zero in case of non-error pages.
1352 * In case of non-zero ecc vector, first filter out erased-pages, and
1353 * then process data via ELM to detect bit-flips.
1354 */
1355 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1356 u_char *read_ecc, u_char *calc_ecc)
1357 {
1358 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1359 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1360 int eccsteps = info->nand.ecc.steps;
1361 int i , j, stat = 0;
1362 int eccflag, actual_eccbytes;
1363 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1364 u_char *ecc_vec = calc_ecc;
1365 u_char *spare_ecc = read_ecc;
1366 u_char *erased_ecc_vec;
1367 u_char *buf;
1368 int bitflip_count;
1369 bool is_error_reported = false;
1370 u32 bit_pos, byte_pos, error_max, pos;
1371 int err;
1372
1373 switch (info->ecc_opt) {
1374 case OMAP_ECC_BCH4_CODE_HW:
1375 /* omit 7th ECC byte reserved for ROM code compatibility */
1376 actual_eccbytes = ecc->bytes - 1;
1377 erased_ecc_vec = bch4_vector;
1378 break;
1379 case OMAP_ECC_BCH8_CODE_HW:
1380 /* omit 14th ECC byte reserved for ROM code compatibility */
1381 actual_eccbytes = ecc->bytes - 1;
1382 erased_ecc_vec = bch8_vector;
1383 break;
1384 case OMAP_ECC_BCH16_CODE_HW:
1385 actual_eccbytes = ecc->bytes;
1386 erased_ecc_vec = bch16_vector;
1387 break;
1388 default:
1389 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1390 return -EINVAL;
1391 }
1392
1393 /* Initialize elm error vector to zero */
1394 memset(err_vec, 0, sizeof(err_vec));
1395
1396 for (i = 0; i < eccsteps ; i++) {
1397 eccflag = 0; /* initialize eccflag */
1398
1399 /*
1400 * Check any error reported,
1401 * In case of error, non zero ecc reported.
1402 */
1403 for (j = 0; j < actual_eccbytes; j++) {
1404 if (calc_ecc[j] != 0) {
1405 eccflag = 1; /* non zero ecc, error present */
1406 break;
1407 }
1408 }
1409
1410 if (eccflag == 1) {
1411 if (memcmp(calc_ecc, erased_ecc_vec,
1412 actual_eccbytes) == 0) {
1413 /*
1414 * calc_ecc[] matches pattern for ECC(all 0xff)
1415 * so this is definitely an erased-page
1416 */
1417 } else {
1418 buf = &data[info->nand.ecc.size * i];
1419 /*
1420 * count number of 0-bits in read_buf.
1421 * This check can be removed once a similar
1422 * check is introduced in generic NAND driver
1423 */
1424 bitflip_count = erased_sector_bitflips(
1425 buf, read_ecc, info);
1426 if (bitflip_count) {
1427 /*
1428 * number of 0-bits within ECC limits
1429 * So this may be an erased-page
1430 */
1431 stat += bitflip_count;
1432 } else {
1433 /*
1434 * Too many 0-bits. It may be a
1435 * - programmed-page, OR
1436 * - erased-page with many bit-flips
1437 * So this page requires check by ELM
1438 */
1439 err_vec[i].error_reported = true;
1440 is_error_reported = true;
1441 }
1442 }
1443 }
1444
1445 /* Update the ecc vector */
1446 calc_ecc += ecc->bytes;
1447 read_ecc += ecc->bytes;
1448 }
1449
1450 /* Check if any error reported */
1451 if (!is_error_reported)
1452 return stat;
1453
1454 /* Decode BCH error using ELM module */
1455 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1456
1457 err = 0;
1458 for (i = 0; i < eccsteps; i++) {
1459 if (err_vec[i].error_uncorrectable) {
1460 dev_err(&info->pdev->dev,
1461 "uncorrectable bit-flips found\n");
1462 err = -EBADMSG;
1463 } else if (err_vec[i].error_reported) {
1464 for (j = 0; j < err_vec[i].error_count; j++) {
1465 switch (info->ecc_opt) {
1466 case OMAP_ECC_BCH4_CODE_HW:
1467 /* Add 4 bits to take care of padding */
1468 pos = err_vec[i].error_loc[j] +
1469 BCH4_BIT_PAD;
1470 break;
1471 case OMAP_ECC_BCH8_CODE_HW:
1472 case OMAP_ECC_BCH16_CODE_HW:
1473 pos = err_vec[i].error_loc[j];
1474 break;
1475 default:
1476 return -EINVAL;
1477 }
1478 error_max = (ecc->size + actual_eccbytes) * 8;
1479 /* Calculate bit position of error */
1480 bit_pos = pos % 8;
1481
1482 /* Calculate byte position of error */
1483 byte_pos = (error_max - pos - 1) / 8;
1484
1485 if (pos < error_max) {
1486 if (byte_pos < 512) {
1487 pr_debug("bitflip@dat[%d]=%x\n",
1488 byte_pos, data[byte_pos]);
1489 data[byte_pos] ^= 1 << bit_pos;
1490 } else {
1491 pr_debug("bitflip@oob[%d]=%x\n",
1492 (byte_pos - 512),
1493 spare_ecc[byte_pos - 512]);
1494 spare_ecc[byte_pos - 512] ^=
1495 1 << bit_pos;
1496 }
1497 } else {
1498 dev_err(&info->pdev->dev,
1499 "invalid bit-flip @ %d:%d\n",
1500 byte_pos, bit_pos);
1501 err = -EBADMSG;
1502 }
1503 }
1504 }
1505
1506 /* Update number of correctable errors */
1507 stat += err_vec[i].error_count;
1508
1509 /* Update page data with sector size */
1510 data += ecc->size;
1511 spare_ecc += ecc->bytes;
1512 }
1513
1514 return (err) ? err : stat;
1515 }
1516
1517 /**
1518 * omap_write_page_bch - BCH ecc based write page function for entire page
1519 * @chip: nand chip info structure
1520 * @buf: data buffer
1521 * @oob_required: must write chip->oob_poi to OOB
1522 * @page: page
1523 *
1524 * Custom write page method evolved to support multi sector writing in one shot
1525 */
1526 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1527 int oob_required, int page)
1528 {
1529 struct mtd_info *mtd = nand_to_mtd(chip);
1530 int ret;
1531 uint8_t *ecc_calc = chip->ecc.calc_buf;
1532
1533 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1534
1535 /* Enable GPMC ecc engine */
1536 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1537
1538 /* Write data */
1539 chip->legacy.write_buf(chip, buf, mtd->writesize);
1540
1541 /* Update ecc vector from GPMC result registers */
1542 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1543
1544 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1545 chip->ecc.total);
1546 if (ret)
1547 return ret;
1548
1549 /* Write ecc vector to OOB area */
1550 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1551
1552 return nand_prog_page_end_op(chip);
1553 }
1554
1555 /**
1556 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1557 * @chip: nand chip info structure
1558 * @offset: column address of subpage within the page
1559 * @data_len: data length
1560 * @buf: data buffer
1561 * @oob_required: must write chip->oob_poi to OOB
1562 * @page: page number to write
1563 *
1564 * OMAP optimized subpage write method.
1565 */
1566 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1567 u32 data_len, const u8 *buf,
1568 int oob_required, int page)
1569 {
1570 struct mtd_info *mtd = nand_to_mtd(chip);
1571 u8 *ecc_calc = chip->ecc.calc_buf;
1572 int ecc_size = chip->ecc.size;
1573 int ecc_bytes = chip->ecc.bytes;
1574 int ecc_steps = chip->ecc.steps;
1575 u32 start_step = offset / ecc_size;
1576 u32 end_step = (offset + data_len - 1) / ecc_size;
1577 int step, ret = 0;
1578
1579 /*
1580 * Write entire page at one go as it would be optimal
1581 * as ECC is calculated by hardware.
1582 * ECC is calculated for all subpages but we choose
1583 * only what we want.
1584 */
1585 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1586
1587 /* Enable GPMC ECC engine */
1588 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1589
1590 /* Write data */
1591 chip->legacy.write_buf(chip, buf, mtd->writesize);
1592
1593 for (step = 0; step < ecc_steps; step++) {
1594 /* mask ECC of un-touched subpages by padding 0xFF */
1595 if (step < start_step || step > end_step)
1596 memset(ecc_calc, 0xff, ecc_bytes);
1597 else
1598 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1599
1600 if (ret)
1601 return ret;
1602
1603 buf += ecc_size;
1604 ecc_calc += ecc_bytes;
1605 }
1606
1607 /* copy calculated ECC for whole page to chip->buffer->oob */
1608 /* this include masked-value(0xFF) for unwritten subpages */
1609 ecc_calc = chip->ecc.calc_buf;
1610 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1611 chip->ecc.total);
1612 if (ret)
1613 return ret;
1614
1615 /* write OOB buffer to NAND device */
1616 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1617
1618 return nand_prog_page_end_op(chip);
1619 }
1620
1621 /**
1622 * omap_read_page_bch - BCH ecc based page read function for entire page
1623 * @chip: nand chip info structure
1624 * @buf: buffer to store read data
1625 * @oob_required: caller requires OOB data read to chip->oob_poi
1626 * @page: page number to read
1627 *
1628 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1629 * used for error correction.
1630 * Custom method evolved to support ELM error correction & multi sector
1631 * reading. On reading page data area is read along with OOB data with
1632 * ecc engine enabled. ecc vector updated after read of OOB data.
1633 * For non error pages ecc vector reported as zero.
1634 */
1635 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1636 int oob_required, int page)
1637 {
1638 struct mtd_info *mtd = nand_to_mtd(chip);
1639 uint8_t *ecc_calc = chip->ecc.calc_buf;
1640 uint8_t *ecc_code = chip->ecc.code_buf;
1641 int stat, ret;
1642 unsigned int max_bitflips = 0;
1643
1644 nand_read_page_op(chip, page, 0, NULL, 0);
1645
1646 /* Enable GPMC ecc engine */
1647 chip->ecc.hwctl(chip, NAND_ECC_READ);
1648
1649 /* Read data */
1650 chip->legacy.read_buf(chip, buf, mtd->writesize);
1651
1652 /* Read oob bytes */
1653 nand_change_read_column_op(chip,
1654 mtd->writesize + BADBLOCK_MARKER_LENGTH,
1655 chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1656 chip->ecc.total, false);
1657
1658 /* Calculate ecc bytes */
1659 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1660
1661 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1662 chip->ecc.total);
1663 if (ret)
1664 return ret;
1665
1666 stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1667
1668 if (stat < 0) {
1669 mtd->ecc_stats.failed++;
1670 } else {
1671 mtd->ecc_stats.corrected += stat;
1672 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1673 }
1674
1675 return max_bitflips;
1676 }
1677
1678 /**
1679 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1680 * @omap_nand_info: NAND device structure containing platform data
1681 */
1682 static bool is_elm_present(struct omap_nand_info *info,
1683 struct device_node *elm_node)
1684 {
1685 struct platform_device *pdev;
1686
1687 /* check whether elm-id is passed via DT */
1688 if (!elm_node) {
1689 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1690 return false;
1691 }
1692 pdev = of_find_device_by_node(elm_node);
1693 /* check whether ELM device is registered */
1694 if (!pdev) {
1695 dev_err(&info->pdev->dev, "ELM device not found\n");
1696 return false;
1697 }
1698 /* ELM module available, now configure it */
1699 info->elm_dev = &pdev->dev;
1700 return true;
1701 }
1702
1703 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1704 {
1705 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1706
1707 switch (info->ecc_opt) {
1708 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1709 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1710 ecc_needs_omap_bch = false;
1711 ecc_needs_bch = true;
1712 ecc_needs_elm = false;
1713 break;
1714 case OMAP_ECC_BCH4_CODE_HW:
1715 case OMAP_ECC_BCH8_CODE_HW:
1716 case OMAP_ECC_BCH16_CODE_HW:
1717 ecc_needs_omap_bch = true;
1718 ecc_needs_bch = false;
1719 ecc_needs_elm = true;
1720 break;
1721 default:
1722 ecc_needs_omap_bch = false;
1723 ecc_needs_bch = false;
1724 ecc_needs_elm = false;
1725 break;
1726 }
1727
1728 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1729 dev_err(&info->pdev->dev,
1730 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1731 return false;
1732 }
1733 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1734 dev_err(&info->pdev->dev,
1735 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1736 return false;
1737 }
1738 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1739 dev_err(&info->pdev->dev, "ELM not available\n");
1740 return false;
1741 }
1742
1743 return true;
1744 }
1745
1746 static const char * const nand_xfer_types[] = {
1747 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1748 [NAND_OMAP_POLLED] = "polled",
1749 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1750 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1751 };
1752
1753 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1754 {
1755 struct device_node *child = dev->of_node;
1756 int i;
1757 const char *s;
1758 u32 cs;
1759
1760 if (of_property_read_u32(child, "reg", &cs) < 0) {
1761 dev_err(dev, "reg not found in DT\n");
1762 return -EINVAL;
1763 }
1764
1765 info->gpmc_cs = cs;
1766
1767 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1768 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1769 if (!info->elm_of_node) {
1770 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1771 if (!info->elm_of_node)
1772 dev_dbg(dev, "ti,elm-id not in DT\n");
1773 }
1774
1775 /* select ecc-scheme for NAND */
1776 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1777 dev_err(dev, "ti,nand-ecc-opt not found\n");
1778 return -EINVAL;
1779 }
1780
1781 if (!strcmp(s, "sw")) {
1782 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1783 } else if (!strcmp(s, "ham1") ||
1784 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1785 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1786 } else if (!strcmp(s, "bch4")) {
1787 if (info->elm_of_node)
1788 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1789 else
1790 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1791 } else if (!strcmp(s, "bch8")) {
1792 if (info->elm_of_node)
1793 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1794 else
1795 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1796 } else if (!strcmp(s, "bch16")) {
1797 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1798 } else {
1799 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1800 return -EINVAL;
1801 }
1802
1803 /* select data transfer mode */
1804 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1805 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1806 if (!strcasecmp(s, nand_xfer_types[i])) {
1807 info->xfer_type = i;
1808 return 0;
1809 }
1810 }
1811
1812 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1813 return -EINVAL;
1814 }
1815
1816 return 0;
1817 }
1818
1819 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1820 struct mtd_oob_region *oobregion)
1821 {
1822 struct omap_nand_info *info = mtd_to_omap(mtd);
1823 struct nand_chip *chip = &info->nand;
1824 int off = BADBLOCK_MARKER_LENGTH;
1825
1826 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1827 !(chip->options & NAND_BUSWIDTH_16))
1828 off = 1;
1829
1830 if (section)
1831 return -ERANGE;
1832
1833 oobregion->offset = off;
1834 oobregion->length = chip->ecc.total;
1835
1836 return 0;
1837 }
1838
1839 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1840 struct mtd_oob_region *oobregion)
1841 {
1842 struct omap_nand_info *info = mtd_to_omap(mtd);
1843 struct nand_chip *chip = &info->nand;
1844 int off = BADBLOCK_MARKER_LENGTH;
1845
1846 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1847 !(chip->options & NAND_BUSWIDTH_16))
1848 off = 1;
1849
1850 if (section)
1851 return -ERANGE;
1852
1853 off += chip->ecc.total;
1854 if (off >= mtd->oobsize)
1855 return -ERANGE;
1856
1857 oobregion->offset = off;
1858 oobregion->length = mtd->oobsize - off;
1859
1860 return 0;
1861 }
1862
1863 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1864 .ecc = omap_ooblayout_ecc,
1865 .free = omap_ooblayout_free,
1866 };
1867
1868 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1869 struct mtd_oob_region *oobregion)
1870 {
1871 struct nand_chip *chip = mtd_to_nand(mtd);
1872 int off = BADBLOCK_MARKER_LENGTH;
1873
1874 if (section >= chip->ecc.steps)
1875 return -ERANGE;
1876
1877 /*
1878 * When SW correction is employed, one OMAP specific marker byte is
1879 * reserved after each ECC step.
1880 */
1881 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1882 oobregion->length = chip->ecc.bytes;
1883
1884 return 0;
1885 }
1886
1887 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1888 struct mtd_oob_region *oobregion)
1889 {
1890 struct nand_chip *chip = mtd_to_nand(mtd);
1891 int off = BADBLOCK_MARKER_LENGTH;
1892
1893 if (section)
1894 return -ERANGE;
1895
1896 /*
1897 * When SW correction is employed, one OMAP specific marker byte is
1898 * reserved after each ECC step.
1899 */
1900 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1901 if (off >= mtd->oobsize)
1902 return -ERANGE;
1903
1904 oobregion->offset = off;
1905 oobregion->length = mtd->oobsize - off;
1906
1907 return 0;
1908 }
1909
1910 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1911 .ecc = omap_sw_ooblayout_ecc,
1912 .free = omap_sw_ooblayout_free,
1913 };
1914
1915 static int omap_nand_attach_chip(struct nand_chip *chip)
1916 {
1917 struct mtd_info *mtd = nand_to_mtd(chip);
1918 struct omap_nand_info *info = mtd_to_omap(mtd);
1919 struct device *dev = &info->pdev->dev;
1920 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1921 int oobbytes_per_step;
1922 dma_cap_mask_t mask;
1923 int err;
1924
1925 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1926 chip->bbt_options |= NAND_BBT_NO_OOB;
1927 else
1928 chip->options |= NAND_SKIP_BBTSCAN;
1929
1930 /* Re-populate low-level callbacks based on xfer modes */
1931 switch (info->xfer_type) {
1932 case NAND_OMAP_PREFETCH_POLLED:
1933 chip->legacy.read_buf = omap_read_buf_pref;
1934 chip->legacy.write_buf = omap_write_buf_pref;
1935 break;
1936
1937 case NAND_OMAP_POLLED:
1938 /* Use nand_base defaults for {read,write}_buf */
1939 break;
1940
1941 case NAND_OMAP_PREFETCH_DMA:
1942 dma_cap_zero(mask);
1943 dma_cap_set(DMA_SLAVE, mask);
1944 info->dma = dma_request_chan(dev->parent, "rxtx");
1945
1946 if (IS_ERR(info->dma)) {
1947 dev_err(dev, "DMA engine request failed\n");
1948 return PTR_ERR(info->dma);
1949 } else {
1950 struct dma_slave_config cfg;
1951
1952 memset(&cfg, 0, sizeof(cfg));
1953 cfg.src_addr = info->phys_base;
1954 cfg.dst_addr = info->phys_base;
1955 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1956 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1957 cfg.src_maxburst = 16;
1958 cfg.dst_maxburst = 16;
1959 err = dmaengine_slave_config(info->dma, &cfg);
1960 if (err) {
1961 dev_err(dev,
1962 "DMA engine slave config failed: %d\n",
1963 err);
1964 return err;
1965 }
1966 chip->legacy.read_buf = omap_read_buf_dma_pref;
1967 chip->legacy.write_buf = omap_write_buf_dma_pref;
1968 }
1969 break;
1970
1971 case NAND_OMAP_PREFETCH_IRQ:
1972 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1973 if (info->gpmc_irq_fifo <= 0) {
1974 dev_err(dev, "Error getting fifo IRQ\n");
1975 return -ENODEV;
1976 }
1977 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1978 omap_nand_irq, IRQF_SHARED,
1979 "gpmc-nand-fifo", info);
1980 if (err) {
1981 dev_err(dev, "Requesting IRQ %d, error %d\n",
1982 info->gpmc_irq_fifo, err);
1983 info->gpmc_irq_fifo = 0;
1984 return err;
1985 }
1986
1987 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1988 if (info->gpmc_irq_count <= 0) {
1989 dev_err(dev, "Error getting IRQ count\n");
1990 return -ENODEV;
1991 }
1992 err = devm_request_irq(dev, info->gpmc_irq_count,
1993 omap_nand_irq, IRQF_SHARED,
1994 "gpmc-nand-count", info);
1995 if (err) {
1996 dev_err(dev, "Requesting IRQ %d, error %d\n",
1997 info->gpmc_irq_count, err);
1998 info->gpmc_irq_count = 0;
1999 return err;
2000 }
2001
2002 chip->legacy.read_buf = omap_read_buf_irq_pref;
2003 chip->legacy.write_buf = omap_write_buf_irq_pref;
2004
2005 break;
2006
2007 default:
2008 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2009 return -EINVAL;
2010 }
2011
2012 if (!omap2_nand_ecc_check(info))
2013 return -EINVAL;
2014
2015 /*
2016 * Bail out earlier to let NAND_ECC_SOFT code create its own
2017 * ooblayout instead of using ours.
2018 */
2019 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2020 chip->ecc.mode = NAND_ECC_SOFT;
2021 chip->ecc.algo = NAND_ECC_HAMMING;
2022 return 0;
2023 }
2024
2025 /* Populate MTD interface based on ECC scheme */
2026 switch (info->ecc_opt) {
2027 case OMAP_ECC_HAM1_CODE_HW:
2028 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2029 chip->ecc.mode = NAND_ECC_HW;
2030 chip->ecc.bytes = 3;
2031 chip->ecc.size = 512;
2032 chip->ecc.strength = 1;
2033 chip->ecc.calculate = omap_calculate_ecc;
2034 chip->ecc.hwctl = omap_enable_hwecc;
2035 chip->ecc.correct = omap_correct_data;
2036 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2037 oobbytes_per_step = chip->ecc.bytes;
2038
2039 if (!(chip->options & NAND_BUSWIDTH_16))
2040 min_oobbytes = 1;
2041
2042 break;
2043
2044 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2045 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2046 chip->ecc.mode = NAND_ECC_HW;
2047 chip->ecc.size = 512;
2048 chip->ecc.bytes = 7;
2049 chip->ecc.strength = 4;
2050 chip->ecc.hwctl = omap_enable_hwecc_bch;
2051 chip->ecc.correct = nand_bch_correct_data;
2052 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2053 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2054 /* Reserve one byte for the OMAP marker */
2055 oobbytes_per_step = chip->ecc.bytes + 1;
2056 /* Software BCH library is used for locating errors */
2057 chip->ecc.priv = nand_bch_init(mtd);
2058 if (!chip->ecc.priv) {
2059 dev_err(dev, "Unable to use BCH library\n");
2060 return -EINVAL;
2061 }
2062 break;
2063
2064 case OMAP_ECC_BCH4_CODE_HW:
2065 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2066 chip->ecc.mode = NAND_ECC_HW;
2067 chip->ecc.size = 512;
2068 /* 14th bit is kept reserved for ROM-code compatibility */
2069 chip->ecc.bytes = 7 + 1;
2070 chip->ecc.strength = 4;
2071 chip->ecc.hwctl = omap_enable_hwecc_bch;
2072 chip->ecc.correct = omap_elm_correct_data;
2073 chip->ecc.read_page = omap_read_page_bch;
2074 chip->ecc.write_page = omap_write_page_bch;
2075 chip->ecc.write_subpage = omap_write_subpage_bch;
2076 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2077 oobbytes_per_step = chip->ecc.bytes;
2078
2079 err = elm_config(info->elm_dev, BCH4_ECC,
2080 mtd->writesize / chip->ecc.size,
2081 chip->ecc.size, chip->ecc.bytes);
2082 if (err < 0)
2083 return err;
2084 break;
2085
2086 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2087 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2088 chip->ecc.mode = NAND_ECC_HW;
2089 chip->ecc.size = 512;
2090 chip->ecc.bytes = 13;
2091 chip->ecc.strength = 8;
2092 chip->ecc.hwctl = omap_enable_hwecc_bch;
2093 chip->ecc.correct = nand_bch_correct_data;
2094 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2095 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2096 /* Reserve one byte for the OMAP marker */
2097 oobbytes_per_step = chip->ecc.bytes + 1;
2098 /* Software BCH library is used for locating errors */
2099 chip->ecc.priv = nand_bch_init(mtd);
2100 if (!chip->ecc.priv) {
2101 dev_err(dev, "unable to use BCH library\n");
2102 return -EINVAL;
2103 }
2104 break;
2105
2106 case OMAP_ECC_BCH8_CODE_HW:
2107 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2108 chip->ecc.mode = NAND_ECC_HW;
2109 chip->ecc.size = 512;
2110 /* 14th bit is kept reserved for ROM-code compatibility */
2111 chip->ecc.bytes = 13 + 1;
2112 chip->ecc.strength = 8;
2113 chip->ecc.hwctl = omap_enable_hwecc_bch;
2114 chip->ecc.correct = omap_elm_correct_data;
2115 chip->ecc.read_page = omap_read_page_bch;
2116 chip->ecc.write_page = omap_write_page_bch;
2117 chip->ecc.write_subpage = omap_write_subpage_bch;
2118 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2119 oobbytes_per_step = chip->ecc.bytes;
2120
2121 err = elm_config(info->elm_dev, BCH8_ECC,
2122 mtd->writesize / chip->ecc.size,
2123 chip->ecc.size, chip->ecc.bytes);
2124 if (err < 0)
2125 return err;
2126
2127 break;
2128
2129 case OMAP_ECC_BCH16_CODE_HW:
2130 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2131 chip->ecc.mode = NAND_ECC_HW;
2132 chip->ecc.size = 512;
2133 chip->ecc.bytes = 26;
2134 chip->ecc.strength = 16;
2135 chip->ecc.hwctl = omap_enable_hwecc_bch;
2136 chip->ecc.correct = omap_elm_correct_data;
2137 chip->ecc.read_page = omap_read_page_bch;
2138 chip->ecc.write_page = omap_write_page_bch;
2139 chip->ecc.write_subpage = omap_write_subpage_bch;
2140 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2141 oobbytes_per_step = chip->ecc.bytes;
2142
2143 err = elm_config(info->elm_dev, BCH16_ECC,
2144 mtd->writesize / chip->ecc.size,
2145 chip->ecc.size, chip->ecc.bytes);
2146 if (err < 0)
2147 return err;
2148
2149 break;
2150 default:
2151 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2152 return -EINVAL;
2153 }
2154
2155 /* Check if NAND device's OOB is enough to store ECC signatures */
2156 min_oobbytes += (oobbytes_per_step *
2157 (mtd->writesize / chip->ecc.size));
2158 if (mtd->oobsize < min_oobbytes) {
2159 dev_err(dev,
2160 "Not enough OOB bytes: required = %d, available=%d\n",
2161 min_oobbytes, mtd->oobsize);
2162 return -EINVAL;
2163 }
2164
2165 return 0;
2166 }
2167
2168 static const struct nand_controller_ops omap_nand_controller_ops = {
2169 .attach_chip = omap_nand_attach_chip,
2170 };
2171
2172 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2173 static struct nand_controller omap_gpmc_controller;
2174 static bool omap_gpmc_controller_initialized;
2175
2176 static int omap_nand_probe(struct platform_device *pdev)
2177 {
2178 struct omap_nand_info *info;
2179 struct mtd_info *mtd;
2180 struct nand_chip *nand_chip;
2181 int err;
2182 struct resource *res;
2183 struct device *dev = &pdev->dev;
2184
2185 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2186 GFP_KERNEL);
2187 if (!info)
2188 return -ENOMEM;
2189
2190 info->pdev = pdev;
2191
2192 err = omap_get_dt_info(dev, info);
2193 if (err)
2194 return err;
2195
2196 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2197 if (!info->ops) {
2198 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2199 return -ENODEV;
2200 }
2201
2202 nand_chip = &info->nand;
2203 mtd = nand_to_mtd(nand_chip);
2204 mtd->dev.parent = &pdev->dev;
2205 nand_chip->ecc.priv = NULL;
2206 nand_set_flash_node(nand_chip, dev->of_node);
2207
2208 if (!mtd->name) {
2209 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2210 "omap2-nand.%d", info->gpmc_cs);
2211 if (!mtd->name) {
2212 dev_err(&pdev->dev, "Failed to set MTD name\n");
2213 return -ENOMEM;
2214 }
2215 }
2216
2217 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2218 nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2219 if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2220 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2221
2222 info->phys_base = res->start;
2223
2224 if (!omap_gpmc_controller_initialized) {
2225 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2226 nand_controller_init(&omap_gpmc_controller);
2227 omap_gpmc_controller_initialized = true;
2228 }
2229
2230 nand_chip->controller = &omap_gpmc_controller;
2231
2232 nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2233 nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
2234
2235 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2236 GPIOD_IN);
2237 if (IS_ERR(info->ready_gpiod)) {
2238 dev_err(dev, "failed to get ready gpio\n");
2239 return PTR_ERR(info->ready_gpiod);
2240 }
2241
2242 /*
2243 * If RDY/BSY line is connected to OMAP then use the omap ready
2244 * function and the generic nand_wait function which reads the status
2245 * register after monitoring the RDY/BSY line. Otherwise use a standard
2246 * chip delay which is slightly more than tR (AC Timing) of the NAND
2247 * device and read status register until you get a failure or success
2248 */
2249 if (info->ready_gpiod) {
2250 nand_chip->legacy.dev_ready = omap_dev_ready;
2251 nand_chip->legacy.chip_delay = 0;
2252 } else {
2253 nand_chip->legacy.waitfunc = omap_wait;
2254 nand_chip->legacy.chip_delay = 50;
2255 }
2256
2257 if (info->flash_bbt)
2258 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2259
2260 /* scan NAND device connected to chip controller */
2261 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2262
2263 err = nand_scan(nand_chip, 1);
2264 if (err)
2265 goto return_error;
2266
2267 err = mtd_device_register(mtd, NULL, 0);
2268 if (err)
2269 goto cleanup_nand;
2270
2271 platform_set_drvdata(pdev, mtd);
2272
2273 return 0;
2274
2275 cleanup_nand:
2276 nand_cleanup(nand_chip);
2277
2278 return_error:
2279 if (!IS_ERR_OR_NULL(info->dma))
2280 dma_release_channel(info->dma);
2281 if (nand_chip->ecc.priv) {
2282 nand_bch_free(nand_chip->ecc.priv);
2283 nand_chip->ecc.priv = NULL;
2284 }
2285 return err;
2286 }
2287
2288 static int omap_nand_remove(struct platform_device *pdev)
2289 {
2290 struct mtd_info *mtd = platform_get_drvdata(pdev);
2291 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2292 struct omap_nand_info *info = mtd_to_omap(mtd);
2293 if (nand_chip->ecc.priv) {
2294 nand_bch_free(nand_chip->ecc.priv);
2295 nand_chip->ecc.priv = NULL;
2296 }
2297 if (info->dma)
2298 dma_release_channel(info->dma);
2299 nand_release(nand_chip);
2300 return 0;
2301 }
2302
2303 static const struct of_device_id omap_nand_ids[] = {
2304 { .compatible = "ti,omap2-nand", },
2305 {},
2306 };
2307 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2308
2309 static struct platform_driver omap_nand_driver = {
2310 .probe = omap_nand_probe,
2311 .remove = omap_nand_remove,
2312 .driver = {
2313 .name = DRIVER_NAME,
2314 .of_match_table = of_match_ptr(omap_nand_ids),
2315 },
2316 };
2317
2318 module_platform_driver(omap_nand_driver);
2319
2320 MODULE_ALIAS("platform:" DRIVER_NAME);
2321 MODULE_LICENSE("GPL");
2322 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");