]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/ubi/build.c
drm/radeon: set fb aperture sizes for framebuffer handoff.
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 *
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
34 */
35
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/stat.h>
41 #include <linux/miscdevice.h>
42 #include <linux/log2.h>
43 #include <linux/kthread.h>
44 #include <linux/reboot.h>
45 #include "ubi.h"
46
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49
50 /**
51 * struct mtd_dev_param - MTD device parameter description data structure.
52 * @name: MTD device name or number string
53 * @vid_hdr_offs: VID header offset
54 */
55 struct mtd_dev_param {
56 char name[MTD_PARAM_LEN_MAX];
57 int vid_hdr_offs;
58 };
59
60 /* Numbers of elements set in the @mtd_dev_param array */
61 static int mtd_devs;
62
63 /* MTD devices specification parameters */
64 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
65
66 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
67 struct class *ubi_class;
68
69 /* Slab cache for wear-leveling entries */
70 struct kmem_cache *ubi_wl_entry_slab;
71
72 /* UBI control character device */
73 static struct miscdevice ubi_ctrl_cdev = {
74 .minor = MISC_DYNAMIC_MINOR,
75 .name = "ubi_ctrl",
76 .fops = &ubi_ctrl_cdev_operations,
77 };
78
79 /* All UBI devices in system */
80 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
81
82 /* Serializes UBI devices creations and removals */
83 DEFINE_MUTEX(ubi_devices_mutex);
84
85 /* Protects @ubi_devices and @ubi->ref_count */
86 static DEFINE_SPINLOCK(ubi_devices_lock);
87
88 /* "Show" method for files in '/<sysfs>/class/ubi/' */
89 static ssize_t ubi_version_show(struct class *class, char *buf)
90 {
91 return sprintf(buf, "%d\n", UBI_VERSION);
92 }
93
94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
95 static struct class_attribute ubi_version =
96 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
97
98 static ssize_t dev_attribute_show(struct device *dev,
99 struct device_attribute *attr, char *buf);
100
101 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
102 static struct device_attribute dev_eraseblock_size =
103 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
104 static struct device_attribute dev_avail_eraseblocks =
105 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
106 static struct device_attribute dev_total_eraseblocks =
107 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
108 static struct device_attribute dev_volumes_count =
109 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
110 static struct device_attribute dev_max_ec =
111 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
112 static struct device_attribute dev_reserved_for_bad =
113 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_bad_peb_count =
115 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_max_vol_count =
117 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_min_io_size =
119 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_bgt_enabled =
121 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_mtd_num =
123 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
124
125 /**
126 * ubi_volume_notify - send a volume change notification.
127 * @ubi: UBI device description object
128 * @vol: volume description object of the changed volume
129 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
130 *
131 * This is a helper function which notifies all subscribers about a volume
132 * change event (creation, removal, re-sizing, re-naming, updating). Returns
133 * zero in case of success and a negative error code in case of failure.
134 */
135 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
136 {
137 struct ubi_notification nt;
138
139 ubi_do_get_device_info(ubi, &nt.di);
140 ubi_do_get_volume_info(ubi, vol, &nt.vi);
141 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
142 }
143
144 /**
145 * ubi_notify_all - send a notification to all volumes.
146 * @ubi: UBI device description object
147 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
148 * @nb: the notifier to call
149 *
150 * This function walks all volumes of UBI device @ubi and sends the @ntype
151 * notification for each volume. If @nb is %NULL, then all registered notifiers
152 * are called, otherwise only the @nb notifier is called. Returns the number of
153 * sent notifications.
154 */
155 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
156 {
157 struct ubi_notification nt;
158 int i, count = 0;
159
160 ubi_do_get_device_info(ubi, &nt.di);
161
162 mutex_lock(&ubi->device_mutex);
163 for (i = 0; i < ubi->vtbl_slots; i++) {
164 /*
165 * Since the @ubi->device is locked, and we are not going to
166 * change @ubi->volumes, we do not have to lock
167 * @ubi->volumes_lock.
168 */
169 if (!ubi->volumes[i])
170 continue;
171
172 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
173 if (nb)
174 nb->notifier_call(nb, ntype, &nt);
175 else
176 blocking_notifier_call_chain(&ubi_notifiers, ntype,
177 &nt);
178 count += 1;
179 }
180 mutex_unlock(&ubi->device_mutex);
181
182 return count;
183 }
184
185 /**
186 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
187 * @nb: the notifier to call
188 *
189 * This function walks all UBI devices and volumes and sends the
190 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
191 * registered notifiers are called, otherwise only the @nb notifier is called.
192 * Returns the number of sent notifications.
193 */
194 int ubi_enumerate_volumes(struct notifier_block *nb)
195 {
196 int i, count = 0;
197
198 /*
199 * Since the @ubi_devices_mutex is locked, and we are not going to
200 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
201 */
202 for (i = 0; i < UBI_MAX_DEVICES; i++) {
203 struct ubi_device *ubi = ubi_devices[i];
204
205 if (!ubi)
206 continue;
207 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
208 }
209
210 return count;
211 }
212
213 /**
214 * ubi_get_device - get UBI device.
215 * @ubi_num: UBI device number
216 *
217 * This function returns UBI device description object for UBI device number
218 * @ubi_num, or %NULL if the device does not exist. This function increases the
219 * device reference count to prevent removal of the device. In other words, the
220 * device cannot be removed if its reference count is not zero.
221 */
222 struct ubi_device *ubi_get_device(int ubi_num)
223 {
224 struct ubi_device *ubi;
225
226 spin_lock(&ubi_devices_lock);
227 ubi = ubi_devices[ubi_num];
228 if (ubi) {
229 ubi_assert(ubi->ref_count >= 0);
230 ubi->ref_count += 1;
231 get_device(&ubi->dev);
232 }
233 spin_unlock(&ubi_devices_lock);
234
235 return ubi;
236 }
237
238 /**
239 * ubi_put_device - drop an UBI device reference.
240 * @ubi: UBI device description object
241 */
242 void ubi_put_device(struct ubi_device *ubi)
243 {
244 spin_lock(&ubi_devices_lock);
245 ubi->ref_count -= 1;
246 put_device(&ubi->dev);
247 spin_unlock(&ubi_devices_lock);
248 }
249
250 /**
251 * ubi_get_by_major - get UBI device by character device major number.
252 * @major: major number
253 *
254 * This function is similar to 'ubi_get_device()', but it searches the device
255 * by its major number.
256 */
257 struct ubi_device *ubi_get_by_major(int major)
258 {
259 int i;
260 struct ubi_device *ubi;
261
262 spin_lock(&ubi_devices_lock);
263 for (i = 0; i < UBI_MAX_DEVICES; i++) {
264 ubi = ubi_devices[i];
265 if (ubi && MAJOR(ubi->cdev.dev) == major) {
266 ubi_assert(ubi->ref_count >= 0);
267 ubi->ref_count += 1;
268 get_device(&ubi->dev);
269 spin_unlock(&ubi_devices_lock);
270 return ubi;
271 }
272 }
273 spin_unlock(&ubi_devices_lock);
274
275 return NULL;
276 }
277
278 /**
279 * ubi_major2num - get UBI device number by character device major number.
280 * @major: major number
281 *
282 * This function searches UBI device number object by its major number. If UBI
283 * device was not found, this function returns -ENODEV, otherwise the UBI device
284 * number is returned.
285 */
286 int ubi_major2num(int major)
287 {
288 int i, ubi_num = -ENODEV;
289
290 spin_lock(&ubi_devices_lock);
291 for (i = 0; i < UBI_MAX_DEVICES; i++) {
292 struct ubi_device *ubi = ubi_devices[i];
293
294 if (ubi && MAJOR(ubi->cdev.dev) == major) {
295 ubi_num = ubi->ubi_num;
296 break;
297 }
298 }
299 spin_unlock(&ubi_devices_lock);
300
301 return ubi_num;
302 }
303
304 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
305 static ssize_t dev_attribute_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
307 {
308 ssize_t ret;
309 struct ubi_device *ubi;
310
311 /*
312 * The below code looks weird, but it actually makes sense. We get the
313 * UBI device reference from the contained 'struct ubi_device'. But it
314 * is unclear if the device was removed or not yet. Indeed, if the
315 * device was removed before we increased its reference count,
316 * 'ubi_get_device()' will return -ENODEV and we fail.
317 *
318 * Remember, 'struct ubi_device' is freed in the release function, so
319 * we still can use 'ubi->ubi_num'.
320 */
321 ubi = container_of(dev, struct ubi_device, dev);
322 ubi = ubi_get_device(ubi->ubi_num);
323 if (!ubi)
324 return -ENODEV;
325
326 if (attr == &dev_eraseblock_size)
327 ret = sprintf(buf, "%d\n", ubi->leb_size);
328 else if (attr == &dev_avail_eraseblocks)
329 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
330 else if (attr == &dev_total_eraseblocks)
331 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
332 else if (attr == &dev_volumes_count)
333 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
334 else if (attr == &dev_max_ec)
335 ret = sprintf(buf, "%d\n", ubi->max_ec);
336 else if (attr == &dev_reserved_for_bad)
337 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
338 else if (attr == &dev_bad_peb_count)
339 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
340 else if (attr == &dev_max_vol_count)
341 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
342 else if (attr == &dev_min_io_size)
343 ret = sprintf(buf, "%d\n", ubi->min_io_size);
344 else if (attr == &dev_bgt_enabled)
345 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
346 else if (attr == &dev_mtd_num)
347 ret = sprintf(buf, "%d\n", ubi->mtd->index);
348 else
349 ret = -EINVAL;
350
351 ubi_put_device(ubi);
352 return ret;
353 }
354
355 static void dev_release(struct device *dev)
356 {
357 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
358
359 kfree(ubi);
360 }
361
362 /**
363 * ubi_sysfs_init - initialize sysfs for an UBI device.
364 * @ubi: UBI device description object
365 *
366 * This function returns zero in case of success and a negative error code in
367 * case of failure.
368 */
369 static int ubi_sysfs_init(struct ubi_device *ubi)
370 {
371 int err;
372
373 ubi->dev.release = dev_release;
374 ubi->dev.devt = ubi->cdev.dev;
375 ubi->dev.class = ubi_class;
376 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
377 err = device_register(&ubi->dev);
378 if (err)
379 return err;
380
381 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
382 if (err)
383 return err;
384 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
385 if (err)
386 return err;
387 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
388 if (err)
389 return err;
390 err = device_create_file(&ubi->dev, &dev_volumes_count);
391 if (err)
392 return err;
393 err = device_create_file(&ubi->dev, &dev_max_ec);
394 if (err)
395 return err;
396 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
397 if (err)
398 return err;
399 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
400 if (err)
401 return err;
402 err = device_create_file(&ubi->dev, &dev_max_vol_count);
403 if (err)
404 return err;
405 err = device_create_file(&ubi->dev, &dev_min_io_size);
406 if (err)
407 return err;
408 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
409 if (err)
410 return err;
411 err = device_create_file(&ubi->dev, &dev_mtd_num);
412 return err;
413 }
414
415 /**
416 * ubi_sysfs_close - close sysfs for an UBI device.
417 * @ubi: UBI device description object
418 */
419 static void ubi_sysfs_close(struct ubi_device *ubi)
420 {
421 device_remove_file(&ubi->dev, &dev_mtd_num);
422 device_remove_file(&ubi->dev, &dev_bgt_enabled);
423 device_remove_file(&ubi->dev, &dev_min_io_size);
424 device_remove_file(&ubi->dev, &dev_max_vol_count);
425 device_remove_file(&ubi->dev, &dev_bad_peb_count);
426 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
427 device_remove_file(&ubi->dev, &dev_max_ec);
428 device_remove_file(&ubi->dev, &dev_volumes_count);
429 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
430 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
431 device_remove_file(&ubi->dev, &dev_eraseblock_size);
432 device_unregister(&ubi->dev);
433 }
434
435 /**
436 * kill_volumes - destroy all volumes.
437 * @ubi: UBI device description object
438 */
439 static void kill_volumes(struct ubi_device *ubi)
440 {
441 int i;
442
443 for (i = 0; i < ubi->vtbl_slots; i++)
444 if (ubi->volumes[i])
445 ubi_free_volume(ubi, ubi->volumes[i]);
446 }
447
448 /**
449 * free_user_volumes - free all user volumes.
450 * @ubi: UBI device description object
451 *
452 * Normally the volumes are freed at the release function of the volume device
453 * objects. However, on error paths the volumes have to be freed before the
454 * device objects have been initialized.
455 */
456 static void free_user_volumes(struct ubi_device *ubi)
457 {
458 int i;
459
460 for (i = 0; i < ubi->vtbl_slots; i++)
461 if (ubi->volumes[i]) {
462 kfree(ubi->volumes[i]->eba_tbl);
463 kfree(ubi->volumes[i]);
464 }
465 }
466
467 /**
468 * uif_init - initialize user interfaces for an UBI device.
469 * @ubi: UBI device description object
470 *
471 * This function returns zero in case of success and a negative error code in
472 * case of failure. Note, this function destroys all volumes if it fails.
473 */
474 static int uif_init(struct ubi_device *ubi)
475 {
476 int i, err;
477 dev_t dev;
478
479 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
480
481 /*
482 * Major numbers for the UBI character devices are allocated
483 * dynamically. Major numbers of volume character devices are
484 * equivalent to ones of the corresponding UBI character device. Minor
485 * numbers of UBI character devices are 0, while minor numbers of
486 * volume character devices start from 1. Thus, we allocate one major
487 * number and ubi->vtbl_slots + 1 minor numbers.
488 */
489 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
490 if (err) {
491 ubi_err("cannot register UBI character devices");
492 return err;
493 }
494
495 ubi_assert(MINOR(dev) == 0);
496 cdev_init(&ubi->cdev, &ubi_cdev_operations);
497 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
498 ubi->cdev.owner = THIS_MODULE;
499
500 err = cdev_add(&ubi->cdev, dev, 1);
501 if (err) {
502 ubi_err("cannot add character device");
503 goto out_unreg;
504 }
505
506 err = ubi_sysfs_init(ubi);
507 if (err)
508 goto out_sysfs;
509
510 for (i = 0; i < ubi->vtbl_slots; i++)
511 if (ubi->volumes[i]) {
512 err = ubi_add_volume(ubi, ubi->volumes[i]);
513 if (err) {
514 ubi_err("cannot add volume %d", i);
515 goto out_volumes;
516 }
517 }
518
519 return 0;
520
521 out_volumes:
522 kill_volumes(ubi);
523 out_sysfs:
524 ubi_sysfs_close(ubi);
525 cdev_del(&ubi->cdev);
526 out_unreg:
527 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
528 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
529 return err;
530 }
531
532 /**
533 * uif_close - close user interfaces for an UBI device.
534 * @ubi: UBI device description object
535 *
536 * Note, since this function un-registers UBI volume device objects (@vol->dev),
537 * the memory allocated voe the volumes is freed as well (in the release
538 * function).
539 */
540 static void uif_close(struct ubi_device *ubi)
541 {
542 kill_volumes(ubi);
543 ubi_sysfs_close(ubi);
544 cdev_del(&ubi->cdev);
545 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
546 }
547
548 /**
549 * free_internal_volumes - free internal volumes.
550 * @ubi: UBI device description object
551 */
552 static void free_internal_volumes(struct ubi_device *ubi)
553 {
554 int i;
555
556 for (i = ubi->vtbl_slots;
557 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
558 kfree(ubi->volumes[i]->eba_tbl);
559 kfree(ubi->volumes[i]);
560 }
561 }
562
563 /**
564 * attach_by_scanning - attach an MTD device using scanning method.
565 * @ubi: UBI device descriptor
566 *
567 * This function returns zero in case of success and a negative error code in
568 * case of failure.
569 *
570 * Note, currently this is the only method to attach UBI devices. Hopefully in
571 * the future we'll have more scalable attaching methods and avoid full media
572 * scanning. But even in this case scanning will be needed as a fall-back
573 * attaching method if there are some on-flash table corruptions.
574 */
575 static int attach_by_scanning(struct ubi_device *ubi)
576 {
577 int err;
578 struct ubi_scan_info *si;
579
580 si = ubi_scan(ubi);
581 if (IS_ERR(si))
582 return PTR_ERR(si);
583
584 ubi->bad_peb_count = si->bad_peb_count;
585 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
586 ubi->max_ec = si->max_ec;
587 ubi->mean_ec = si->mean_ec;
588
589 err = ubi_read_volume_table(ubi, si);
590 if (err)
591 goto out_si;
592
593 err = ubi_wl_init_scan(ubi, si);
594 if (err)
595 goto out_vtbl;
596
597 err = ubi_eba_init_scan(ubi, si);
598 if (err)
599 goto out_wl;
600
601 ubi_scan_destroy_si(si);
602 return 0;
603
604 out_wl:
605 ubi_wl_close(ubi);
606 out_vtbl:
607 free_internal_volumes(ubi);
608 vfree(ubi->vtbl);
609 out_si:
610 ubi_scan_destroy_si(si);
611 return err;
612 }
613
614 /**
615 * io_init - initialize I/O sub-system for a given UBI device.
616 * @ubi: UBI device description object
617 *
618 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
619 * assumed:
620 * o EC header is always at offset zero - this cannot be changed;
621 * o VID header starts just after the EC header at the closest address
622 * aligned to @io->hdrs_min_io_size;
623 * o data starts just after the VID header at the closest address aligned to
624 * @io->min_io_size
625 *
626 * This function returns zero in case of success and a negative error code in
627 * case of failure.
628 */
629 static int io_init(struct ubi_device *ubi)
630 {
631 if (ubi->mtd->numeraseregions != 0) {
632 /*
633 * Some flashes have several erase regions. Different regions
634 * may have different eraseblock size and other
635 * characteristics. It looks like mostly multi-region flashes
636 * have one "main" region and one or more small regions to
637 * store boot loader code or boot parameters or whatever. I
638 * guess we should just pick the largest region. But this is
639 * not implemented.
640 */
641 ubi_err("multiple regions, not implemented");
642 return -EINVAL;
643 }
644
645 if (ubi->vid_hdr_offset < 0)
646 return -EINVAL;
647
648 /*
649 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
650 * physical eraseblocks maximum.
651 */
652
653 ubi->peb_size = ubi->mtd->erasesize;
654 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
655 ubi->flash_size = ubi->mtd->size;
656
657 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
658 ubi->bad_allowed = 1;
659
660 ubi->min_io_size = ubi->mtd->writesize;
661 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
662
663 /*
664 * Make sure minimal I/O unit is power of 2. Note, there is no
665 * fundamental reason for this assumption. It is just an optimization
666 * which allows us to avoid costly division operations.
667 */
668 if (!is_power_of_2(ubi->min_io_size)) {
669 ubi_err("min. I/O unit (%d) is not power of 2",
670 ubi->min_io_size);
671 return -EINVAL;
672 }
673
674 ubi_assert(ubi->hdrs_min_io_size > 0);
675 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
676 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
677
678 /* Calculate default aligned sizes of EC and VID headers */
679 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
680 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
681
682 dbg_msg("min_io_size %d", ubi->min_io_size);
683 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
684 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
685 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
686
687 if (ubi->vid_hdr_offset == 0)
688 /* Default offset */
689 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
690 ubi->ec_hdr_alsize;
691 else {
692 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
693 ~(ubi->hdrs_min_io_size - 1);
694 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
695 ubi->vid_hdr_aloffset;
696 }
697
698 /* Similar for the data offset */
699 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
700 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
701
702 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
703 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
704 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
705 dbg_msg("leb_start %d", ubi->leb_start);
706
707 /* The shift must be aligned to 32-bit boundary */
708 if (ubi->vid_hdr_shift % 4) {
709 ubi_err("unaligned VID header shift %d",
710 ubi->vid_hdr_shift);
711 return -EINVAL;
712 }
713
714 /* Check sanity */
715 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
716 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
717 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
718 ubi->leb_start & (ubi->min_io_size - 1)) {
719 ubi_err("bad VID header (%d) or data offsets (%d)",
720 ubi->vid_hdr_offset, ubi->leb_start);
721 return -EINVAL;
722 }
723
724 /*
725 * Set maximum amount of physical erroneous eraseblocks to be 10%.
726 * Erroneous PEB are those which have read errors.
727 */
728 ubi->max_erroneous = ubi->peb_count / 10;
729 if (ubi->max_erroneous < 16)
730 ubi->max_erroneous = 16;
731 dbg_msg("max_erroneous %d", ubi->max_erroneous);
732
733 /*
734 * It may happen that EC and VID headers are situated in one minimal
735 * I/O unit. In this case we can only accept this UBI image in
736 * read-only mode.
737 */
738 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
739 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
740 "switch to read-only mode");
741 ubi->ro_mode = 1;
742 }
743
744 ubi->leb_size = ubi->peb_size - ubi->leb_start;
745
746 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
747 ubi_msg("MTD device %d is write-protected, attach in "
748 "read-only mode", ubi->mtd->index);
749 ubi->ro_mode = 1;
750 }
751
752 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
753 ubi->peb_size, ubi->peb_size >> 10);
754 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
755 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
756 if (ubi->hdrs_min_io_size != ubi->min_io_size)
757 ubi_msg("sub-page size: %d",
758 ubi->hdrs_min_io_size);
759 ubi_msg("VID header offset: %d (aligned %d)",
760 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
761 ubi_msg("data offset: %d", ubi->leb_start);
762
763 /*
764 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
765 * unfortunately, MTD does not provide this information. We should loop
766 * over all physical eraseblocks and invoke mtd->block_is_bad() for
767 * each physical eraseblock. So, we skip ubi->bad_peb_count
768 * uninitialized and initialize it after scanning.
769 */
770
771 return 0;
772 }
773
774 /**
775 * autoresize - re-size the volume which has the "auto-resize" flag set.
776 * @ubi: UBI device description object
777 * @vol_id: ID of the volume to re-size
778 *
779 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
780 * the volume table to the largest possible size. See comments in ubi-header.h
781 * for more description of the flag. Returns zero in case of success and a
782 * negative error code in case of failure.
783 */
784 static int autoresize(struct ubi_device *ubi, int vol_id)
785 {
786 struct ubi_volume_desc desc;
787 struct ubi_volume *vol = ubi->volumes[vol_id];
788 int err, old_reserved_pebs = vol->reserved_pebs;
789
790 /*
791 * Clear the auto-resize flag in the volume in-memory copy of the
792 * volume table, and 'ubi_resize_volume()' will propagate this change
793 * to the flash.
794 */
795 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
796
797 if (ubi->avail_pebs == 0) {
798 struct ubi_vtbl_record vtbl_rec;
799
800 /*
801 * No available PEBs to re-size the volume, clear the flag on
802 * flash and exit.
803 */
804 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
805 sizeof(struct ubi_vtbl_record));
806 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
807 if (err)
808 ubi_err("cannot clean auto-resize flag for volume %d",
809 vol_id);
810 } else {
811 desc.vol = vol;
812 err = ubi_resize_volume(&desc,
813 old_reserved_pebs + ubi->avail_pebs);
814 if (err)
815 ubi_err("cannot auto-resize volume %d", vol_id);
816 }
817
818 if (err)
819 return err;
820
821 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
822 vol->name, old_reserved_pebs, vol->reserved_pebs);
823 return 0;
824 }
825
826 /**
827 * ubi_reboot_notifier - halt UBI transactions immediately prior to a reboot.
828 * @n: reboot notifier object
829 * @state: SYS_RESTART, SYS_HALT, or SYS_POWER_OFF
830 * @cmd: pointer to command string for RESTART2
831 *
832 * This function stops the UBI background thread so that the flash device
833 * remains quiescent when Linux restarts the system. Any queued work will be
834 * discarded, but this function will block until do_work() finishes if an
835 * operation is already in progress.
836 *
837 * This function solves a real-life problem observed on NOR flashes when an
838 * PEB erase operation starts, then the system is rebooted before the erase is
839 * finishes, and the boot loader gets confused and dies. So we prefer to finish
840 * the ongoing operation before rebooting.
841 */
842 static int ubi_reboot_notifier(struct notifier_block *n, unsigned long state,
843 void *cmd)
844 {
845 struct ubi_device *ubi;
846
847 ubi = container_of(n, struct ubi_device, reboot_notifier);
848 if (ubi->bgt_thread)
849 kthread_stop(ubi->bgt_thread);
850 ubi_sync(ubi->ubi_num);
851 return NOTIFY_DONE;
852 }
853
854 /**
855 * ubi_attach_mtd_dev - attach an MTD device.
856 * @mtd: MTD device description object
857 * @ubi_num: number to assign to the new UBI device
858 * @vid_hdr_offset: VID header offset
859 *
860 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
861 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
862 * which case this function finds a vacant device number and assigns it
863 * automatically. Returns the new UBI device number in case of success and a
864 * negative error code in case of failure.
865 *
866 * Note, the invocations of this function has to be serialized by the
867 * @ubi_devices_mutex.
868 */
869 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
870 {
871 struct ubi_device *ubi;
872 int i, err, do_free = 1;
873
874 /*
875 * Check if we already have the same MTD device attached.
876 *
877 * Note, this function assumes that UBI devices creations and deletions
878 * are serialized, so it does not take the &ubi_devices_lock.
879 */
880 for (i = 0; i < UBI_MAX_DEVICES; i++) {
881 ubi = ubi_devices[i];
882 if (ubi && mtd->index == ubi->mtd->index) {
883 dbg_err("mtd%d is already attached to ubi%d",
884 mtd->index, i);
885 return -EEXIST;
886 }
887 }
888
889 /*
890 * Make sure this MTD device is not emulated on top of an UBI volume
891 * already. Well, generally this recursion works fine, but there are
892 * different problems like the UBI module takes a reference to itself
893 * by attaching (and thus, opening) the emulated MTD device. This
894 * results in inability to unload the module. And in general it makes
895 * no sense to attach emulated MTD devices, so we prohibit this.
896 */
897 if (mtd->type == MTD_UBIVOLUME) {
898 ubi_err("refuse attaching mtd%d - it is already emulated on "
899 "top of UBI", mtd->index);
900 return -EINVAL;
901 }
902
903 if (ubi_num == UBI_DEV_NUM_AUTO) {
904 /* Search for an empty slot in the @ubi_devices array */
905 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
906 if (!ubi_devices[ubi_num])
907 break;
908 if (ubi_num == UBI_MAX_DEVICES) {
909 dbg_err("only %d UBI devices may be created",
910 UBI_MAX_DEVICES);
911 return -ENFILE;
912 }
913 } else {
914 if (ubi_num >= UBI_MAX_DEVICES)
915 return -EINVAL;
916
917 /* Make sure ubi_num is not busy */
918 if (ubi_devices[ubi_num]) {
919 dbg_err("ubi%d already exists", ubi_num);
920 return -EEXIST;
921 }
922 }
923
924 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
925 if (!ubi)
926 return -ENOMEM;
927
928 ubi->mtd = mtd;
929 ubi->ubi_num = ubi_num;
930 ubi->vid_hdr_offset = vid_hdr_offset;
931 ubi->autoresize_vol_id = -1;
932
933 mutex_init(&ubi->buf_mutex);
934 mutex_init(&ubi->ckvol_mutex);
935 mutex_init(&ubi->device_mutex);
936 spin_lock_init(&ubi->volumes_lock);
937
938 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
939
940 err = io_init(ubi);
941 if (err)
942 goto out_free;
943
944 err = -ENOMEM;
945 ubi->peb_buf1 = vmalloc(ubi->peb_size);
946 if (!ubi->peb_buf1)
947 goto out_free;
948
949 ubi->peb_buf2 = vmalloc(ubi->peb_size);
950 if (!ubi->peb_buf2)
951 goto out_free;
952
953 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
954 mutex_init(&ubi->dbg_buf_mutex);
955 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
956 if (!ubi->dbg_peb_buf)
957 goto out_free;
958 #endif
959
960 err = attach_by_scanning(ubi);
961 if (err) {
962 dbg_err("failed to attach by scanning, error %d", err);
963 goto out_free;
964 }
965
966 if (ubi->autoresize_vol_id != -1) {
967 err = autoresize(ubi, ubi->autoresize_vol_id);
968 if (err)
969 goto out_detach;
970 }
971
972 err = uif_init(ubi);
973 if (err)
974 goto out_nofree;
975
976 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
977 if (IS_ERR(ubi->bgt_thread)) {
978 err = PTR_ERR(ubi->bgt_thread);
979 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
980 err);
981 goto out_uif;
982 }
983
984 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
985 ubi_msg("MTD device name: \"%s\"", mtd->name);
986 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
987 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
988 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
989 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
990 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
991 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
992 ubi_msg("number of user volumes: %d",
993 ubi->vol_count - UBI_INT_VOL_COUNT);
994 ubi_msg("available PEBs: %d", ubi->avail_pebs);
995 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
996 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
997 ubi->beb_rsvd_pebs);
998 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
999
1000 /*
1001 * The below lock makes sure we do not race with 'ubi_thread()' which
1002 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1003 */
1004 spin_lock(&ubi->wl_lock);
1005 if (!DBG_DISABLE_BGT)
1006 ubi->thread_enabled = 1;
1007 wake_up_process(ubi->bgt_thread);
1008 spin_unlock(&ubi->wl_lock);
1009
1010 /* Flash device priority is 0 - UBI needs to shut down first */
1011 ubi->reboot_notifier.priority = 1;
1012 ubi->reboot_notifier.notifier_call = ubi_reboot_notifier;
1013 register_reboot_notifier(&ubi->reboot_notifier);
1014
1015 ubi_devices[ubi_num] = ubi;
1016 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1017 return ubi_num;
1018
1019 out_uif:
1020 uif_close(ubi);
1021 out_nofree:
1022 do_free = 0;
1023 out_detach:
1024 ubi_wl_close(ubi);
1025 if (do_free)
1026 free_user_volumes(ubi);
1027 free_internal_volumes(ubi);
1028 vfree(ubi->vtbl);
1029 out_free:
1030 vfree(ubi->peb_buf1);
1031 vfree(ubi->peb_buf2);
1032 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1033 vfree(ubi->dbg_peb_buf);
1034 #endif
1035 kfree(ubi);
1036 return err;
1037 }
1038
1039 /**
1040 * ubi_detach_mtd_dev - detach an MTD device.
1041 * @ubi_num: UBI device number to detach from
1042 * @anyway: detach MTD even if device reference count is not zero
1043 *
1044 * This function destroys an UBI device number @ubi_num and detaches the
1045 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1046 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1047 * exist.
1048 *
1049 * Note, the invocations of this function has to be serialized by the
1050 * @ubi_devices_mutex.
1051 */
1052 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1053 {
1054 struct ubi_device *ubi;
1055
1056 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1057 return -EINVAL;
1058
1059 ubi = ubi_get_device(ubi_num);
1060 if (!ubi)
1061 return -EINVAL;
1062
1063 spin_lock(&ubi_devices_lock);
1064 put_device(&ubi->dev);
1065 ubi->ref_count -= 1;
1066 if (ubi->ref_count) {
1067 if (!anyway) {
1068 spin_unlock(&ubi_devices_lock);
1069 return -EBUSY;
1070 }
1071 /* This may only happen if there is a bug */
1072 ubi_err("%s reference count %d, destroy anyway",
1073 ubi->ubi_name, ubi->ref_count);
1074 }
1075 ubi_devices[ubi_num] = NULL;
1076 spin_unlock(&ubi_devices_lock);
1077
1078 ubi_assert(ubi_num == ubi->ubi_num);
1079 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1080 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1081
1082 /*
1083 * Before freeing anything, we have to stop the background thread to
1084 * prevent it from doing anything on this device while we are freeing.
1085 */
1086 unregister_reboot_notifier(&ubi->reboot_notifier);
1087 if (ubi->bgt_thread)
1088 kthread_stop(ubi->bgt_thread);
1089
1090 /*
1091 * Get a reference to the device in order to prevent 'dev_release()'
1092 * from freeing @ubi object.
1093 */
1094 get_device(&ubi->dev);
1095
1096 uif_close(ubi);
1097 ubi_wl_close(ubi);
1098 free_internal_volumes(ubi);
1099 vfree(ubi->vtbl);
1100 put_mtd_device(ubi->mtd);
1101 vfree(ubi->peb_buf1);
1102 vfree(ubi->peb_buf2);
1103 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1104 vfree(ubi->dbg_peb_buf);
1105 #endif
1106 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1107 put_device(&ubi->dev);
1108 return 0;
1109 }
1110
1111 /**
1112 * find_mtd_device - open an MTD device by its name or number.
1113 * @mtd_dev: name or number of the device
1114 *
1115 * This function tries to open and MTD device described by @mtd_dev string,
1116 * which is first treated as an ASCII number, and if it is not true, it is
1117 * treated as MTD device name. Returns MTD device description object in case of
1118 * success and a negative error code in case of failure.
1119 */
1120 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1121 {
1122 struct mtd_info *mtd;
1123 int mtd_num;
1124 char *endp;
1125
1126 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1127 if (*endp != '\0' || mtd_dev == endp) {
1128 /*
1129 * This does not look like an ASCII integer, probably this is
1130 * MTD device name.
1131 */
1132 mtd = get_mtd_device_nm(mtd_dev);
1133 } else
1134 mtd = get_mtd_device(NULL, mtd_num);
1135
1136 return mtd;
1137 }
1138
1139 static int __init ubi_init(void)
1140 {
1141 int err, i, k;
1142
1143 /* Ensure that EC and VID headers have correct size */
1144 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1145 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1146
1147 if (mtd_devs > UBI_MAX_DEVICES) {
1148 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1149 return -EINVAL;
1150 }
1151
1152 /* Create base sysfs directory and sysfs files */
1153 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1154 if (IS_ERR(ubi_class)) {
1155 err = PTR_ERR(ubi_class);
1156 ubi_err("cannot create UBI class");
1157 goto out;
1158 }
1159
1160 err = class_create_file(ubi_class, &ubi_version);
1161 if (err) {
1162 ubi_err("cannot create sysfs file");
1163 goto out_class;
1164 }
1165
1166 err = misc_register(&ubi_ctrl_cdev);
1167 if (err) {
1168 ubi_err("cannot register device");
1169 goto out_version;
1170 }
1171
1172 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1173 sizeof(struct ubi_wl_entry),
1174 0, 0, NULL);
1175 if (!ubi_wl_entry_slab)
1176 goto out_dev_unreg;
1177
1178 /* Attach MTD devices */
1179 for (i = 0; i < mtd_devs; i++) {
1180 struct mtd_dev_param *p = &mtd_dev_param[i];
1181 struct mtd_info *mtd;
1182
1183 cond_resched();
1184
1185 mtd = open_mtd_device(p->name);
1186 if (IS_ERR(mtd)) {
1187 err = PTR_ERR(mtd);
1188 goto out_detach;
1189 }
1190
1191 mutex_lock(&ubi_devices_mutex);
1192 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1193 p->vid_hdr_offs);
1194 mutex_unlock(&ubi_devices_mutex);
1195 if (err < 0) {
1196 put_mtd_device(mtd);
1197 ubi_err("cannot attach mtd%d", mtd->index);
1198 goto out_detach;
1199 }
1200 }
1201
1202 return 0;
1203
1204 out_detach:
1205 for (k = 0; k < i; k++)
1206 if (ubi_devices[k]) {
1207 mutex_lock(&ubi_devices_mutex);
1208 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1209 mutex_unlock(&ubi_devices_mutex);
1210 }
1211 kmem_cache_destroy(ubi_wl_entry_slab);
1212 out_dev_unreg:
1213 misc_deregister(&ubi_ctrl_cdev);
1214 out_version:
1215 class_remove_file(ubi_class, &ubi_version);
1216 out_class:
1217 class_destroy(ubi_class);
1218 out:
1219 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1220 return err;
1221 }
1222 module_init(ubi_init);
1223
1224 static void __exit ubi_exit(void)
1225 {
1226 int i;
1227
1228 for (i = 0; i < UBI_MAX_DEVICES; i++)
1229 if (ubi_devices[i]) {
1230 mutex_lock(&ubi_devices_mutex);
1231 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1232 mutex_unlock(&ubi_devices_mutex);
1233 }
1234 kmem_cache_destroy(ubi_wl_entry_slab);
1235 misc_deregister(&ubi_ctrl_cdev);
1236 class_remove_file(ubi_class, &ubi_version);
1237 class_destroy(ubi_class);
1238 }
1239 module_exit(ubi_exit);
1240
1241 /**
1242 * bytes_str_to_int - convert a number of bytes string into an integer.
1243 * @str: the string to convert
1244 *
1245 * This function returns positive resulting integer in case of success and a
1246 * negative error code in case of failure.
1247 */
1248 static int __init bytes_str_to_int(const char *str)
1249 {
1250 char *endp;
1251 unsigned long result;
1252
1253 result = simple_strtoul(str, &endp, 0);
1254 if (str == endp || result < 0) {
1255 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1256 str);
1257 return -EINVAL;
1258 }
1259
1260 switch (*endp) {
1261 case 'G':
1262 result *= 1024;
1263 case 'M':
1264 result *= 1024;
1265 case 'K':
1266 result *= 1024;
1267 if (endp[1] == 'i' && endp[2] == 'B')
1268 endp += 2;
1269 case '\0':
1270 break;
1271 default:
1272 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1273 str);
1274 return -EINVAL;
1275 }
1276
1277 return result;
1278 }
1279
1280 /**
1281 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1282 * @val: the parameter value to parse
1283 * @kp: not used
1284 *
1285 * This function returns zero in case of success and a negative error code in
1286 * case of error.
1287 */
1288 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1289 {
1290 int i, len;
1291 struct mtd_dev_param *p;
1292 char buf[MTD_PARAM_LEN_MAX];
1293 char *pbuf = &buf[0];
1294 char *tokens[2] = {NULL, NULL};
1295
1296 if (!val)
1297 return -EINVAL;
1298
1299 if (mtd_devs == UBI_MAX_DEVICES) {
1300 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1301 UBI_MAX_DEVICES);
1302 return -EINVAL;
1303 }
1304
1305 len = strnlen(val, MTD_PARAM_LEN_MAX);
1306 if (len == MTD_PARAM_LEN_MAX) {
1307 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1308 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1309 return -EINVAL;
1310 }
1311
1312 if (len == 0) {
1313 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1314 "ignored\n");
1315 return 0;
1316 }
1317
1318 strcpy(buf, val);
1319
1320 /* Get rid of the final newline */
1321 if (buf[len - 1] == '\n')
1322 buf[len - 1] = '\0';
1323
1324 for (i = 0; i < 2; i++)
1325 tokens[i] = strsep(&pbuf, ",");
1326
1327 if (pbuf) {
1328 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1329 val);
1330 return -EINVAL;
1331 }
1332
1333 p = &mtd_dev_param[mtd_devs];
1334 strcpy(&p->name[0], tokens[0]);
1335
1336 if (tokens[1])
1337 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1338
1339 if (p->vid_hdr_offs < 0)
1340 return p->vid_hdr_offs;
1341
1342 mtd_devs += 1;
1343 return 0;
1344 }
1345
1346 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1347 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1348 "mtd=<name|num>[,<vid_hdr_offs>].\n"
1349 "Multiple \"mtd\" parameters may be specified.\n"
1350 "MTD devices may be specified by their number or name.\n"
1351 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1352 "header position and data starting position to be used "
1353 "by UBI.\n"
1354 "Example: mtd=content,1984 mtd=4 - attach MTD device"
1355 "with name \"content\" using VID header offset 1984, and "
1356 "MTD device number 4 with default VID header offset.");
1357
1358 MODULE_VERSION(__stringify(UBI_VERSION));
1359 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1360 MODULE_AUTHOR("Artem Bityutskiy");
1361 MODULE_LICENSE("GPL");