]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/nand/s3c2410.c
iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25 #define DEBUG
26 #endif
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
45
46 #include <asm/io.h>
47
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
50
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
53 #else
54 static int hardware_ecc = 0;
55 #endif
56
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static int clock_stop = 1;
59 #else
60 static const int clock_stop = 0;
61 #endif
62
63
64 /* new oob placement block for use with hardware ecc generation
65 */
66
67 static struct nand_ecclayout nand_hw_eccoob = {
68 .eccbytes = 3,
69 .eccpos = {0, 1, 2},
70 .oobfree = {{8, 8}}
71 };
72
73 /* controller and mtd information */
74
75 struct s3c2410_nand_info;
76
77 /**
78 * struct s3c2410_nand_mtd - driver MTD structure
79 * @mtd: The MTD instance to pass to the MTD layer.
80 * @chip: The NAND chip information.
81 * @set: The platform information supplied for this set of NAND chips.
82 * @info: Link back to the hardware information.
83 * @scan_res: The result from calling nand_scan_ident().
84 */
85 struct s3c2410_nand_mtd {
86 struct mtd_info mtd;
87 struct nand_chip chip;
88 struct s3c2410_nand_set *set;
89 struct s3c2410_nand_info *info;
90 int scan_res;
91 };
92
93 enum s3c_cpu_type {
94 TYPE_S3C2410,
95 TYPE_S3C2412,
96 TYPE_S3C2440,
97 };
98
99 /* overview of the s3c2410 nand state */
100
101 /**
102 * struct s3c2410_nand_info - NAND controller state.
103 * @mtds: An array of MTD instances on this controoler.
104 * @platform: The platform data for this board.
105 * @device: The platform device we bound to.
106 * @area: The IO area resource that came from request_mem_region().
107 * @clk: The clock resource for this controller.
108 * @regs: The area mapped for the hardware registers described by @area.
109 * @sel_reg: Pointer to the register controlling the NAND selection.
110 * @sel_bit: The bit in @sel_reg to select the NAND chip.
111 * @mtd_count: The number of MTDs created from this controller.
112 * @save_sel: The contents of @sel_reg to be saved over suspend.
113 * @clk_rate: The clock rate from @clk.
114 * @cpu_type: The exact type of this controller.
115 */
116 struct s3c2410_nand_info {
117 /* mtd info */
118 struct nand_hw_control controller;
119 struct s3c2410_nand_mtd *mtds;
120 struct s3c2410_platform_nand *platform;
121
122 /* device info */
123 struct device *device;
124 struct resource *area;
125 struct clk *clk;
126 void __iomem *regs;
127 void __iomem *sel_reg;
128 int sel_bit;
129 int mtd_count;
130 unsigned long save_sel;
131 unsigned long clk_rate;
132
133 enum s3c_cpu_type cpu_type;
134
135 #ifdef CONFIG_CPU_FREQ
136 struct notifier_block freq_transition;
137 #endif
138 };
139
140 /* conversion functions */
141
142 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
143 {
144 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
145 }
146
147 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
148 {
149 return s3c2410_nand_mtd_toours(mtd)->info;
150 }
151
152 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
153 {
154 return platform_get_drvdata(dev);
155 }
156
157 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
158 {
159 return dev->dev.platform_data;
160 }
161
162 static inline int allow_clk_stop(struct s3c2410_nand_info *info)
163 {
164 return clock_stop;
165 }
166
167 /* timing calculations */
168
169 #define NS_IN_KHZ 1000000
170
171 /**
172 * s3c_nand_calc_rate - calculate timing data.
173 * @wanted: The cycle time in nanoseconds.
174 * @clk: The clock rate in kHz.
175 * @max: The maximum divider value.
176 *
177 * Calculate the timing value from the given parameters.
178 */
179 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
180 {
181 int result;
182
183 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
184
185 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
186
187 if (result > max) {
188 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
189 return -1;
190 }
191
192 if (result < 1)
193 result = 1;
194
195 return result;
196 }
197
198 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
199
200 /* controller setup */
201
202 /**
203 * s3c2410_nand_setrate - setup controller timing information.
204 * @info: The controller instance.
205 *
206 * Given the information supplied by the platform, calculate and set
207 * the necessary timing registers in the hardware to generate the
208 * necessary timing cycles to the hardware.
209 */
210 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
211 {
212 struct s3c2410_platform_nand *plat = info->platform;
213 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
214 int tacls, twrph0, twrph1;
215 unsigned long clkrate = clk_get_rate(info->clk);
216 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
217 unsigned long flags;
218
219 /* calculate the timing information for the controller */
220
221 info->clk_rate = clkrate;
222 clkrate /= 1000; /* turn clock into kHz for ease of use */
223
224 if (plat != NULL) {
225 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
226 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
227 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
228 } else {
229 /* default timings */
230 tacls = tacls_max;
231 twrph0 = 8;
232 twrph1 = 8;
233 }
234
235 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
236 dev_err(info->device, "cannot get suitable timings\n");
237 return -EINVAL;
238 }
239
240 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
241 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
242
243 switch (info->cpu_type) {
244 case TYPE_S3C2410:
245 mask = (S3C2410_NFCONF_TACLS(3) |
246 S3C2410_NFCONF_TWRPH0(7) |
247 S3C2410_NFCONF_TWRPH1(7));
248 set = S3C2410_NFCONF_EN;
249 set |= S3C2410_NFCONF_TACLS(tacls - 1);
250 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
251 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
252 break;
253
254 case TYPE_S3C2440:
255 case TYPE_S3C2412:
256 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
257 S3C2440_NFCONF_TWRPH0(7) |
258 S3C2440_NFCONF_TWRPH1(7));
259
260 set = S3C2440_NFCONF_TACLS(tacls - 1);
261 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
262 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
263 break;
264
265 default:
266 BUG();
267 }
268
269 local_irq_save(flags);
270
271 cfg = readl(info->regs + S3C2410_NFCONF);
272 cfg &= ~mask;
273 cfg |= set;
274 writel(cfg, info->regs + S3C2410_NFCONF);
275
276 local_irq_restore(flags);
277
278 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
279
280 return 0;
281 }
282
283 /**
284 * s3c2410_nand_inithw - basic hardware initialisation
285 * @info: The hardware state.
286 *
287 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
288 * to setup the hardware access speeds and set the controller to be enabled.
289 */
290 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
291 {
292 int ret;
293
294 ret = s3c2410_nand_setrate(info);
295 if (ret < 0)
296 return ret;
297
298 switch (info->cpu_type) {
299 case TYPE_S3C2410:
300 default:
301 break;
302
303 case TYPE_S3C2440:
304 case TYPE_S3C2412:
305 /* enable the controller and de-assert nFCE */
306
307 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
308 }
309
310 return 0;
311 }
312
313 /**
314 * s3c2410_nand_select_chip - select the given nand chip
315 * @mtd: The MTD instance for this chip.
316 * @chip: The chip number.
317 *
318 * This is called by the MTD layer to either select a given chip for the
319 * @mtd instance, or to indicate that the access has finished and the
320 * chip can be de-selected.
321 *
322 * The routine ensures that the nFCE line is correctly setup, and any
323 * platform specific selection code is called to route nFCE to the specific
324 * chip.
325 */
326 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
327 {
328 struct s3c2410_nand_info *info;
329 struct s3c2410_nand_mtd *nmtd;
330 struct nand_chip *this = mtd->priv;
331 unsigned long cur;
332
333 nmtd = this->priv;
334 info = nmtd->info;
335
336 if (chip != -1 && allow_clk_stop(info))
337 clk_enable(info->clk);
338
339 cur = readl(info->sel_reg);
340
341 if (chip == -1) {
342 cur |= info->sel_bit;
343 } else {
344 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
345 dev_err(info->device, "invalid chip %d\n", chip);
346 return;
347 }
348
349 if (info->platform != NULL) {
350 if (info->platform->select_chip != NULL)
351 (info->platform->select_chip) (nmtd->set, chip);
352 }
353
354 cur &= ~info->sel_bit;
355 }
356
357 writel(cur, info->sel_reg);
358
359 if (chip == -1 && allow_clk_stop(info))
360 clk_disable(info->clk);
361 }
362
363 /* s3c2410_nand_hwcontrol
364 *
365 * Issue command and address cycles to the chip
366 */
367
368 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
369 unsigned int ctrl)
370 {
371 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
372
373 if (cmd == NAND_CMD_NONE)
374 return;
375
376 if (ctrl & NAND_CLE)
377 writeb(cmd, info->regs + S3C2410_NFCMD);
378 else
379 writeb(cmd, info->regs + S3C2410_NFADDR);
380 }
381
382 /* command and control functions */
383
384 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
385 unsigned int ctrl)
386 {
387 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
388
389 if (cmd == NAND_CMD_NONE)
390 return;
391
392 if (ctrl & NAND_CLE)
393 writeb(cmd, info->regs + S3C2440_NFCMD);
394 else
395 writeb(cmd, info->regs + S3C2440_NFADDR);
396 }
397
398 /* s3c2410_nand_devready()
399 *
400 * returns 0 if the nand is busy, 1 if it is ready
401 */
402
403 static int s3c2410_nand_devready(struct mtd_info *mtd)
404 {
405 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
406 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
407 }
408
409 static int s3c2440_nand_devready(struct mtd_info *mtd)
410 {
411 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
412 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
413 }
414
415 static int s3c2412_nand_devready(struct mtd_info *mtd)
416 {
417 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
418 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
419 }
420
421 /* ECC handling functions */
422
423 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
424 u_char *read_ecc, u_char *calc_ecc)
425 {
426 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
427 unsigned int diff0, diff1, diff2;
428 unsigned int bit, byte;
429
430 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
431
432 diff0 = read_ecc[0] ^ calc_ecc[0];
433 diff1 = read_ecc[1] ^ calc_ecc[1];
434 diff2 = read_ecc[2] ^ calc_ecc[2];
435
436 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
437 __func__,
438 read_ecc[0], read_ecc[1], read_ecc[2],
439 calc_ecc[0], calc_ecc[1], calc_ecc[2],
440 diff0, diff1, diff2);
441
442 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
443 return 0; /* ECC is ok */
444
445 /* sometimes people do not think about using the ECC, so check
446 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
447 * the error, on the assumption that this is an un-eccd page.
448 */
449 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
450 && info->platform->ignore_unset_ecc)
451 return 0;
452
453 /* Can we correct this ECC (ie, one row and column change).
454 * Note, this is similar to the 256 error code on smartmedia */
455
456 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
457 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
458 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
459 /* calculate the bit position of the error */
460
461 bit = ((diff2 >> 3) & 1) |
462 ((diff2 >> 4) & 2) |
463 ((diff2 >> 5) & 4);
464
465 /* calculate the byte position of the error */
466
467 byte = ((diff2 << 7) & 0x100) |
468 ((diff1 << 0) & 0x80) |
469 ((diff1 << 1) & 0x40) |
470 ((diff1 << 2) & 0x20) |
471 ((diff1 << 3) & 0x10) |
472 ((diff0 >> 4) & 0x08) |
473 ((diff0 >> 3) & 0x04) |
474 ((diff0 >> 2) & 0x02) |
475 ((diff0 >> 1) & 0x01);
476
477 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
478 bit, byte);
479
480 dat[byte] ^= (1 << bit);
481 return 1;
482 }
483
484 /* if there is only one bit difference in the ECC, then
485 * one of only a row or column parity has changed, which
486 * means the error is most probably in the ECC itself */
487
488 diff0 |= (diff1 << 8);
489 diff0 |= (diff2 << 16);
490
491 if ((diff0 & ~(1<<fls(diff0))) == 0)
492 return 1;
493
494 return -1;
495 }
496
497 /* ECC functions
498 *
499 * These allow the s3c2410 and s3c2440 to use the controller's ECC
500 * generator block to ECC the data as it passes through]
501 */
502
503 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
504 {
505 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
506 unsigned long ctrl;
507
508 ctrl = readl(info->regs + S3C2410_NFCONF);
509 ctrl |= S3C2410_NFCONF_INITECC;
510 writel(ctrl, info->regs + S3C2410_NFCONF);
511 }
512
513 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
514 {
515 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
516 unsigned long ctrl;
517
518 ctrl = readl(info->regs + S3C2440_NFCONT);
519 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
520 }
521
522 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
523 {
524 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
525 unsigned long ctrl;
526
527 ctrl = readl(info->regs + S3C2440_NFCONT);
528 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
529 }
530
531 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
532 {
533 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
534
535 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
536 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
537 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
538
539 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
540 ecc_code[0], ecc_code[1], ecc_code[2]);
541
542 return 0;
543 }
544
545 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
546 {
547 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
548 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
549
550 ecc_code[0] = ecc;
551 ecc_code[1] = ecc >> 8;
552 ecc_code[2] = ecc >> 16;
553
554 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
555
556 return 0;
557 }
558
559 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
560 {
561 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
562 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
563
564 ecc_code[0] = ecc;
565 ecc_code[1] = ecc >> 8;
566 ecc_code[2] = ecc >> 16;
567
568 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
569
570 return 0;
571 }
572
573 /* over-ride the standard functions for a little more speed. We can
574 * use read/write block to move the data buffers to/from the controller
575 */
576
577 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
578 {
579 struct nand_chip *this = mtd->priv;
580 readsb(this->IO_ADDR_R, buf, len);
581 }
582
583 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
584 {
585 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586
587 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
588
589 /* cleanup if we've got less than a word to do */
590 if (len & 3) {
591 buf += len & ~3;
592
593 for (; len & 3; len--)
594 *buf++ = readb(info->regs + S3C2440_NFDATA);
595 }
596 }
597
598 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
599 {
600 struct nand_chip *this = mtd->priv;
601 writesb(this->IO_ADDR_W, buf, len);
602 }
603
604 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
605 {
606 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
607
608 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
609
610 /* cleanup any fractional write */
611 if (len & 3) {
612 buf += len & ~3;
613
614 for (; len & 3; len--, buf++)
615 writeb(*buf, info->regs + S3C2440_NFDATA);
616 }
617 }
618
619 /* cpufreq driver support */
620
621 #ifdef CONFIG_CPU_FREQ
622
623 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
624 unsigned long val, void *data)
625 {
626 struct s3c2410_nand_info *info;
627 unsigned long newclk;
628
629 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
630 newclk = clk_get_rate(info->clk);
631
632 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
633 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
634 s3c2410_nand_setrate(info);
635 }
636
637 return 0;
638 }
639
640 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
641 {
642 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
643
644 return cpufreq_register_notifier(&info->freq_transition,
645 CPUFREQ_TRANSITION_NOTIFIER);
646 }
647
648 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
649 {
650 cpufreq_unregister_notifier(&info->freq_transition,
651 CPUFREQ_TRANSITION_NOTIFIER);
652 }
653
654 #else
655 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
656 {
657 return 0;
658 }
659
660 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
661 {
662 }
663 #endif
664
665 /* device management functions */
666
667 static int s3c24xx_nand_remove(struct platform_device *pdev)
668 {
669 struct s3c2410_nand_info *info = to_nand_info(pdev);
670
671 platform_set_drvdata(pdev, NULL);
672
673 if (info == NULL)
674 return 0;
675
676 s3c2410_nand_cpufreq_deregister(info);
677
678 /* Release all our mtds and their partitions, then go through
679 * freeing the resources used
680 */
681
682 if (info->mtds != NULL) {
683 struct s3c2410_nand_mtd *ptr = info->mtds;
684 int mtdno;
685
686 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
687 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
688 nand_release(&ptr->mtd);
689 }
690
691 kfree(info->mtds);
692 }
693
694 /* free the common resources */
695
696 if (info->clk != NULL && !IS_ERR(info->clk)) {
697 if (!allow_clk_stop(info))
698 clk_disable(info->clk);
699 clk_put(info->clk);
700 }
701
702 if (info->regs != NULL) {
703 iounmap(info->regs);
704 info->regs = NULL;
705 }
706
707 if (info->area != NULL) {
708 release_resource(info->area);
709 kfree(info->area);
710 info->area = NULL;
711 }
712
713 kfree(info);
714
715 return 0;
716 }
717
718 #ifdef CONFIG_MTD_PARTITIONS
719 const char *part_probes[] = { "cmdlinepart", NULL };
720 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
721 struct s3c2410_nand_mtd *mtd,
722 struct s3c2410_nand_set *set)
723 {
724 struct mtd_partition *part_info;
725 int nr_part = 0;
726
727 if (set == NULL)
728 return add_mtd_device(&mtd->mtd);
729
730 if (set->nr_partitions == 0) {
731 mtd->mtd.name = set->name;
732 nr_part = parse_mtd_partitions(&mtd->mtd, part_probes,
733 &part_info, 0);
734 } else {
735 if (set->nr_partitions > 0 && set->partitions != NULL) {
736 nr_part = set->nr_partitions;
737 part_info = set->partitions;
738 }
739 }
740
741 if (nr_part > 0 && part_info)
742 return add_mtd_partitions(&mtd->mtd, part_info, nr_part);
743
744 return add_mtd_device(&mtd->mtd);
745 }
746 #else
747 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
748 struct s3c2410_nand_mtd *mtd,
749 struct s3c2410_nand_set *set)
750 {
751 return add_mtd_device(&mtd->mtd);
752 }
753 #endif
754
755 /**
756 * s3c2410_nand_init_chip - initialise a single instance of an chip
757 * @info: The base NAND controller the chip is on.
758 * @nmtd: The new controller MTD instance to fill in.
759 * @set: The information passed from the board specific platform data.
760 *
761 * Initialise the given @nmtd from the information in @info and @set. This
762 * readies the structure for use with the MTD layer functions by ensuring
763 * all pointers are setup and the necessary control routines selected.
764 */
765 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
766 struct s3c2410_nand_mtd *nmtd,
767 struct s3c2410_nand_set *set)
768 {
769 struct nand_chip *chip = &nmtd->chip;
770 void __iomem *regs = info->regs;
771
772 chip->write_buf = s3c2410_nand_write_buf;
773 chip->read_buf = s3c2410_nand_read_buf;
774 chip->select_chip = s3c2410_nand_select_chip;
775 chip->chip_delay = 50;
776 chip->priv = nmtd;
777 chip->options = set->options;
778 chip->controller = &info->controller;
779
780 switch (info->cpu_type) {
781 case TYPE_S3C2410:
782 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
783 info->sel_reg = regs + S3C2410_NFCONF;
784 info->sel_bit = S3C2410_NFCONF_nFCE;
785 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
786 chip->dev_ready = s3c2410_nand_devready;
787 break;
788
789 case TYPE_S3C2440:
790 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
791 info->sel_reg = regs + S3C2440_NFCONT;
792 info->sel_bit = S3C2440_NFCONT_nFCE;
793 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
794 chip->dev_ready = s3c2440_nand_devready;
795 chip->read_buf = s3c2440_nand_read_buf;
796 chip->write_buf = s3c2440_nand_write_buf;
797 break;
798
799 case TYPE_S3C2412:
800 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
801 info->sel_reg = regs + S3C2440_NFCONT;
802 info->sel_bit = S3C2412_NFCONT_nFCE0;
803 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
804 chip->dev_ready = s3c2412_nand_devready;
805
806 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
807 dev_info(info->device, "System booted from NAND\n");
808
809 break;
810 }
811
812 chip->IO_ADDR_R = chip->IO_ADDR_W;
813
814 nmtd->info = info;
815 nmtd->mtd.priv = chip;
816 nmtd->mtd.owner = THIS_MODULE;
817 nmtd->set = set;
818
819 if (hardware_ecc) {
820 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
821 chip->ecc.correct = s3c2410_nand_correct_data;
822 chip->ecc.mode = NAND_ECC_HW;
823
824 switch (info->cpu_type) {
825 case TYPE_S3C2410:
826 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
827 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
828 break;
829
830 case TYPE_S3C2412:
831 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
832 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
833 break;
834
835 case TYPE_S3C2440:
836 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
837 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
838 break;
839
840 }
841 } else {
842 chip->ecc.mode = NAND_ECC_SOFT;
843 }
844
845 if (set->ecc_layout != NULL)
846 chip->ecc.layout = set->ecc_layout;
847
848 if (set->disable_ecc)
849 chip->ecc.mode = NAND_ECC_NONE;
850
851 switch (chip->ecc.mode) {
852 case NAND_ECC_NONE:
853 dev_info(info->device, "NAND ECC disabled\n");
854 break;
855 case NAND_ECC_SOFT:
856 dev_info(info->device, "NAND soft ECC\n");
857 break;
858 case NAND_ECC_HW:
859 dev_info(info->device, "NAND hardware ECC\n");
860 break;
861 default:
862 dev_info(info->device, "NAND ECC UNKNOWN\n");
863 break;
864 }
865
866 /* If you use u-boot BBT creation code, specifying this flag will
867 * let the kernel fish out the BBT from the NAND, and also skip the
868 * full NAND scan that can take 1/2s or so. Little things... */
869 if (set->flash_bbt)
870 chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
871 }
872
873 /**
874 * s3c2410_nand_update_chip - post probe update
875 * @info: The controller instance.
876 * @nmtd: The driver version of the MTD instance.
877 *
878 * This routine is called after the chip probe has successfully completed
879 * and the relevant per-chip information updated. This call ensure that
880 * we update the internal state accordingly.
881 *
882 * The internal state is currently limited to the ECC state information.
883 */
884 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
885 struct s3c2410_nand_mtd *nmtd)
886 {
887 struct nand_chip *chip = &nmtd->chip;
888
889 dev_dbg(info->device, "chip %p => page shift %d\n",
890 chip, chip->page_shift);
891
892 if (chip->ecc.mode != NAND_ECC_HW)
893 return;
894
895 /* change the behaviour depending on wether we are using
896 * the large or small page nand device */
897
898 if (chip->page_shift > 10) {
899 chip->ecc.size = 256;
900 chip->ecc.bytes = 3;
901 } else {
902 chip->ecc.size = 512;
903 chip->ecc.bytes = 3;
904 chip->ecc.layout = &nand_hw_eccoob;
905 }
906 }
907
908 /* s3c24xx_nand_probe
909 *
910 * called by device layer when it finds a device matching
911 * one our driver can handled. This code checks to see if
912 * it can allocate all necessary resources then calls the
913 * nand layer to look for devices
914 */
915 static int s3c24xx_nand_probe(struct platform_device *pdev)
916 {
917 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
918 enum s3c_cpu_type cpu_type;
919 struct s3c2410_nand_info *info;
920 struct s3c2410_nand_mtd *nmtd;
921 struct s3c2410_nand_set *sets;
922 struct resource *res;
923 int err = 0;
924 int size;
925 int nr_sets;
926 int setno;
927
928 cpu_type = platform_get_device_id(pdev)->driver_data;
929
930 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
931
932 info = kmalloc(sizeof(*info), GFP_KERNEL);
933 if (info == NULL) {
934 dev_err(&pdev->dev, "no memory for flash info\n");
935 err = -ENOMEM;
936 goto exit_error;
937 }
938
939 memset(info, 0, sizeof(*info));
940 platform_set_drvdata(pdev, info);
941
942 spin_lock_init(&info->controller.lock);
943 init_waitqueue_head(&info->controller.wq);
944
945 /* get the clock source and enable it */
946
947 info->clk = clk_get(&pdev->dev, "nand");
948 if (IS_ERR(info->clk)) {
949 dev_err(&pdev->dev, "failed to get clock\n");
950 err = -ENOENT;
951 goto exit_error;
952 }
953
954 clk_enable(info->clk);
955
956 /* allocate and map the resource */
957
958 /* currently we assume we have the one resource */
959 res = pdev->resource;
960 size = res->end - res->start + 1;
961
962 info->area = request_mem_region(res->start, size, pdev->name);
963
964 if (info->area == NULL) {
965 dev_err(&pdev->dev, "cannot reserve register region\n");
966 err = -ENOENT;
967 goto exit_error;
968 }
969
970 info->device = &pdev->dev;
971 info->platform = plat;
972 info->regs = ioremap(res->start, size);
973 info->cpu_type = cpu_type;
974
975 if (info->regs == NULL) {
976 dev_err(&pdev->dev, "cannot reserve register region\n");
977 err = -EIO;
978 goto exit_error;
979 }
980
981 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
982
983 /* initialise the hardware */
984
985 err = s3c2410_nand_inithw(info);
986 if (err != 0)
987 goto exit_error;
988
989 sets = (plat != NULL) ? plat->sets : NULL;
990 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
991
992 info->mtd_count = nr_sets;
993
994 /* allocate our information */
995
996 size = nr_sets * sizeof(*info->mtds);
997 info->mtds = kmalloc(size, GFP_KERNEL);
998 if (info->mtds == NULL) {
999 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1000 err = -ENOMEM;
1001 goto exit_error;
1002 }
1003
1004 memset(info->mtds, 0, size);
1005
1006 /* initialise all possible chips */
1007
1008 nmtd = info->mtds;
1009
1010 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1011 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1012
1013 s3c2410_nand_init_chip(info, nmtd, sets);
1014
1015 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1016 (sets) ? sets->nr_chips : 1);
1017
1018 if (nmtd->scan_res == 0) {
1019 s3c2410_nand_update_chip(info, nmtd);
1020 nand_scan_tail(&nmtd->mtd);
1021 s3c2410_nand_add_partition(info, nmtd, sets);
1022 }
1023
1024 if (sets != NULL)
1025 sets++;
1026 }
1027
1028 err = s3c2410_nand_cpufreq_register(info);
1029 if (err < 0) {
1030 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1031 goto exit_error;
1032 }
1033
1034 if (allow_clk_stop(info)) {
1035 dev_info(&pdev->dev, "clock idle support enabled\n");
1036 clk_disable(info->clk);
1037 }
1038
1039 pr_debug("initialised ok\n");
1040 return 0;
1041
1042 exit_error:
1043 s3c24xx_nand_remove(pdev);
1044
1045 if (err == 0)
1046 err = -EINVAL;
1047 return err;
1048 }
1049
1050 /* PM Support */
1051 #ifdef CONFIG_PM
1052
1053 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1054 {
1055 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1056
1057 if (info) {
1058 info->save_sel = readl(info->sel_reg);
1059
1060 /* For the moment, we must ensure nFCE is high during
1061 * the time we are suspended. This really should be
1062 * handled by suspending the MTDs we are using, but
1063 * that is currently not the case. */
1064
1065 writel(info->save_sel | info->sel_bit, info->sel_reg);
1066
1067 if (!allow_clk_stop(info))
1068 clk_disable(info->clk);
1069 }
1070
1071 return 0;
1072 }
1073
1074 static int s3c24xx_nand_resume(struct platform_device *dev)
1075 {
1076 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1077 unsigned long sel;
1078
1079 if (info) {
1080 clk_enable(info->clk);
1081 s3c2410_nand_inithw(info);
1082
1083 /* Restore the state of the nFCE line. */
1084
1085 sel = readl(info->sel_reg);
1086 sel &= ~info->sel_bit;
1087 sel |= info->save_sel & info->sel_bit;
1088 writel(sel, info->sel_reg);
1089
1090 if (allow_clk_stop(info))
1091 clk_disable(info->clk);
1092 }
1093
1094 return 0;
1095 }
1096
1097 #else
1098 #define s3c24xx_nand_suspend NULL
1099 #define s3c24xx_nand_resume NULL
1100 #endif
1101
1102 /* driver device registration */
1103
1104 static struct platform_device_id s3c24xx_driver_ids[] = {
1105 {
1106 .name = "s3c2410-nand",
1107 .driver_data = TYPE_S3C2410,
1108 }, {
1109 .name = "s3c2440-nand",
1110 .driver_data = TYPE_S3C2440,
1111 }, {
1112 .name = "s3c2412-nand",
1113 .driver_data = TYPE_S3C2412,
1114 }, {
1115 .name = "s3c6400-nand",
1116 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1117 },
1118 { }
1119 };
1120
1121 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1122
1123 static struct platform_driver s3c24xx_nand_driver = {
1124 .probe = s3c24xx_nand_probe,
1125 .remove = s3c24xx_nand_remove,
1126 .suspend = s3c24xx_nand_suspend,
1127 .resume = s3c24xx_nand_resume,
1128 .id_table = s3c24xx_driver_ids,
1129 .driver = {
1130 .name = "s3c24xx-nand",
1131 .owner = THIS_MODULE,
1132 },
1133 };
1134
1135 static int __init s3c2410_nand_init(void)
1136 {
1137 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1138
1139 return platform_driver_register(&s3c24xx_nand_driver);
1140 }
1141
1142 static void __exit s3c2410_nand_exit(void)
1143 {
1144 platform_driver_unregister(&s3c24xx_nand_driver);
1145 }
1146
1147 module_init(s3c2410_nand_init);
1148 module_exit(s3c2410_nand_exit);
1149
1150 MODULE_LICENSE("GPL");
1151 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1152 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");