]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/spi-nor/intel-spi.c
alpha: osf_sys.c: use timespec64 where appropriate
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / spi-nor / intel-spi.c
1 /*
2 * Intel PCH/PCU SPI flash driver.
3 *
4 * Copyright (C) 2016, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/sizes.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <linux/platform_data/intel-spi.h>
22
23 #include "intel-spi.h"
24
25 /* Offsets are from @ispi->base */
26 #define BFPREG 0x00
27
28 #define HSFSTS_CTL 0x04
29 #define HSFSTS_CTL_FSMIE BIT(31)
30 #define HSFSTS_CTL_FDBC_SHIFT 24
31 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
32
33 #define HSFSTS_CTL_FCYCLE_SHIFT 17
34 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
35 /* HW sequencer opcodes */
36 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
40 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
41 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
42 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
43
44 #define HSFSTS_CTL_FGO BIT(16)
45 #define HSFSTS_CTL_FLOCKDN BIT(15)
46 #define HSFSTS_CTL_FDV BIT(14)
47 #define HSFSTS_CTL_SCIP BIT(5)
48 #define HSFSTS_CTL_AEL BIT(2)
49 #define HSFSTS_CTL_FCERR BIT(1)
50 #define HSFSTS_CTL_FDONE BIT(0)
51
52 #define FADDR 0x08
53 #define DLOCK 0x0c
54 #define FDATA(n) (0x10 + ((n) * 4))
55
56 #define FRACC 0x50
57
58 #define FREG(n) (0x54 + ((n) * 4))
59 #define FREG_BASE_MASK 0x3fff
60 #define FREG_LIMIT_SHIFT 16
61 #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
62
63 /* Offset is from @ispi->pregs */
64 #define PR(n) ((n) * 4)
65 #define PR_WPE BIT(31)
66 #define PR_LIMIT_SHIFT 16
67 #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
68 #define PR_RPE BIT(15)
69 #define PR_BASE_MASK 0x3fff
70
71 /* Offsets are from @ispi->sregs */
72 #define SSFSTS_CTL 0x00
73 #define SSFSTS_CTL_FSMIE BIT(23)
74 #define SSFSTS_CTL_DS BIT(22)
75 #define SSFSTS_CTL_DBC_SHIFT 16
76 #define SSFSTS_CTL_SPOP BIT(11)
77 #define SSFSTS_CTL_ACS BIT(10)
78 #define SSFSTS_CTL_SCGO BIT(9)
79 #define SSFSTS_CTL_COP_SHIFT 12
80 #define SSFSTS_CTL_FRS BIT(7)
81 #define SSFSTS_CTL_DOFRS BIT(6)
82 #define SSFSTS_CTL_AEL BIT(4)
83 #define SSFSTS_CTL_FCERR BIT(3)
84 #define SSFSTS_CTL_FDONE BIT(2)
85 #define SSFSTS_CTL_SCIP BIT(0)
86
87 #define PREOP_OPTYPE 0x04
88 #define OPMENU0 0x08
89 #define OPMENU1 0x0c
90
91 #define OPTYPE_READ_NO_ADDR 0
92 #define OPTYPE_WRITE_NO_ADDR 1
93 #define OPTYPE_READ_WITH_ADDR 2
94 #define OPTYPE_WRITE_WITH_ADDR 3
95
96 /* CPU specifics */
97 #define BYT_PR 0x74
98 #define BYT_SSFSTS_CTL 0x90
99 #define BYT_BCR 0xfc
100 #define BYT_BCR_WPD BIT(0)
101 #define BYT_FREG_NUM 5
102 #define BYT_PR_NUM 5
103
104 #define LPT_PR 0x74
105 #define LPT_SSFSTS_CTL 0x90
106 #define LPT_FREG_NUM 5
107 #define LPT_PR_NUM 5
108
109 #define BXT_PR 0x84
110 #define BXT_SSFSTS_CTL 0xa0
111 #define BXT_FREG_NUM 12
112 #define BXT_PR_NUM 6
113
114 #define LVSCC 0xc4
115 #define UVSCC 0xc8
116 #define ERASE_OPCODE_SHIFT 8
117 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
118 #define ERASE_64K_OPCODE_SHIFT 16
119 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
120
121 #define INTEL_SPI_TIMEOUT 5000 /* ms */
122 #define INTEL_SPI_FIFO_SZ 64
123
124 /**
125 * struct intel_spi - Driver private data
126 * @dev: Device pointer
127 * @info: Pointer to board specific info
128 * @nor: SPI NOR layer structure
129 * @base: Beginning of MMIO space
130 * @pregs: Start of protection registers
131 * @sregs: Start of software sequencer registers
132 * @nregions: Maximum number of regions
133 * @pr_num: Maximum number of protected range registers
134 * @writeable: Is the chip writeable
135 * @locked: Is SPI setting locked
136 * @swseq_reg: Use SW sequencer in register reads/writes
137 * @swseq_erase: Use SW sequencer in erase operation
138 * @erase_64k: 64k erase supported
139 * @opcodes: Opcodes which are supported. This are programmed by BIOS
140 * before it locks down the controller.
141 * @preopcodes: Preopcodes which are supported.
142 */
143 struct intel_spi {
144 struct device *dev;
145 const struct intel_spi_boardinfo *info;
146 struct spi_nor nor;
147 void __iomem *base;
148 void __iomem *pregs;
149 void __iomem *sregs;
150 size_t nregions;
151 size_t pr_num;
152 bool writeable;
153 bool locked;
154 bool swseq_reg;
155 bool swseq_erase;
156 bool erase_64k;
157 u8 opcodes[8];
158 u8 preopcodes[2];
159 };
160
161 static bool writeable;
162 module_param(writeable, bool, 0);
163 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
164
165 static void intel_spi_dump_regs(struct intel_spi *ispi)
166 {
167 u32 value;
168 int i;
169
170 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
171
172 value = readl(ispi->base + HSFSTS_CTL);
173 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
174 if (value & HSFSTS_CTL_FLOCKDN)
175 dev_dbg(ispi->dev, "-> Locked\n");
176
177 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
178 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
179
180 for (i = 0; i < 16; i++)
181 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
182 i, readl(ispi->base + FDATA(i)));
183
184 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
185
186 for (i = 0; i < ispi->nregions; i++)
187 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
188 readl(ispi->base + FREG(i)));
189 for (i = 0; i < ispi->pr_num; i++)
190 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
191 readl(ispi->pregs + PR(i)));
192
193 value = readl(ispi->sregs + SSFSTS_CTL);
194 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
195 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
196 readl(ispi->sregs + PREOP_OPTYPE));
197 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
198 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
199
200 if (ispi->info->type == INTEL_SPI_BYT)
201 dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
202
203 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
204 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
205
206 dev_dbg(ispi->dev, "Protected regions:\n");
207 for (i = 0; i < ispi->pr_num; i++) {
208 u32 base, limit;
209
210 value = readl(ispi->pregs + PR(i));
211 if (!(value & (PR_WPE | PR_RPE)))
212 continue;
213
214 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
215 base = value & PR_BASE_MASK;
216
217 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
218 i, base << 12, (limit << 12) | 0xfff,
219 value & PR_WPE ? 'W' : '.',
220 value & PR_RPE ? 'R' : '.');
221 }
222
223 dev_dbg(ispi->dev, "Flash regions:\n");
224 for (i = 0; i < ispi->nregions; i++) {
225 u32 region, base, limit;
226
227 region = readl(ispi->base + FREG(i));
228 base = region & FREG_BASE_MASK;
229 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
230
231 if (base >= limit || (i > 0 && limit == 0))
232 dev_dbg(ispi->dev, " %02d disabled\n", i);
233 else
234 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
235 i, base << 12, (limit << 12) | 0xfff);
236 }
237
238 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
239 ispi->swseq_reg ? 'S' : 'H');
240 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
241 ispi->swseq_erase ? 'S' : 'H');
242 }
243
244 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
245 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
246 {
247 size_t bytes;
248 int i = 0;
249
250 if (size > INTEL_SPI_FIFO_SZ)
251 return -EINVAL;
252
253 while (size > 0) {
254 bytes = min_t(size_t, size, 4);
255 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
256 size -= bytes;
257 buf += bytes;
258 i++;
259 }
260
261 return 0;
262 }
263
264 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
265 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
266 size_t size)
267 {
268 size_t bytes;
269 int i = 0;
270
271 if (size > INTEL_SPI_FIFO_SZ)
272 return -EINVAL;
273
274 while (size > 0) {
275 bytes = min_t(size_t, size, 4);
276 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
277 size -= bytes;
278 buf += bytes;
279 i++;
280 }
281
282 return 0;
283 }
284
285 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
286 {
287 u32 val;
288
289 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
290 !(val & HSFSTS_CTL_SCIP), 0,
291 INTEL_SPI_TIMEOUT * 1000);
292 }
293
294 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
295 {
296 u32 val;
297
298 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
299 !(val & SSFSTS_CTL_SCIP), 0,
300 INTEL_SPI_TIMEOUT * 1000);
301 }
302
303 static int intel_spi_init(struct intel_spi *ispi)
304 {
305 u32 opmenu0, opmenu1, lvscc, uvscc, val;
306 int i;
307
308 switch (ispi->info->type) {
309 case INTEL_SPI_BYT:
310 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
311 ispi->pregs = ispi->base + BYT_PR;
312 ispi->nregions = BYT_FREG_NUM;
313 ispi->pr_num = BYT_PR_NUM;
314 ispi->swseq_reg = true;
315
316 if (writeable) {
317 /* Disable write protection */
318 val = readl(ispi->base + BYT_BCR);
319 if (!(val & BYT_BCR_WPD)) {
320 val |= BYT_BCR_WPD;
321 writel(val, ispi->base + BYT_BCR);
322 val = readl(ispi->base + BYT_BCR);
323 }
324
325 ispi->writeable = !!(val & BYT_BCR_WPD);
326 }
327
328 break;
329
330 case INTEL_SPI_LPT:
331 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
332 ispi->pregs = ispi->base + LPT_PR;
333 ispi->nregions = LPT_FREG_NUM;
334 ispi->pr_num = LPT_PR_NUM;
335 ispi->swseq_reg = true;
336 break;
337
338 case INTEL_SPI_BXT:
339 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
340 ispi->pregs = ispi->base + BXT_PR;
341 ispi->nregions = BXT_FREG_NUM;
342 ispi->pr_num = BXT_PR_NUM;
343 ispi->erase_64k = true;
344 break;
345
346 default:
347 return -EINVAL;
348 }
349
350 /* Disable #SMI generation from HW sequencer */
351 val = readl(ispi->base + HSFSTS_CTL);
352 val &= ~HSFSTS_CTL_FSMIE;
353 writel(val, ispi->base + HSFSTS_CTL);
354
355 /*
356 * Determine whether erase operation should use HW or SW sequencer.
357 *
358 * The HW sequencer has a predefined list of opcodes, with only the
359 * erase opcode being programmable in LVSCC and UVSCC registers.
360 * If these registers don't contain a valid erase opcode, erase
361 * cannot be done using HW sequencer.
362 */
363 lvscc = readl(ispi->base + LVSCC);
364 uvscc = readl(ispi->base + UVSCC);
365 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
366 ispi->swseq_erase = true;
367 /* SPI controller on Intel BXT supports 64K erase opcode */
368 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
369 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
370 !(uvscc & ERASE_64K_OPCODE_MASK))
371 ispi->erase_64k = false;
372
373 /*
374 * Some controllers can only do basic operations using hardware
375 * sequencer. All other operations are supposed to be carried out
376 * using software sequencer.
377 */
378 if (ispi->swseq_reg) {
379 /* Disable #SMI generation from SW sequencer */
380 val = readl(ispi->sregs + SSFSTS_CTL);
381 val &= ~SSFSTS_CTL_FSMIE;
382 writel(val, ispi->sregs + SSFSTS_CTL);
383 }
384
385 /* Check controller's lock status */
386 val = readl(ispi->base + HSFSTS_CTL);
387 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
388
389 if (ispi->locked) {
390 /*
391 * BIOS programs allowed opcodes and then locks down the
392 * register. So read back what opcodes it decided to support.
393 * That's the set we are going to support as well.
394 */
395 opmenu0 = readl(ispi->sregs + OPMENU0);
396 opmenu1 = readl(ispi->sregs + OPMENU1);
397
398 if (opmenu0 && opmenu1) {
399 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
400 ispi->opcodes[i] = opmenu0 >> i * 8;
401 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
402 }
403
404 val = readl(ispi->sregs + PREOP_OPTYPE);
405 ispi->preopcodes[0] = val;
406 ispi->preopcodes[1] = val >> 8;
407 }
408 }
409
410 intel_spi_dump_regs(ispi);
411
412 return 0;
413 }
414
415 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
416 {
417 int i;
418 int preop;
419
420 if (ispi->locked) {
421 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
422 if (ispi->opcodes[i] == opcode)
423 return i;
424
425 return -EINVAL;
426 }
427
428 /* The lock is off, so just use index 0 */
429 writel(opcode, ispi->sregs + OPMENU0);
430 preop = readw(ispi->sregs + PREOP_OPTYPE);
431 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
432
433 return 0;
434 }
435
436 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
437 {
438 u32 val, status;
439 int ret;
440
441 val = readl(ispi->base + HSFSTS_CTL);
442 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
443
444 switch (opcode) {
445 case SPINOR_OP_RDID:
446 val |= HSFSTS_CTL_FCYCLE_RDID;
447 break;
448 case SPINOR_OP_WRSR:
449 val |= HSFSTS_CTL_FCYCLE_WRSR;
450 break;
451 case SPINOR_OP_RDSR:
452 val |= HSFSTS_CTL_FCYCLE_RDSR;
453 break;
454 default:
455 return -EINVAL;
456 }
457
458 if (len > INTEL_SPI_FIFO_SZ)
459 return -EINVAL;
460
461 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
462 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
463 val |= HSFSTS_CTL_FGO;
464 writel(val, ispi->base + HSFSTS_CTL);
465
466 ret = intel_spi_wait_hw_busy(ispi);
467 if (ret)
468 return ret;
469
470 status = readl(ispi->base + HSFSTS_CTL);
471 if (status & HSFSTS_CTL_FCERR)
472 return -EIO;
473 else if (status & HSFSTS_CTL_AEL)
474 return -EACCES;
475
476 return 0;
477 }
478
479 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
480 int optype)
481 {
482 u32 val = 0, status;
483 u16 preop;
484 int ret;
485
486 ret = intel_spi_opcode_index(ispi, opcode, optype);
487 if (ret < 0)
488 return ret;
489
490 if (len > INTEL_SPI_FIFO_SZ)
491 return -EINVAL;
492
493 /* Only mark 'Data Cycle' bit when there is data to be transferred */
494 if (len > 0)
495 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
496 val |= ret << SSFSTS_CTL_COP_SHIFT;
497 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
498 val |= SSFSTS_CTL_SCGO;
499 preop = readw(ispi->sregs + PREOP_OPTYPE);
500 if (preop) {
501 val |= SSFSTS_CTL_ACS;
502 if (preop >> 8)
503 val |= SSFSTS_CTL_SPOP;
504 }
505 writel(val, ispi->sregs + SSFSTS_CTL);
506
507 ret = intel_spi_wait_sw_busy(ispi);
508 if (ret)
509 return ret;
510
511 status = readl(ispi->sregs + SSFSTS_CTL);
512 if (status & SSFSTS_CTL_FCERR)
513 return -EIO;
514 else if (status & SSFSTS_CTL_AEL)
515 return -EACCES;
516
517 return 0;
518 }
519
520 static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
521 {
522 struct intel_spi *ispi = nor->priv;
523 int ret;
524
525 /* Address of the first chip */
526 writel(0, ispi->base + FADDR);
527
528 if (ispi->swseq_reg)
529 ret = intel_spi_sw_cycle(ispi, opcode, len,
530 OPTYPE_READ_NO_ADDR);
531 else
532 ret = intel_spi_hw_cycle(ispi, opcode, len);
533
534 if (ret)
535 return ret;
536
537 return intel_spi_read_block(ispi, buf, len);
538 }
539
540 static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
541 {
542 struct intel_spi *ispi = nor->priv;
543 int ret;
544
545 /*
546 * This is handled with atomic operation and preop code in Intel
547 * controller so skip it here now. If the controller is not locked,
548 * program the opcode to the PREOP register for later use.
549 */
550 if (opcode == SPINOR_OP_WREN) {
551 if (!ispi->locked)
552 writel(opcode, ispi->sregs + PREOP_OPTYPE);
553
554 return 0;
555 }
556
557 writel(0, ispi->base + FADDR);
558
559 /* Write the value beforehand */
560 ret = intel_spi_write_block(ispi, buf, len);
561 if (ret)
562 return ret;
563
564 if (ispi->swseq_reg)
565 return intel_spi_sw_cycle(ispi, opcode, len,
566 OPTYPE_WRITE_NO_ADDR);
567 return intel_spi_hw_cycle(ispi, opcode, len);
568 }
569
570 static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
571 u_char *read_buf)
572 {
573 struct intel_spi *ispi = nor->priv;
574 size_t block_size, retlen = 0;
575 u32 val, status;
576 ssize_t ret;
577
578 switch (nor->read_opcode) {
579 case SPINOR_OP_READ:
580 case SPINOR_OP_READ_FAST:
581 break;
582 default:
583 return -EINVAL;
584 }
585
586 while (len > 0) {
587 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
588
589 writel(from, ispi->base + FADDR);
590
591 val = readl(ispi->base + HSFSTS_CTL);
592 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
593 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
594 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
595 val |= HSFSTS_CTL_FCYCLE_READ;
596 val |= HSFSTS_CTL_FGO;
597 writel(val, ispi->base + HSFSTS_CTL);
598
599 ret = intel_spi_wait_hw_busy(ispi);
600 if (ret)
601 return ret;
602
603 status = readl(ispi->base + HSFSTS_CTL);
604 if (status & HSFSTS_CTL_FCERR)
605 ret = -EIO;
606 else if (status & HSFSTS_CTL_AEL)
607 ret = -EACCES;
608
609 if (ret < 0) {
610 dev_err(ispi->dev, "read error: %llx: %#x\n", from,
611 status);
612 return ret;
613 }
614
615 ret = intel_spi_read_block(ispi, read_buf, block_size);
616 if (ret)
617 return ret;
618
619 len -= block_size;
620 from += block_size;
621 retlen += block_size;
622 read_buf += block_size;
623 }
624
625 return retlen;
626 }
627
628 static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
629 const u_char *write_buf)
630 {
631 struct intel_spi *ispi = nor->priv;
632 size_t block_size, retlen = 0;
633 u32 val, status;
634 ssize_t ret;
635
636 while (len > 0) {
637 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
638
639 writel(to, ispi->base + FADDR);
640
641 val = readl(ispi->base + HSFSTS_CTL);
642 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
643 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
644 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
645 val |= HSFSTS_CTL_FCYCLE_WRITE;
646
647 ret = intel_spi_write_block(ispi, write_buf, block_size);
648 if (ret) {
649 dev_err(ispi->dev, "failed to write block\n");
650 return ret;
651 }
652
653 /* Start the write now */
654 val |= HSFSTS_CTL_FGO;
655 writel(val, ispi->base + HSFSTS_CTL);
656
657 ret = intel_spi_wait_hw_busy(ispi);
658 if (ret) {
659 dev_err(ispi->dev, "timeout\n");
660 return ret;
661 }
662
663 status = readl(ispi->base + HSFSTS_CTL);
664 if (status & HSFSTS_CTL_FCERR)
665 ret = -EIO;
666 else if (status & HSFSTS_CTL_AEL)
667 ret = -EACCES;
668
669 if (ret < 0) {
670 dev_err(ispi->dev, "write error: %llx: %#x\n", to,
671 status);
672 return ret;
673 }
674
675 len -= block_size;
676 to += block_size;
677 retlen += block_size;
678 write_buf += block_size;
679 }
680
681 return retlen;
682 }
683
684 static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
685 {
686 size_t erase_size, len = nor->mtd.erasesize;
687 struct intel_spi *ispi = nor->priv;
688 u32 val, status, cmd;
689 int ret;
690
691 /* If the hardware can do 64k erase use that when possible */
692 if (len >= SZ_64K && ispi->erase_64k) {
693 cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
694 erase_size = SZ_64K;
695 } else {
696 cmd = HSFSTS_CTL_FCYCLE_ERASE;
697 erase_size = SZ_4K;
698 }
699
700 if (ispi->swseq_erase) {
701 while (len > 0) {
702 writel(offs, ispi->base + FADDR);
703
704 ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
705 0, OPTYPE_WRITE_WITH_ADDR);
706 if (ret)
707 return ret;
708
709 offs += erase_size;
710 len -= erase_size;
711 }
712
713 return 0;
714 }
715
716 while (len > 0) {
717 writel(offs, ispi->base + FADDR);
718
719 val = readl(ispi->base + HSFSTS_CTL);
720 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
721 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
722 val |= cmd;
723 val |= HSFSTS_CTL_FGO;
724 writel(val, ispi->base + HSFSTS_CTL);
725
726 ret = intel_spi_wait_hw_busy(ispi);
727 if (ret)
728 return ret;
729
730 status = readl(ispi->base + HSFSTS_CTL);
731 if (status & HSFSTS_CTL_FCERR)
732 return -EIO;
733 else if (status & HSFSTS_CTL_AEL)
734 return -EACCES;
735
736 offs += erase_size;
737 len -= erase_size;
738 }
739
740 return 0;
741 }
742
743 static bool intel_spi_is_protected(const struct intel_spi *ispi,
744 unsigned int base, unsigned int limit)
745 {
746 int i;
747
748 for (i = 0; i < ispi->pr_num; i++) {
749 u32 pr_base, pr_limit, pr_value;
750
751 pr_value = readl(ispi->pregs + PR(i));
752 if (!(pr_value & (PR_WPE | PR_RPE)))
753 continue;
754
755 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
756 pr_base = pr_value & PR_BASE_MASK;
757
758 if (pr_base >= base && pr_limit <= limit)
759 return true;
760 }
761
762 return false;
763 }
764
765 /*
766 * There will be a single partition holding all enabled flash regions. We
767 * call this "BIOS".
768 */
769 static void intel_spi_fill_partition(struct intel_spi *ispi,
770 struct mtd_partition *part)
771 {
772 u64 end;
773 int i;
774
775 memset(part, 0, sizeof(*part));
776
777 /* Start from the mandatory descriptor region */
778 part->size = 4096;
779 part->name = "BIOS";
780
781 /*
782 * Now try to find where this partition ends based on the flash
783 * region registers.
784 */
785 for (i = 1; i < ispi->nregions; i++) {
786 u32 region, base, limit;
787
788 region = readl(ispi->base + FREG(i));
789 base = region & FREG_BASE_MASK;
790 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
791
792 if (base >= limit || limit == 0)
793 continue;
794
795 /*
796 * If any of the regions have protection bits set, make the
797 * whole partition read-only to be on the safe side.
798 */
799 if (intel_spi_is_protected(ispi, base, limit))
800 ispi->writeable = false;
801
802 end = (limit << 12) + 4096;
803 if (end > part->size)
804 part->size = end;
805 }
806 }
807
808 struct intel_spi *intel_spi_probe(struct device *dev,
809 struct resource *mem, const struct intel_spi_boardinfo *info)
810 {
811 const struct spi_nor_hwcaps hwcaps = {
812 .mask = SNOR_HWCAPS_READ |
813 SNOR_HWCAPS_READ_FAST |
814 SNOR_HWCAPS_PP,
815 };
816 struct mtd_partition part;
817 struct intel_spi *ispi;
818 int ret;
819
820 if (!info || !mem)
821 return ERR_PTR(-EINVAL);
822
823 ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
824 if (!ispi)
825 return ERR_PTR(-ENOMEM);
826
827 ispi->base = devm_ioremap_resource(dev, mem);
828 if (IS_ERR(ispi->base))
829 return ERR_CAST(ispi->base);
830
831 ispi->dev = dev;
832 ispi->info = info;
833 ispi->writeable = info->writeable;
834
835 ret = intel_spi_init(ispi);
836 if (ret)
837 return ERR_PTR(ret);
838
839 ispi->nor.dev = ispi->dev;
840 ispi->nor.priv = ispi;
841 ispi->nor.read_reg = intel_spi_read_reg;
842 ispi->nor.write_reg = intel_spi_write_reg;
843 ispi->nor.read = intel_spi_read;
844 ispi->nor.write = intel_spi_write;
845 ispi->nor.erase = intel_spi_erase;
846
847 ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
848 if (ret) {
849 dev_info(dev, "failed to locate the chip\n");
850 return ERR_PTR(ret);
851 }
852
853 intel_spi_fill_partition(ispi, &part);
854
855 /* Prevent writes if not explicitly enabled */
856 if (!ispi->writeable || !writeable)
857 ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
858
859 ret = mtd_device_parse_register(&ispi->nor.mtd, NULL, NULL, &part, 1);
860 if (ret)
861 return ERR_PTR(ret);
862
863 return ispi;
864 }
865 EXPORT_SYMBOL_GPL(intel_spi_probe);
866
867 int intel_spi_remove(struct intel_spi *ispi)
868 {
869 return mtd_device_unregister(&ispi->nor.mtd);
870 }
871 EXPORT_SYMBOL_GPL(intel_spi_remove);
872
873 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
874 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
875 MODULE_LICENSE("GPL v2");