]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/spi-nor/spi-nor.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
1 /*
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 #include <linux/sizes.h>
20
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
25
26 /* Define max times to check status register before we give up. */
27
28 /*
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
31 */
32 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
33
34 /*
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
37 */
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
39
40 #define SPI_NOR_MAX_ID_LEN 6
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 struct flash_info {
44 char *name;
45
46 /*
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
50 */
51 u8 id[SPI_NOR_MAX_ID_LEN];
52 u8 id_len;
53
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
56 */
57 unsigned sector_size;
58 u16 n_sectors;
59
60 u16 page_size;
61 u16 addr_width;
62
63 u16 flags;
64 #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
65 #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
66 #define SST_WRITE BIT(2) /* use SST byte programming */
67 #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
68 #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
69 #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
70 #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
71 #define USE_FSR BIT(7) /* use flag status register */
72 #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
73 #define SPI_NOR_HAS_TB BIT(9) /*
74 * Flash SR has Top/Bottom (TB) protect
75 * bit. Must be used with
76 * SPI_NOR_HAS_LOCK.
77 */
78 #define SPI_S3AN BIT(10) /*
79 * Xilinx Spartan 3AN In-System Flash
80 * (MFR cannot be used for probing
81 * because it has the same value as
82 * ATMEL flashes)
83 */
84 #define SPI_NOR_4B_OPCODES BIT(11) /*
85 * Use dedicated 4byte address op codes
86 * to support memory size above 128Mib.
87 */
88 #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
89 };
90
91 #define JEDEC_MFR(info) ((info)->id[0])
92
93 static const struct flash_info *spi_nor_match_id(const char *name);
94
95 /*
96 * Read the status register, returning its value in the location
97 * Return the status register value.
98 * Returns negative if error occurred.
99 */
100 static int read_sr(struct spi_nor *nor)
101 {
102 int ret;
103 u8 val;
104
105 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
106 if (ret < 0) {
107 pr_err("error %d reading SR\n", (int) ret);
108 return ret;
109 }
110
111 return val;
112 }
113
114 /*
115 * Read the flag status register, returning its value in the location
116 * Return the status register value.
117 * Returns negative if error occurred.
118 */
119 static int read_fsr(struct spi_nor *nor)
120 {
121 int ret;
122 u8 val;
123
124 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
125 if (ret < 0) {
126 pr_err("error %d reading FSR\n", ret);
127 return ret;
128 }
129
130 return val;
131 }
132
133 /*
134 * Read configuration register, returning its value in the
135 * location. Return the configuration register value.
136 * Returns negative if error occurred.
137 */
138 static int read_cr(struct spi_nor *nor)
139 {
140 int ret;
141 u8 val;
142
143 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
144 if (ret < 0) {
145 dev_err(nor->dev, "error %d reading CR\n", ret);
146 return ret;
147 }
148
149 return val;
150 }
151
152 /*
153 * Write status register 1 byte
154 * Returns negative if error occurred.
155 */
156 static inline int write_sr(struct spi_nor *nor, u8 val)
157 {
158 nor->cmd_buf[0] = val;
159 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
160 }
161
162 /*
163 * Set write enable latch with Write Enable command.
164 * Returns negative if error occurred.
165 */
166 static inline int write_enable(struct spi_nor *nor)
167 {
168 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
169 }
170
171 /*
172 * Send write disable instruction to the chip.
173 */
174 static inline int write_disable(struct spi_nor *nor)
175 {
176 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
177 }
178
179 static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
180 {
181 return mtd->priv;
182 }
183
184
185 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
186 {
187 size_t i;
188
189 for (i = 0; i < size; i++)
190 if (table[i][0] == opcode)
191 return table[i][1];
192
193 /* No conversion found, keep input op code. */
194 return opcode;
195 }
196
197 static inline u8 spi_nor_convert_3to4_read(u8 opcode)
198 {
199 static const u8 spi_nor_3to4_read[][2] = {
200 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
201 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
202 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
203 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
204 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
205 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
206
207 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
208 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
209 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
210 };
211
212 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
213 ARRAY_SIZE(spi_nor_3to4_read));
214 }
215
216 static inline u8 spi_nor_convert_3to4_program(u8 opcode)
217 {
218 static const u8 spi_nor_3to4_program[][2] = {
219 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
220 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
221 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
222 };
223
224 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
225 ARRAY_SIZE(spi_nor_3to4_program));
226 }
227
228 static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
229 {
230 static const u8 spi_nor_3to4_erase[][2] = {
231 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
232 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
233 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
234 };
235
236 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
237 ARRAY_SIZE(spi_nor_3to4_erase));
238 }
239
240 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
241 const struct flash_info *info)
242 {
243 /* Do some manufacturer fixups first */
244 switch (JEDEC_MFR(info)) {
245 case SNOR_MFR_SPANSION:
246 /* No small sector erase for 4-byte command set */
247 nor->erase_opcode = SPINOR_OP_SE;
248 nor->mtd.erasesize = info->sector_size;
249 break;
250
251 default:
252 break;
253 }
254
255 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
256 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
257 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
258 }
259
260 /* Enable/disable 4-byte addressing mode. */
261 static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
262 int enable)
263 {
264 int status;
265 bool need_wren = false;
266 u8 cmd;
267
268 switch (JEDEC_MFR(info)) {
269 case SNOR_MFR_MICRON:
270 /* Some Micron need WREN command; all will accept it */
271 need_wren = true;
272 case SNOR_MFR_MACRONIX:
273 case SNOR_MFR_WINBOND:
274 if (need_wren)
275 write_enable(nor);
276
277 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
278 status = nor->write_reg(nor, cmd, NULL, 0);
279 if (need_wren)
280 write_disable(nor);
281
282 return status;
283 default:
284 /* Spansion style */
285 nor->cmd_buf[0] = enable << 7;
286 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
287 }
288 }
289
290 static int s3an_sr_ready(struct spi_nor *nor)
291 {
292 int ret;
293 u8 val;
294
295 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
296 if (ret < 0) {
297 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
298 return ret;
299 }
300
301 return !!(val & XSR_RDY);
302 }
303
304 static inline int spi_nor_sr_ready(struct spi_nor *nor)
305 {
306 int sr = read_sr(nor);
307 if (sr < 0)
308 return sr;
309 else
310 return !(sr & SR_WIP);
311 }
312
313 static inline int spi_nor_fsr_ready(struct spi_nor *nor)
314 {
315 int fsr = read_fsr(nor);
316 if (fsr < 0)
317 return fsr;
318 else
319 return fsr & FSR_READY;
320 }
321
322 static int spi_nor_ready(struct spi_nor *nor)
323 {
324 int sr, fsr;
325
326 if (nor->flags & SNOR_F_READY_XSR_RDY)
327 sr = s3an_sr_ready(nor);
328 else
329 sr = spi_nor_sr_ready(nor);
330 if (sr < 0)
331 return sr;
332 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
333 if (fsr < 0)
334 return fsr;
335 return sr && fsr;
336 }
337
338 /*
339 * Service routine to read status register until ready, or timeout occurs.
340 * Returns non-zero if error.
341 */
342 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
343 unsigned long timeout_jiffies)
344 {
345 unsigned long deadline;
346 int timeout = 0, ret;
347
348 deadline = jiffies + timeout_jiffies;
349
350 while (!timeout) {
351 if (time_after_eq(jiffies, deadline))
352 timeout = 1;
353
354 ret = spi_nor_ready(nor);
355 if (ret < 0)
356 return ret;
357 if (ret)
358 return 0;
359
360 cond_resched();
361 }
362
363 dev_err(nor->dev, "flash operation timed out\n");
364
365 return -ETIMEDOUT;
366 }
367
368 static int spi_nor_wait_till_ready(struct spi_nor *nor)
369 {
370 return spi_nor_wait_till_ready_with_timeout(nor,
371 DEFAULT_READY_WAIT_JIFFIES);
372 }
373
374 /*
375 * Erase the whole flash memory
376 *
377 * Returns 0 if successful, non-zero otherwise.
378 */
379 static int erase_chip(struct spi_nor *nor)
380 {
381 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
382
383 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
384 }
385
386 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
387 {
388 int ret = 0;
389
390 mutex_lock(&nor->lock);
391
392 if (nor->prepare) {
393 ret = nor->prepare(nor, ops);
394 if (ret) {
395 dev_err(nor->dev, "failed in the preparation.\n");
396 mutex_unlock(&nor->lock);
397 return ret;
398 }
399 }
400 return ret;
401 }
402
403 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
404 {
405 if (nor->unprepare)
406 nor->unprepare(nor, ops);
407 mutex_unlock(&nor->lock);
408 }
409
410 /*
411 * This code converts an address to the Default Address Mode, that has non
412 * power of two page sizes. We must support this mode because it is the default
413 * mode supported by Xilinx tools, it can access the whole flash area and
414 * changing over to the Power-of-two mode is irreversible and corrupts the
415 * original data.
416 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
417 * 4 MiB.
418 */
419 static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
420 {
421 unsigned int offset;
422 unsigned int page;
423
424 offset = addr % nor->page_size;
425 page = addr / nor->page_size;
426 page <<= (nor->page_size > 512) ? 10 : 9;
427
428 return page | offset;
429 }
430
431 /*
432 * Initiate the erasure of a single sector
433 */
434 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
435 {
436 u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
437 int i;
438
439 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
440 addr = spi_nor_s3an_addr_convert(nor, addr);
441
442 if (nor->erase)
443 return nor->erase(nor, addr);
444
445 /*
446 * Default implementation, if driver doesn't have a specialized HW
447 * control
448 */
449 for (i = nor->addr_width - 1; i >= 0; i--) {
450 buf[i] = addr & 0xff;
451 addr >>= 8;
452 }
453
454 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
455 }
456
457 /*
458 * Erase an address range on the nor chip. The address range may extend
459 * one or more erase sectors. Return an error is there is a problem erasing.
460 */
461 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
462 {
463 struct spi_nor *nor = mtd_to_spi_nor(mtd);
464 u32 addr, len;
465 uint32_t rem;
466 int ret;
467
468 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
469 (long long)instr->len);
470
471 div_u64_rem(instr->len, mtd->erasesize, &rem);
472 if (rem)
473 return -EINVAL;
474
475 addr = instr->addr;
476 len = instr->len;
477
478 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
479 if (ret)
480 return ret;
481
482 /* whole-chip erase? */
483 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
484 unsigned long timeout;
485
486 write_enable(nor);
487
488 if (erase_chip(nor)) {
489 ret = -EIO;
490 goto erase_err;
491 }
492
493 /*
494 * Scale the timeout linearly with the size of the flash, with
495 * a minimum calibrated to an old 2MB flash. We could try to
496 * pull these from CFI/SFDP, but these values should be good
497 * enough for now.
498 */
499 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
500 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
501 (unsigned long)(mtd->size / SZ_2M));
502 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
503 if (ret)
504 goto erase_err;
505
506 /* REVISIT in some cases we could speed up erasing large regions
507 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
508 * to use "small sector erase", but that's not always optimal.
509 */
510
511 /* "sector"-at-a-time erase */
512 } else {
513 while (len) {
514 write_enable(nor);
515
516 ret = spi_nor_erase_sector(nor, addr);
517 if (ret)
518 goto erase_err;
519
520 addr += mtd->erasesize;
521 len -= mtd->erasesize;
522
523 ret = spi_nor_wait_till_ready(nor);
524 if (ret)
525 goto erase_err;
526 }
527 }
528
529 write_disable(nor);
530
531 erase_err:
532 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
533
534 instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
535 mtd_erase_callback(instr);
536
537 return ret;
538 }
539
540 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
541 uint64_t *len)
542 {
543 struct mtd_info *mtd = &nor->mtd;
544 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
545 int shift = ffs(mask) - 1;
546 int pow;
547
548 if (!(sr & mask)) {
549 /* No protection */
550 *ofs = 0;
551 *len = 0;
552 } else {
553 pow = ((sr & mask) ^ mask) >> shift;
554 *len = mtd->size >> pow;
555 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
556 *ofs = 0;
557 else
558 *ofs = mtd->size - *len;
559 }
560 }
561
562 /*
563 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
564 * @locked is false); 0 otherwise
565 */
566 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
567 u8 sr, bool locked)
568 {
569 loff_t lock_offs;
570 uint64_t lock_len;
571
572 if (!len)
573 return 1;
574
575 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
576
577 if (locked)
578 /* Requested range is a sub-range of locked range */
579 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
580 else
581 /* Requested range does not overlap with locked range */
582 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
583 }
584
585 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
586 u8 sr)
587 {
588 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
589 }
590
591 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
592 u8 sr)
593 {
594 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
595 }
596
597 /*
598 * Lock a region of the flash. Compatible with ST Micro and similar flash.
599 * Supports the block protection bits BP{0,1,2} in the status register
600 * (SR). Does not support these features found in newer SR bitfields:
601 * - SEC: sector/block protect - only handle SEC=0 (block protect)
602 * - CMP: complement protect - only support CMP=0 (range is not complemented)
603 *
604 * Support for the following is provided conditionally for some flash:
605 * - TB: top/bottom protect
606 *
607 * Sample table portion for 8MB flash (Winbond w25q64fw):
608 *
609 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
610 * --------------------------------------------------------------------------
611 * X | X | 0 | 0 | 0 | NONE | NONE
612 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
613 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
614 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
615 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
616 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
617 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
618 * X | X | 1 | 1 | 1 | 8 MB | ALL
619 * ------|-------|-------|-------|-------|---------------|-------------------
620 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
621 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
622 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
623 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
624 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
625 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
626 *
627 * Returns negative on errors, 0 on success.
628 */
629 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
630 {
631 struct mtd_info *mtd = &nor->mtd;
632 int status_old, status_new;
633 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
634 u8 shift = ffs(mask) - 1, pow, val;
635 loff_t lock_len;
636 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
637 bool use_top;
638 int ret;
639
640 status_old = read_sr(nor);
641 if (status_old < 0)
642 return status_old;
643
644 /* If nothing in our range is unlocked, we don't need to do anything */
645 if (stm_is_locked_sr(nor, ofs, len, status_old))
646 return 0;
647
648 /* If anything below us is unlocked, we can't use 'bottom' protection */
649 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
650 can_be_bottom = false;
651
652 /* If anything above us is unlocked, we can't use 'top' protection */
653 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
654 status_old))
655 can_be_top = false;
656
657 if (!can_be_bottom && !can_be_top)
658 return -EINVAL;
659
660 /* Prefer top, if both are valid */
661 use_top = can_be_top;
662
663 /* lock_len: length of region that should end up locked */
664 if (use_top)
665 lock_len = mtd->size - ofs;
666 else
667 lock_len = ofs + len;
668
669 /*
670 * Need smallest pow such that:
671 *
672 * 1 / (2^pow) <= (len / size)
673 *
674 * so (assuming power-of-2 size) we do:
675 *
676 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
677 */
678 pow = ilog2(mtd->size) - ilog2(lock_len);
679 val = mask - (pow << shift);
680 if (val & ~mask)
681 return -EINVAL;
682 /* Don't "lock" with no region! */
683 if (!(val & mask))
684 return -EINVAL;
685
686 status_new = (status_old & ~mask & ~SR_TB) | val;
687
688 /* Disallow further writes if WP pin is asserted */
689 status_new |= SR_SRWD;
690
691 if (!use_top)
692 status_new |= SR_TB;
693
694 /* Don't bother if they're the same */
695 if (status_new == status_old)
696 return 0;
697
698 /* Only modify protection if it will not unlock other areas */
699 if ((status_new & mask) < (status_old & mask))
700 return -EINVAL;
701
702 write_enable(nor);
703 ret = write_sr(nor, status_new);
704 if (ret)
705 return ret;
706 return spi_nor_wait_till_ready(nor);
707 }
708
709 /*
710 * Unlock a region of the flash. See stm_lock() for more info
711 *
712 * Returns negative on errors, 0 on success.
713 */
714 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
715 {
716 struct mtd_info *mtd = &nor->mtd;
717 int status_old, status_new;
718 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
719 u8 shift = ffs(mask) - 1, pow, val;
720 loff_t lock_len;
721 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
722 bool use_top;
723 int ret;
724
725 status_old = read_sr(nor);
726 if (status_old < 0)
727 return status_old;
728
729 /* If nothing in our range is locked, we don't need to do anything */
730 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
731 return 0;
732
733 /* If anything below us is locked, we can't use 'top' protection */
734 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
735 can_be_top = false;
736
737 /* If anything above us is locked, we can't use 'bottom' protection */
738 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
739 status_old))
740 can_be_bottom = false;
741
742 if (!can_be_bottom && !can_be_top)
743 return -EINVAL;
744
745 /* Prefer top, if both are valid */
746 use_top = can_be_top;
747
748 /* lock_len: length of region that should remain locked */
749 if (use_top)
750 lock_len = mtd->size - (ofs + len);
751 else
752 lock_len = ofs;
753
754 /*
755 * Need largest pow such that:
756 *
757 * 1 / (2^pow) >= (len / size)
758 *
759 * so (assuming power-of-2 size) we do:
760 *
761 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
762 */
763 pow = ilog2(mtd->size) - order_base_2(lock_len);
764 if (lock_len == 0) {
765 val = 0; /* fully unlocked */
766 } else {
767 val = mask - (pow << shift);
768 /* Some power-of-two sizes are not supported */
769 if (val & ~mask)
770 return -EINVAL;
771 }
772
773 status_new = (status_old & ~mask & ~SR_TB) | val;
774
775 /* Don't protect status register if we're fully unlocked */
776 if (lock_len == 0)
777 status_new &= ~SR_SRWD;
778
779 if (!use_top)
780 status_new |= SR_TB;
781
782 /* Don't bother if they're the same */
783 if (status_new == status_old)
784 return 0;
785
786 /* Only modify protection if it will not lock other areas */
787 if ((status_new & mask) > (status_old & mask))
788 return -EINVAL;
789
790 write_enable(nor);
791 ret = write_sr(nor, status_new);
792 if (ret)
793 return ret;
794 return spi_nor_wait_till_ready(nor);
795 }
796
797 /*
798 * Check if a region of the flash is (completely) locked. See stm_lock() for
799 * more info.
800 *
801 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
802 * negative on errors.
803 */
804 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
805 {
806 int status;
807
808 status = read_sr(nor);
809 if (status < 0)
810 return status;
811
812 return stm_is_locked_sr(nor, ofs, len, status);
813 }
814
815 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
816 {
817 struct spi_nor *nor = mtd_to_spi_nor(mtd);
818 int ret;
819
820 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
821 if (ret)
822 return ret;
823
824 ret = nor->flash_lock(nor, ofs, len);
825
826 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
827 return ret;
828 }
829
830 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
831 {
832 struct spi_nor *nor = mtd_to_spi_nor(mtd);
833 int ret;
834
835 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
836 if (ret)
837 return ret;
838
839 ret = nor->flash_unlock(nor, ofs, len);
840
841 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
842 return ret;
843 }
844
845 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
846 {
847 struct spi_nor *nor = mtd_to_spi_nor(mtd);
848 int ret;
849
850 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
851 if (ret)
852 return ret;
853
854 ret = nor->flash_is_locked(nor, ofs, len);
855
856 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
857 return ret;
858 }
859
860 /* Used when the "_ext_id" is two bytes at most */
861 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
862 .id = { \
863 ((_jedec_id) >> 16) & 0xff, \
864 ((_jedec_id) >> 8) & 0xff, \
865 (_jedec_id) & 0xff, \
866 ((_ext_id) >> 8) & 0xff, \
867 (_ext_id) & 0xff, \
868 }, \
869 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
870 .sector_size = (_sector_size), \
871 .n_sectors = (_n_sectors), \
872 .page_size = 256, \
873 .flags = (_flags),
874
875 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
876 .id = { \
877 ((_jedec_id) >> 16) & 0xff, \
878 ((_jedec_id) >> 8) & 0xff, \
879 (_jedec_id) & 0xff, \
880 ((_ext_id) >> 16) & 0xff, \
881 ((_ext_id) >> 8) & 0xff, \
882 (_ext_id) & 0xff, \
883 }, \
884 .id_len = 6, \
885 .sector_size = (_sector_size), \
886 .n_sectors = (_n_sectors), \
887 .page_size = 256, \
888 .flags = (_flags),
889
890 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
891 .sector_size = (_sector_size), \
892 .n_sectors = (_n_sectors), \
893 .page_size = (_page_size), \
894 .addr_width = (_addr_width), \
895 .flags = (_flags),
896
897 #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
898 .id = { \
899 ((_jedec_id) >> 16) & 0xff, \
900 ((_jedec_id) >> 8) & 0xff, \
901 (_jedec_id) & 0xff \
902 }, \
903 .id_len = 3, \
904 .sector_size = (8*_page_size), \
905 .n_sectors = (_n_sectors), \
906 .page_size = _page_size, \
907 .addr_width = 3, \
908 .flags = SPI_NOR_NO_FR | SPI_S3AN,
909
910 /* NOTE: double check command sets and memory organization when you add
911 * more nor chips. This current list focusses on newer chips, which
912 * have been converging on command sets which including JEDEC ID.
913 *
914 * All newly added entries should describe *hardware* and should use SECT_4K
915 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
916 * scenarios excluding small sectors there is config option that can be
917 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
918 * For historical (and compatibility) reasons (before we got above config) some
919 * old entries may be missing 4K flag.
920 */
921 static const struct flash_info spi_nor_ids[] = {
922 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
923 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
924 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
925
926 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
927 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
928 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
929 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
930
931 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
932 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
933 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
934 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
935
936 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
937
938 /* EON -- en25xxx */
939 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
940 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
941 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
942 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
943 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
944 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
945 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
946 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
947
948 /* ESMT */
949 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
950 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
951 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
952
953 /* Everspin */
954 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
955 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
956 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
957
958 /* Fujitsu */
959 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
960
961 /* GigaDevice */
962 {
963 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
964 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
965 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
966 },
967 {
968 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
969 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
970 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
971 },
972 {
973 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
974 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
975 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
976 },
977 {
978 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
979 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
980 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
981 },
982 {
983 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
984 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
985 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
986 },
987
988 /* Intel/Numonyx -- xxxs33b */
989 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
990 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
991 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
992
993 /* ISSI */
994 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
995
996 /* Macronix */
997 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
998 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
999 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
1000 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
1001 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
1002 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
1003 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
1004 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1005 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
1006 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
1007 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
1008 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1009 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1010 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1011 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1012 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1013 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1014 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1015 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1016 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1017 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
1018
1019 /* Micron */
1020 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
1021 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
1022 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
1023 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
1024 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
1025 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
1026 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
1027 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1028 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
1029 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1030 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1031 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1032 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1033
1034 /* PMC */
1035 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
1036 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
1037 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
1038
1039 /* Spansion -- single (large) sector size only, at least
1040 * for the chips listed here (without boot sectors).
1041 */
1042 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1043 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1044 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
1045 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1046 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1047 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1048 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
1049 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
1050 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1051 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1052 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1053 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
1054 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
1055 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
1056 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
1057 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
1058 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1059 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1060 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1061 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1062 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1063 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
1064 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
1065 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
1066 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
1067 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1068
1069 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1070 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
1071 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1072 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
1073 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
1074 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
1075 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
1076 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
1077 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
1078 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
1079 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
1080 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
1081 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1082
1083 /* ST Microelectronics -- newer production may have feature updates */
1084 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
1085 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
1086 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
1087 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
1088 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
1089 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
1090 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
1091 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
1092 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
1093
1094 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
1095 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
1096 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
1097 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
1098 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
1099 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1100 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1101 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1102 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1103
1104 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1105 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1106 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1107
1108 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1109 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1110 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
1111
1112 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
1113 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
1114 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
1115 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
1116 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
1117 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
1118
1119 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1120 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
1121 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
1122 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
1123 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
1124 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
1125 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
1126 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
1127 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
1128 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
1129 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
1130 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
1131 {
1132 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
1133 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1134 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1135 },
1136 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1137 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1138 {
1139 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1140 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1141 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1142 },
1143 {
1144 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
1145 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1146 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1147 },
1148 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
1149 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
1150 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1151 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1152 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
1153 SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
1154
1155 /* Catalyst / On Semiconductor -- non-JEDEC */
1156 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1157 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1158 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1159 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1160 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1161
1162 /* Xilinx S3AN Internal Flash */
1163 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
1164 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
1165 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
1166 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
1167 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1168 { },
1169 };
1170
1171 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1172 {
1173 int tmp;
1174 u8 id[SPI_NOR_MAX_ID_LEN];
1175 const struct flash_info *info;
1176
1177 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1178 if (tmp < 0) {
1179 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1180 return ERR_PTR(tmp);
1181 }
1182
1183 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1184 info = &spi_nor_ids[tmp];
1185 if (info->id_len) {
1186 if (!memcmp(info->id, id, info->id_len))
1187 return &spi_nor_ids[tmp];
1188 }
1189 }
1190 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1191 id[0], id[1], id[2]);
1192 return ERR_PTR(-ENODEV);
1193 }
1194
1195 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1196 size_t *retlen, u_char *buf)
1197 {
1198 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1199 int ret;
1200
1201 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1202
1203 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
1204 if (ret)
1205 return ret;
1206
1207 while (len) {
1208 loff_t addr = from;
1209
1210 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1211 addr = spi_nor_s3an_addr_convert(nor, addr);
1212
1213 ret = nor->read(nor, addr, len, buf);
1214 if (ret == 0) {
1215 /* We shouldn't see 0-length reads */
1216 ret = -EIO;
1217 goto read_err;
1218 }
1219 if (ret < 0)
1220 goto read_err;
1221
1222 WARN_ON(ret > len);
1223 *retlen += ret;
1224 buf += ret;
1225 from += ret;
1226 len -= ret;
1227 }
1228 ret = 0;
1229
1230 read_err:
1231 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
1232 return ret;
1233 }
1234
1235 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1236 size_t *retlen, const u_char *buf)
1237 {
1238 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1239 size_t actual;
1240 int ret;
1241
1242 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1243
1244 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1245 if (ret)
1246 return ret;
1247
1248 write_enable(nor);
1249
1250 nor->sst_write_second = false;
1251
1252 actual = to % 2;
1253 /* Start write from odd address. */
1254 if (actual) {
1255 nor->program_opcode = SPINOR_OP_BP;
1256
1257 /* write one byte. */
1258 ret = nor->write(nor, to, 1, buf);
1259 if (ret < 0)
1260 goto sst_write_err;
1261 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1262 (int)ret);
1263 ret = spi_nor_wait_till_ready(nor);
1264 if (ret)
1265 goto sst_write_err;
1266 }
1267 to += actual;
1268
1269 /* Write out most of the data here. */
1270 for (; actual < len - 1; actual += 2) {
1271 nor->program_opcode = SPINOR_OP_AAI_WP;
1272
1273 /* write two bytes. */
1274 ret = nor->write(nor, to, 2, buf + actual);
1275 if (ret < 0)
1276 goto sst_write_err;
1277 WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
1278 (int)ret);
1279 ret = spi_nor_wait_till_ready(nor);
1280 if (ret)
1281 goto sst_write_err;
1282 to += 2;
1283 nor->sst_write_second = true;
1284 }
1285 nor->sst_write_second = false;
1286
1287 write_disable(nor);
1288 ret = spi_nor_wait_till_ready(nor);
1289 if (ret)
1290 goto sst_write_err;
1291
1292 /* Write out trailing byte if it exists. */
1293 if (actual != len) {
1294 write_enable(nor);
1295
1296 nor->program_opcode = SPINOR_OP_BP;
1297 ret = nor->write(nor, to, 1, buf + actual);
1298 if (ret < 0)
1299 goto sst_write_err;
1300 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1301 (int)ret);
1302 ret = spi_nor_wait_till_ready(nor);
1303 if (ret)
1304 goto sst_write_err;
1305 write_disable(nor);
1306 actual += 1;
1307 }
1308 sst_write_err:
1309 *retlen += actual;
1310 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1311 return ret;
1312 }
1313
1314 /*
1315 * Write an address range to the nor chip. Data must be written in
1316 * FLASH_PAGESIZE chunks. The address range may be any size provided
1317 * it is within the physical boundaries.
1318 */
1319 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1320 size_t *retlen, const u_char *buf)
1321 {
1322 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1323 size_t page_offset, page_remain, i;
1324 ssize_t ret;
1325
1326 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1327
1328 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1329 if (ret)
1330 return ret;
1331
1332 for (i = 0; i < len; ) {
1333 ssize_t written;
1334 loff_t addr = to + i;
1335
1336 /*
1337 * If page_size is a power of two, the offset can be quickly
1338 * calculated with an AND operation. On the other cases we
1339 * need to do a modulus operation (more expensive).
1340 * Power of two numbers have only one bit set and we can use
1341 * the instruction hweight32 to detect if we need to do a
1342 * modulus (do_div()) or not.
1343 */
1344 if (hweight32(nor->page_size) == 1) {
1345 page_offset = addr & (nor->page_size - 1);
1346 } else {
1347 uint64_t aux = addr;
1348
1349 page_offset = do_div(aux, nor->page_size);
1350 }
1351 /* the size of data remaining on the first page */
1352 page_remain = min_t(size_t,
1353 nor->page_size - page_offset, len - i);
1354
1355 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1356 addr = spi_nor_s3an_addr_convert(nor, addr);
1357
1358 write_enable(nor);
1359 ret = nor->write(nor, addr, page_remain, buf + i);
1360 if (ret < 0)
1361 goto write_err;
1362 written = ret;
1363
1364 ret = spi_nor_wait_till_ready(nor);
1365 if (ret)
1366 goto write_err;
1367 *retlen += written;
1368 i += written;
1369 if (written != page_remain) {
1370 dev_err(nor->dev,
1371 "While writing %zu bytes written %zd bytes\n",
1372 page_remain, written);
1373 ret = -EIO;
1374 goto write_err;
1375 }
1376 }
1377
1378 write_err:
1379 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1380 return ret;
1381 }
1382
1383 static int macronix_quad_enable(struct spi_nor *nor)
1384 {
1385 int ret, val;
1386
1387 val = read_sr(nor);
1388 if (val < 0)
1389 return val;
1390 if (val & SR_QUAD_EN_MX)
1391 return 0;
1392
1393 write_enable(nor);
1394
1395 write_sr(nor, val | SR_QUAD_EN_MX);
1396
1397 ret = spi_nor_wait_till_ready(nor);
1398 if (ret)
1399 return ret;
1400
1401 ret = read_sr(nor);
1402 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1403 dev_err(nor->dev, "Macronix Quad bit not set\n");
1404 return -EINVAL;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * Write status Register and configuration register with 2 bytes
1412 * The first byte will be written to the status register, while the
1413 * second byte will be written to the configuration register.
1414 * Return negative if error occurred.
1415 */
1416 static int write_sr_cr(struct spi_nor *nor, u16 val)
1417 {
1418 nor->cmd_buf[0] = val & 0xff;
1419 nor->cmd_buf[1] = (val >> 8);
1420
1421 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1422 }
1423
1424 static int spansion_quad_enable(struct spi_nor *nor)
1425 {
1426 int ret;
1427 int quad_en = CR_QUAD_EN_SPAN << 8;
1428
1429 write_enable(nor);
1430
1431 ret = write_sr_cr(nor, quad_en);
1432 if (ret < 0) {
1433 dev_err(nor->dev,
1434 "error while writing configuration register\n");
1435 return -EINVAL;
1436 }
1437
1438 ret = spi_nor_wait_till_ready(nor);
1439 if (ret) {
1440 dev_err(nor->dev,
1441 "timeout while writing configuration register\n");
1442 return ret;
1443 }
1444
1445 /* read back and check it */
1446 ret = read_cr(nor);
1447 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1448 dev_err(nor->dev, "Spansion Quad bit not set\n");
1449 return -EINVAL;
1450 }
1451
1452 return 0;
1453 }
1454
1455 static int spi_nor_check(struct spi_nor *nor)
1456 {
1457 if (!nor->dev || !nor->read || !nor->write ||
1458 !nor->read_reg || !nor->write_reg) {
1459 pr_err("spi-nor: please fill all the necessary fields!\n");
1460 return -EINVAL;
1461 }
1462
1463 return 0;
1464 }
1465
1466 static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
1467 {
1468 int ret;
1469 u8 val;
1470
1471 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
1472 if (ret < 0) {
1473 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
1474 return ret;
1475 }
1476
1477 nor->erase_opcode = SPINOR_OP_XSE;
1478 nor->program_opcode = SPINOR_OP_XPP;
1479 nor->read_opcode = SPINOR_OP_READ;
1480 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1481
1482 /*
1483 * This flashes have a page size of 264 or 528 bytes (known as
1484 * Default addressing mode). It can be changed to a more standard
1485 * Power of two mode where the page size is 256/512. This comes
1486 * with a price: there is 3% less of space, the data is corrupted
1487 * and the page size cannot be changed back to default addressing
1488 * mode.
1489 *
1490 * The current addressing mode can be read from the XRDSR register
1491 * and should not be changed, because is a destructive operation.
1492 */
1493 if (val & XSR_PAGESIZE) {
1494 /* Flash in Power of 2 mode */
1495 nor->page_size = (nor->page_size == 264) ? 256 : 512;
1496 nor->mtd.writebufsize = nor->page_size;
1497 nor->mtd.size = 8 * nor->page_size * info->n_sectors;
1498 nor->mtd.erasesize = 8 * nor->page_size;
1499 } else {
1500 /* Flash in Default addressing mode */
1501 nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
1502 }
1503
1504 return 0;
1505 }
1506
1507 struct spi_nor_read_command {
1508 u8 num_mode_clocks;
1509 u8 num_wait_states;
1510 u8 opcode;
1511 enum spi_nor_protocol proto;
1512 };
1513
1514 struct spi_nor_pp_command {
1515 u8 opcode;
1516 enum spi_nor_protocol proto;
1517 };
1518
1519 enum spi_nor_read_command_index {
1520 SNOR_CMD_READ,
1521 SNOR_CMD_READ_FAST,
1522 SNOR_CMD_READ_1_1_1_DTR,
1523
1524 /* Dual SPI */
1525 SNOR_CMD_READ_1_1_2,
1526 SNOR_CMD_READ_1_2_2,
1527 SNOR_CMD_READ_2_2_2,
1528 SNOR_CMD_READ_1_2_2_DTR,
1529
1530 /* Quad SPI */
1531 SNOR_CMD_READ_1_1_4,
1532 SNOR_CMD_READ_1_4_4,
1533 SNOR_CMD_READ_4_4_4,
1534 SNOR_CMD_READ_1_4_4_DTR,
1535
1536 /* Octo SPI */
1537 SNOR_CMD_READ_1_1_8,
1538 SNOR_CMD_READ_1_8_8,
1539 SNOR_CMD_READ_8_8_8,
1540 SNOR_CMD_READ_1_8_8_DTR,
1541
1542 SNOR_CMD_READ_MAX
1543 };
1544
1545 enum spi_nor_pp_command_index {
1546 SNOR_CMD_PP,
1547
1548 /* Quad SPI */
1549 SNOR_CMD_PP_1_1_4,
1550 SNOR_CMD_PP_1_4_4,
1551 SNOR_CMD_PP_4_4_4,
1552
1553 /* Octo SPI */
1554 SNOR_CMD_PP_1_1_8,
1555 SNOR_CMD_PP_1_8_8,
1556 SNOR_CMD_PP_8_8_8,
1557
1558 SNOR_CMD_PP_MAX
1559 };
1560
1561 struct spi_nor_flash_parameter {
1562 u64 size;
1563 u32 page_size;
1564
1565 struct spi_nor_hwcaps hwcaps;
1566 struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
1567 struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
1568
1569 int (*quad_enable)(struct spi_nor *nor);
1570 };
1571
1572 static void
1573 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1574 u8 num_mode_clocks,
1575 u8 num_wait_states,
1576 u8 opcode,
1577 enum spi_nor_protocol proto)
1578 {
1579 read->num_mode_clocks = num_mode_clocks;
1580 read->num_wait_states = num_wait_states;
1581 read->opcode = opcode;
1582 read->proto = proto;
1583 }
1584
1585 static void
1586 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1587 u8 opcode,
1588 enum spi_nor_protocol proto)
1589 {
1590 pp->opcode = opcode;
1591 pp->proto = proto;
1592 }
1593
1594 static int spi_nor_init_params(struct spi_nor *nor,
1595 const struct flash_info *info,
1596 struct spi_nor_flash_parameter *params)
1597 {
1598 /* Set legacy flash parameters as default. */
1599 memset(params, 0, sizeof(*params));
1600
1601 /* Set SPI NOR sizes. */
1602 params->size = info->sector_size * info->n_sectors;
1603 params->page_size = info->page_size;
1604
1605 /* (Fast) Read settings. */
1606 params->hwcaps.mask |= SNOR_HWCAPS_READ;
1607 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
1608 0, 0, SPINOR_OP_READ,
1609 SNOR_PROTO_1_1_1);
1610
1611 if (!(info->flags & SPI_NOR_NO_FR)) {
1612 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1613 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
1614 0, 8, SPINOR_OP_READ_FAST,
1615 SNOR_PROTO_1_1_1);
1616 }
1617
1618 if (info->flags & SPI_NOR_DUAL_READ) {
1619 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
1620 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
1621 0, 8, SPINOR_OP_READ_1_1_2,
1622 SNOR_PROTO_1_1_2);
1623 }
1624
1625 if (info->flags & SPI_NOR_QUAD_READ) {
1626 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
1627 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
1628 0, 8, SPINOR_OP_READ_1_1_4,
1629 SNOR_PROTO_1_1_4);
1630 }
1631
1632 /* Page Program settings. */
1633 params->hwcaps.mask |= SNOR_HWCAPS_PP;
1634 spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
1635 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
1636
1637 /* Select the procedure to set the Quad Enable bit. */
1638 if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
1639 SNOR_HWCAPS_PP_QUAD)) {
1640 switch (JEDEC_MFR(info)) {
1641 case SNOR_MFR_MACRONIX:
1642 params->quad_enable = macronix_quad_enable;
1643 break;
1644
1645 case SNOR_MFR_MICRON:
1646 break;
1647
1648 default:
1649 params->quad_enable = spansion_quad_enable;
1650 break;
1651 }
1652 }
1653
1654 return 0;
1655 }
1656
1657 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
1658 {
1659 size_t i;
1660
1661 for (i = 0; i < size; i++)
1662 if (table[i][0] == (int)hwcaps)
1663 return table[i][1];
1664
1665 return -EINVAL;
1666 }
1667
1668 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
1669 {
1670 static const int hwcaps_read2cmd[][2] = {
1671 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
1672 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
1673 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
1674 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
1675 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
1676 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
1677 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
1678 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
1679 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
1680 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
1681 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
1682 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
1683 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
1684 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
1685 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
1686 };
1687
1688 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
1689 ARRAY_SIZE(hwcaps_read2cmd));
1690 }
1691
1692 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
1693 {
1694 static const int hwcaps_pp2cmd[][2] = {
1695 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
1696 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
1697 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
1698 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
1699 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
1700 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
1701 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
1702 };
1703
1704 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
1705 ARRAY_SIZE(hwcaps_pp2cmd));
1706 }
1707
1708 static int spi_nor_select_read(struct spi_nor *nor,
1709 const struct spi_nor_flash_parameter *params,
1710 u32 shared_hwcaps)
1711 {
1712 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
1713 const struct spi_nor_read_command *read;
1714
1715 if (best_match < 0)
1716 return -EINVAL;
1717
1718 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
1719 if (cmd < 0)
1720 return -EINVAL;
1721
1722 read = &params->reads[cmd];
1723 nor->read_opcode = read->opcode;
1724 nor->read_proto = read->proto;
1725
1726 /*
1727 * In the spi-nor framework, we don't need to make the difference
1728 * between mode clock cycles and wait state clock cycles.
1729 * Indeed, the value of the mode clock cycles is used by a QSPI
1730 * flash memory to know whether it should enter or leave its 0-4-4
1731 * (Continuous Read / XIP) mode.
1732 * eXecution In Place is out of the scope of the mtd sub-system.
1733 * Hence we choose to merge both mode and wait state clock cycles
1734 * into the so called dummy clock cycles.
1735 */
1736 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
1737 return 0;
1738 }
1739
1740 static int spi_nor_select_pp(struct spi_nor *nor,
1741 const struct spi_nor_flash_parameter *params,
1742 u32 shared_hwcaps)
1743 {
1744 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
1745 const struct spi_nor_pp_command *pp;
1746
1747 if (best_match < 0)
1748 return -EINVAL;
1749
1750 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
1751 if (cmd < 0)
1752 return -EINVAL;
1753
1754 pp = &params->page_programs[cmd];
1755 nor->program_opcode = pp->opcode;
1756 nor->write_proto = pp->proto;
1757 return 0;
1758 }
1759
1760 static int spi_nor_select_erase(struct spi_nor *nor,
1761 const struct flash_info *info)
1762 {
1763 struct mtd_info *mtd = &nor->mtd;
1764
1765 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1766 /* prefer "small sector" erase if possible */
1767 if (info->flags & SECT_4K) {
1768 nor->erase_opcode = SPINOR_OP_BE_4K;
1769 mtd->erasesize = 4096;
1770 } else if (info->flags & SECT_4K_PMC) {
1771 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1772 mtd->erasesize = 4096;
1773 } else
1774 #endif
1775 {
1776 nor->erase_opcode = SPINOR_OP_SE;
1777 mtd->erasesize = info->sector_size;
1778 }
1779 return 0;
1780 }
1781
1782 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
1783 const struct spi_nor_flash_parameter *params,
1784 const struct spi_nor_hwcaps *hwcaps)
1785 {
1786 u32 ignored_mask, shared_mask;
1787 bool enable_quad_io;
1788 int err;
1789
1790 /*
1791 * Keep only the hardware capabilities supported by both the SPI
1792 * controller and the SPI flash memory.
1793 */
1794 shared_mask = hwcaps->mask & params->hwcaps.mask;
1795
1796 /* SPI n-n-n protocols are not supported yet. */
1797 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
1798 SNOR_HWCAPS_READ_4_4_4 |
1799 SNOR_HWCAPS_READ_8_8_8 |
1800 SNOR_HWCAPS_PP_4_4_4 |
1801 SNOR_HWCAPS_PP_8_8_8);
1802 if (shared_mask & ignored_mask) {
1803 dev_dbg(nor->dev,
1804 "SPI n-n-n protocols are not supported yet.\n");
1805 shared_mask &= ~ignored_mask;
1806 }
1807
1808 /* Select the (Fast) Read command. */
1809 err = spi_nor_select_read(nor, params, shared_mask);
1810 if (err) {
1811 dev_err(nor->dev,
1812 "can't select read settings supported by both the SPI controller and memory.\n");
1813 return err;
1814 }
1815
1816 /* Select the Page Program command. */
1817 err = spi_nor_select_pp(nor, params, shared_mask);
1818 if (err) {
1819 dev_err(nor->dev,
1820 "can't select write settings supported by both the SPI controller and memory.\n");
1821 return err;
1822 }
1823
1824 /* Select the Sector Erase command. */
1825 err = spi_nor_select_erase(nor, info);
1826 if (err) {
1827 dev_err(nor->dev,
1828 "can't select erase settings supported by both the SPI controller and memory.\n");
1829 return err;
1830 }
1831
1832 /* Enable Quad I/O if needed. */
1833 enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
1834 spi_nor_get_protocol_width(nor->write_proto) == 4);
1835 if (enable_quad_io && params->quad_enable) {
1836 err = params->quad_enable(nor);
1837 if (err) {
1838 dev_err(nor->dev, "quad mode not supported\n");
1839 return err;
1840 }
1841 }
1842
1843 return 0;
1844 }
1845
1846 int spi_nor_scan(struct spi_nor *nor, const char *name,
1847 const struct spi_nor_hwcaps *hwcaps)
1848 {
1849 struct spi_nor_flash_parameter params;
1850 const struct flash_info *info = NULL;
1851 struct device *dev = nor->dev;
1852 struct mtd_info *mtd = &nor->mtd;
1853 struct device_node *np = spi_nor_get_flash_node(nor);
1854 int ret;
1855 int i;
1856
1857 ret = spi_nor_check(nor);
1858 if (ret)
1859 return ret;
1860
1861 /* Reset SPI protocol for all commands. */
1862 nor->reg_proto = SNOR_PROTO_1_1_1;
1863 nor->read_proto = SNOR_PROTO_1_1_1;
1864 nor->write_proto = SNOR_PROTO_1_1_1;
1865
1866 if (name)
1867 info = spi_nor_match_id(name);
1868 /* Try to auto-detect if chip name wasn't specified or not found */
1869 if (!info)
1870 info = spi_nor_read_id(nor);
1871 if (IS_ERR_OR_NULL(info))
1872 return -ENOENT;
1873
1874 /*
1875 * If caller has specified name of flash model that can normally be
1876 * detected using JEDEC, let's verify it.
1877 */
1878 if (name && info->id_len) {
1879 const struct flash_info *jinfo;
1880
1881 jinfo = spi_nor_read_id(nor);
1882 if (IS_ERR(jinfo)) {
1883 return PTR_ERR(jinfo);
1884 } else if (jinfo != info) {
1885 /*
1886 * JEDEC knows better, so overwrite platform ID. We
1887 * can't trust partitions any longer, but we'll let
1888 * mtd apply them anyway, since some partitions may be
1889 * marked read-only, and we don't want to lose that
1890 * information, even if it's not 100% accurate.
1891 */
1892 dev_warn(dev, "found %s, expected %s\n",
1893 jinfo->name, info->name);
1894 info = jinfo;
1895 }
1896 }
1897
1898 mutex_init(&nor->lock);
1899
1900 /*
1901 * Make sure the XSR_RDY flag is set before calling
1902 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
1903 * with Atmel spi-nor
1904 */
1905 if (info->flags & SPI_S3AN)
1906 nor->flags |= SNOR_F_READY_XSR_RDY;
1907
1908 /* Parse the Serial Flash Discoverable Parameters table. */
1909 ret = spi_nor_init_params(nor, info, &params);
1910 if (ret)
1911 return ret;
1912
1913 /*
1914 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1915 * with the software protection bits set
1916 */
1917
1918 if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1919 JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1920 JEDEC_MFR(info) == SNOR_MFR_SST ||
1921 info->flags & SPI_NOR_HAS_LOCK) {
1922 write_enable(nor);
1923 write_sr(nor, 0);
1924 spi_nor_wait_till_ready(nor);
1925 }
1926
1927 if (!mtd->name)
1928 mtd->name = dev_name(dev);
1929 mtd->priv = nor;
1930 mtd->type = MTD_NORFLASH;
1931 mtd->writesize = 1;
1932 mtd->flags = MTD_CAP_NORFLASH;
1933 mtd->size = params.size;
1934 mtd->_erase = spi_nor_erase;
1935 mtd->_read = spi_nor_read;
1936
1937 /* NOR protection support for STmicro/Micron chips and similar */
1938 if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
1939 info->flags & SPI_NOR_HAS_LOCK) {
1940 nor->flash_lock = stm_lock;
1941 nor->flash_unlock = stm_unlock;
1942 nor->flash_is_locked = stm_is_locked;
1943 }
1944
1945 if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1946 mtd->_lock = spi_nor_lock;
1947 mtd->_unlock = spi_nor_unlock;
1948 mtd->_is_locked = spi_nor_is_locked;
1949 }
1950
1951 /* sst nor chips use AAI word program */
1952 if (info->flags & SST_WRITE)
1953 mtd->_write = sst_write;
1954 else
1955 mtd->_write = spi_nor_write;
1956
1957 if (info->flags & USE_FSR)
1958 nor->flags |= SNOR_F_USE_FSR;
1959 if (info->flags & SPI_NOR_HAS_TB)
1960 nor->flags |= SNOR_F_HAS_SR_TB;
1961 if (info->flags & NO_CHIP_ERASE)
1962 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1963
1964 if (info->flags & SPI_NOR_NO_ERASE)
1965 mtd->flags |= MTD_NO_ERASE;
1966
1967 mtd->dev.parent = dev;
1968 nor->page_size = params.page_size;
1969 mtd->writebufsize = nor->page_size;
1970
1971 if (np) {
1972 /* If we were instantiated by DT, use it */
1973 if (of_property_read_bool(np, "m25p,fast-read"))
1974 params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1975 else
1976 params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1977 } else {
1978 /* If we weren't instantiated by DT, default to fast-read */
1979 params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1980 }
1981
1982 /* Some devices cannot do fast-read, no matter what DT tells us */
1983 if (info->flags & SPI_NOR_NO_FR)
1984 params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1985
1986 /*
1987 * Configure the SPI memory:
1988 * - select op codes for (Fast) Read, Page Program and Sector Erase.
1989 * - set the number of dummy cycles (mode cycles + wait states).
1990 * - set the SPI protocols for register and memory accesses.
1991 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
1992 */
1993 ret = spi_nor_setup(nor, info, &params, hwcaps);
1994 if (ret)
1995 return ret;
1996
1997 if (info->addr_width)
1998 nor->addr_width = info->addr_width;
1999 else if (mtd->size > 0x1000000) {
2000 /* enable 4-byte addressing if the device exceeds 16MiB */
2001 nor->addr_width = 4;
2002 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2003 info->flags & SPI_NOR_4B_OPCODES)
2004 spi_nor_set_4byte_opcodes(nor, info);
2005 else
2006 set_4byte(nor, info, 1);
2007 } else {
2008 nor->addr_width = 3;
2009 }
2010
2011 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2012 dev_err(dev, "address width is too large: %u\n",
2013 nor->addr_width);
2014 return -EINVAL;
2015 }
2016
2017 if (info->flags & SPI_S3AN) {
2018 ret = s3an_nor_scan(info, nor);
2019 if (ret)
2020 return ret;
2021 }
2022
2023 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
2024 (long long)mtd->size >> 10);
2025
2026 dev_dbg(dev,
2027 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
2028 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2029 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
2030 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
2031
2032 if (mtd->numeraseregions)
2033 for (i = 0; i < mtd->numeraseregions; i++)
2034 dev_dbg(dev,
2035 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
2036 ".erasesize = 0x%.8x (%uKiB), "
2037 ".numblocks = %d }\n",
2038 i, (long long)mtd->eraseregions[i].offset,
2039 mtd->eraseregions[i].erasesize,
2040 mtd->eraseregions[i].erasesize / 1024,
2041 mtd->eraseregions[i].numblocks);
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(spi_nor_scan);
2045
2046 static const struct flash_info *spi_nor_match_id(const char *name)
2047 {
2048 const struct flash_info *id = spi_nor_ids;
2049
2050 while (id->name) {
2051 if (!strcmp(name, id->name))
2052 return id;
2053 id++;
2054 }
2055 return NULL;
2056 }
2057
2058 MODULE_LICENSE("GPL");
2059 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
2060 MODULE_AUTHOR("Mike Lavender");
2061 MODULE_DESCRIPTION("framework for SPI NOR");