]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/ubi/attach.c
UBI: fix add_fastmap() to use the vid_hdr passed in argument
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / attach.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * UBI attaching sub-system.
23 *
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
26 *
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 *
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
50 * UBI tries to distinguish between 2 types of corruptions.
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
68 *
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
79 * NAND), it is probably a PEB which was being erased when power cut
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
82 * o Otherwise this is corruption type 2.
83 */
84
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
97
98 /**
99 * add_to_list - add physical eraseblock to a list.
100 * @ai: attaching information
101 * @pnum: physical eraseblock number to add
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
104 * @ec: erase counter of the physical eraseblock
105 * @to_head: if not zero, add to the head of the list
106 * @list: the list to add to
107 *
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
117 * failure.
118 */
119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 int lnum, int ec, int to_head, struct list_head *list)
121 {
122 struct ubi_ainf_peb *aeb;
123
124 if (list == &ai->free) {
125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 } else if (list == &ai->erase) {
127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 } else if (list == &ai->alien) {
129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 ai->alien_peb_count += 1;
131 } else
132 BUG();
133
134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 if (!aeb)
136 return -ENOMEM;
137
138 aeb->pnum = pnum;
139 aeb->vol_id = vol_id;
140 aeb->lnum = lnum;
141 aeb->ec = ec;
142 if (to_head)
143 list_add(&aeb->u.list, list);
144 else
145 list_add_tail(&aeb->u.list, list);
146 return 0;
147 }
148
149 /**
150 * add_corrupted - add a corrupted physical eraseblock.
151 * @ai: attaching information
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
154 *
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
159 */
160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161 {
162 struct ubi_ainf_peb *aeb;
163
164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165
166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 if (!aeb)
168 return -ENOMEM;
169
170 ai->corr_peb_count += 1;
171 aeb->pnum = pnum;
172 aeb->ec = ec;
173 list_add(&aeb->u.list, &ai->corr);
174 return 0;
175 }
176
177 /**
178 * add_fastmap - add a Fastmap related physical eraseblock.
179 * @ai: attaching information
180 * @pnum: physical eraseblock number the VID header came from
181 * @vid_hdr: the volume identifier header
182 * @ec: erase counter of the physical eraseblock
183 *
184 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
185 * physical eraseblock @pnum and adds it to the 'fastmap' list.
186 * Such blocks can be Fastmap super and data blocks from both the most
187 * recent Fastmap we're attaching from or from old Fastmaps which will
188 * be erased.
189 */
190 static int add_fastmap(struct ubi_attach_info *ai, int pnum,
191 struct ubi_vid_hdr *vid_hdr, int ec)
192 {
193 struct ubi_ainf_peb *aeb;
194
195 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
196 if (!aeb)
197 return -ENOMEM;
198
199 aeb->pnum = pnum;
200 aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
201 aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
202 aeb->ec = ec;
203 list_add(&aeb->u.list, &ai->fastmap);
204
205 dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
206 aeb->vol_id, aeb->sqnum);
207
208 return 0;
209 }
210
211 /**
212 * validate_vid_hdr - check volume identifier header.
213 * @ubi: UBI device description object
214 * @vid_hdr: the volume identifier header to check
215 * @av: information about the volume this logical eraseblock belongs to
216 * @pnum: physical eraseblock number the VID header came from
217 *
218 * This function checks that data stored in @vid_hdr is consistent. Returns
219 * non-zero if an inconsistency was found and zero if not.
220 *
221 * Note, UBI does sanity check of everything it reads from the flash media.
222 * Most of the checks are done in the I/O sub-system. Here we check that the
223 * information in the VID header is consistent to the information in other VID
224 * headers of the same volume.
225 */
226 static int validate_vid_hdr(const struct ubi_device *ubi,
227 const struct ubi_vid_hdr *vid_hdr,
228 const struct ubi_ainf_volume *av, int pnum)
229 {
230 int vol_type = vid_hdr->vol_type;
231 int vol_id = be32_to_cpu(vid_hdr->vol_id);
232 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
233 int data_pad = be32_to_cpu(vid_hdr->data_pad);
234
235 if (av->leb_count != 0) {
236 int av_vol_type;
237
238 /*
239 * This is not the first logical eraseblock belonging to this
240 * volume. Ensure that the data in its VID header is consistent
241 * to the data in previous logical eraseblock headers.
242 */
243
244 if (vol_id != av->vol_id) {
245 ubi_err(ubi, "inconsistent vol_id");
246 goto bad;
247 }
248
249 if (av->vol_type == UBI_STATIC_VOLUME)
250 av_vol_type = UBI_VID_STATIC;
251 else
252 av_vol_type = UBI_VID_DYNAMIC;
253
254 if (vol_type != av_vol_type) {
255 ubi_err(ubi, "inconsistent vol_type");
256 goto bad;
257 }
258
259 if (used_ebs != av->used_ebs) {
260 ubi_err(ubi, "inconsistent used_ebs");
261 goto bad;
262 }
263
264 if (data_pad != av->data_pad) {
265 ubi_err(ubi, "inconsistent data_pad");
266 goto bad;
267 }
268 }
269
270 return 0;
271
272 bad:
273 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
274 ubi_dump_vid_hdr(vid_hdr);
275 ubi_dump_av(av);
276 return -EINVAL;
277 }
278
279 /**
280 * add_volume - add volume to the attaching information.
281 * @ai: attaching information
282 * @vol_id: ID of the volume to add
283 * @pnum: physical eraseblock number
284 * @vid_hdr: volume identifier header
285 *
286 * If the volume corresponding to the @vid_hdr logical eraseblock is already
287 * present in the attaching information, this function does nothing. Otherwise
288 * it adds corresponding volume to the attaching information. Returns a pointer
289 * to the allocated "av" object in case of success and a negative error code in
290 * case of failure.
291 */
292 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
293 int vol_id, int pnum,
294 const struct ubi_vid_hdr *vid_hdr)
295 {
296 struct ubi_ainf_volume *av;
297 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
298
299 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
300
301 /* Walk the volume RB-tree to look if this volume is already present */
302 while (*p) {
303 parent = *p;
304 av = rb_entry(parent, struct ubi_ainf_volume, rb);
305
306 if (vol_id == av->vol_id)
307 return av;
308
309 if (vol_id > av->vol_id)
310 p = &(*p)->rb_left;
311 else
312 p = &(*p)->rb_right;
313 }
314
315 /* The volume is absent - add it */
316 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
317 if (!av)
318 return ERR_PTR(-ENOMEM);
319
320 av->highest_lnum = av->leb_count = 0;
321 av->vol_id = vol_id;
322 av->root = RB_ROOT;
323 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
324 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
325 av->compat = vid_hdr->compat;
326 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
327 : UBI_STATIC_VOLUME;
328 if (vol_id > ai->highest_vol_id)
329 ai->highest_vol_id = vol_id;
330
331 rb_link_node(&av->rb, parent, p);
332 rb_insert_color(&av->rb, &ai->volumes);
333 ai->vols_found += 1;
334 dbg_bld("added volume %d", vol_id);
335 return av;
336 }
337
338 /**
339 * ubi_compare_lebs - find out which logical eraseblock is newer.
340 * @ubi: UBI device description object
341 * @aeb: first logical eraseblock to compare
342 * @pnum: physical eraseblock number of the second logical eraseblock to
343 * compare
344 * @vid_hdr: volume identifier header of the second logical eraseblock
345 *
346 * This function compares 2 copies of a LEB and informs which one is newer. In
347 * case of success this function returns a positive value, in case of failure, a
348 * negative error code is returned. The success return codes use the following
349 * bits:
350 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
351 * second PEB (described by @pnum and @vid_hdr);
352 * o bit 0 is set: the second PEB is newer;
353 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
354 * o bit 1 is set: bit-flips were detected in the newer LEB;
355 * o bit 2 is cleared: the older LEB is not corrupted;
356 * o bit 2 is set: the older LEB is corrupted.
357 */
358 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
359 int pnum, const struct ubi_vid_hdr *vid_hdr)
360 {
361 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
362 uint32_t data_crc, crc;
363 struct ubi_vid_hdr *vh = NULL;
364 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
365
366 if (sqnum2 == aeb->sqnum) {
367 /*
368 * This must be a really ancient UBI image which has been
369 * created before sequence numbers support has been added. At
370 * that times we used 32-bit LEB versions stored in logical
371 * eraseblocks. That was before UBI got into mainline. We do not
372 * support these images anymore. Well, those images still work,
373 * but only if no unclean reboots happened.
374 */
375 ubi_err(ubi, "unsupported on-flash UBI format");
376 return -EINVAL;
377 }
378
379 /* Obviously the LEB with lower sequence counter is older */
380 second_is_newer = (sqnum2 > aeb->sqnum);
381
382 /*
383 * Now we know which copy is newer. If the copy flag of the PEB with
384 * newer version is not set, then we just return, otherwise we have to
385 * check data CRC. For the second PEB we already have the VID header,
386 * for the first one - we'll need to re-read it from flash.
387 *
388 * Note: this may be optimized so that we wouldn't read twice.
389 */
390
391 if (second_is_newer) {
392 if (!vid_hdr->copy_flag) {
393 /* It is not a copy, so it is newer */
394 dbg_bld("second PEB %d is newer, copy_flag is unset",
395 pnum);
396 return 1;
397 }
398 } else {
399 if (!aeb->copy_flag) {
400 /* It is not a copy, so it is newer */
401 dbg_bld("first PEB %d is newer, copy_flag is unset",
402 pnum);
403 return bitflips << 1;
404 }
405
406 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
407 if (!vh)
408 return -ENOMEM;
409
410 pnum = aeb->pnum;
411 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
412 if (err) {
413 if (err == UBI_IO_BITFLIPS)
414 bitflips = 1;
415 else {
416 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
417 pnum, err);
418 if (err > 0)
419 err = -EIO;
420
421 goto out_free_vidh;
422 }
423 }
424
425 vid_hdr = vh;
426 }
427
428 /* Read the data of the copy and check the CRC */
429
430 len = be32_to_cpu(vid_hdr->data_size);
431
432 mutex_lock(&ubi->buf_mutex);
433 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
434 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
435 goto out_unlock;
436
437 data_crc = be32_to_cpu(vid_hdr->data_crc);
438 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
439 if (crc != data_crc) {
440 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
441 pnum, crc, data_crc);
442 corrupted = 1;
443 bitflips = 0;
444 second_is_newer = !second_is_newer;
445 } else {
446 dbg_bld("PEB %d CRC is OK", pnum);
447 bitflips |= !!err;
448 }
449 mutex_unlock(&ubi->buf_mutex);
450
451 ubi_free_vid_hdr(ubi, vh);
452
453 if (second_is_newer)
454 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
455 else
456 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
457
458 return second_is_newer | (bitflips << 1) | (corrupted << 2);
459
460 out_unlock:
461 mutex_unlock(&ubi->buf_mutex);
462 out_free_vidh:
463 ubi_free_vid_hdr(ubi, vh);
464 return err;
465 }
466
467 /**
468 * ubi_add_to_av - add used physical eraseblock to the attaching information.
469 * @ubi: UBI device description object
470 * @ai: attaching information
471 * @pnum: the physical eraseblock number
472 * @ec: erase counter
473 * @vid_hdr: the volume identifier header
474 * @bitflips: if bit-flips were detected when this physical eraseblock was read
475 *
476 * This function adds information about a used physical eraseblock to the
477 * 'used' tree of the corresponding volume. The function is rather complex
478 * because it has to handle cases when this is not the first physical
479 * eraseblock belonging to the same logical eraseblock, and the newer one has
480 * to be picked, while the older one has to be dropped. This function returns
481 * zero in case of success and a negative error code in case of failure.
482 */
483 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
484 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
485 {
486 int err, vol_id, lnum;
487 unsigned long long sqnum;
488 struct ubi_ainf_volume *av;
489 struct ubi_ainf_peb *aeb;
490 struct rb_node **p, *parent = NULL;
491
492 vol_id = be32_to_cpu(vid_hdr->vol_id);
493 lnum = be32_to_cpu(vid_hdr->lnum);
494 sqnum = be64_to_cpu(vid_hdr->sqnum);
495
496 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
497 pnum, vol_id, lnum, ec, sqnum, bitflips);
498
499 av = add_volume(ai, vol_id, pnum, vid_hdr);
500 if (IS_ERR(av))
501 return PTR_ERR(av);
502
503 if (ai->max_sqnum < sqnum)
504 ai->max_sqnum = sqnum;
505
506 /*
507 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
508 * if this is the first instance of this logical eraseblock or not.
509 */
510 p = &av->root.rb_node;
511 while (*p) {
512 int cmp_res;
513
514 parent = *p;
515 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
516 if (lnum != aeb->lnum) {
517 if (lnum < aeb->lnum)
518 p = &(*p)->rb_left;
519 else
520 p = &(*p)->rb_right;
521 continue;
522 }
523
524 /*
525 * There is already a physical eraseblock describing the same
526 * logical eraseblock present.
527 */
528
529 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
530 aeb->pnum, aeb->sqnum, aeb->ec);
531
532 /*
533 * Make sure that the logical eraseblocks have different
534 * sequence numbers. Otherwise the image is bad.
535 *
536 * However, if the sequence number is zero, we assume it must
537 * be an ancient UBI image from the era when UBI did not have
538 * sequence numbers. We still can attach these images, unless
539 * there is a need to distinguish between old and new
540 * eraseblocks, in which case we'll refuse the image in
541 * 'ubi_compare_lebs()'. In other words, we attach old clean
542 * images, but refuse attaching old images with duplicated
543 * logical eraseblocks because there was an unclean reboot.
544 */
545 if (aeb->sqnum == sqnum && sqnum != 0) {
546 ubi_err(ubi, "two LEBs with same sequence number %llu",
547 sqnum);
548 ubi_dump_aeb(aeb, 0);
549 ubi_dump_vid_hdr(vid_hdr);
550 return -EINVAL;
551 }
552
553 /*
554 * Now we have to drop the older one and preserve the newer
555 * one.
556 */
557 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
558 if (cmp_res < 0)
559 return cmp_res;
560
561 if (cmp_res & 1) {
562 /*
563 * This logical eraseblock is newer than the one
564 * found earlier.
565 */
566 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
567 if (err)
568 return err;
569
570 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
571 aeb->lnum, aeb->ec, cmp_res & 4,
572 &ai->erase);
573 if (err)
574 return err;
575
576 aeb->ec = ec;
577 aeb->pnum = pnum;
578 aeb->vol_id = vol_id;
579 aeb->lnum = lnum;
580 aeb->scrub = ((cmp_res & 2) || bitflips);
581 aeb->copy_flag = vid_hdr->copy_flag;
582 aeb->sqnum = sqnum;
583
584 if (av->highest_lnum == lnum)
585 av->last_data_size =
586 be32_to_cpu(vid_hdr->data_size);
587
588 return 0;
589 } else {
590 /*
591 * This logical eraseblock is older than the one found
592 * previously.
593 */
594 return add_to_list(ai, pnum, vol_id, lnum, ec,
595 cmp_res & 4, &ai->erase);
596 }
597 }
598
599 /*
600 * We've met this logical eraseblock for the first time, add it to the
601 * attaching information.
602 */
603
604 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
605 if (err)
606 return err;
607
608 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
609 if (!aeb)
610 return -ENOMEM;
611
612 aeb->ec = ec;
613 aeb->pnum = pnum;
614 aeb->vol_id = vol_id;
615 aeb->lnum = lnum;
616 aeb->scrub = bitflips;
617 aeb->copy_flag = vid_hdr->copy_flag;
618 aeb->sqnum = sqnum;
619
620 if (av->highest_lnum <= lnum) {
621 av->highest_lnum = lnum;
622 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
623 }
624
625 av->leb_count += 1;
626 rb_link_node(&aeb->u.rb, parent, p);
627 rb_insert_color(&aeb->u.rb, &av->root);
628 return 0;
629 }
630
631 /**
632 * ubi_find_av - find volume in the attaching information.
633 * @ai: attaching information
634 * @vol_id: the requested volume ID
635 *
636 * This function returns a pointer to the volume description or %NULL if there
637 * are no data about this volume in the attaching information.
638 */
639 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
640 int vol_id)
641 {
642 struct ubi_ainf_volume *av;
643 struct rb_node *p = ai->volumes.rb_node;
644
645 while (p) {
646 av = rb_entry(p, struct ubi_ainf_volume, rb);
647
648 if (vol_id == av->vol_id)
649 return av;
650
651 if (vol_id > av->vol_id)
652 p = p->rb_left;
653 else
654 p = p->rb_right;
655 }
656
657 return NULL;
658 }
659
660 /**
661 * ubi_remove_av - delete attaching information about a volume.
662 * @ai: attaching information
663 * @av: the volume attaching information to delete
664 */
665 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
666 {
667 struct rb_node *rb;
668 struct ubi_ainf_peb *aeb;
669
670 dbg_bld("remove attaching information about volume %d", av->vol_id);
671
672 while ((rb = rb_first(&av->root))) {
673 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
674 rb_erase(&aeb->u.rb, &av->root);
675 list_add_tail(&aeb->u.list, &ai->erase);
676 }
677
678 rb_erase(&av->rb, &ai->volumes);
679 kfree(av);
680 ai->vols_found -= 1;
681 }
682
683 /**
684 * early_erase_peb - erase a physical eraseblock.
685 * @ubi: UBI device description object
686 * @ai: attaching information
687 * @pnum: physical eraseblock number to erase;
688 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
689 *
690 * This function erases physical eraseblock 'pnum', and writes the erase
691 * counter header to it. This function should only be used on UBI device
692 * initialization stages, when the EBA sub-system had not been yet initialized.
693 * This function returns zero in case of success and a negative error code in
694 * case of failure.
695 */
696 static int early_erase_peb(struct ubi_device *ubi,
697 const struct ubi_attach_info *ai, int pnum, int ec)
698 {
699 int err;
700 struct ubi_ec_hdr *ec_hdr;
701
702 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
703 /*
704 * Erase counter overflow. Upgrade UBI and use 64-bit
705 * erase counters internally.
706 */
707 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
708 pnum, ec);
709 return -EINVAL;
710 }
711
712 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
713 if (!ec_hdr)
714 return -ENOMEM;
715
716 ec_hdr->ec = cpu_to_be64(ec);
717
718 err = ubi_io_sync_erase(ubi, pnum, 0);
719 if (err < 0)
720 goto out_free;
721
722 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
723
724 out_free:
725 kfree(ec_hdr);
726 return err;
727 }
728
729 /**
730 * ubi_early_get_peb - get a free physical eraseblock.
731 * @ubi: UBI device description object
732 * @ai: attaching information
733 *
734 * This function returns a free physical eraseblock. It is supposed to be
735 * called on the UBI initialization stages when the wear-leveling sub-system is
736 * not initialized yet. This function picks a physical eraseblocks from one of
737 * the lists, writes the EC header if it is needed, and removes it from the
738 * list.
739 *
740 * This function returns a pointer to the "aeb" of the found free PEB in case
741 * of success and an error code in case of failure.
742 */
743 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
744 struct ubi_attach_info *ai)
745 {
746 int err = 0;
747 struct ubi_ainf_peb *aeb, *tmp_aeb;
748
749 if (!list_empty(&ai->free)) {
750 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
751 list_del(&aeb->u.list);
752 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
753 return aeb;
754 }
755
756 /*
757 * We try to erase the first physical eraseblock from the erase list
758 * and pick it if we succeed, or try to erase the next one if not. And
759 * so forth. We don't want to take care about bad eraseblocks here -
760 * they'll be handled later.
761 */
762 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
763 if (aeb->ec == UBI_UNKNOWN)
764 aeb->ec = ai->mean_ec;
765
766 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
767 if (err)
768 continue;
769
770 aeb->ec += 1;
771 list_del(&aeb->u.list);
772 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
773 return aeb;
774 }
775
776 ubi_err(ubi, "no free eraseblocks");
777 return ERR_PTR(-ENOSPC);
778 }
779
780 /**
781 * check_corruption - check the data area of PEB.
782 * @ubi: UBI device description object
783 * @vid_hdr: the (corrupted) VID header of this PEB
784 * @pnum: the physical eraseblock number to check
785 *
786 * This is a helper function which is used to distinguish between VID header
787 * corruptions caused by power cuts and other reasons. If the PEB contains only
788 * 0xFF bytes in the data area, the VID header is most probably corrupted
789 * because of a power cut (%0 is returned in this case). Otherwise, it was
790 * probably corrupted for some other reasons (%1 is returned in this case). A
791 * negative error code is returned if a read error occurred.
792 *
793 * If the corruption reason was a power cut, UBI can safely erase this PEB.
794 * Otherwise, it should preserve it to avoid possibly destroying important
795 * information.
796 */
797 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
798 int pnum)
799 {
800 int err;
801
802 mutex_lock(&ubi->buf_mutex);
803 memset(ubi->peb_buf, 0x00, ubi->leb_size);
804
805 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
806 ubi->leb_size);
807 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
808 /*
809 * Bit-flips or integrity errors while reading the data area.
810 * It is difficult to say for sure what type of corruption is
811 * this, but presumably a power cut happened while this PEB was
812 * erased, so it became unstable and corrupted, and should be
813 * erased.
814 */
815 err = 0;
816 goto out_unlock;
817 }
818
819 if (err)
820 goto out_unlock;
821
822 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
823 goto out_unlock;
824
825 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
826 pnum);
827 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
828 ubi_dump_vid_hdr(vid_hdr);
829 pr_err("hexdump of PEB %d offset %d, length %d",
830 pnum, ubi->leb_start, ubi->leb_size);
831 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
832 ubi->peb_buf, ubi->leb_size, 1);
833 err = 1;
834
835 out_unlock:
836 mutex_unlock(&ubi->buf_mutex);
837 return err;
838 }
839
840 static bool vol_ignored(int vol_id)
841 {
842 switch (vol_id) {
843 case UBI_LAYOUT_VOLUME_ID:
844 return true;
845 }
846
847 #ifdef CONFIG_MTD_UBI_FASTMAP
848 return ubi_is_fm_vol(vol_id);
849 #else
850 return false;
851 #endif
852 }
853
854 /**
855 * scan_peb - scan and process UBI headers of a PEB.
856 * @ubi: UBI device description object
857 * @ai: attaching information
858 * @pnum: the physical eraseblock number
859 * @fast: true if we're scanning for a Fastmap
860 *
861 * This function reads UBI headers of PEB @pnum, checks them, and adds
862 * information about this PEB to the corresponding list or RB-tree in the
863 * "attaching info" structure. Returns zero if the physical eraseblock was
864 * successfully handled and a negative error code in case of failure.
865 */
866 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
867 int pnum, bool fast)
868 {
869 long long ec;
870 int err, bitflips = 0, vol_id = -1, ec_err = 0;
871
872 dbg_bld("scan PEB %d", pnum);
873
874 /* Skip bad physical eraseblocks */
875 err = ubi_io_is_bad(ubi, pnum);
876 if (err < 0)
877 return err;
878 else if (err) {
879 ai->bad_peb_count += 1;
880 return 0;
881 }
882
883 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
884 if (err < 0)
885 return err;
886 switch (err) {
887 case 0:
888 break;
889 case UBI_IO_BITFLIPS:
890 bitflips = 1;
891 break;
892 case UBI_IO_FF:
893 ai->empty_peb_count += 1;
894 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
895 UBI_UNKNOWN, 0, &ai->erase);
896 case UBI_IO_FF_BITFLIPS:
897 ai->empty_peb_count += 1;
898 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
899 UBI_UNKNOWN, 1, &ai->erase);
900 case UBI_IO_BAD_HDR_EBADMSG:
901 case UBI_IO_BAD_HDR:
902 /*
903 * We have to also look at the VID header, possibly it is not
904 * corrupted. Set %bitflips flag in order to make this PEB be
905 * moved and EC be re-created.
906 */
907 ec_err = err;
908 ec = UBI_UNKNOWN;
909 bitflips = 1;
910 break;
911 default:
912 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
913 err);
914 return -EINVAL;
915 }
916
917 if (!ec_err) {
918 int image_seq;
919
920 /* Make sure UBI version is OK */
921 if (ech->version != UBI_VERSION) {
922 ubi_err(ubi, "this UBI version is %d, image version is %d",
923 UBI_VERSION, (int)ech->version);
924 return -EINVAL;
925 }
926
927 ec = be64_to_cpu(ech->ec);
928 if (ec > UBI_MAX_ERASECOUNTER) {
929 /*
930 * Erase counter overflow. The EC headers have 64 bits
931 * reserved, but we anyway make use of only 31 bit
932 * values, as this seems to be enough for any existing
933 * flash. Upgrade UBI and use 64-bit erase counters
934 * internally.
935 */
936 ubi_err(ubi, "erase counter overflow, max is %d",
937 UBI_MAX_ERASECOUNTER);
938 ubi_dump_ec_hdr(ech);
939 return -EINVAL;
940 }
941
942 /*
943 * Make sure that all PEBs have the same image sequence number.
944 * This allows us to detect situations when users flash UBI
945 * images incorrectly, so that the flash has the new UBI image
946 * and leftovers from the old one. This feature was added
947 * relatively recently, and the sequence number was always
948 * zero, because old UBI implementations always set it to zero.
949 * For this reasons, we do not panic if some PEBs have zero
950 * sequence number, while other PEBs have non-zero sequence
951 * number.
952 */
953 image_seq = be32_to_cpu(ech->image_seq);
954 if (!ubi->image_seq)
955 ubi->image_seq = image_seq;
956 if (image_seq && ubi->image_seq != image_seq) {
957 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
958 image_seq, pnum, ubi->image_seq);
959 ubi_dump_ec_hdr(ech);
960 return -EINVAL;
961 }
962 }
963
964 /* OK, we've done with the EC header, let's look at the VID header */
965
966 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
967 if (err < 0)
968 return err;
969 switch (err) {
970 case 0:
971 break;
972 case UBI_IO_BITFLIPS:
973 bitflips = 1;
974 break;
975 case UBI_IO_BAD_HDR_EBADMSG:
976 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
977 /*
978 * Both EC and VID headers are corrupted and were read
979 * with data integrity error, probably this is a bad
980 * PEB, bit it is not marked as bad yet. This may also
981 * be a result of power cut during erasure.
982 */
983 ai->maybe_bad_peb_count += 1;
984 case UBI_IO_BAD_HDR:
985 /*
986 * If we're facing a bad VID header we have to drop *all*
987 * Fastmap data structures we find. The most recent Fastmap
988 * could be bad and therefore there is a chance that we attach
989 * from an old one. On a fine MTD stack a PEB must not render
990 * bad all of a sudden, but the reality is different.
991 * So, let's be paranoid and help finding the root cause by
992 * falling back to scanning mode instead of attaching with a
993 * bad EBA table and cause data corruption which is hard to
994 * analyze.
995 */
996 if (fast)
997 ai->force_full_scan = 1;
998
999 if (ec_err)
1000 /*
1001 * Both headers are corrupted. There is a possibility
1002 * that this a valid UBI PEB which has corresponding
1003 * LEB, but the headers are corrupted. However, it is
1004 * impossible to distinguish it from a PEB which just
1005 * contains garbage because of a power cut during erase
1006 * operation. So we just schedule this PEB for erasure.
1007 *
1008 * Besides, in case of NOR flash, we deliberately
1009 * corrupt both headers because NOR flash erasure is
1010 * slow and can start from the end.
1011 */
1012 err = 0;
1013 else
1014 /*
1015 * The EC was OK, but the VID header is corrupted. We
1016 * have to check what is in the data area.
1017 */
1018 err = check_corruption(ubi, vidh, pnum);
1019
1020 if (err < 0)
1021 return err;
1022 else if (!err)
1023 /* This corruption is caused by a power cut */
1024 err = add_to_list(ai, pnum, UBI_UNKNOWN,
1025 UBI_UNKNOWN, ec, 1, &ai->erase);
1026 else
1027 /* This is an unexpected corruption */
1028 err = add_corrupted(ai, pnum, ec);
1029 if (err)
1030 return err;
1031 goto adjust_mean_ec;
1032 case UBI_IO_FF_BITFLIPS:
1033 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1034 ec, 1, &ai->erase);
1035 if (err)
1036 return err;
1037 goto adjust_mean_ec;
1038 case UBI_IO_FF:
1039 if (ec_err || bitflips)
1040 err = add_to_list(ai, pnum, UBI_UNKNOWN,
1041 UBI_UNKNOWN, ec, 1, &ai->erase);
1042 else
1043 err = add_to_list(ai, pnum, UBI_UNKNOWN,
1044 UBI_UNKNOWN, ec, 0, &ai->free);
1045 if (err)
1046 return err;
1047 goto adjust_mean_ec;
1048 default:
1049 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1050 err);
1051 return -EINVAL;
1052 }
1053
1054 vol_id = be32_to_cpu(vidh->vol_id);
1055 if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1056 int lnum = be32_to_cpu(vidh->lnum);
1057
1058 /* Unsupported internal volume */
1059 switch (vidh->compat) {
1060 case UBI_COMPAT_DELETE:
1061 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1062 vol_id, lnum);
1063
1064 err = add_to_list(ai, pnum, vol_id, lnum,
1065 ec, 1, &ai->erase);
1066 if (err)
1067 return err;
1068 return 0;
1069
1070 case UBI_COMPAT_RO:
1071 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1072 vol_id, lnum);
1073 ubi->ro_mode = 1;
1074 break;
1075
1076 case UBI_COMPAT_PRESERVE:
1077 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1078 vol_id, lnum);
1079 err = add_to_list(ai, pnum, vol_id, lnum,
1080 ec, 0, &ai->alien);
1081 if (err)
1082 return err;
1083 return 0;
1084
1085 case UBI_COMPAT_REJECT:
1086 ubi_err(ubi, "incompatible internal volume %d:%d found",
1087 vol_id, lnum);
1088 return -EINVAL;
1089 }
1090 }
1091
1092 if (ec_err)
1093 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1094 pnum);
1095
1096 if (ubi_is_fm_vol(vol_id))
1097 err = add_fastmap(ai, pnum, vidh, ec);
1098 else
1099 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1100
1101 if (err)
1102 return err;
1103
1104 adjust_mean_ec:
1105 if (!ec_err) {
1106 ai->ec_sum += ec;
1107 ai->ec_count += 1;
1108 if (ec > ai->max_ec)
1109 ai->max_ec = ec;
1110 if (ec < ai->min_ec)
1111 ai->min_ec = ec;
1112 }
1113
1114 return 0;
1115 }
1116
1117 /**
1118 * late_analysis - analyze the overall situation with PEB.
1119 * @ubi: UBI device description object
1120 * @ai: attaching information
1121 *
1122 * This is a helper function which takes a look what PEBs we have after we
1123 * gather information about all of them ("ai" is compete). It decides whether
1124 * the flash is empty and should be formatted of whether there are too many
1125 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1126 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1127 */
1128 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1129 {
1130 struct ubi_ainf_peb *aeb;
1131 int max_corr, peb_count;
1132
1133 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1134 max_corr = peb_count / 20 ?: 8;
1135
1136 /*
1137 * Few corrupted PEBs is not a problem and may be just a result of
1138 * unclean reboots. However, many of them may indicate some problems
1139 * with the flash HW or driver.
1140 */
1141 if (ai->corr_peb_count) {
1142 ubi_err(ubi, "%d PEBs are corrupted and preserved",
1143 ai->corr_peb_count);
1144 pr_err("Corrupted PEBs are:");
1145 list_for_each_entry(aeb, &ai->corr, u.list)
1146 pr_cont(" %d", aeb->pnum);
1147 pr_cont("\n");
1148
1149 /*
1150 * If too many PEBs are corrupted, we refuse attaching,
1151 * otherwise, only print a warning.
1152 */
1153 if (ai->corr_peb_count >= max_corr) {
1154 ubi_err(ubi, "too many corrupted PEBs, refusing");
1155 return -EINVAL;
1156 }
1157 }
1158
1159 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1160 /*
1161 * All PEBs are empty, or almost all - a couple PEBs look like
1162 * they may be bad PEBs which were not marked as bad yet.
1163 *
1164 * This piece of code basically tries to distinguish between
1165 * the following situations:
1166 *
1167 * 1. Flash is empty, but there are few bad PEBs, which are not
1168 * marked as bad so far, and which were read with error. We
1169 * want to go ahead and format this flash. While formatting,
1170 * the faulty PEBs will probably be marked as bad.
1171 *
1172 * 2. Flash contains non-UBI data and we do not want to format
1173 * it and destroy possibly important information.
1174 */
1175 if (ai->maybe_bad_peb_count <= 2) {
1176 ai->is_empty = 1;
1177 ubi_msg(ubi, "empty MTD device detected");
1178 get_random_bytes(&ubi->image_seq,
1179 sizeof(ubi->image_seq));
1180 } else {
1181 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1182 return -EINVAL;
1183 }
1184
1185 }
1186
1187 return 0;
1188 }
1189
1190 /**
1191 * destroy_av - free volume attaching information.
1192 * @av: volume attaching information
1193 * @ai: attaching information
1194 *
1195 * This function destroys the volume attaching information.
1196 */
1197 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1198 {
1199 struct ubi_ainf_peb *aeb;
1200 struct rb_node *this = av->root.rb_node;
1201
1202 while (this) {
1203 if (this->rb_left)
1204 this = this->rb_left;
1205 else if (this->rb_right)
1206 this = this->rb_right;
1207 else {
1208 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1209 this = rb_parent(this);
1210 if (this) {
1211 if (this->rb_left == &aeb->u.rb)
1212 this->rb_left = NULL;
1213 else
1214 this->rb_right = NULL;
1215 }
1216
1217 kmem_cache_free(ai->aeb_slab_cache, aeb);
1218 }
1219 }
1220 kfree(av);
1221 }
1222
1223 /**
1224 * destroy_ai - destroy attaching information.
1225 * @ai: attaching information
1226 */
1227 static void destroy_ai(struct ubi_attach_info *ai)
1228 {
1229 struct ubi_ainf_peb *aeb, *aeb_tmp;
1230 struct ubi_ainf_volume *av;
1231 struct rb_node *rb;
1232
1233 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1234 list_del(&aeb->u.list);
1235 kmem_cache_free(ai->aeb_slab_cache, aeb);
1236 }
1237 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1238 list_del(&aeb->u.list);
1239 kmem_cache_free(ai->aeb_slab_cache, aeb);
1240 }
1241 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1242 list_del(&aeb->u.list);
1243 kmem_cache_free(ai->aeb_slab_cache, aeb);
1244 }
1245 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1246 list_del(&aeb->u.list);
1247 kmem_cache_free(ai->aeb_slab_cache, aeb);
1248 }
1249 list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1250 list_del(&aeb->u.list);
1251 kmem_cache_free(ai->aeb_slab_cache, aeb);
1252 }
1253
1254 /* Destroy the volume RB-tree */
1255 rb = ai->volumes.rb_node;
1256 while (rb) {
1257 if (rb->rb_left)
1258 rb = rb->rb_left;
1259 else if (rb->rb_right)
1260 rb = rb->rb_right;
1261 else {
1262 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1263
1264 rb = rb_parent(rb);
1265 if (rb) {
1266 if (rb->rb_left == &av->rb)
1267 rb->rb_left = NULL;
1268 else
1269 rb->rb_right = NULL;
1270 }
1271
1272 destroy_av(ai, av);
1273 }
1274 }
1275
1276 kmem_cache_destroy(ai->aeb_slab_cache);
1277 kfree(ai);
1278 }
1279
1280 /**
1281 * scan_all - scan entire MTD device.
1282 * @ubi: UBI device description object
1283 * @ai: attach info object
1284 * @start: start scanning at this PEB
1285 *
1286 * This function does full scanning of an MTD device and returns complete
1287 * information about it in form of a "struct ubi_attach_info" object. In case
1288 * of failure, an error code is returned.
1289 */
1290 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1291 int start)
1292 {
1293 int err, pnum;
1294 struct rb_node *rb1, *rb2;
1295 struct ubi_ainf_volume *av;
1296 struct ubi_ainf_peb *aeb;
1297
1298 err = -ENOMEM;
1299
1300 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1301 if (!ech)
1302 return err;
1303
1304 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1305 if (!vidh)
1306 goto out_ech;
1307
1308 for (pnum = start; pnum < ubi->peb_count; pnum++) {
1309 cond_resched();
1310
1311 dbg_gen("process PEB %d", pnum);
1312 err = scan_peb(ubi, ai, pnum, false);
1313 if (err < 0)
1314 goto out_vidh;
1315 }
1316
1317 ubi_msg(ubi, "scanning is finished");
1318
1319 /* Calculate mean erase counter */
1320 if (ai->ec_count)
1321 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1322
1323 err = late_analysis(ubi, ai);
1324 if (err)
1325 goto out_vidh;
1326
1327 /*
1328 * In case of unknown erase counter we use the mean erase counter
1329 * value.
1330 */
1331 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1332 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1333 if (aeb->ec == UBI_UNKNOWN)
1334 aeb->ec = ai->mean_ec;
1335 }
1336
1337 list_for_each_entry(aeb, &ai->free, u.list) {
1338 if (aeb->ec == UBI_UNKNOWN)
1339 aeb->ec = ai->mean_ec;
1340 }
1341
1342 list_for_each_entry(aeb, &ai->corr, u.list)
1343 if (aeb->ec == UBI_UNKNOWN)
1344 aeb->ec = ai->mean_ec;
1345
1346 list_for_each_entry(aeb, &ai->erase, u.list)
1347 if (aeb->ec == UBI_UNKNOWN)
1348 aeb->ec = ai->mean_ec;
1349
1350 err = self_check_ai(ubi, ai);
1351 if (err)
1352 goto out_vidh;
1353
1354 ubi_free_vid_hdr(ubi, vidh);
1355 kfree(ech);
1356
1357 return 0;
1358
1359 out_vidh:
1360 ubi_free_vid_hdr(ubi, vidh);
1361 out_ech:
1362 kfree(ech);
1363 return err;
1364 }
1365
1366 static struct ubi_attach_info *alloc_ai(void)
1367 {
1368 struct ubi_attach_info *ai;
1369
1370 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1371 if (!ai)
1372 return ai;
1373
1374 INIT_LIST_HEAD(&ai->corr);
1375 INIT_LIST_HEAD(&ai->free);
1376 INIT_LIST_HEAD(&ai->erase);
1377 INIT_LIST_HEAD(&ai->alien);
1378 INIT_LIST_HEAD(&ai->fastmap);
1379 ai->volumes = RB_ROOT;
1380 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1381 sizeof(struct ubi_ainf_peb),
1382 0, 0, NULL);
1383 if (!ai->aeb_slab_cache) {
1384 kfree(ai);
1385 ai = NULL;
1386 }
1387
1388 return ai;
1389 }
1390
1391 #ifdef CONFIG_MTD_UBI_FASTMAP
1392
1393 /**
1394 * scan_fast - try to find a fastmap and attach from it.
1395 * @ubi: UBI device description object
1396 * @ai: attach info object
1397 *
1398 * Returns 0 on success, negative return values indicate an internal
1399 * error.
1400 * UBI_NO_FASTMAP denotes that no fastmap was found.
1401 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1402 */
1403 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1404 {
1405 int err, pnum;
1406 struct ubi_attach_info *scan_ai;
1407
1408 err = -ENOMEM;
1409
1410 scan_ai = alloc_ai();
1411 if (!scan_ai)
1412 goto out;
1413
1414 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1415 if (!ech)
1416 goto out_ai;
1417
1418 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1419 if (!vidh)
1420 goto out_ech;
1421
1422 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1423 cond_resched();
1424
1425 dbg_gen("process PEB %d", pnum);
1426 err = scan_peb(ubi, scan_ai, pnum, true);
1427 if (err < 0)
1428 goto out_vidh;
1429 }
1430
1431 ubi_free_vid_hdr(ubi, vidh);
1432 kfree(ech);
1433
1434 if (scan_ai->force_full_scan)
1435 err = UBI_NO_FASTMAP;
1436 else
1437 err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1438
1439 if (err) {
1440 /*
1441 * Didn't attach via fastmap, do a full scan but reuse what
1442 * we've aready scanned.
1443 */
1444 destroy_ai(*ai);
1445 *ai = scan_ai;
1446 } else
1447 destroy_ai(scan_ai);
1448
1449 return err;
1450
1451 out_vidh:
1452 ubi_free_vid_hdr(ubi, vidh);
1453 out_ech:
1454 kfree(ech);
1455 out_ai:
1456 destroy_ai(scan_ai);
1457 out:
1458 return err;
1459 }
1460
1461 #endif
1462
1463 /**
1464 * ubi_attach - attach an MTD device.
1465 * @ubi: UBI device descriptor
1466 * @force_scan: if set to non-zero attach by scanning
1467 *
1468 * This function returns zero in case of success and a negative error code in
1469 * case of failure.
1470 */
1471 int ubi_attach(struct ubi_device *ubi, int force_scan)
1472 {
1473 int err;
1474 struct ubi_attach_info *ai;
1475
1476 ai = alloc_ai();
1477 if (!ai)
1478 return -ENOMEM;
1479
1480 #ifdef CONFIG_MTD_UBI_FASTMAP
1481 /* On small flash devices we disable fastmap in any case. */
1482 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1483 ubi->fm_disabled = 1;
1484 force_scan = 1;
1485 }
1486
1487 if (force_scan)
1488 err = scan_all(ubi, ai, 0);
1489 else {
1490 err = scan_fast(ubi, &ai);
1491 if (err > 0 || mtd_is_eccerr(err)) {
1492 if (err != UBI_NO_FASTMAP) {
1493 destroy_ai(ai);
1494 ai = alloc_ai();
1495 if (!ai)
1496 return -ENOMEM;
1497
1498 err = scan_all(ubi, ai, 0);
1499 } else {
1500 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1501 }
1502 }
1503 }
1504 #else
1505 err = scan_all(ubi, ai, 0);
1506 #endif
1507 if (err)
1508 goto out_ai;
1509
1510 ubi->bad_peb_count = ai->bad_peb_count;
1511 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1512 ubi->corr_peb_count = ai->corr_peb_count;
1513 ubi->max_ec = ai->max_ec;
1514 ubi->mean_ec = ai->mean_ec;
1515 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
1516
1517 err = ubi_read_volume_table(ubi, ai);
1518 if (err)
1519 goto out_ai;
1520
1521 err = ubi_wl_init(ubi, ai);
1522 if (err)
1523 goto out_vtbl;
1524
1525 err = ubi_eba_init(ubi, ai);
1526 if (err)
1527 goto out_wl;
1528
1529 #ifdef CONFIG_MTD_UBI_FASTMAP
1530 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1531 struct ubi_attach_info *scan_ai;
1532
1533 scan_ai = alloc_ai();
1534 if (!scan_ai) {
1535 err = -ENOMEM;
1536 goto out_wl;
1537 }
1538
1539 err = scan_all(ubi, scan_ai, 0);
1540 if (err) {
1541 destroy_ai(scan_ai);
1542 goto out_wl;
1543 }
1544
1545 err = self_check_eba(ubi, ai, scan_ai);
1546 destroy_ai(scan_ai);
1547
1548 if (err)
1549 goto out_wl;
1550 }
1551 #endif
1552
1553 destroy_ai(ai);
1554 return 0;
1555
1556 out_wl:
1557 ubi_wl_close(ubi);
1558 out_vtbl:
1559 ubi_free_internal_volumes(ubi);
1560 vfree(ubi->vtbl);
1561 out_ai:
1562 destroy_ai(ai);
1563 return err;
1564 }
1565
1566 /**
1567 * self_check_ai - check the attaching information.
1568 * @ubi: UBI device description object
1569 * @ai: attaching information
1570 *
1571 * This function returns zero if the attaching information is all right, and a
1572 * negative error code if not or if an error occurred.
1573 */
1574 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1575 {
1576 int pnum, err, vols_found = 0;
1577 struct rb_node *rb1, *rb2;
1578 struct ubi_ainf_volume *av;
1579 struct ubi_ainf_peb *aeb, *last_aeb;
1580 uint8_t *buf;
1581
1582 if (!ubi_dbg_chk_gen(ubi))
1583 return 0;
1584
1585 /*
1586 * At first, check that attaching information is OK.
1587 */
1588 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1589 int leb_count = 0;
1590
1591 cond_resched();
1592
1593 vols_found += 1;
1594
1595 if (ai->is_empty) {
1596 ubi_err(ubi, "bad is_empty flag");
1597 goto bad_av;
1598 }
1599
1600 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1601 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1602 av->data_pad < 0 || av->last_data_size < 0) {
1603 ubi_err(ubi, "negative values");
1604 goto bad_av;
1605 }
1606
1607 if (av->vol_id >= UBI_MAX_VOLUMES &&
1608 av->vol_id < UBI_INTERNAL_VOL_START) {
1609 ubi_err(ubi, "bad vol_id");
1610 goto bad_av;
1611 }
1612
1613 if (av->vol_id > ai->highest_vol_id) {
1614 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1615 ai->highest_vol_id, av->vol_id);
1616 goto out;
1617 }
1618
1619 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1620 av->vol_type != UBI_STATIC_VOLUME) {
1621 ubi_err(ubi, "bad vol_type");
1622 goto bad_av;
1623 }
1624
1625 if (av->data_pad > ubi->leb_size / 2) {
1626 ubi_err(ubi, "bad data_pad");
1627 goto bad_av;
1628 }
1629
1630 last_aeb = NULL;
1631 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1632 cond_resched();
1633
1634 last_aeb = aeb;
1635 leb_count += 1;
1636
1637 if (aeb->pnum < 0 || aeb->ec < 0) {
1638 ubi_err(ubi, "negative values");
1639 goto bad_aeb;
1640 }
1641
1642 if (aeb->ec < ai->min_ec) {
1643 ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1644 ai->min_ec, aeb->ec);
1645 goto bad_aeb;
1646 }
1647
1648 if (aeb->ec > ai->max_ec) {
1649 ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1650 ai->max_ec, aeb->ec);
1651 goto bad_aeb;
1652 }
1653
1654 if (aeb->pnum >= ubi->peb_count) {
1655 ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1656 aeb->pnum, ubi->peb_count);
1657 goto bad_aeb;
1658 }
1659
1660 if (av->vol_type == UBI_STATIC_VOLUME) {
1661 if (aeb->lnum >= av->used_ebs) {
1662 ubi_err(ubi, "bad lnum or used_ebs");
1663 goto bad_aeb;
1664 }
1665 } else {
1666 if (av->used_ebs != 0) {
1667 ubi_err(ubi, "non-zero used_ebs");
1668 goto bad_aeb;
1669 }
1670 }
1671
1672 if (aeb->lnum > av->highest_lnum) {
1673 ubi_err(ubi, "incorrect highest_lnum or lnum");
1674 goto bad_aeb;
1675 }
1676 }
1677
1678 if (av->leb_count != leb_count) {
1679 ubi_err(ubi, "bad leb_count, %d objects in the tree",
1680 leb_count);
1681 goto bad_av;
1682 }
1683
1684 if (!last_aeb)
1685 continue;
1686
1687 aeb = last_aeb;
1688
1689 if (aeb->lnum != av->highest_lnum) {
1690 ubi_err(ubi, "bad highest_lnum");
1691 goto bad_aeb;
1692 }
1693 }
1694
1695 if (vols_found != ai->vols_found) {
1696 ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1697 ai->vols_found, vols_found);
1698 goto out;
1699 }
1700
1701 /* Check that attaching information is correct */
1702 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1703 last_aeb = NULL;
1704 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1705 int vol_type;
1706
1707 cond_resched();
1708
1709 last_aeb = aeb;
1710
1711 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1712 if (err && err != UBI_IO_BITFLIPS) {
1713 ubi_err(ubi, "VID header is not OK (%d)",
1714 err);
1715 if (err > 0)
1716 err = -EIO;
1717 return err;
1718 }
1719
1720 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1721 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1722 if (av->vol_type != vol_type) {
1723 ubi_err(ubi, "bad vol_type");
1724 goto bad_vid_hdr;
1725 }
1726
1727 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1728 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1729 goto bad_vid_hdr;
1730 }
1731
1732 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1733 ubi_err(ubi, "bad vol_id %d", av->vol_id);
1734 goto bad_vid_hdr;
1735 }
1736
1737 if (av->compat != vidh->compat) {
1738 ubi_err(ubi, "bad compat %d", vidh->compat);
1739 goto bad_vid_hdr;
1740 }
1741
1742 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1743 ubi_err(ubi, "bad lnum %d", aeb->lnum);
1744 goto bad_vid_hdr;
1745 }
1746
1747 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1748 ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1749 goto bad_vid_hdr;
1750 }
1751
1752 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1753 ubi_err(ubi, "bad data_pad %d", av->data_pad);
1754 goto bad_vid_hdr;
1755 }
1756 }
1757
1758 if (!last_aeb)
1759 continue;
1760
1761 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1762 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1763 goto bad_vid_hdr;
1764 }
1765
1766 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1767 ubi_err(ubi, "bad last_data_size %d",
1768 av->last_data_size);
1769 goto bad_vid_hdr;
1770 }
1771 }
1772
1773 /*
1774 * Make sure that all the physical eraseblocks are in one of the lists
1775 * or trees.
1776 */
1777 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1778 if (!buf)
1779 return -ENOMEM;
1780
1781 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1782 err = ubi_io_is_bad(ubi, pnum);
1783 if (err < 0) {
1784 kfree(buf);
1785 return err;
1786 } else if (err)
1787 buf[pnum] = 1;
1788 }
1789
1790 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1791 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1792 buf[aeb->pnum] = 1;
1793
1794 list_for_each_entry(aeb, &ai->free, u.list)
1795 buf[aeb->pnum] = 1;
1796
1797 list_for_each_entry(aeb, &ai->corr, u.list)
1798 buf[aeb->pnum] = 1;
1799
1800 list_for_each_entry(aeb, &ai->erase, u.list)
1801 buf[aeb->pnum] = 1;
1802
1803 list_for_each_entry(aeb, &ai->alien, u.list)
1804 buf[aeb->pnum] = 1;
1805
1806 err = 0;
1807 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1808 if (!buf[pnum]) {
1809 ubi_err(ubi, "PEB %d is not referred", pnum);
1810 err = 1;
1811 }
1812
1813 kfree(buf);
1814 if (err)
1815 goto out;
1816 return 0;
1817
1818 bad_aeb:
1819 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1820 ubi_dump_aeb(aeb, 0);
1821 ubi_dump_av(av);
1822 goto out;
1823
1824 bad_av:
1825 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1826 ubi_dump_av(av);
1827 goto out;
1828
1829 bad_vid_hdr:
1830 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1831 ubi_dump_av(av);
1832 ubi_dump_vid_hdr(vidh);
1833
1834 out:
1835 dump_stack();
1836 return -EINVAL;
1837 }