]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/nand/raw/qcom_nandc.c
Merge tag 'spi-nor/for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / raw / qcom_nandc.c
1 /*
2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26
27 /* NANDc reg offsets */
28 #define NAND_FLASH_CMD 0x00
29 #define NAND_ADDR0 0x04
30 #define NAND_ADDR1 0x08
31 #define NAND_FLASH_CHIP_SELECT 0x0c
32 #define NAND_EXEC_CMD 0x10
33 #define NAND_FLASH_STATUS 0x14
34 #define NAND_BUFFER_STATUS 0x18
35 #define NAND_DEV0_CFG0 0x20
36 #define NAND_DEV0_CFG1 0x24
37 #define NAND_DEV0_ECC_CFG 0x28
38 #define NAND_DEV1_ECC_CFG 0x2c
39 #define NAND_DEV1_CFG0 0x30
40 #define NAND_DEV1_CFG1 0x34
41 #define NAND_READ_ID 0x40
42 #define NAND_READ_STATUS 0x44
43 #define NAND_DEV_CMD0 0xa0
44 #define NAND_DEV_CMD1 0xa4
45 #define NAND_DEV_CMD2 0xa8
46 #define NAND_DEV_CMD_VLD 0xac
47 #define SFLASHC_BURST_CFG 0xe0
48 #define NAND_ERASED_CW_DETECT_CFG 0xe8
49 #define NAND_ERASED_CW_DETECT_STATUS 0xec
50 #define NAND_EBI2_ECC_BUF_CFG 0xf0
51 #define FLASH_BUF_ACC 0x100
52
53 #define NAND_CTRL 0xf00
54 #define NAND_VERSION 0xf08
55 #define NAND_READ_LOCATION_0 0xf20
56 #define NAND_READ_LOCATION_1 0xf24
57 #define NAND_READ_LOCATION_2 0xf28
58 #define NAND_READ_LOCATION_3 0xf2c
59
60 /* dummy register offsets, used by write_reg_dma */
61 #define NAND_DEV_CMD1_RESTORE 0xdead
62 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
63
64 /* NAND_FLASH_CMD bits */
65 #define PAGE_ACC BIT(4)
66 #define LAST_PAGE BIT(5)
67
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define NAND_DEV_SEL 0
70 #define DM_EN BIT(2)
71
72 /* NAND_FLASH_STATUS bits */
73 #define FS_OP_ERR BIT(4)
74 #define FS_READY_BSY_N BIT(5)
75 #define FS_MPU_ERR BIT(8)
76 #define FS_DEVICE_STS_ERR BIT(16)
77 #define FS_DEVICE_WP BIT(23)
78
79 /* NAND_BUFFER_STATUS bits */
80 #define BS_UNCORRECTABLE_BIT BIT(8)
81 #define BS_CORRECTABLE_ERR_MSK 0x1f
82
83 /* NAND_DEVn_CFG0 bits */
84 #define DISABLE_STATUS_AFTER_WRITE 4
85 #define CW_PER_PAGE 6
86 #define UD_SIZE_BYTES 9
87 #define ECC_PARITY_SIZE_BYTES_RS 19
88 #define SPARE_SIZE_BYTES 23
89 #define NUM_ADDR_CYCLES 27
90 #define STATUS_BFR_READ 30
91 #define SET_RD_MODE_AFTER_STATUS 31
92
93 /* NAND_DEVn_CFG0 bits */
94 #define DEV0_CFG1_ECC_DISABLE 0
95 #define WIDE_FLASH 1
96 #define NAND_RECOVERY_CYCLES 2
97 #define CS_ACTIVE_BSY 5
98 #define BAD_BLOCK_BYTE_NUM 6
99 #define BAD_BLOCK_IN_SPARE_AREA 16
100 #define WR_RD_BSY_GAP 17
101 #define ENABLE_BCH_ECC 27
102
103 /* NAND_DEV0_ECC_CFG bits */
104 #define ECC_CFG_ECC_DISABLE 0
105 #define ECC_SW_RESET 1
106 #define ECC_MODE 4
107 #define ECC_PARITY_SIZE_BYTES_BCH 8
108 #define ECC_NUM_DATA_BYTES 16
109 #define ECC_FORCE_CLK_OPEN 30
110
111 /* NAND_DEV_CMD1 bits */
112 #define READ_ADDR 0
113
114 /* NAND_DEV_CMD_VLD bits */
115 #define READ_START_VLD BIT(0)
116 #define READ_STOP_VLD BIT(1)
117 #define WRITE_START_VLD BIT(2)
118 #define ERASE_START_VLD BIT(3)
119 #define SEQ_READ_START_VLD BIT(4)
120
121 /* NAND_EBI2_ECC_BUF_CFG bits */
122 #define NUM_STEPS 0
123
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define ERASED_CW_ECC_MASK 1
126 #define AUTO_DETECT_RES 0
127 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
128 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
129 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
130 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
131 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
132
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define PAGE_ALL_ERASED BIT(7)
135 #define CODEWORD_ALL_ERASED BIT(6)
136 #define PAGE_ERASED BIT(5)
137 #define CODEWORD_ERASED BIT(4)
138 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
139 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
140
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET 0
143 #define READ_LOCATION_SIZE 16
144 #define READ_LOCATION_LAST 31
145
146 /* Version Mask */
147 #define NAND_VERSION_MAJOR_MASK 0xf0000000
148 #define NAND_VERSION_MAJOR_SHIFT 28
149 #define NAND_VERSION_MINOR_MASK 0x0fff0000
150 #define NAND_VERSION_MINOR_SHIFT 16
151
152 /* NAND OP_CMDs */
153 #define OP_PAGE_READ 0x2
154 #define OP_PAGE_READ_WITH_ECC 0x3
155 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
156 #define OP_PROGRAM_PAGE 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
158 #define OP_PROGRAM_PAGE_SPARE 0x9
159 #define OP_BLOCK_ERASE 0xa
160 #define OP_FETCH_ID 0xb
161 #define OP_RESET_DEVICE 0xd
162
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
165 ERASE_START_VLD | SEQ_READ_START_VLD)
166
167 /* NAND_CTRL bits */
168 #define BAM_MODE_EN BIT(0)
169
170 /*
171 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172 * the driver calls the chunks 'step' or 'codeword' interchangeably
173 */
174 #define NANDC_STEP_SIZE 512
175
176 /*
177 * the largest page size we support is 8K, this will have 16 steps/codewords
178 * of 512 bytes each
179 */
180 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
181
182 /* we read at most 3 registers per codeword scan */
183 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
184
185 /* ECC modes supported by the controller */
186 #define ECC_NONE BIT(0)
187 #define ECC_RS_4BIT BIT(1)
188 #define ECC_BCH_4BIT BIT(2)
189 #define ECC_BCH_8BIT BIT(3)
190
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
193 ((offset) << READ_LOCATION_OFFSET) | \
194 ((size) << READ_LOCATION_SIZE) | \
195 ((is_last) << READ_LOCATION_LAST))
196
197 /*
198 * Returns the actual register address for all NAND_DEV_ registers
199 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
200 */
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
202
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
205
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208 ((chip)->reg_read_dma + \
209 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
210
211 #define QPIC_PER_CW_CMD_ELEMENTS 32
212 #define QPIC_PER_CW_CMD_SGL 32
213 #define QPIC_PER_CW_DATA_SGL 8
214
215 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
216
217 /*
218 * Flags used in DMA descriptor preparation helper functions
219 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
220 */
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL BIT(2)
227 /*
228 * Erased codeword status is being used two times in single transfer so this
229 * flag will determine the current value of erased codeword status register
230 */
231 #define NAND_ERASED_CW_SET BIT(4)
232
233 /*
234 * This data type corresponds to the BAM transaction which will be used for all
235 * NAND transfers.
236 * @bam_ce - the array of BAM command elements
237 * @cmd_sgl - sgl for NAND BAM command pipe
238 * @data_sgl - sgl for NAND BAM consumer/producer pipe
239 * @bam_ce_pos - the index in bam_ce which is available for next sgl
240 * @bam_ce_start - the index in bam_ce which marks the start position ce
241 * for current sgl. It will be used for size calculation
242 * for current sgl
243 * @cmd_sgl_pos - current index in command sgl.
244 * @cmd_sgl_start - start index in command sgl.
245 * @tx_sgl_pos - current index in data sgl for tx.
246 * @tx_sgl_start - start index in data sgl for tx.
247 * @rx_sgl_pos - current index in data sgl for rx.
248 * @rx_sgl_start - start index in data sgl for rx.
249 * @wait_second_completion - wait for second DMA desc completion before making
250 * the NAND transfer completion.
251 * @txn_done - completion for NAND transfer.
252 * @last_data_desc - last DMA desc in data channel (tx/rx).
253 * @last_cmd_desc - last DMA desc in command channel.
254 */
255 struct bam_transaction {
256 struct bam_cmd_element *bam_ce;
257 struct scatterlist *cmd_sgl;
258 struct scatterlist *data_sgl;
259 u32 bam_ce_pos;
260 u32 bam_ce_start;
261 u32 cmd_sgl_pos;
262 u32 cmd_sgl_start;
263 u32 tx_sgl_pos;
264 u32 tx_sgl_start;
265 u32 rx_sgl_pos;
266 u32 rx_sgl_start;
267 bool wait_second_completion;
268 struct completion txn_done;
269 struct dma_async_tx_descriptor *last_data_desc;
270 struct dma_async_tx_descriptor *last_cmd_desc;
271 };
272
273 /*
274 * This data type corresponds to the nand dma descriptor
275 * @list - list for desc_info
276 * @dir - DMA transfer direction
277 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
278 * ADM
279 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281 * @dma_desc - low level DMA engine descriptor
282 */
283 struct desc_info {
284 struct list_head node;
285
286 enum dma_data_direction dir;
287 union {
288 struct scatterlist adm_sgl;
289 struct {
290 struct scatterlist *bam_sgl;
291 int sgl_cnt;
292 };
293 };
294 struct dma_async_tx_descriptor *dma_desc;
295 };
296
297 /*
298 * holds the current register values that we want to write. acts as a contiguous
299 * chunk of memory which we use to write the controller registers through DMA.
300 */
301 struct nandc_regs {
302 __le32 cmd;
303 __le32 addr0;
304 __le32 addr1;
305 __le32 chip_sel;
306 __le32 exec;
307
308 __le32 cfg0;
309 __le32 cfg1;
310 __le32 ecc_bch_cfg;
311
312 __le32 clrflashstatus;
313 __le32 clrreadstatus;
314
315 __le32 cmd1;
316 __le32 vld;
317
318 __le32 orig_cmd1;
319 __le32 orig_vld;
320
321 __le32 ecc_buf_cfg;
322 __le32 read_location0;
323 __le32 read_location1;
324 __le32 read_location2;
325 __le32 read_location3;
326
327 __le32 erased_cw_detect_cfg_clr;
328 __le32 erased_cw_detect_cfg_set;
329 };
330
331 /*
332 * NAND controller data struct
333 *
334 * @controller: base controller structure
335 * @host_list: list containing all the chips attached to the
336 * controller
337 * @dev: parent device
338 * @base: MMIO base
339 * @base_phys: physical base address of controller registers
340 * @base_dma: dma base address of controller registers
341 * @core_clk: controller clock
342 * @aon_clk: another controller clock
343 *
344 * @chan: dma channel
345 * @cmd_crci: ADM DMA CRCI for command flow control
346 * @data_crci: ADM DMA CRCI for data flow control
347 * @desc_list: DMA descriptor list (list of desc_infos)
348 *
349 * @data_buffer: our local DMA buffer for page read/writes,
350 * used when we can't use the buffer provided
351 * by upper layers directly
352 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
353 * functions
354 * @reg_read_buf: local buffer for reading back registers via DMA
355 * @reg_read_dma: contains dma address for register read buffer
356 * @reg_read_pos: marker for data read in reg_read_buf
357 *
358 * @regs: a contiguous chunk of memory for DMA register
359 * writes. contains the register values to be
360 * written to controller
361 * @cmd1/vld: some fixed controller register values
362 * @props: properties of current NAND controller,
363 * initialized via DT match data
364 * @max_cwperpage: maximum QPIC codewords required. calculated
365 * from all connected NAND devices pagesize
366 */
367 struct qcom_nand_controller {
368 struct nand_controller controller;
369 struct list_head host_list;
370
371 struct device *dev;
372
373 void __iomem *base;
374 phys_addr_t base_phys;
375 dma_addr_t base_dma;
376
377 struct clk *core_clk;
378 struct clk *aon_clk;
379
380 union {
381 /* will be used only by QPIC for BAM DMA */
382 struct {
383 struct dma_chan *tx_chan;
384 struct dma_chan *rx_chan;
385 struct dma_chan *cmd_chan;
386 };
387
388 /* will be used only by EBI2 for ADM DMA */
389 struct {
390 struct dma_chan *chan;
391 unsigned int cmd_crci;
392 unsigned int data_crci;
393 };
394 };
395
396 struct list_head desc_list;
397 struct bam_transaction *bam_txn;
398
399 u8 *data_buffer;
400 int buf_size;
401 int buf_count;
402 int buf_start;
403 unsigned int max_cwperpage;
404
405 __le32 *reg_read_buf;
406 dma_addr_t reg_read_dma;
407 int reg_read_pos;
408
409 struct nandc_regs *regs;
410
411 u32 cmd1, vld;
412 const struct qcom_nandc_props *props;
413 };
414
415 /*
416 * NAND chip structure
417 *
418 * @chip: base NAND chip structure
419 * @node: list node to add itself to host_list in
420 * qcom_nand_controller
421 *
422 * @cs: chip select value for this chip
423 * @cw_size: the number of bytes in a single step/codeword
424 * of a page, consisting of all data, ecc, spare
425 * and reserved bytes
426 * @cw_data: the number of bytes within a codeword protected
427 * by ECC
428 * @use_ecc: request the controller to use ECC for the
429 * upcoming read/write
430 * @bch_enabled: flag to tell whether BCH ECC mode is used
431 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
432 * chip
433 * @status: value to be returned if NAND_CMD_STATUS command
434 * is executed
435 * @last_command: keeps track of last command on this chip. used
436 * for reading correct status
437 *
438 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
439 * ecc/non-ecc mode for the current nand flash
440 * device
441 */
442 struct qcom_nand_host {
443 struct nand_chip chip;
444 struct list_head node;
445
446 int cs;
447 int cw_size;
448 int cw_data;
449 bool use_ecc;
450 bool bch_enabled;
451 int ecc_bytes_hw;
452 int spare_bytes;
453 int bbm_size;
454 u8 status;
455 int last_command;
456
457 u32 cfg0, cfg1;
458 u32 cfg0_raw, cfg1_raw;
459 u32 ecc_buf_cfg;
460 u32 ecc_bch_cfg;
461 u32 clrflashstatus;
462 u32 clrreadstatus;
463 };
464
465 /*
466 * This data type corresponds to the NAND controller properties which varies
467 * among different NAND controllers.
468 * @ecc_modes - ecc mode for NAND
469 * @is_bam - whether NAND controller is using BAM
470 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471 */
472 struct qcom_nandc_props {
473 u32 ecc_modes;
474 bool is_bam;
475 u32 dev_cmd_reg_start;
476 };
477
478 /* Frees the BAM transaction memory */
479 static void free_bam_transaction(struct qcom_nand_controller *nandc)
480 {
481 struct bam_transaction *bam_txn = nandc->bam_txn;
482
483 devm_kfree(nandc->dev, bam_txn);
484 }
485
486 /* Allocates and Initializes the BAM transaction */
487 static struct bam_transaction *
488 alloc_bam_transaction(struct qcom_nand_controller *nandc)
489 {
490 struct bam_transaction *bam_txn;
491 size_t bam_txn_size;
492 unsigned int num_cw = nandc->max_cwperpage;
493 void *bam_txn_buf;
494
495 bam_txn_size =
496 sizeof(*bam_txn) + num_cw *
497 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
498 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
499 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
500
501 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
502 if (!bam_txn_buf)
503 return NULL;
504
505 bam_txn = bam_txn_buf;
506 bam_txn_buf += sizeof(*bam_txn);
507
508 bam_txn->bam_ce = bam_txn_buf;
509 bam_txn_buf +=
510 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
511
512 bam_txn->cmd_sgl = bam_txn_buf;
513 bam_txn_buf +=
514 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
515
516 bam_txn->data_sgl = bam_txn_buf;
517
518 init_completion(&bam_txn->txn_done);
519
520 return bam_txn;
521 }
522
523 /* Clears the BAM transaction indexes */
524 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
525 {
526 struct bam_transaction *bam_txn = nandc->bam_txn;
527
528 if (!nandc->props->is_bam)
529 return;
530
531 bam_txn->bam_ce_pos = 0;
532 bam_txn->bam_ce_start = 0;
533 bam_txn->cmd_sgl_pos = 0;
534 bam_txn->cmd_sgl_start = 0;
535 bam_txn->tx_sgl_pos = 0;
536 bam_txn->tx_sgl_start = 0;
537 bam_txn->rx_sgl_pos = 0;
538 bam_txn->rx_sgl_start = 0;
539 bam_txn->last_data_desc = NULL;
540 bam_txn->wait_second_completion = false;
541
542 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
543 QPIC_PER_CW_CMD_SGL);
544 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
545 QPIC_PER_CW_DATA_SGL);
546
547 reinit_completion(&bam_txn->txn_done);
548 }
549
550 /* Callback for DMA descriptor completion */
551 static void qpic_bam_dma_done(void *data)
552 {
553 struct bam_transaction *bam_txn = data;
554
555 /*
556 * In case of data transfer with NAND, 2 callbacks will be generated.
557 * One for command channel and another one for data channel.
558 * If current transaction has data descriptors
559 * (i.e. wait_second_completion is true), then set this to false
560 * and wait for second DMA descriptor completion.
561 */
562 if (bam_txn->wait_second_completion)
563 bam_txn->wait_second_completion = false;
564 else
565 complete(&bam_txn->txn_done);
566 }
567
568 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
569 {
570 return container_of(chip, struct qcom_nand_host, chip);
571 }
572
573 static inline struct qcom_nand_controller *
574 get_qcom_nand_controller(struct nand_chip *chip)
575 {
576 return container_of(chip->controller, struct qcom_nand_controller,
577 controller);
578 }
579
580 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
581 {
582 return ioread32(nandc->base + offset);
583 }
584
585 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
586 u32 val)
587 {
588 iowrite32(val, nandc->base + offset);
589 }
590
591 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
592 bool is_cpu)
593 {
594 if (!nandc->props->is_bam)
595 return;
596
597 if (is_cpu)
598 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
599 MAX_REG_RD *
600 sizeof(*nandc->reg_read_buf),
601 DMA_FROM_DEVICE);
602 else
603 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
604 MAX_REG_RD *
605 sizeof(*nandc->reg_read_buf),
606 DMA_FROM_DEVICE);
607 }
608
609 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
610 {
611 switch (offset) {
612 case NAND_FLASH_CMD:
613 return &regs->cmd;
614 case NAND_ADDR0:
615 return &regs->addr0;
616 case NAND_ADDR1:
617 return &regs->addr1;
618 case NAND_FLASH_CHIP_SELECT:
619 return &regs->chip_sel;
620 case NAND_EXEC_CMD:
621 return &regs->exec;
622 case NAND_FLASH_STATUS:
623 return &regs->clrflashstatus;
624 case NAND_DEV0_CFG0:
625 return &regs->cfg0;
626 case NAND_DEV0_CFG1:
627 return &regs->cfg1;
628 case NAND_DEV0_ECC_CFG:
629 return &regs->ecc_bch_cfg;
630 case NAND_READ_STATUS:
631 return &regs->clrreadstatus;
632 case NAND_DEV_CMD1:
633 return &regs->cmd1;
634 case NAND_DEV_CMD1_RESTORE:
635 return &regs->orig_cmd1;
636 case NAND_DEV_CMD_VLD:
637 return &regs->vld;
638 case NAND_DEV_CMD_VLD_RESTORE:
639 return &regs->orig_vld;
640 case NAND_EBI2_ECC_BUF_CFG:
641 return &regs->ecc_buf_cfg;
642 case NAND_READ_LOCATION_0:
643 return &regs->read_location0;
644 case NAND_READ_LOCATION_1:
645 return &regs->read_location1;
646 case NAND_READ_LOCATION_2:
647 return &regs->read_location2;
648 case NAND_READ_LOCATION_3:
649 return &regs->read_location3;
650 default:
651 return NULL;
652 }
653 }
654
655 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
656 u32 val)
657 {
658 struct nandc_regs *regs = nandc->regs;
659 __le32 *reg;
660
661 reg = offset_to_nandc_reg(regs, offset);
662
663 if (reg)
664 *reg = cpu_to_le32(val);
665 }
666
667 /* helper to configure address register values */
668 static void set_address(struct qcom_nand_host *host, u16 column, int page)
669 {
670 struct nand_chip *chip = &host->chip;
671 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
672
673 if (chip->options & NAND_BUSWIDTH_16)
674 column >>= 1;
675
676 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
677 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
678 }
679
680 /*
681 * update_rw_regs: set up read/write register values, these will be
682 * written to the NAND controller registers via DMA
683 *
684 * @num_cw: number of steps for the read/write operation
685 * @read: read or write operation
686 */
687 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
688 {
689 struct nand_chip *chip = &host->chip;
690 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
691 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
692
693 if (read) {
694 if (host->use_ecc)
695 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
696 else
697 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
698 } else {
699 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
700 }
701
702 if (host->use_ecc) {
703 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
704 (num_cw - 1) << CW_PER_PAGE;
705
706 cfg1 = host->cfg1;
707 ecc_bch_cfg = host->ecc_bch_cfg;
708 } else {
709 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
710 (num_cw - 1) << CW_PER_PAGE;
711
712 cfg1 = host->cfg1_raw;
713 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
714 }
715
716 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
717 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
718 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
719 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
720 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
721 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
722 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
723 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
724
725 if (read)
726 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
727 host->cw_data : host->cw_size, 1);
728 }
729
730 /*
731 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
732 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
733 * which will be submitted to DMA engine.
734 */
735 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
736 struct dma_chan *chan,
737 unsigned long flags)
738 {
739 struct desc_info *desc;
740 struct scatterlist *sgl;
741 unsigned int sgl_cnt;
742 int ret;
743 struct bam_transaction *bam_txn = nandc->bam_txn;
744 enum dma_transfer_direction dir_eng;
745 struct dma_async_tx_descriptor *dma_desc;
746
747 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
748 if (!desc)
749 return -ENOMEM;
750
751 if (chan == nandc->cmd_chan) {
752 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
753 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
754 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
755 dir_eng = DMA_MEM_TO_DEV;
756 desc->dir = DMA_TO_DEVICE;
757 } else if (chan == nandc->tx_chan) {
758 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
759 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
760 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
761 dir_eng = DMA_MEM_TO_DEV;
762 desc->dir = DMA_TO_DEVICE;
763 } else {
764 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
765 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
766 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
767 dir_eng = DMA_DEV_TO_MEM;
768 desc->dir = DMA_FROM_DEVICE;
769 }
770
771 sg_mark_end(sgl + sgl_cnt - 1);
772 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
773 if (ret == 0) {
774 dev_err(nandc->dev, "failure in mapping desc\n");
775 kfree(desc);
776 return -ENOMEM;
777 }
778
779 desc->sgl_cnt = sgl_cnt;
780 desc->bam_sgl = sgl;
781
782 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
783 flags);
784
785 if (!dma_desc) {
786 dev_err(nandc->dev, "failure in prep desc\n");
787 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
788 kfree(desc);
789 return -EINVAL;
790 }
791
792 desc->dma_desc = dma_desc;
793
794 /* update last data/command descriptor */
795 if (chan == nandc->cmd_chan)
796 bam_txn->last_cmd_desc = dma_desc;
797 else
798 bam_txn->last_data_desc = dma_desc;
799
800 list_add_tail(&desc->node, &nandc->desc_list);
801
802 return 0;
803 }
804
805 /*
806 * Prepares the command descriptor for BAM DMA which will be used for NAND
807 * register reads and writes. The command descriptor requires the command
808 * to be formed in command element type so this function uses the command
809 * element from bam transaction ce array and fills the same with required
810 * data. A single SGL can contain multiple command elements so
811 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
812 * after the current command element.
813 */
814 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
815 int reg_off, const void *vaddr,
816 int size, unsigned int flags)
817 {
818 int bam_ce_size;
819 int i, ret;
820 struct bam_cmd_element *bam_ce_buffer;
821 struct bam_transaction *bam_txn = nandc->bam_txn;
822
823 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
824
825 /* fill the command desc */
826 for (i = 0; i < size; i++) {
827 if (read)
828 bam_prep_ce(&bam_ce_buffer[i],
829 nandc_reg_phys(nandc, reg_off + 4 * i),
830 BAM_READ_COMMAND,
831 reg_buf_dma_addr(nandc,
832 (__le32 *)vaddr + i));
833 else
834 bam_prep_ce_le32(&bam_ce_buffer[i],
835 nandc_reg_phys(nandc, reg_off + 4 * i),
836 BAM_WRITE_COMMAND,
837 *((__le32 *)vaddr + i));
838 }
839
840 bam_txn->bam_ce_pos += size;
841
842 /* use the separate sgl after this command */
843 if (flags & NAND_BAM_NEXT_SGL) {
844 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
845 bam_ce_size = (bam_txn->bam_ce_pos -
846 bam_txn->bam_ce_start) *
847 sizeof(struct bam_cmd_element);
848 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
849 bam_ce_buffer, bam_ce_size);
850 bam_txn->cmd_sgl_pos++;
851 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
852
853 if (flags & NAND_BAM_NWD) {
854 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
855 DMA_PREP_FENCE |
856 DMA_PREP_CMD);
857 if (ret)
858 return ret;
859 }
860 }
861
862 return 0;
863 }
864
865 /*
866 * Prepares the data descriptor for BAM DMA which will be used for NAND
867 * data reads and writes.
868 */
869 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
870 const void *vaddr,
871 int size, unsigned int flags)
872 {
873 int ret;
874 struct bam_transaction *bam_txn = nandc->bam_txn;
875
876 if (read) {
877 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
878 vaddr, size);
879 bam_txn->rx_sgl_pos++;
880 } else {
881 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
882 vaddr, size);
883 bam_txn->tx_sgl_pos++;
884
885 /*
886 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
887 * is not set, form the DMA descriptor
888 */
889 if (!(flags & NAND_BAM_NO_EOT)) {
890 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
891 DMA_PREP_INTERRUPT);
892 if (ret)
893 return ret;
894 }
895 }
896
897 return 0;
898 }
899
900 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
901 int reg_off, const void *vaddr, int size,
902 bool flow_control)
903 {
904 struct desc_info *desc;
905 struct dma_async_tx_descriptor *dma_desc;
906 struct scatterlist *sgl;
907 struct dma_slave_config slave_conf;
908 enum dma_transfer_direction dir_eng;
909 int ret;
910
911 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912 if (!desc)
913 return -ENOMEM;
914
915 sgl = &desc->adm_sgl;
916
917 sg_init_one(sgl, vaddr, size);
918
919 if (read) {
920 dir_eng = DMA_DEV_TO_MEM;
921 desc->dir = DMA_FROM_DEVICE;
922 } else {
923 dir_eng = DMA_MEM_TO_DEV;
924 desc->dir = DMA_TO_DEVICE;
925 }
926
927 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
928 if (ret == 0) {
929 ret = -ENOMEM;
930 goto err;
931 }
932
933 memset(&slave_conf, 0x00, sizeof(slave_conf));
934
935 slave_conf.device_fc = flow_control;
936 if (read) {
937 slave_conf.src_maxburst = 16;
938 slave_conf.src_addr = nandc->base_dma + reg_off;
939 slave_conf.slave_id = nandc->data_crci;
940 } else {
941 slave_conf.dst_maxburst = 16;
942 slave_conf.dst_addr = nandc->base_dma + reg_off;
943 slave_conf.slave_id = nandc->cmd_crci;
944 }
945
946 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
947 if (ret) {
948 dev_err(nandc->dev, "failed to configure dma channel\n");
949 goto err;
950 }
951
952 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
953 if (!dma_desc) {
954 dev_err(nandc->dev, "failed to prepare desc\n");
955 ret = -EINVAL;
956 goto err;
957 }
958
959 desc->dma_desc = dma_desc;
960
961 list_add_tail(&desc->node, &nandc->desc_list);
962
963 return 0;
964 err:
965 kfree(desc);
966
967 return ret;
968 }
969
970 /*
971 * read_reg_dma: prepares a descriptor to read a given number of
972 * contiguous registers to the reg_read_buf pointer
973 *
974 * @first: offset of the first register in the contiguous block
975 * @num_regs: number of registers to read
976 * @flags: flags to control DMA descriptor preparation
977 */
978 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
979 int num_regs, unsigned int flags)
980 {
981 bool flow_control = false;
982 void *vaddr;
983
984 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
985 nandc->reg_read_pos += num_regs;
986
987 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
988 first = dev_cmd_reg_addr(nandc, first);
989
990 if (nandc->props->is_bam)
991 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
992 num_regs, flags);
993
994 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
995 flow_control = true;
996
997 return prep_adm_dma_desc(nandc, true, first, vaddr,
998 num_regs * sizeof(u32), flow_control);
999 }
1000
1001 /*
1002 * write_reg_dma: prepares a descriptor to write a given number of
1003 * contiguous registers
1004 *
1005 * @first: offset of the first register in the contiguous block
1006 * @num_regs: number of registers to write
1007 * @flags: flags to control DMA descriptor preparation
1008 */
1009 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1010 int num_regs, unsigned int flags)
1011 {
1012 bool flow_control = false;
1013 struct nandc_regs *regs = nandc->regs;
1014 void *vaddr;
1015
1016 vaddr = offset_to_nandc_reg(regs, first);
1017
1018 if (first == NAND_ERASED_CW_DETECT_CFG) {
1019 if (flags & NAND_ERASED_CW_SET)
1020 vaddr = &regs->erased_cw_detect_cfg_set;
1021 else
1022 vaddr = &regs->erased_cw_detect_cfg_clr;
1023 }
1024
1025 if (first == NAND_EXEC_CMD)
1026 flags |= NAND_BAM_NWD;
1027
1028 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1029 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1030
1031 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1032 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1033
1034 if (nandc->props->is_bam)
1035 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1036 num_regs, flags);
1037
1038 if (first == NAND_FLASH_CMD)
1039 flow_control = true;
1040
1041 return prep_adm_dma_desc(nandc, false, first, vaddr,
1042 num_regs * sizeof(u32), flow_control);
1043 }
1044
1045 /*
1046 * read_data_dma: prepares a DMA descriptor to transfer data from the
1047 * controller's internal buffer to the buffer 'vaddr'
1048 *
1049 * @reg_off: offset within the controller's data buffer
1050 * @vaddr: virtual address of the buffer we want to write to
1051 * @size: DMA transaction size in bytes
1052 * @flags: flags to control DMA descriptor preparation
1053 */
1054 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1055 const u8 *vaddr, int size, unsigned int flags)
1056 {
1057 if (nandc->props->is_bam)
1058 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1059
1060 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1061 }
1062
1063 /*
1064 * write_data_dma: prepares a DMA descriptor to transfer data from
1065 * 'vaddr' to the controller's internal buffer
1066 *
1067 * @reg_off: offset within the controller's data buffer
1068 * @vaddr: virtual address of the buffer we want to read from
1069 * @size: DMA transaction size in bytes
1070 * @flags: flags to control DMA descriptor preparation
1071 */
1072 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1073 const u8 *vaddr, int size, unsigned int flags)
1074 {
1075 if (nandc->props->is_bam)
1076 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1077
1078 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1079 }
1080
1081 /*
1082 * Helper to prepare DMA descriptors for configuring registers
1083 * before reading a NAND page.
1084 */
1085 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1086 {
1087 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1088 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1089 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1090 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1091 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1092 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1093 }
1094
1095 /*
1096 * Helper to prepare DMA descriptors for configuring registers
1097 * before reading each codeword in NAND page.
1098 */
1099 static void
1100 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1101 {
1102 if (nandc->props->is_bam)
1103 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1104 NAND_BAM_NEXT_SGL);
1105
1106 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1107 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1108
1109 if (use_ecc) {
1110 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1111 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1112 NAND_BAM_NEXT_SGL);
1113 } else {
1114 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1115 }
1116 }
1117
1118 /*
1119 * Helper to prepare dma descriptors to configure registers needed for reading a
1120 * single codeword in page
1121 */
1122 static void
1123 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1124 bool use_ecc)
1125 {
1126 config_nand_page_read(nandc);
1127 config_nand_cw_read(nandc, use_ecc);
1128 }
1129
1130 /*
1131 * Helper to prepare DMA descriptors used to configure registers needed for
1132 * before writing a NAND page.
1133 */
1134 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1135 {
1136 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1139 NAND_BAM_NEXT_SGL);
1140 }
1141
1142 /*
1143 * Helper to prepare DMA descriptors for configuring registers
1144 * before writing each codeword in NAND page.
1145 */
1146 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1147 {
1148 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1149 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1150
1151 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1152
1153 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1154 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1155 }
1156
1157 /*
1158 * the following functions are used within chip->legacy.cmdfunc() to
1159 * perform different NAND_CMD_* commands
1160 */
1161
1162 /* sets up descriptors for NAND_CMD_PARAM */
1163 static int nandc_param(struct qcom_nand_host *host)
1164 {
1165 struct nand_chip *chip = &host->chip;
1166 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1167
1168 /*
1169 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1170 * in use. we configure the controller to perform a raw read of 512
1171 * bytes to read onfi params
1172 */
1173 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1174 nandc_set_reg(nandc, NAND_ADDR0, 0);
1175 nandc_set_reg(nandc, NAND_ADDR1, 0);
1176 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1177 | 512 << UD_SIZE_BYTES
1178 | 5 << NUM_ADDR_CYCLES
1179 | 0 << SPARE_SIZE_BYTES);
1180 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1181 | 0 << CS_ACTIVE_BSY
1182 | 17 << BAD_BLOCK_BYTE_NUM
1183 | 1 << BAD_BLOCK_IN_SPARE_AREA
1184 | 2 << WR_RD_BSY_GAP
1185 | 0 << WIDE_FLASH
1186 | 1 << DEV0_CFG1_ECC_DISABLE);
1187 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1188
1189 /* configure CMD1 and VLD for ONFI param probing */
1190 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1191 (nandc->vld & ~READ_START_VLD));
1192 nandc_set_reg(nandc, NAND_DEV_CMD1,
1193 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1194 | NAND_CMD_PARAM << READ_ADDR);
1195
1196 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1197
1198 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1199 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1200 nandc_set_read_loc(nandc, 0, 0, 512, 1);
1201
1202 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1203 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1204
1205 nandc->buf_count = 512;
1206 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1207
1208 config_nand_single_cw_page_read(nandc, false);
1209
1210 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1211 nandc->buf_count, 0);
1212
1213 /* restore CMD1 and VLD regs */
1214 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1215 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1216
1217 return 0;
1218 }
1219
1220 /* sets up descriptors for NAND_CMD_ERASE1 */
1221 static int erase_block(struct qcom_nand_host *host, int page_addr)
1222 {
1223 struct nand_chip *chip = &host->chip;
1224 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225
1226 nandc_set_reg(nandc, NAND_FLASH_CMD,
1227 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1228 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1229 nandc_set_reg(nandc, NAND_ADDR1, 0);
1230 nandc_set_reg(nandc, NAND_DEV0_CFG0,
1231 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1232 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1233 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1234 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1235 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1236
1237 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1238 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1239 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1240
1241 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1242
1243 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1244 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1245
1246 return 0;
1247 }
1248
1249 /* sets up descriptors for NAND_CMD_READID */
1250 static int read_id(struct qcom_nand_host *host, int column)
1251 {
1252 struct nand_chip *chip = &host->chip;
1253 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1254
1255 if (column == -1)
1256 return 0;
1257
1258 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1259 nandc_set_reg(nandc, NAND_ADDR0, column);
1260 nandc_set_reg(nandc, NAND_ADDR1, 0);
1261 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1262 nandc->props->is_bam ? 0 : DM_EN);
1263 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1264
1265 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1266 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1267
1268 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1269
1270 return 0;
1271 }
1272
1273 /* sets up descriptors for NAND_CMD_RESET */
1274 static int reset(struct qcom_nand_host *host)
1275 {
1276 struct nand_chip *chip = &host->chip;
1277 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1278
1279 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1280 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1281
1282 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1283 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1284
1285 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1286
1287 return 0;
1288 }
1289
1290 /* helpers to submit/free our list of dma descriptors */
1291 static int submit_descs(struct qcom_nand_controller *nandc)
1292 {
1293 struct desc_info *desc;
1294 dma_cookie_t cookie = 0;
1295 struct bam_transaction *bam_txn = nandc->bam_txn;
1296 int r;
1297
1298 if (nandc->props->is_bam) {
1299 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1300 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1301 if (r)
1302 return r;
1303 }
1304
1305 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1306 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1307 DMA_PREP_INTERRUPT);
1308 if (r)
1309 return r;
1310 }
1311
1312 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1313 r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1314 DMA_PREP_CMD);
1315 if (r)
1316 return r;
1317 }
1318 }
1319
1320 list_for_each_entry(desc, &nandc->desc_list, node)
1321 cookie = dmaengine_submit(desc->dma_desc);
1322
1323 if (nandc->props->is_bam) {
1324 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1325 bam_txn->last_cmd_desc->callback_param = bam_txn;
1326 if (bam_txn->last_data_desc) {
1327 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1328 bam_txn->last_data_desc->callback_param = bam_txn;
1329 bam_txn->wait_second_completion = true;
1330 }
1331
1332 dma_async_issue_pending(nandc->tx_chan);
1333 dma_async_issue_pending(nandc->rx_chan);
1334 dma_async_issue_pending(nandc->cmd_chan);
1335
1336 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1337 QPIC_NAND_COMPLETION_TIMEOUT))
1338 return -ETIMEDOUT;
1339 } else {
1340 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1341 return -ETIMEDOUT;
1342 }
1343
1344 return 0;
1345 }
1346
1347 static void free_descs(struct qcom_nand_controller *nandc)
1348 {
1349 struct desc_info *desc, *n;
1350
1351 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1352 list_del(&desc->node);
1353
1354 if (nandc->props->is_bam)
1355 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1356 desc->sgl_cnt, desc->dir);
1357 else
1358 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1359 desc->dir);
1360
1361 kfree(desc);
1362 }
1363 }
1364
1365 /* reset the register read buffer for next NAND operation */
1366 static void clear_read_regs(struct qcom_nand_controller *nandc)
1367 {
1368 nandc->reg_read_pos = 0;
1369 nandc_read_buffer_sync(nandc, false);
1370 }
1371
1372 static void pre_command(struct qcom_nand_host *host, int command)
1373 {
1374 struct nand_chip *chip = &host->chip;
1375 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1376
1377 nandc->buf_count = 0;
1378 nandc->buf_start = 0;
1379 host->use_ecc = false;
1380 host->last_command = command;
1381
1382 clear_read_regs(nandc);
1383
1384 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1385 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1386 clear_bam_transaction(nandc);
1387 }
1388
1389 /*
1390 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1391 * privately maintained status byte, this status byte can be read after
1392 * NAND_CMD_STATUS is called
1393 */
1394 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1395 {
1396 struct nand_chip *chip = &host->chip;
1397 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1398 struct nand_ecc_ctrl *ecc = &chip->ecc;
1399 int num_cw;
1400 int i;
1401
1402 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1403 nandc_read_buffer_sync(nandc, true);
1404
1405 for (i = 0; i < num_cw; i++) {
1406 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1407
1408 if (flash_status & FS_MPU_ERR)
1409 host->status &= ~NAND_STATUS_WP;
1410
1411 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1412 (flash_status &
1413 FS_DEVICE_STS_ERR)))
1414 host->status |= NAND_STATUS_FAIL;
1415 }
1416 }
1417
1418 static void post_command(struct qcom_nand_host *host, int command)
1419 {
1420 struct nand_chip *chip = &host->chip;
1421 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1422
1423 switch (command) {
1424 case NAND_CMD_READID:
1425 nandc_read_buffer_sync(nandc, true);
1426 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1427 nandc->buf_count);
1428 break;
1429 case NAND_CMD_PAGEPROG:
1430 case NAND_CMD_ERASE1:
1431 parse_erase_write_errors(host, command);
1432 break;
1433 default:
1434 break;
1435 }
1436 }
1437
1438 /*
1439 * Implements chip->legacy.cmdfunc. It's only used for a limited set of
1440 * commands. The rest of the commands wouldn't be called by upper layers.
1441 * For example, NAND_CMD_READOOB would never be called because we have our own
1442 * versions of read_oob ops for nand_ecc_ctrl.
1443 */
1444 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1445 int column, int page_addr)
1446 {
1447 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1448 struct nand_ecc_ctrl *ecc = &chip->ecc;
1449 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1450 bool wait = false;
1451 int ret = 0;
1452
1453 pre_command(host, command);
1454
1455 switch (command) {
1456 case NAND_CMD_RESET:
1457 ret = reset(host);
1458 wait = true;
1459 break;
1460
1461 case NAND_CMD_READID:
1462 nandc->buf_count = 4;
1463 ret = read_id(host, column);
1464 wait = true;
1465 break;
1466
1467 case NAND_CMD_PARAM:
1468 ret = nandc_param(host);
1469 wait = true;
1470 break;
1471
1472 case NAND_CMD_ERASE1:
1473 ret = erase_block(host, page_addr);
1474 wait = true;
1475 break;
1476
1477 case NAND_CMD_READ0:
1478 /* we read the entire page for now */
1479 WARN_ON(column != 0);
1480
1481 host->use_ecc = true;
1482 set_address(host, 0, page_addr);
1483 update_rw_regs(host, ecc->steps, true);
1484 break;
1485
1486 case NAND_CMD_SEQIN:
1487 WARN_ON(column != 0);
1488 set_address(host, 0, page_addr);
1489 break;
1490
1491 case NAND_CMD_PAGEPROG:
1492 case NAND_CMD_STATUS:
1493 case NAND_CMD_NONE:
1494 default:
1495 break;
1496 }
1497
1498 if (ret) {
1499 dev_err(nandc->dev, "failure executing command %d\n",
1500 command);
1501 free_descs(nandc);
1502 return;
1503 }
1504
1505 if (wait) {
1506 ret = submit_descs(nandc);
1507 if (ret)
1508 dev_err(nandc->dev,
1509 "failure submitting descs for command %d\n",
1510 command);
1511 }
1512
1513 free_descs(nandc);
1514
1515 post_command(host, command);
1516 }
1517
1518 /*
1519 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1520 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1521 *
1522 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1523 * but it notifies that it is an erased CW by placing special characters at
1524 * certain offsets in the buffer.
1525 *
1526 * verify if the page is erased or not, and fix up the page for RS ECC by
1527 * replacing the special characters with 0xff.
1528 */
1529 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1530 {
1531 u8 empty1, empty2;
1532
1533 /*
1534 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1535 * is erased by looking for 0x54s at offsets 3 and 175 from the
1536 * beginning of each codeword
1537 */
1538
1539 empty1 = data_buf[3];
1540 empty2 = data_buf[175];
1541
1542 /*
1543 * if the erased codework markers, if they exist override them with
1544 * 0xffs
1545 */
1546 if ((empty1 == 0x54 && empty2 == 0xff) ||
1547 (empty1 == 0xff && empty2 == 0x54)) {
1548 data_buf[3] = 0xff;
1549 data_buf[175] = 0xff;
1550 }
1551
1552 /*
1553 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1554 * restore the original values at the special offsets
1555 */
1556 if (memchr_inv(data_buf, 0xff, data_len)) {
1557 data_buf[3] = empty1;
1558 data_buf[175] = empty2;
1559
1560 return false;
1561 }
1562
1563 return true;
1564 }
1565
1566 struct read_stats {
1567 __le32 flash;
1568 __le32 buffer;
1569 __le32 erased_cw;
1570 };
1571
1572 /* reads back FLASH_STATUS register set by the controller */
1573 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1574 {
1575 struct nand_chip *chip = &host->chip;
1576 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1577 int i;
1578
1579 for (i = 0; i < cw_cnt; i++) {
1580 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1581
1582 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1583 return -EIO;
1584 }
1585
1586 return 0;
1587 }
1588
1589 /* performs raw read for one codeword */
1590 static int
1591 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1592 u8 *data_buf, u8 *oob_buf, int page, int cw)
1593 {
1594 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1595 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1596 struct nand_ecc_ctrl *ecc = &chip->ecc;
1597 int data_size1, data_size2, oob_size1, oob_size2;
1598 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1599
1600 nand_read_page_op(chip, page, 0, NULL, 0);
1601 host->use_ecc = false;
1602
1603 clear_bam_transaction(nandc);
1604 set_address(host, host->cw_size * cw, page);
1605 update_rw_regs(host, 1, true);
1606 config_nand_page_read(nandc);
1607
1608 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1609 oob_size1 = host->bbm_size;
1610
1611 if (cw == (ecc->steps - 1)) {
1612 data_size2 = ecc->size - data_size1 -
1613 ((ecc->steps - 1) * 4);
1614 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1615 host->spare_bytes;
1616 } else {
1617 data_size2 = host->cw_data - data_size1;
1618 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1619 }
1620
1621 if (nandc->props->is_bam) {
1622 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1623 read_loc += data_size1;
1624
1625 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1626 read_loc += oob_size1;
1627
1628 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1629 read_loc += data_size2;
1630
1631 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1632 }
1633
1634 config_nand_cw_read(nandc, false);
1635
1636 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1637 reg_off += data_size1;
1638
1639 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1640 reg_off += oob_size1;
1641
1642 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1643 reg_off += data_size2;
1644
1645 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1646
1647 ret = submit_descs(nandc);
1648 free_descs(nandc);
1649 if (ret) {
1650 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1651 return ret;
1652 }
1653
1654 return check_flash_errors(host, 1);
1655 }
1656
1657 /*
1658 * Bitflips can happen in erased codewords also so this function counts the
1659 * number of 0 in each CW for which ECC engine returns the uncorrectable
1660 * error. The page will be assumed as erased if this count is less than or
1661 * equal to the ecc->strength for each CW.
1662 *
1663 * 1. Both DATA and OOB need to be checked for number of 0. The
1664 * top-level API can be called with only data buf or OOB buf so use
1665 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1666 * is null for copying the raw bytes.
1667 * 2. Perform raw read for all the CW which has uncorrectable errors.
1668 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1669 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1670 * the number of bitflips in this area.
1671 */
1672 static int
1673 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1674 u8 *oob_buf, unsigned long uncorrectable_cws,
1675 int page, unsigned int max_bitflips)
1676 {
1677 struct nand_chip *chip = &host->chip;
1678 struct mtd_info *mtd = nand_to_mtd(chip);
1679 struct nand_ecc_ctrl *ecc = &chip->ecc;
1680 u8 *cw_data_buf, *cw_oob_buf;
1681 int cw, data_size, oob_size, ret = 0;
1682
1683 if (!data_buf)
1684 data_buf = nand_get_data_buf(chip);
1685
1686 if (!oob_buf) {
1687 nand_get_data_buf(chip);
1688 oob_buf = chip->oob_poi;
1689 }
1690
1691 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1692 if (cw == (ecc->steps - 1)) {
1693 data_size = ecc->size - ((ecc->steps - 1) * 4);
1694 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1695 } else {
1696 data_size = host->cw_data;
1697 oob_size = host->ecc_bytes_hw;
1698 }
1699
1700 /* determine starting buffer address for current CW */
1701 cw_data_buf = data_buf + (cw * host->cw_data);
1702 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1703
1704 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1705 cw_oob_buf, page, cw);
1706 if (ret)
1707 return ret;
1708
1709 /*
1710 * make sure it isn't an erased page reported
1711 * as not-erased by HW because of a few bitflips
1712 */
1713 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1714 cw_oob_buf + host->bbm_size,
1715 oob_size, NULL,
1716 0, ecc->strength);
1717 if (ret < 0) {
1718 mtd->ecc_stats.failed++;
1719 } else {
1720 mtd->ecc_stats.corrected += ret;
1721 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1722 }
1723 }
1724
1725 return max_bitflips;
1726 }
1727
1728 /*
1729 * reads back status registers set by the controller to notify page read
1730 * errors. this is equivalent to what 'ecc->correct()' would do.
1731 */
1732 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1733 u8 *oob_buf, int page)
1734 {
1735 struct nand_chip *chip = &host->chip;
1736 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1737 struct mtd_info *mtd = nand_to_mtd(chip);
1738 struct nand_ecc_ctrl *ecc = &chip->ecc;
1739 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1740 struct read_stats *buf;
1741 bool flash_op_err = false, erased;
1742 int i;
1743 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1744
1745 buf = (struct read_stats *)nandc->reg_read_buf;
1746 nandc_read_buffer_sync(nandc, true);
1747
1748 for (i = 0; i < ecc->steps; i++, buf++) {
1749 u32 flash, buffer, erased_cw;
1750 int data_len, oob_len;
1751
1752 if (i == (ecc->steps - 1)) {
1753 data_len = ecc->size - ((ecc->steps - 1) << 2);
1754 oob_len = ecc->steps << 2;
1755 } else {
1756 data_len = host->cw_data;
1757 oob_len = 0;
1758 }
1759
1760 flash = le32_to_cpu(buf->flash);
1761 buffer = le32_to_cpu(buf->buffer);
1762 erased_cw = le32_to_cpu(buf->erased_cw);
1763
1764 /*
1765 * Check ECC failure for each codeword. ECC failure can
1766 * happen in either of the following conditions
1767 * 1. If number of bitflips are greater than ECC engine
1768 * capability.
1769 * 2. If this codeword contains all 0xff for which erased
1770 * codeword detection check will be done.
1771 */
1772 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1773 /*
1774 * For BCH ECC, ignore erased codeword errors, if
1775 * ERASED_CW bits are set.
1776 */
1777 if (host->bch_enabled) {
1778 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1779 true : false;
1780 /*
1781 * For RS ECC, HW reports the erased CW by placing
1782 * special characters at certain offsets in the buffer.
1783 * These special characters will be valid only if
1784 * complete page is read i.e. data_buf is not NULL.
1785 */
1786 } else if (data_buf) {
1787 erased = erased_chunk_check_and_fixup(data_buf,
1788 data_len);
1789 } else {
1790 erased = false;
1791 }
1792
1793 if (!erased)
1794 uncorrectable_cws |= BIT(i);
1795 /*
1796 * Check if MPU or any other operational error (timeout,
1797 * device failure, etc.) happened for this codeword and
1798 * make flash_op_err true. If flash_op_err is set, then
1799 * EIO will be returned for page read.
1800 */
1801 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1802 flash_op_err = true;
1803 /*
1804 * No ECC or operational errors happened. Check the number of
1805 * bits corrected and update the ecc_stats.corrected.
1806 */
1807 } else {
1808 unsigned int stat;
1809
1810 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1811 mtd->ecc_stats.corrected += stat;
1812 max_bitflips = max(max_bitflips, stat);
1813 }
1814
1815 if (data_buf)
1816 data_buf += data_len;
1817 if (oob_buf)
1818 oob_buf += oob_len + ecc->bytes;
1819 }
1820
1821 if (flash_op_err)
1822 return -EIO;
1823
1824 if (!uncorrectable_cws)
1825 return max_bitflips;
1826
1827 return check_for_erased_page(host, data_buf_start, oob_buf_start,
1828 uncorrectable_cws, page,
1829 max_bitflips);
1830 }
1831
1832 /*
1833 * helper to perform the actual page read operation, used by ecc->read_page(),
1834 * ecc->read_oob()
1835 */
1836 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1837 u8 *oob_buf, int page)
1838 {
1839 struct nand_chip *chip = &host->chip;
1840 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1841 struct nand_ecc_ctrl *ecc = &chip->ecc;
1842 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1843 int i, ret;
1844
1845 config_nand_page_read(nandc);
1846
1847 /* queue cmd descs for each codeword */
1848 for (i = 0; i < ecc->steps; i++) {
1849 int data_size, oob_size;
1850
1851 if (i == (ecc->steps - 1)) {
1852 data_size = ecc->size - ((ecc->steps - 1) << 2);
1853 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1854 host->spare_bytes;
1855 } else {
1856 data_size = host->cw_data;
1857 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1858 }
1859
1860 if (nandc->props->is_bam) {
1861 if (data_buf && oob_buf) {
1862 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1863 nandc_set_read_loc(nandc, 1, data_size,
1864 oob_size, 1);
1865 } else if (data_buf) {
1866 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1867 } else {
1868 nandc_set_read_loc(nandc, 0, data_size,
1869 oob_size, 1);
1870 }
1871 }
1872
1873 config_nand_cw_read(nandc, true);
1874
1875 if (data_buf)
1876 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1877 data_size, 0);
1878
1879 /*
1880 * when ecc is enabled, the controller doesn't read the real
1881 * or dummy bad block markers in each chunk. To maintain a
1882 * consistent layout across RAW and ECC reads, we just
1883 * leave the real/dummy BBM offsets empty (i.e, filled with
1884 * 0xffs)
1885 */
1886 if (oob_buf) {
1887 int j;
1888
1889 for (j = 0; j < host->bbm_size; j++)
1890 *oob_buf++ = 0xff;
1891
1892 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1893 oob_buf, oob_size, 0);
1894 }
1895
1896 if (data_buf)
1897 data_buf += data_size;
1898 if (oob_buf)
1899 oob_buf += oob_size;
1900 }
1901
1902 ret = submit_descs(nandc);
1903 free_descs(nandc);
1904
1905 if (ret) {
1906 dev_err(nandc->dev, "failure to read page/oob\n");
1907 return ret;
1908 }
1909
1910 return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1911 }
1912
1913 /*
1914 * a helper that copies the last step/codeword of a page (containing free oob)
1915 * into our local buffer
1916 */
1917 static int copy_last_cw(struct qcom_nand_host *host, int page)
1918 {
1919 struct nand_chip *chip = &host->chip;
1920 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1921 struct nand_ecc_ctrl *ecc = &chip->ecc;
1922 int size;
1923 int ret;
1924
1925 clear_read_regs(nandc);
1926
1927 size = host->use_ecc ? host->cw_data : host->cw_size;
1928
1929 /* prepare a clean read buffer */
1930 memset(nandc->data_buffer, 0xff, size);
1931
1932 set_address(host, host->cw_size * (ecc->steps - 1), page);
1933 update_rw_regs(host, 1, true);
1934
1935 config_nand_single_cw_page_read(nandc, host->use_ecc);
1936
1937 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1938
1939 ret = submit_descs(nandc);
1940 if (ret)
1941 dev_err(nandc->dev, "failed to copy last codeword\n");
1942
1943 free_descs(nandc);
1944
1945 return ret;
1946 }
1947
1948 /* implements ecc->read_page() */
1949 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1950 int oob_required, int page)
1951 {
1952 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1953 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1954 u8 *data_buf, *oob_buf = NULL;
1955
1956 nand_read_page_op(chip, page, 0, NULL, 0);
1957 data_buf = buf;
1958 oob_buf = oob_required ? chip->oob_poi : NULL;
1959
1960 clear_bam_transaction(nandc);
1961
1962 return read_page_ecc(host, data_buf, oob_buf, page);
1963 }
1964
1965 /* implements ecc->read_page_raw() */
1966 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1967 int oob_required, int page)
1968 {
1969 struct mtd_info *mtd = nand_to_mtd(chip);
1970 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1971 struct nand_ecc_ctrl *ecc = &chip->ecc;
1972 int cw, ret;
1973 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1974
1975 for (cw = 0; cw < ecc->steps; cw++) {
1976 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1977 page, cw);
1978 if (ret)
1979 return ret;
1980
1981 data_buf += host->cw_data;
1982 oob_buf += ecc->bytes;
1983 }
1984
1985 return 0;
1986 }
1987
1988 /* implements ecc->read_oob() */
1989 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1990 {
1991 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1992 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1993 struct nand_ecc_ctrl *ecc = &chip->ecc;
1994
1995 clear_read_regs(nandc);
1996 clear_bam_transaction(nandc);
1997
1998 host->use_ecc = true;
1999 set_address(host, 0, page);
2000 update_rw_regs(host, ecc->steps, true);
2001
2002 return read_page_ecc(host, NULL, chip->oob_poi, page);
2003 }
2004
2005 /* implements ecc->write_page() */
2006 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2007 int oob_required, int page)
2008 {
2009 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2010 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2011 struct nand_ecc_ctrl *ecc = &chip->ecc;
2012 u8 *data_buf, *oob_buf;
2013 int i, ret;
2014
2015 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2016
2017 clear_read_regs(nandc);
2018 clear_bam_transaction(nandc);
2019
2020 data_buf = (u8 *)buf;
2021 oob_buf = chip->oob_poi;
2022
2023 host->use_ecc = true;
2024 update_rw_regs(host, ecc->steps, false);
2025 config_nand_page_write(nandc);
2026
2027 for (i = 0; i < ecc->steps; i++) {
2028 int data_size, oob_size;
2029
2030 if (i == (ecc->steps - 1)) {
2031 data_size = ecc->size - ((ecc->steps - 1) << 2);
2032 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2033 host->spare_bytes;
2034 } else {
2035 data_size = host->cw_data;
2036 oob_size = ecc->bytes;
2037 }
2038
2039
2040 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2041 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2042
2043 /*
2044 * when ECC is enabled, we don't really need to write anything
2045 * to oob for the first n - 1 codewords since these oob regions
2046 * just contain ECC bytes that's written by the controller
2047 * itself. For the last codeword, we skip the bbm positions and
2048 * write to the free oob area.
2049 */
2050 if (i == (ecc->steps - 1)) {
2051 oob_buf += host->bbm_size;
2052
2053 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2054 oob_buf, oob_size, 0);
2055 }
2056
2057 config_nand_cw_write(nandc);
2058
2059 data_buf += data_size;
2060 oob_buf += oob_size;
2061 }
2062
2063 ret = submit_descs(nandc);
2064 if (ret)
2065 dev_err(nandc->dev, "failure to write page\n");
2066
2067 free_descs(nandc);
2068
2069 if (!ret)
2070 ret = nand_prog_page_end_op(chip);
2071
2072 return ret;
2073 }
2074
2075 /* implements ecc->write_page_raw() */
2076 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2077 const uint8_t *buf, int oob_required,
2078 int page)
2079 {
2080 struct mtd_info *mtd = nand_to_mtd(chip);
2081 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2082 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2083 struct nand_ecc_ctrl *ecc = &chip->ecc;
2084 u8 *data_buf, *oob_buf;
2085 int i, ret;
2086
2087 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2088 clear_read_regs(nandc);
2089 clear_bam_transaction(nandc);
2090
2091 data_buf = (u8 *)buf;
2092 oob_buf = chip->oob_poi;
2093
2094 host->use_ecc = false;
2095 update_rw_regs(host, ecc->steps, false);
2096 config_nand_page_write(nandc);
2097
2098 for (i = 0; i < ecc->steps; i++) {
2099 int data_size1, data_size2, oob_size1, oob_size2;
2100 int reg_off = FLASH_BUF_ACC;
2101
2102 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2103 oob_size1 = host->bbm_size;
2104
2105 if (i == (ecc->steps - 1)) {
2106 data_size2 = ecc->size - data_size1 -
2107 ((ecc->steps - 1) << 2);
2108 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2109 host->spare_bytes;
2110 } else {
2111 data_size2 = host->cw_data - data_size1;
2112 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2113 }
2114
2115 write_data_dma(nandc, reg_off, data_buf, data_size1,
2116 NAND_BAM_NO_EOT);
2117 reg_off += data_size1;
2118 data_buf += data_size1;
2119
2120 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2121 NAND_BAM_NO_EOT);
2122 reg_off += oob_size1;
2123 oob_buf += oob_size1;
2124
2125 write_data_dma(nandc, reg_off, data_buf, data_size2,
2126 NAND_BAM_NO_EOT);
2127 reg_off += data_size2;
2128 data_buf += data_size2;
2129
2130 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2131 oob_buf += oob_size2;
2132
2133 config_nand_cw_write(nandc);
2134 }
2135
2136 ret = submit_descs(nandc);
2137 if (ret)
2138 dev_err(nandc->dev, "failure to write raw page\n");
2139
2140 free_descs(nandc);
2141
2142 if (!ret)
2143 ret = nand_prog_page_end_op(chip);
2144
2145 return ret;
2146 }
2147
2148 /*
2149 * implements ecc->write_oob()
2150 *
2151 * the NAND controller cannot write only data or only OOB within a codeword
2152 * since ECC is calculated for the combined codeword. So update the OOB from
2153 * chip->oob_poi, and pad the data area with OxFF before writing.
2154 */
2155 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2156 {
2157 struct mtd_info *mtd = nand_to_mtd(chip);
2158 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2159 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2160 struct nand_ecc_ctrl *ecc = &chip->ecc;
2161 u8 *oob = chip->oob_poi;
2162 int data_size, oob_size;
2163 int ret;
2164
2165 host->use_ecc = true;
2166 clear_bam_transaction(nandc);
2167
2168 /* calculate the data and oob size for the last codeword/step */
2169 data_size = ecc->size - ((ecc->steps - 1) << 2);
2170 oob_size = mtd->oobavail;
2171
2172 memset(nandc->data_buffer, 0xff, host->cw_data);
2173 /* override new oob content to last codeword */
2174 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2175 0, mtd->oobavail);
2176
2177 set_address(host, host->cw_size * (ecc->steps - 1), page);
2178 update_rw_regs(host, 1, false);
2179
2180 config_nand_page_write(nandc);
2181 write_data_dma(nandc, FLASH_BUF_ACC,
2182 nandc->data_buffer, data_size + oob_size, 0);
2183 config_nand_cw_write(nandc);
2184
2185 ret = submit_descs(nandc);
2186
2187 free_descs(nandc);
2188
2189 if (ret) {
2190 dev_err(nandc->dev, "failure to write oob\n");
2191 return -EIO;
2192 }
2193
2194 return nand_prog_page_end_op(chip);
2195 }
2196
2197 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2198 {
2199 struct mtd_info *mtd = nand_to_mtd(chip);
2200 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2201 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2202 struct nand_ecc_ctrl *ecc = &chip->ecc;
2203 int page, ret, bbpos, bad = 0;
2204
2205 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2206
2207 /*
2208 * configure registers for a raw sub page read, the address is set to
2209 * the beginning of the last codeword, we don't care about reading ecc
2210 * portion of oob. we just want the first few bytes from this codeword
2211 * that contains the BBM
2212 */
2213 host->use_ecc = false;
2214
2215 clear_bam_transaction(nandc);
2216 ret = copy_last_cw(host, page);
2217 if (ret)
2218 goto err;
2219
2220 if (check_flash_errors(host, 1)) {
2221 dev_warn(nandc->dev, "error when trying to read BBM\n");
2222 goto err;
2223 }
2224
2225 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2226
2227 bad = nandc->data_buffer[bbpos] != 0xff;
2228
2229 if (chip->options & NAND_BUSWIDTH_16)
2230 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2231 err:
2232 return bad;
2233 }
2234
2235 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2236 {
2237 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2238 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2239 struct nand_ecc_ctrl *ecc = &chip->ecc;
2240 int page, ret;
2241
2242 clear_read_regs(nandc);
2243 clear_bam_transaction(nandc);
2244
2245 /*
2246 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2247 * we don't care about the rest of the content in the codeword since
2248 * we aren't going to use this block again
2249 */
2250 memset(nandc->data_buffer, 0x00, host->cw_size);
2251
2252 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2253
2254 /* prepare write */
2255 host->use_ecc = false;
2256 set_address(host, host->cw_size * (ecc->steps - 1), page);
2257 update_rw_regs(host, 1, false);
2258
2259 config_nand_page_write(nandc);
2260 write_data_dma(nandc, FLASH_BUF_ACC,
2261 nandc->data_buffer, host->cw_size, 0);
2262 config_nand_cw_write(nandc);
2263
2264 ret = submit_descs(nandc);
2265
2266 free_descs(nandc);
2267
2268 if (ret) {
2269 dev_err(nandc->dev, "failure to update BBM\n");
2270 return -EIO;
2271 }
2272
2273 return nand_prog_page_end_op(chip);
2274 }
2275
2276 /*
2277 * the three functions below implement chip->legacy.read_byte(),
2278 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2279 * aren't used for reading/writing page data, they are used for smaller data
2280 * like reading id, status etc
2281 */
2282 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2283 {
2284 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2285 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2286 u8 *buf = nandc->data_buffer;
2287 u8 ret = 0x0;
2288
2289 if (host->last_command == NAND_CMD_STATUS) {
2290 ret = host->status;
2291
2292 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2293
2294 return ret;
2295 }
2296
2297 if (nandc->buf_start < nandc->buf_count)
2298 ret = buf[nandc->buf_start++];
2299
2300 return ret;
2301 }
2302
2303 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2304 {
2305 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2306 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2307
2308 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2309 nandc->buf_start += real_len;
2310 }
2311
2312 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2313 int len)
2314 {
2315 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2316 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2317
2318 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2319
2320 nandc->buf_start += real_len;
2321 }
2322
2323 /* we support only one external chip for now */
2324 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2325 {
2326 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2327
2328 if (chipnr <= 0)
2329 return;
2330
2331 dev_warn(nandc->dev, "invalid chip select\n");
2332 }
2333
2334 /*
2335 * NAND controller page layout info
2336 *
2337 * Layout with ECC enabled:
2338 *
2339 * |----------------------| |---------------------------------|
2340 * | xx.......yy| | *********xx.......yy|
2341 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2342 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2343 * | xx.......yy| | *********xx.......yy|
2344 * |----------------------| |---------------------------------|
2345 * codeword 1,2..n-1 codeword n
2346 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2347 *
2348 * n = Number of codewords in the page
2349 * . = ECC bytes
2350 * * = Spare/free bytes
2351 * x = Unused byte(s)
2352 * y = Reserved byte(s)
2353 *
2354 * 2K page: n = 4, spare = 16 bytes
2355 * 4K page: n = 8, spare = 32 bytes
2356 * 8K page: n = 16, spare = 64 bytes
2357 *
2358 * the qcom nand controller operates at a sub page/codeword level. each
2359 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2360 * the number of ECC bytes vary based on the ECC strength and the bus width.
2361 *
2362 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2363 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2364 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2365 *
2366 * When we access a page with ECC enabled, the reserved bytes(s) are not
2367 * accessible at all. When reading, we fill up these unreadable positions
2368 * with 0xffs. When writing, the controller skips writing the inaccessible
2369 * bytes.
2370 *
2371 * Layout with ECC disabled:
2372 *
2373 * |------------------------------| |---------------------------------------|
2374 * | yy xx.......| | bb *********xx.......|
2375 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2376 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2377 * | yy xx.......| | bb *********xx.......|
2378 * |------------------------------| |---------------------------------------|
2379 * codeword 1,2..n-1 codeword n
2380 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2381 *
2382 * n = Number of codewords in the page
2383 * . = ECC bytes
2384 * * = Spare/free bytes
2385 * x = Unused byte(s)
2386 * y = Dummy Bad Bock byte(s)
2387 * b = Real Bad Block byte(s)
2388 * size1/size2 = function of codeword size and 'n'
2389 *
2390 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2391 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2392 * Block Markers. In the last codeword, this position contains the real BBM
2393 *
2394 * In order to have a consistent layout between RAW and ECC modes, we assume
2395 * the following OOB layout arrangement:
2396 *
2397 * |-----------| |--------------------|
2398 * |yyxx.......| |bb*********xx.......|
2399 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2400 * |yyxx.......| |bb*********xx.......|
2401 * |yyxx.......| |bb*********xx.......|
2402 * |-----------| |--------------------|
2403 * first n - 1 nth OOB region
2404 * OOB regions
2405 *
2406 * n = Number of codewords in the page
2407 * . = ECC bytes
2408 * * = FREE OOB bytes
2409 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2410 * x = Unused byte(s)
2411 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2412 *
2413 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2414 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2415 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2416 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2417 * the sum of the three).
2418 */
2419 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2420 struct mtd_oob_region *oobregion)
2421 {
2422 struct nand_chip *chip = mtd_to_nand(mtd);
2423 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2424 struct nand_ecc_ctrl *ecc = &chip->ecc;
2425
2426 if (section > 1)
2427 return -ERANGE;
2428
2429 if (!section) {
2430 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2431 host->bbm_size;
2432 oobregion->offset = 0;
2433 } else {
2434 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2435 oobregion->offset = mtd->oobsize - oobregion->length;
2436 }
2437
2438 return 0;
2439 }
2440
2441 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2442 struct mtd_oob_region *oobregion)
2443 {
2444 struct nand_chip *chip = mtd_to_nand(mtd);
2445 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2446 struct nand_ecc_ctrl *ecc = &chip->ecc;
2447
2448 if (section)
2449 return -ERANGE;
2450
2451 oobregion->length = ecc->steps * 4;
2452 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2453
2454 return 0;
2455 }
2456
2457 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2458 .ecc = qcom_nand_ooblayout_ecc,
2459 .free = qcom_nand_ooblayout_free,
2460 };
2461
2462 static int
2463 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2464 {
2465 return strength == 4 ? 12 : 16;
2466 }
2467 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2468 NANDC_STEP_SIZE, 4, 8);
2469
2470 static int qcom_nand_attach_chip(struct nand_chip *chip)
2471 {
2472 struct mtd_info *mtd = nand_to_mtd(chip);
2473 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2474 struct nand_ecc_ctrl *ecc = &chip->ecc;
2475 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2476 int cwperpage, bad_block_byte, ret;
2477 bool wide_bus;
2478 int ecc_mode = 1;
2479
2480 /* controller only supports 512 bytes data steps */
2481 ecc->size = NANDC_STEP_SIZE;
2482 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2483 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2484
2485 /*
2486 * Each CW has 4 available OOB bytes which will be protected with ECC
2487 * so remaining bytes can be used for ECC.
2488 */
2489 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2490 mtd->oobsize - (cwperpage * 4));
2491 if (ret) {
2492 dev_err(nandc->dev, "No valid ECC settings possible\n");
2493 return ret;
2494 }
2495
2496 if (ecc->strength >= 8) {
2497 /* 8 bit ECC defaults to BCH ECC on all platforms */
2498 host->bch_enabled = true;
2499 ecc_mode = 1;
2500
2501 if (wide_bus) {
2502 host->ecc_bytes_hw = 14;
2503 host->spare_bytes = 0;
2504 host->bbm_size = 2;
2505 } else {
2506 host->ecc_bytes_hw = 13;
2507 host->spare_bytes = 2;
2508 host->bbm_size = 1;
2509 }
2510 } else {
2511 /*
2512 * if the controller supports BCH for 4 bit ECC, the controller
2513 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2514 * always 10 bytes
2515 */
2516 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2517 /* BCH */
2518 host->bch_enabled = true;
2519 ecc_mode = 0;
2520
2521 if (wide_bus) {
2522 host->ecc_bytes_hw = 8;
2523 host->spare_bytes = 2;
2524 host->bbm_size = 2;
2525 } else {
2526 host->ecc_bytes_hw = 7;
2527 host->spare_bytes = 4;
2528 host->bbm_size = 1;
2529 }
2530 } else {
2531 /* RS */
2532 host->ecc_bytes_hw = 10;
2533
2534 if (wide_bus) {
2535 host->spare_bytes = 0;
2536 host->bbm_size = 2;
2537 } else {
2538 host->spare_bytes = 1;
2539 host->bbm_size = 1;
2540 }
2541 }
2542 }
2543
2544 /*
2545 * we consider ecc->bytes as the sum of all the non-data content in a
2546 * step. It gives us a clean representation of the oob area (even if
2547 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2548 * ECC and 12 bytes for 4 bit ECC
2549 */
2550 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2551
2552 ecc->read_page = qcom_nandc_read_page;
2553 ecc->read_page_raw = qcom_nandc_read_page_raw;
2554 ecc->read_oob = qcom_nandc_read_oob;
2555 ecc->write_page = qcom_nandc_write_page;
2556 ecc->write_page_raw = qcom_nandc_write_page_raw;
2557 ecc->write_oob = qcom_nandc_write_oob;
2558
2559 ecc->mode = NAND_ECC_HW;
2560
2561 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2562
2563 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2564 cwperpage);
2565
2566 /*
2567 * DATA_UD_BYTES varies based on whether the read/write command protects
2568 * spare data with ECC too. We protect spare data by default, so we set
2569 * it to main + spare data, which are 512 and 4 bytes respectively.
2570 */
2571 host->cw_data = 516;
2572
2573 /*
2574 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2575 * for 8 bit ECC
2576 */
2577 host->cw_size = host->cw_data + ecc->bytes;
2578 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2579
2580 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2581 | host->cw_data << UD_SIZE_BYTES
2582 | 0 << DISABLE_STATUS_AFTER_WRITE
2583 | 5 << NUM_ADDR_CYCLES
2584 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2585 | 0 << STATUS_BFR_READ
2586 | 1 << SET_RD_MODE_AFTER_STATUS
2587 | host->spare_bytes << SPARE_SIZE_BYTES;
2588
2589 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2590 | 0 << CS_ACTIVE_BSY
2591 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2592 | 0 << BAD_BLOCK_IN_SPARE_AREA
2593 | 2 << WR_RD_BSY_GAP
2594 | wide_bus << WIDE_FLASH
2595 | host->bch_enabled << ENABLE_BCH_ECC;
2596
2597 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2598 | host->cw_size << UD_SIZE_BYTES
2599 | 5 << NUM_ADDR_CYCLES
2600 | 0 << SPARE_SIZE_BYTES;
2601
2602 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2603 | 0 << CS_ACTIVE_BSY
2604 | 17 << BAD_BLOCK_BYTE_NUM
2605 | 1 << BAD_BLOCK_IN_SPARE_AREA
2606 | 2 << WR_RD_BSY_GAP
2607 | wide_bus << WIDE_FLASH
2608 | 1 << DEV0_CFG1_ECC_DISABLE;
2609
2610 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2611 | 0 << ECC_SW_RESET
2612 | host->cw_data << ECC_NUM_DATA_BYTES
2613 | 1 << ECC_FORCE_CLK_OPEN
2614 | ecc_mode << ECC_MODE
2615 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2616
2617 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2618
2619 host->clrflashstatus = FS_READY_BSY_N;
2620 host->clrreadstatus = 0xc0;
2621 nandc->regs->erased_cw_detect_cfg_clr =
2622 cpu_to_le32(CLR_ERASED_PAGE_DET);
2623 nandc->regs->erased_cw_detect_cfg_set =
2624 cpu_to_le32(SET_ERASED_PAGE_DET);
2625
2626 dev_dbg(nandc->dev,
2627 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2628 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2629 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2630 cwperpage);
2631
2632 return 0;
2633 }
2634
2635 static const struct nand_controller_ops qcom_nandc_ops = {
2636 .attach_chip = qcom_nand_attach_chip,
2637 };
2638
2639 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2640 {
2641 int ret;
2642
2643 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2644 if (ret) {
2645 dev_err(nandc->dev, "failed to set DMA mask\n");
2646 return ret;
2647 }
2648
2649 /*
2650 * we use the internal buffer for reading ONFI params, reading small
2651 * data like ID and status, and preforming read-copy-write operations
2652 * when writing to a codeword partially. 532 is the maximum possible
2653 * size of a codeword for our nand controller
2654 */
2655 nandc->buf_size = 532;
2656
2657 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2658 GFP_KERNEL);
2659 if (!nandc->data_buffer)
2660 return -ENOMEM;
2661
2662 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2663 GFP_KERNEL);
2664 if (!nandc->regs)
2665 return -ENOMEM;
2666
2667 nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2668 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2669 GFP_KERNEL);
2670 if (!nandc->reg_read_buf)
2671 return -ENOMEM;
2672
2673 if (nandc->props->is_bam) {
2674 nandc->reg_read_dma =
2675 dma_map_single(nandc->dev, nandc->reg_read_buf,
2676 MAX_REG_RD *
2677 sizeof(*nandc->reg_read_buf),
2678 DMA_FROM_DEVICE);
2679 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2680 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2681 return -EIO;
2682 }
2683
2684 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2685 if (!nandc->tx_chan) {
2686 dev_err(nandc->dev, "failed to request tx channel\n");
2687 return -ENODEV;
2688 }
2689
2690 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2691 if (!nandc->rx_chan) {
2692 dev_err(nandc->dev, "failed to request rx channel\n");
2693 return -ENODEV;
2694 }
2695
2696 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2697 if (!nandc->cmd_chan) {
2698 dev_err(nandc->dev, "failed to request cmd channel\n");
2699 return -ENODEV;
2700 }
2701
2702 /*
2703 * Initially allocate BAM transaction to read ONFI param page.
2704 * After detecting all the devices, this BAM transaction will
2705 * be freed and the next BAM tranasction will be allocated with
2706 * maximum codeword size
2707 */
2708 nandc->max_cwperpage = 1;
2709 nandc->bam_txn = alloc_bam_transaction(nandc);
2710 if (!nandc->bam_txn) {
2711 dev_err(nandc->dev,
2712 "failed to allocate bam transaction\n");
2713 return -ENOMEM;
2714 }
2715 } else {
2716 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2717 if (!nandc->chan) {
2718 dev_err(nandc->dev,
2719 "failed to request slave channel\n");
2720 return -ENODEV;
2721 }
2722 }
2723
2724 INIT_LIST_HEAD(&nandc->desc_list);
2725 INIT_LIST_HEAD(&nandc->host_list);
2726
2727 nand_controller_init(&nandc->controller);
2728 nandc->controller.ops = &qcom_nandc_ops;
2729
2730 return 0;
2731 }
2732
2733 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2734 {
2735 if (nandc->props->is_bam) {
2736 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2737 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2738 MAX_REG_RD *
2739 sizeof(*nandc->reg_read_buf),
2740 DMA_FROM_DEVICE);
2741
2742 if (nandc->tx_chan)
2743 dma_release_channel(nandc->tx_chan);
2744
2745 if (nandc->rx_chan)
2746 dma_release_channel(nandc->rx_chan);
2747
2748 if (nandc->cmd_chan)
2749 dma_release_channel(nandc->cmd_chan);
2750 } else {
2751 if (nandc->chan)
2752 dma_release_channel(nandc->chan);
2753 }
2754 }
2755
2756 /* one time setup of a few nand controller registers */
2757 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2758 {
2759 u32 nand_ctrl;
2760
2761 /* kill onenand */
2762 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2763 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2764 NAND_DEV_CMD_VLD_VAL);
2765
2766 /* enable ADM or BAM DMA */
2767 if (nandc->props->is_bam) {
2768 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2769 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2770 } else {
2771 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2772 }
2773
2774 /* save the original values of these registers */
2775 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2776 nandc->vld = NAND_DEV_CMD_VLD_VAL;
2777
2778 return 0;
2779 }
2780
2781 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2782 struct qcom_nand_host *host,
2783 struct device_node *dn)
2784 {
2785 struct nand_chip *chip = &host->chip;
2786 struct mtd_info *mtd = nand_to_mtd(chip);
2787 struct device *dev = nandc->dev;
2788 int ret;
2789
2790 ret = of_property_read_u32(dn, "reg", &host->cs);
2791 if (ret) {
2792 dev_err(dev, "can't get chip-select\n");
2793 return -ENXIO;
2794 }
2795
2796 nand_set_flash_node(chip, dn);
2797 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2798 if (!mtd->name)
2799 return -ENOMEM;
2800
2801 mtd->owner = THIS_MODULE;
2802 mtd->dev.parent = dev;
2803
2804 chip->legacy.cmdfunc = qcom_nandc_command;
2805 chip->legacy.select_chip = qcom_nandc_select_chip;
2806 chip->legacy.read_byte = qcom_nandc_read_byte;
2807 chip->legacy.read_buf = qcom_nandc_read_buf;
2808 chip->legacy.write_buf = qcom_nandc_write_buf;
2809 chip->legacy.set_features = nand_get_set_features_notsupp;
2810 chip->legacy.get_features = nand_get_set_features_notsupp;
2811
2812 /*
2813 * the bad block marker is readable only when we read the last codeword
2814 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2815 * helpers don't allow us to read BB from a nand chip with ECC
2816 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2817 * and block_markbad helpers until we permanently switch to using
2818 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2819 */
2820 chip->legacy.block_bad = qcom_nandc_block_bad;
2821 chip->legacy.block_markbad = qcom_nandc_block_markbad;
2822
2823 chip->controller = &nandc->controller;
2824 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2825 NAND_SKIP_BBTSCAN;
2826
2827 /* set up initial status value */
2828 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2829
2830 ret = nand_scan(chip, 1);
2831 if (ret)
2832 return ret;
2833
2834 if (nandc->props->is_bam) {
2835 free_bam_transaction(nandc);
2836 nandc->bam_txn = alloc_bam_transaction(nandc);
2837 if (!nandc->bam_txn) {
2838 dev_err(nandc->dev,
2839 "failed to allocate bam transaction\n");
2840 return -ENOMEM;
2841 }
2842 }
2843
2844 ret = mtd_device_register(mtd, NULL, 0);
2845 if (ret)
2846 nand_cleanup(chip);
2847
2848 return ret;
2849 }
2850
2851 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2852 {
2853 struct device *dev = nandc->dev;
2854 struct device_node *dn = dev->of_node, *child;
2855 struct qcom_nand_host *host;
2856 int ret;
2857
2858 for_each_available_child_of_node(dn, child) {
2859 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2860 if (!host) {
2861 of_node_put(child);
2862 return -ENOMEM;
2863 }
2864
2865 ret = qcom_nand_host_init_and_register(nandc, host, child);
2866 if (ret) {
2867 devm_kfree(dev, host);
2868 continue;
2869 }
2870
2871 list_add_tail(&host->node, &nandc->host_list);
2872 }
2873
2874 if (list_empty(&nandc->host_list))
2875 return -ENODEV;
2876
2877 return 0;
2878 }
2879
2880 /* parse custom DT properties here */
2881 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2882 {
2883 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2884 struct device_node *np = nandc->dev->of_node;
2885 int ret;
2886
2887 if (!nandc->props->is_bam) {
2888 ret = of_property_read_u32(np, "qcom,cmd-crci",
2889 &nandc->cmd_crci);
2890 if (ret) {
2891 dev_err(nandc->dev, "command CRCI unspecified\n");
2892 return ret;
2893 }
2894
2895 ret = of_property_read_u32(np, "qcom,data-crci",
2896 &nandc->data_crci);
2897 if (ret) {
2898 dev_err(nandc->dev, "data CRCI unspecified\n");
2899 return ret;
2900 }
2901 }
2902
2903 return 0;
2904 }
2905
2906 static int qcom_nandc_probe(struct platform_device *pdev)
2907 {
2908 struct qcom_nand_controller *nandc;
2909 const void *dev_data;
2910 struct device *dev = &pdev->dev;
2911 struct resource *res;
2912 int ret;
2913
2914 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2915 if (!nandc)
2916 return -ENOMEM;
2917
2918 platform_set_drvdata(pdev, nandc);
2919 nandc->dev = dev;
2920
2921 dev_data = of_device_get_match_data(dev);
2922 if (!dev_data) {
2923 dev_err(&pdev->dev, "failed to get device data\n");
2924 return -ENODEV;
2925 }
2926
2927 nandc->props = dev_data;
2928
2929 nandc->core_clk = devm_clk_get(dev, "core");
2930 if (IS_ERR(nandc->core_clk))
2931 return PTR_ERR(nandc->core_clk);
2932
2933 nandc->aon_clk = devm_clk_get(dev, "aon");
2934 if (IS_ERR(nandc->aon_clk))
2935 return PTR_ERR(nandc->aon_clk);
2936
2937 ret = qcom_nandc_parse_dt(pdev);
2938 if (ret)
2939 return ret;
2940
2941 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2942 nandc->base = devm_ioremap_resource(dev, res);
2943 if (IS_ERR(nandc->base))
2944 return PTR_ERR(nandc->base);
2945
2946 nandc->base_phys = res->start;
2947 nandc->base_dma = dma_map_resource(dev, res->start,
2948 resource_size(res),
2949 DMA_BIDIRECTIONAL, 0);
2950 if (!nandc->base_dma)
2951 return -ENXIO;
2952
2953 ret = qcom_nandc_alloc(nandc);
2954 if (ret)
2955 goto err_nandc_alloc;
2956
2957 ret = clk_prepare_enable(nandc->core_clk);
2958 if (ret)
2959 goto err_core_clk;
2960
2961 ret = clk_prepare_enable(nandc->aon_clk);
2962 if (ret)
2963 goto err_aon_clk;
2964
2965 ret = qcom_nandc_setup(nandc);
2966 if (ret)
2967 goto err_setup;
2968
2969 ret = qcom_probe_nand_devices(nandc);
2970 if (ret)
2971 goto err_setup;
2972
2973 return 0;
2974
2975 err_setup:
2976 clk_disable_unprepare(nandc->aon_clk);
2977 err_aon_clk:
2978 clk_disable_unprepare(nandc->core_clk);
2979 err_core_clk:
2980 qcom_nandc_unalloc(nandc);
2981 err_nandc_alloc:
2982 dma_unmap_resource(dev, res->start, resource_size(res),
2983 DMA_BIDIRECTIONAL, 0);
2984
2985 return ret;
2986 }
2987
2988 static int qcom_nandc_remove(struct platform_device *pdev)
2989 {
2990 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2991 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2992 struct qcom_nand_host *host;
2993
2994 list_for_each_entry(host, &nandc->host_list, node)
2995 nand_release(&host->chip);
2996
2997
2998 qcom_nandc_unalloc(nandc);
2999
3000 clk_disable_unprepare(nandc->aon_clk);
3001 clk_disable_unprepare(nandc->core_clk);
3002
3003 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3004 DMA_BIDIRECTIONAL, 0);
3005
3006 return 0;
3007 }
3008
3009 static const struct qcom_nandc_props ipq806x_nandc_props = {
3010 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3011 .is_bam = false,
3012 .dev_cmd_reg_start = 0x0,
3013 };
3014
3015 static const struct qcom_nandc_props ipq4019_nandc_props = {
3016 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3017 .is_bam = true,
3018 .dev_cmd_reg_start = 0x0,
3019 };
3020
3021 static const struct qcom_nandc_props ipq8074_nandc_props = {
3022 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3023 .is_bam = true,
3024 .dev_cmd_reg_start = 0x7000,
3025 };
3026
3027 /*
3028 * data will hold a struct pointer containing more differences once we support
3029 * more controller variants
3030 */
3031 static const struct of_device_id qcom_nandc_of_match[] = {
3032 {
3033 .compatible = "qcom,ipq806x-nand",
3034 .data = &ipq806x_nandc_props,
3035 },
3036 {
3037 .compatible = "qcom,ipq4019-nand",
3038 .data = &ipq4019_nandc_props,
3039 },
3040 {
3041 .compatible = "qcom,ipq8074-nand",
3042 .data = &ipq8074_nandc_props,
3043 },
3044 {}
3045 };
3046 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3047
3048 static struct platform_driver qcom_nandc_driver = {
3049 .driver = {
3050 .name = "qcom-nandc",
3051 .of_match_table = qcom_nandc_of_match,
3052 },
3053 .probe = qcom_nandc_probe,
3054 .remove = qcom_nandc_remove,
3055 };
3056 module_platform_driver(qcom_nandc_driver);
3057
3058 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3059 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3060 MODULE_LICENSE("GPL v2");