]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/ubi/build.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74 };
75
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 #endif
85 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
86 struct class *ubi_class;
87
88 /* Slab cache for wear-leveling entries */
89 struct kmem_cache *ubi_wl_entry_slab;
90
91 /* UBI control character device */
92 static struct miscdevice ubi_ctrl_cdev = {
93 .minor = MISC_DYNAMIC_MINOR,
94 .name = "ubi_ctrl",
95 .fops = &ubi_ctrl_cdev_operations,
96 };
97
98 /* All UBI devices in system */
99 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
100
101 /* Serializes UBI devices creations and removals */
102 DEFINE_MUTEX(ubi_devices_mutex);
103
104 /* Protects @ubi_devices and @ubi->ref_count */
105 static DEFINE_SPINLOCK(ubi_devices_lock);
106
107 /* "Show" method for files in '/<sysfs>/class/ubi/' */
108 static ssize_t ubi_version_show(struct class *class,
109 struct class_attribute *attr, char *buf)
110 {
111 return sprintf(buf, "%d\n", UBI_VERSION);
112 }
113
114 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
115 static struct class_attribute ubi_version =
116 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
117
118 static ssize_t dev_attribute_show(struct device *dev,
119 struct device_attribute *attr, char *buf);
120
121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
122 static struct device_attribute dev_eraseblock_size =
123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_avail_eraseblocks =
125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_total_eraseblocks =
127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_volumes_count =
129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_max_ec =
131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_reserved_for_bad =
133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_bad_peb_count =
135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_max_vol_count =
137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_min_io_size =
139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_bgt_enabled =
141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_mtd_num =
143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
144
145 /**
146 * ubi_volume_notify - send a volume change notification.
147 * @ubi: UBI device description object
148 * @vol: volume description object of the changed volume
149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
150 *
151 * This is a helper function which notifies all subscribers about a volume
152 * change event (creation, removal, re-sizing, re-naming, updating). Returns
153 * zero in case of success and a negative error code in case of failure.
154 */
155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
156 {
157 struct ubi_notification nt;
158
159 ubi_do_get_device_info(ubi, &nt.di);
160 ubi_do_get_volume_info(ubi, vol, &nt.vi);
161
162 #ifdef CONFIG_MTD_UBI_FASTMAP
163 switch (ntype) {
164 case UBI_VOLUME_ADDED:
165 case UBI_VOLUME_REMOVED:
166 case UBI_VOLUME_RESIZED:
167 case UBI_VOLUME_RENAMED:
168 if (ubi_update_fastmap(ubi)) {
169 ubi_err("Unable to update fastmap!");
170 ubi_ro_mode(ubi);
171 }
172 }
173 #endif
174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
175 }
176
177 /**
178 * ubi_notify_all - send a notification to all volumes.
179 * @ubi: UBI device description object
180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
181 * @nb: the notifier to call
182 *
183 * This function walks all volumes of UBI device @ubi and sends the @ntype
184 * notification for each volume. If @nb is %NULL, then all registered notifiers
185 * are called, otherwise only the @nb notifier is called. Returns the number of
186 * sent notifications.
187 */
188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
189 {
190 struct ubi_notification nt;
191 int i, count = 0;
192
193 ubi_do_get_device_info(ubi, &nt.di);
194
195 mutex_lock(&ubi->device_mutex);
196 for (i = 0; i < ubi->vtbl_slots; i++) {
197 /*
198 * Since the @ubi->device is locked, and we are not going to
199 * change @ubi->volumes, we do not have to lock
200 * @ubi->volumes_lock.
201 */
202 if (!ubi->volumes[i])
203 continue;
204
205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
206 if (nb)
207 nb->notifier_call(nb, ntype, &nt);
208 else
209 blocking_notifier_call_chain(&ubi_notifiers, ntype,
210 &nt);
211 count += 1;
212 }
213 mutex_unlock(&ubi->device_mutex);
214
215 return count;
216 }
217
218 /**
219 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
220 * @nb: the notifier to call
221 *
222 * This function walks all UBI devices and volumes and sends the
223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
224 * registered notifiers are called, otherwise only the @nb notifier is called.
225 * Returns the number of sent notifications.
226 */
227 int ubi_enumerate_volumes(struct notifier_block *nb)
228 {
229 int i, count = 0;
230
231 /*
232 * Since the @ubi_devices_mutex is locked, and we are not going to
233 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
234 */
235 for (i = 0; i < UBI_MAX_DEVICES; i++) {
236 struct ubi_device *ubi = ubi_devices[i];
237
238 if (!ubi)
239 continue;
240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
241 }
242
243 return count;
244 }
245
246 /**
247 * ubi_get_device - get UBI device.
248 * @ubi_num: UBI device number
249 *
250 * This function returns UBI device description object for UBI device number
251 * @ubi_num, or %NULL if the device does not exist. This function increases the
252 * device reference count to prevent removal of the device. In other words, the
253 * device cannot be removed if its reference count is not zero.
254 */
255 struct ubi_device *ubi_get_device(int ubi_num)
256 {
257 struct ubi_device *ubi;
258
259 spin_lock(&ubi_devices_lock);
260 ubi = ubi_devices[ubi_num];
261 if (ubi) {
262 ubi_assert(ubi->ref_count >= 0);
263 ubi->ref_count += 1;
264 get_device(&ubi->dev);
265 }
266 spin_unlock(&ubi_devices_lock);
267
268 return ubi;
269 }
270
271 /**
272 * ubi_put_device - drop an UBI device reference.
273 * @ubi: UBI device description object
274 */
275 void ubi_put_device(struct ubi_device *ubi)
276 {
277 spin_lock(&ubi_devices_lock);
278 ubi->ref_count -= 1;
279 put_device(&ubi->dev);
280 spin_unlock(&ubi_devices_lock);
281 }
282
283 /**
284 * ubi_get_by_major - get UBI device by character device major number.
285 * @major: major number
286 *
287 * This function is similar to 'ubi_get_device()', but it searches the device
288 * by its major number.
289 */
290 struct ubi_device *ubi_get_by_major(int major)
291 {
292 int i;
293 struct ubi_device *ubi;
294
295 spin_lock(&ubi_devices_lock);
296 for (i = 0; i < UBI_MAX_DEVICES; i++) {
297 ubi = ubi_devices[i];
298 if (ubi && MAJOR(ubi->cdev.dev) == major) {
299 ubi_assert(ubi->ref_count >= 0);
300 ubi->ref_count += 1;
301 get_device(&ubi->dev);
302 spin_unlock(&ubi_devices_lock);
303 return ubi;
304 }
305 }
306 spin_unlock(&ubi_devices_lock);
307
308 return NULL;
309 }
310
311 /**
312 * ubi_major2num - get UBI device number by character device major number.
313 * @major: major number
314 *
315 * This function searches UBI device number object by its major number. If UBI
316 * device was not found, this function returns -ENODEV, otherwise the UBI device
317 * number is returned.
318 */
319 int ubi_major2num(int major)
320 {
321 int i, ubi_num = -ENODEV;
322
323 spin_lock(&ubi_devices_lock);
324 for (i = 0; i < UBI_MAX_DEVICES; i++) {
325 struct ubi_device *ubi = ubi_devices[i];
326
327 if (ubi && MAJOR(ubi->cdev.dev) == major) {
328 ubi_num = ubi->ubi_num;
329 break;
330 }
331 }
332 spin_unlock(&ubi_devices_lock);
333
334 return ubi_num;
335 }
336
337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
338 static ssize_t dev_attribute_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
340 {
341 ssize_t ret;
342 struct ubi_device *ubi;
343
344 /*
345 * The below code looks weird, but it actually makes sense. We get the
346 * UBI device reference from the contained 'struct ubi_device'. But it
347 * is unclear if the device was removed or not yet. Indeed, if the
348 * device was removed before we increased its reference count,
349 * 'ubi_get_device()' will return -ENODEV and we fail.
350 *
351 * Remember, 'struct ubi_device' is freed in the release function, so
352 * we still can use 'ubi->ubi_num'.
353 */
354 ubi = container_of(dev, struct ubi_device, dev);
355 ubi = ubi_get_device(ubi->ubi_num);
356 if (!ubi)
357 return -ENODEV;
358
359 if (attr == &dev_eraseblock_size)
360 ret = sprintf(buf, "%d\n", ubi->leb_size);
361 else if (attr == &dev_avail_eraseblocks)
362 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
363 else if (attr == &dev_total_eraseblocks)
364 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
365 else if (attr == &dev_volumes_count)
366 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
367 else if (attr == &dev_max_ec)
368 ret = sprintf(buf, "%d\n", ubi->max_ec);
369 else if (attr == &dev_reserved_for_bad)
370 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
371 else if (attr == &dev_bad_peb_count)
372 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
373 else if (attr == &dev_max_vol_count)
374 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
375 else if (attr == &dev_min_io_size)
376 ret = sprintf(buf, "%d\n", ubi->min_io_size);
377 else if (attr == &dev_bgt_enabled)
378 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
379 else if (attr == &dev_mtd_num)
380 ret = sprintf(buf, "%d\n", ubi->mtd->index);
381 else
382 ret = -EINVAL;
383
384 ubi_put_device(ubi);
385 return ret;
386 }
387
388 static void dev_release(struct device *dev)
389 {
390 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
391
392 kfree(ubi);
393 }
394
395 /**
396 * ubi_sysfs_init - initialize sysfs for an UBI device.
397 * @ubi: UBI device description object
398 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
399 * taken
400 *
401 * This function returns zero in case of success and a negative error code in
402 * case of failure.
403 */
404 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
405 {
406 int err;
407
408 ubi->dev.release = dev_release;
409 ubi->dev.devt = ubi->cdev.dev;
410 ubi->dev.class = ubi_class;
411 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
412 err = device_register(&ubi->dev);
413 if (err)
414 return err;
415
416 *ref = 1;
417 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
418 if (err)
419 return err;
420 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
421 if (err)
422 return err;
423 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
424 if (err)
425 return err;
426 err = device_create_file(&ubi->dev, &dev_volumes_count);
427 if (err)
428 return err;
429 err = device_create_file(&ubi->dev, &dev_max_ec);
430 if (err)
431 return err;
432 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
433 if (err)
434 return err;
435 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
436 if (err)
437 return err;
438 err = device_create_file(&ubi->dev, &dev_max_vol_count);
439 if (err)
440 return err;
441 err = device_create_file(&ubi->dev, &dev_min_io_size);
442 if (err)
443 return err;
444 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
445 if (err)
446 return err;
447 err = device_create_file(&ubi->dev, &dev_mtd_num);
448 return err;
449 }
450
451 /**
452 * ubi_sysfs_close - close sysfs for an UBI device.
453 * @ubi: UBI device description object
454 */
455 static void ubi_sysfs_close(struct ubi_device *ubi)
456 {
457 device_remove_file(&ubi->dev, &dev_mtd_num);
458 device_remove_file(&ubi->dev, &dev_bgt_enabled);
459 device_remove_file(&ubi->dev, &dev_min_io_size);
460 device_remove_file(&ubi->dev, &dev_max_vol_count);
461 device_remove_file(&ubi->dev, &dev_bad_peb_count);
462 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
463 device_remove_file(&ubi->dev, &dev_max_ec);
464 device_remove_file(&ubi->dev, &dev_volumes_count);
465 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
466 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
467 device_remove_file(&ubi->dev, &dev_eraseblock_size);
468 device_unregister(&ubi->dev);
469 }
470
471 /**
472 * kill_volumes - destroy all user volumes.
473 * @ubi: UBI device description object
474 */
475 static void kill_volumes(struct ubi_device *ubi)
476 {
477 int i;
478
479 for (i = 0; i < ubi->vtbl_slots; i++)
480 if (ubi->volumes[i])
481 ubi_free_volume(ubi, ubi->volumes[i]);
482 }
483
484 /**
485 * uif_init - initialize user interfaces for an UBI device.
486 * @ubi: UBI device description object
487 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
488 * taken, otherwise set to %0
489 *
490 * This function initializes various user interfaces for an UBI device. If the
491 * initialization fails at an early stage, this function frees all the
492 * resources it allocated, returns an error, and @ref is set to %0. However,
493 * if the initialization fails after the UBI device was registered in the
494 * driver core subsystem, this function takes a reference to @ubi->dev, because
495 * otherwise the release function ('dev_release()') would free whole @ubi
496 * object. The @ref argument is set to %1 in this case. The caller has to put
497 * this reference.
498 *
499 * This function returns zero in case of success and a negative error code in
500 * case of failure.
501 */
502 static int uif_init(struct ubi_device *ubi, int *ref)
503 {
504 int i, err;
505 dev_t dev;
506
507 *ref = 0;
508 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
509
510 /*
511 * Major numbers for the UBI character devices are allocated
512 * dynamically. Major numbers of volume character devices are
513 * equivalent to ones of the corresponding UBI character device. Minor
514 * numbers of UBI character devices are 0, while minor numbers of
515 * volume character devices start from 1. Thus, we allocate one major
516 * number and ubi->vtbl_slots + 1 minor numbers.
517 */
518 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
519 if (err) {
520 ubi_err("cannot register UBI character devices");
521 return err;
522 }
523
524 ubi_assert(MINOR(dev) == 0);
525 cdev_init(&ubi->cdev, &ubi_cdev_operations);
526 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
527 ubi->cdev.owner = THIS_MODULE;
528
529 err = cdev_add(&ubi->cdev, dev, 1);
530 if (err) {
531 ubi_err("cannot add character device");
532 goto out_unreg;
533 }
534
535 err = ubi_sysfs_init(ubi, ref);
536 if (err)
537 goto out_sysfs;
538
539 for (i = 0; i < ubi->vtbl_slots; i++)
540 if (ubi->volumes[i]) {
541 err = ubi_add_volume(ubi, ubi->volumes[i]);
542 if (err) {
543 ubi_err("cannot add volume %d", i);
544 goto out_volumes;
545 }
546 }
547
548 return 0;
549
550 out_volumes:
551 kill_volumes(ubi);
552 out_sysfs:
553 if (*ref)
554 get_device(&ubi->dev);
555 ubi_sysfs_close(ubi);
556 cdev_del(&ubi->cdev);
557 out_unreg:
558 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
559 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
560 return err;
561 }
562
563 /**
564 * uif_close - close user interfaces for an UBI device.
565 * @ubi: UBI device description object
566 *
567 * Note, since this function un-registers UBI volume device objects (@vol->dev),
568 * the memory allocated voe the volumes is freed as well (in the release
569 * function).
570 */
571 static void uif_close(struct ubi_device *ubi)
572 {
573 kill_volumes(ubi);
574 ubi_sysfs_close(ubi);
575 cdev_del(&ubi->cdev);
576 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
577 }
578
579 /**
580 * ubi_free_internal_volumes - free internal volumes.
581 * @ubi: UBI device description object
582 */
583 void ubi_free_internal_volumes(struct ubi_device *ubi)
584 {
585 int i;
586
587 for (i = ubi->vtbl_slots;
588 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
589 kfree(ubi->volumes[i]->eba_tbl);
590 kfree(ubi->volumes[i]);
591 }
592 }
593
594 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
595 {
596 int limit, device_pebs;
597 uint64_t device_size;
598
599 if (!max_beb_per1024)
600 return 0;
601
602 /*
603 * Here we are using size of the entire flash chip and
604 * not just the MTD partition size because the maximum
605 * number of bad eraseblocks is a percentage of the
606 * whole device and bad eraseblocks are not fairly
607 * distributed over the flash chip. So the worst case
608 * is that all the bad eraseblocks of the chip are in
609 * the MTD partition we are attaching (ubi->mtd).
610 */
611 device_size = mtd_get_device_size(ubi->mtd);
612 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
613 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
614
615 /* Round it up */
616 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
617 limit += 1;
618
619 return limit;
620 }
621
622 /**
623 * io_init - initialize I/O sub-system for a given UBI device.
624 * @ubi: UBI device description object
625 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
626 *
627 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
628 * assumed:
629 * o EC header is always at offset zero - this cannot be changed;
630 * o VID header starts just after the EC header at the closest address
631 * aligned to @io->hdrs_min_io_size;
632 * o data starts just after the VID header at the closest address aligned to
633 * @io->min_io_size
634 *
635 * This function returns zero in case of success and a negative error code in
636 * case of failure.
637 */
638 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
639 {
640 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
641 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
642
643 if (ubi->mtd->numeraseregions != 0) {
644 /*
645 * Some flashes have several erase regions. Different regions
646 * may have different eraseblock size and other
647 * characteristics. It looks like mostly multi-region flashes
648 * have one "main" region and one or more small regions to
649 * store boot loader code or boot parameters or whatever. I
650 * guess we should just pick the largest region. But this is
651 * not implemented.
652 */
653 ubi_err("multiple regions, not implemented");
654 return -EINVAL;
655 }
656
657 if (ubi->vid_hdr_offset < 0)
658 return -EINVAL;
659
660 /*
661 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
662 * physical eraseblocks maximum.
663 */
664
665 ubi->peb_size = ubi->mtd->erasesize;
666 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
667 ubi->flash_size = ubi->mtd->size;
668
669 if (mtd_can_have_bb(ubi->mtd)) {
670 ubi->bad_allowed = 1;
671 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
672 }
673
674 if (ubi->mtd->type == MTD_NORFLASH) {
675 ubi_assert(ubi->mtd->writesize == 1);
676 ubi->nor_flash = 1;
677 }
678
679 ubi->min_io_size = ubi->mtd->writesize;
680 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
681
682 /*
683 * Make sure minimal I/O unit is power of 2. Note, there is no
684 * fundamental reason for this assumption. It is just an optimization
685 * which allows us to avoid costly division operations.
686 */
687 if (!is_power_of_2(ubi->min_io_size)) {
688 ubi_err("min. I/O unit (%d) is not power of 2",
689 ubi->min_io_size);
690 return -EINVAL;
691 }
692
693 ubi_assert(ubi->hdrs_min_io_size > 0);
694 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
695 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
696
697 ubi->max_write_size = ubi->mtd->writebufsize;
698 /*
699 * Maximum write size has to be greater or equivalent to min. I/O
700 * size, and be multiple of min. I/O size.
701 */
702 if (ubi->max_write_size < ubi->min_io_size ||
703 ubi->max_write_size % ubi->min_io_size ||
704 !is_power_of_2(ubi->max_write_size)) {
705 ubi_err("bad write buffer size %d for %d min. I/O unit",
706 ubi->max_write_size, ubi->min_io_size);
707 return -EINVAL;
708 }
709
710 /* Calculate default aligned sizes of EC and VID headers */
711 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
712 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
713
714 dbg_gen("min_io_size %d", ubi->min_io_size);
715 dbg_gen("max_write_size %d", ubi->max_write_size);
716 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
717 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
718 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
719
720 if (ubi->vid_hdr_offset == 0)
721 /* Default offset */
722 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
723 ubi->ec_hdr_alsize;
724 else {
725 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
726 ~(ubi->hdrs_min_io_size - 1);
727 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
728 ubi->vid_hdr_aloffset;
729 }
730
731 /* Similar for the data offset */
732 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
733 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
734
735 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
736 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
737 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
738 dbg_gen("leb_start %d", ubi->leb_start);
739
740 /* The shift must be aligned to 32-bit boundary */
741 if (ubi->vid_hdr_shift % 4) {
742 ubi_err("unaligned VID header shift %d",
743 ubi->vid_hdr_shift);
744 return -EINVAL;
745 }
746
747 /* Check sanity */
748 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
749 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
750 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
751 ubi->leb_start & (ubi->min_io_size - 1)) {
752 ubi_err("bad VID header (%d) or data offsets (%d)",
753 ubi->vid_hdr_offset, ubi->leb_start);
754 return -EINVAL;
755 }
756
757 /*
758 * Set maximum amount of physical erroneous eraseblocks to be 10%.
759 * Erroneous PEB are those which have read errors.
760 */
761 ubi->max_erroneous = ubi->peb_count / 10;
762 if (ubi->max_erroneous < 16)
763 ubi->max_erroneous = 16;
764 dbg_gen("max_erroneous %d", ubi->max_erroneous);
765
766 /*
767 * It may happen that EC and VID headers are situated in one minimal
768 * I/O unit. In this case we can only accept this UBI image in
769 * read-only mode.
770 */
771 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
772 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
773 ubi->ro_mode = 1;
774 }
775
776 ubi->leb_size = ubi->peb_size - ubi->leb_start;
777
778 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
779 ubi_msg("MTD device %d is write-protected, attach in read-only mode",
780 ubi->mtd->index);
781 ubi->ro_mode = 1;
782 }
783
784 /*
785 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
786 * unfortunately, MTD does not provide this information. We should loop
787 * over all physical eraseblocks and invoke mtd->block_is_bad() for
788 * each physical eraseblock. So, we leave @ubi->bad_peb_count
789 * uninitialized so far.
790 */
791
792 return 0;
793 }
794
795 /**
796 * autoresize - re-size the volume which has the "auto-resize" flag set.
797 * @ubi: UBI device description object
798 * @vol_id: ID of the volume to re-size
799 *
800 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
801 * the volume table to the largest possible size. See comments in ubi-header.h
802 * for more description of the flag. Returns zero in case of success and a
803 * negative error code in case of failure.
804 */
805 static int autoresize(struct ubi_device *ubi, int vol_id)
806 {
807 struct ubi_volume_desc desc;
808 struct ubi_volume *vol = ubi->volumes[vol_id];
809 int err, old_reserved_pebs = vol->reserved_pebs;
810
811 if (ubi->ro_mode) {
812 ubi_warn("skip auto-resize because of R/O mode");
813 return 0;
814 }
815
816 /*
817 * Clear the auto-resize flag in the volume in-memory copy of the
818 * volume table, and 'ubi_resize_volume()' will propagate this change
819 * to the flash.
820 */
821 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
822
823 if (ubi->avail_pebs == 0) {
824 struct ubi_vtbl_record vtbl_rec;
825
826 /*
827 * No available PEBs to re-size the volume, clear the flag on
828 * flash and exit.
829 */
830 vtbl_rec = ubi->vtbl[vol_id];
831 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
832 if (err)
833 ubi_err("cannot clean auto-resize flag for volume %d",
834 vol_id);
835 } else {
836 desc.vol = vol;
837 err = ubi_resize_volume(&desc,
838 old_reserved_pebs + ubi->avail_pebs);
839 if (err)
840 ubi_err("cannot auto-resize volume %d", vol_id);
841 }
842
843 if (err)
844 return err;
845
846 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
847 vol->name, old_reserved_pebs, vol->reserved_pebs);
848 return 0;
849 }
850
851 /**
852 * ubi_attach_mtd_dev - attach an MTD device.
853 * @mtd: MTD device description object
854 * @ubi_num: number to assign to the new UBI device
855 * @vid_hdr_offset: VID header offset
856 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
857 *
858 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
859 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
860 * which case this function finds a vacant device number and assigns it
861 * automatically. Returns the new UBI device number in case of success and a
862 * negative error code in case of failure.
863 *
864 * Note, the invocations of this function has to be serialized by the
865 * @ubi_devices_mutex.
866 */
867 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
868 int vid_hdr_offset, int max_beb_per1024)
869 {
870 struct ubi_device *ubi;
871 int i, err, ref = 0;
872
873 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
874 return -EINVAL;
875
876 if (!max_beb_per1024)
877 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
878
879 /*
880 * Check if we already have the same MTD device attached.
881 *
882 * Note, this function assumes that UBI devices creations and deletions
883 * are serialized, so it does not take the &ubi_devices_lock.
884 */
885 for (i = 0; i < UBI_MAX_DEVICES; i++) {
886 ubi = ubi_devices[i];
887 if (ubi && mtd->index == ubi->mtd->index) {
888 ubi_err("mtd%d is already attached to ubi%d",
889 mtd->index, i);
890 return -EEXIST;
891 }
892 }
893
894 /*
895 * Make sure this MTD device is not emulated on top of an UBI volume
896 * already. Well, generally this recursion works fine, but there are
897 * different problems like the UBI module takes a reference to itself
898 * by attaching (and thus, opening) the emulated MTD device. This
899 * results in inability to unload the module. And in general it makes
900 * no sense to attach emulated MTD devices, so we prohibit this.
901 */
902 if (mtd->type == MTD_UBIVOLUME) {
903 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
904 mtd->index);
905 return -EINVAL;
906 }
907
908 if (ubi_num == UBI_DEV_NUM_AUTO) {
909 /* Search for an empty slot in the @ubi_devices array */
910 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
911 if (!ubi_devices[ubi_num])
912 break;
913 if (ubi_num == UBI_MAX_DEVICES) {
914 ubi_err("only %d UBI devices may be created",
915 UBI_MAX_DEVICES);
916 return -ENFILE;
917 }
918 } else {
919 if (ubi_num >= UBI_MAX_DEVICES)
920 return -EINVAL;
921
922 /* Make sure ubi_num is not busy */
923 if (ubi_devices[ubi_num]) {
924 ubi_err("ubi%d already exists", ubi_num);
925 return -EEXIST;
926 }
927 }
928
929 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
930 if (!ubi)
931 return -ENOMEM;
932
933 ubi->mtd = mtd;
934 ubi->ubi_num = ubi_num;
935 ubi->vid_hdr_offset = vid_hdr_offset;
936 ubi->autoresize_vol_id = -1;
937
938 #ifdef CONFIG_MTD_UBI_FASTMAP
939 ubi->fm_pool.used = ubi->fm_pool.size = 0;
940 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
941
942 /*
943 * fm_pool.max_size is 5% of the total number of PEBs but it's also
944 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
945 */
946 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
947 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
948 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
949 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
950
951 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
952 ubi->fm_disabled = !fm_autoconvert;
953
954 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
955 <= UBI_FM_MAX_START) {
956 ubi_err("More than %i PEBs are needed for fastmap, sorry.",
957 UBI_FM_MAX_START);
958 ubi->fm_disabled = 1;
959 }
960
961 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
962 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
963 #else
964 ubi->fm_disabled = 1;
965 #endif
966 mutex_init(&ubi->buf_mutex);
967 mutex_init(&ubi->ckvol_mutex);
968 mutex_init(&ubi->device_mutex);
969 spin_lock_init(&ubi->volumes_lock);
970 mutex_init(&ubi->fm_mutex);
971 init_rwsem(&ubi->fm_sem);
972
973 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
974
975 err = io_init(ubi, max_beb_per1024);
976 if (err)
977 goto out_free;
978
979 err = -ENOMEM;
980 ubi->peb_buf = vmalloc(ubi->peb_size);
981 if (!ubi->peb_buf)
982 goto out_free;
983
984 #ifdef CONFIG_MTD_UBI_FASTMAP
985 ubi->fm_size = ubi_calc_fm_size(ubi);
986 ubi->fm_buf = vzalloc(ubi->fm_size);
987 if (!ubi->fm_buf)
988 goto out_free;
989 #endif
990 err = ubi_attach(ubi, 0);
991 if (err) {
992 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
993 goto out_free;
994 }
995
996 if (ubi->autoresize_vol_id != -1) {
997 err = autoresize(ubi, ubi->autoresize_vol_id);
998 if (err)
999 goto out_detach;
1000 }
1001
1002 err = uif_init(ubi, &ref);
1003 if (err)
1004 goto out_detach;
1005
1006 err = ubi_debugfs_init_dev(ubi);
1007 if (err)
1008 goto out_uif;
1009
1010 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1011 if (IS_ERR(ubi->bgt_thread)) {
1012 err = PTR_ERR(ubi->bgt_thread);
1013 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1014 err);
1015 goto out_debugfs;
1016 }
1017
1018 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1019 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1020 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1021 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1022 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1023 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1024 ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1025 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1026 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1027 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1028 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1029 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1030 ubi->vtbl_slots);
1031 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1032 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1033 ubi->image_seq);
1034 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1035 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1036
1037 /*
1038 * The below lock makes sure we do not race with 'ubi_thread()' which
1039 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1040 */
1041 spin_lock(&ubi->wl_lock);
1042 ubi->thread_enabled = 1;
1043 wake_up_process(ubi->bgt_thread);
1044 spin_unlock(&ubi->wl_lock);
1045
1046 ubi_devices[ubi_num] = ubi;
1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1048 return ubi_num;
1049
1050 out_debugfs:
1051 ubi_debugfs_exit_dev(ubi);
1052 out_uif:
1053 get_device(&ubi->dev);
1054 ubi_assert(ref);
1055 uif_close(ubi);
1056 out_detach:
1057 ubi_wl_close(ubi);
1058 ubi_free_internal_volumes(ubi);
1059 vfree(ubi->vtbl);
1060 out_free:
1061 vfree(ubi->peb_buf);
1062 vfree(ubi->fm_buf);
1063 if (ref)
1064 put_device(&ubi->dev);
1065 else
1066 kfree(ubi);
1067 return err;
1068 }
1069
1070 /**
1071 * ubi_detach_mtd_dev - detach an MTD device.
1072 * @ubi_num: UBI device number to detach from
1073 * @anyway: detach MTD even if device reference count is not zero
1074 *
1075 * This function destroys an UBI device number @ubi_num and detaches the
1076 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1077 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1078 * exist.
1079 *
1080 * Note, the invocations of this function has to be serialized by the
1081 * @ubi_devices_mutex.
1082 */
1083 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1084 {
1085 struct ubi_device *ubi;
1086
1087 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1088 return -EINVAL;
1089
1090 ubi = ubi_get_device(ubi_num);
1091 if (!ubi)
1092 return -EINVAL;
1093
1094 spin_lock(&ubi_devices_lock);
1095 put_device(&ubi->dev);
1096 ubi->ref_count -= 1;
1097 if (ubi->ref_count) {
1098 if (!anyway) {
1099 spin_unlock(&ubi_devices_lock);
1100 return -EBUSY;
1101 }
1102 /* This may only happen if there is a bug */
1103 ubi_err("%s reference count %d, destroy anyway",
1104 ubi->ubi_name, ubi->ref_count);
1105 }
1106 ubi_devices[ubi_num] = NULL;
1107 spin_unlock(&ubi_devices_lock);
1108
1109 ubi_assert(ubi_num == ubi->ubi_num);
1110 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1111 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1112 #ifdef CONFIG_MTD_UBI_FASTMAP
1113 /* If we don't write a new fastmap at detach time we lose all
1114 * EC updates that have been made since the last written fastmap. */
1115 ubi_update_fastmap(ubi);
1116 #endif
1117 /*
1118 * Before freeing anything, we have to stop the background thread to
1119 * prevent it from doing anything on this device while we are freeing.
1120 */
1121 if (ubi->bgt_thread)
1122 kthread_stop(ubi->bgt_thread);
1123
1124 /*
1125 * Get a reference to the device in order to prevent 'dev_release()'
1126 * from freeing the @ubi object.
1127 */
1128 get_device(&ubi->dev);
1129
1130 ubi_debugfs_exit_dev(ubi);
1131 uif_close(ubi);
1132
1133 ubi_wl_close(ubi);
1134 ubi_free_internal_volumes(ubi);
1135 vfree(ubi->vtbl);
1136 put_mtd_device(ubi->mtd);
1137 vfree(ubi->peb_buf);
1138 vfree(ubi->fm_buf);
1139 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1140 put_device(&ubi->dev);
1141 return 0;
1142 }
1143
1144 /**
1145 * open_mtd_by_chdev - open an MTD device by its character device node path.
1146 * @mtd_dev: MTD character device node path
1147 *
1148 * This helper function opens an MTD device by its character node device path.
1149 * Returns MTD device description object in case of success and a negative
1150 * error code in case of failure.
1151 */
1152 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1153 {
1154 int err, major, minor, mode;
1155 struct path path;
1156
1157 /* Probably this is an MTD character device node path */
1158 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1159 if (err)
1160 return ERR_PTR(err);
1161
1162 /* MTD device number is defined by the major / minor numbers */
1163 major = imajor(path.dentry->d_inode);
1164 minor = iminor(path.dentry->d_inode);
1165 mode = path.dentry->d_inode->i_mode;
1166 path_put(&path);
1167 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1168 return ERR_PTR(-EINVAL);
1169
1170 if (minor & 1)
1171 /*
1172 * Just do not think the "/dev/mtdrX" devices support is need,
1173 * so do not support them to avoid doing extra work.
1174 */
1175 return ERR_PTR(-EINVAL);
1176
1177 return get_mtd_device(NULL, minor / 2);
1178 }
1179
1180 /**
1181 * open_mtd_device - open MTD device by name, character device path, or number.
1182 * @mtd_dev: name, character device node path, or MTD device device number
1183 *
1184 * This function tries to open and MTD device described by @mtd_dev string,
1185 * which is first treated as ASCII MTD device number, and if it is not true, it
1186 * is treated as MTD device name, and if that is also not true, it is treated
1187 * as MTD character device node path. Returns MTD device description object in
1188 * case of success and a negative error code in case of failure.
1189 */
1190 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1191 {
1192 struct mtd_info *mtd;
1193 int mtd_num;
1194 char *endp;
1195
1196 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1197 if (*endp != '\0' || mtd_dev == endp) {
1198 /*
1199 * This does not look like an ASCII integer, probably this is
1200 * MTD device name.
1201 */
1202 mtd = get_mtd_device_nm(mtd_dev);
1203 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1204 /* Probably this is an MTD character device node path */
1205 mtd = open_mtd_by_chdev(mtd_dev);
1206 } else
1207 mtd = get_mtd_device(NULL, mtd_num);
1208
1209 return mtd;
1210 }
1211
1212 static int __init ubi_init(void)
1213 {
1214 int err, i, k;
1215
1216 /* Ensure that EC and VID headers have correct size */
1217 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1218 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1219
1220 if (mtd_devs > UBI_MAX_DEVICES) {
1221 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1222 return -EINVAL;
1223 }
1224
1225 /* Create base sysfs directory and sysfs files */
1226 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1227 if (IS_ERR(ubi_class)) {
1228 err = PTR_ERR(ubi_class);
1229 ubi_err("cannot create UBI class");
1230 goto out;
1231 }
1232
1233 err = class_create_file(ubi_class, &ubi_version);
1234 if (err) {
1235 ubi_err("cannot create sysfs file");
1236 goto out_class;
1237 }
1238
1239 err = misc_register(&ubi_ctrl_cdev);
1240 if (err) {
1241 ubi_err("cannot register device");
1242 goto out_version;
1243 }
1244
1245 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1246 sizeof(struct ubi_wl_entry),
1247 0, 0, NULL);
1248 if (!ubi_wl_entry_slab) {
1249 err = -ENOMEM;
1250 goto out_dev_unreg;
1251 }
1252
1253 err = ubi_debugfs_init();
1254 if (err)
1255 goto out_slab;
1256
1257
1258 /* Attach MTD devices */
1259 for (i = 0; i < mtd_devs; i++) {
1260 struct mtd_dev_param *p = &mtd_dev_param[i];
1261 struct mtd_info *mtd;
1262
1263 cond_resched();
1264
1265 mtd = open_mtd_device(p->name);
1266 if (IS_ERR(mtd)) {
1267 err = PTR_ERR(mtd);
1268 ubi_err("cannot open mtd %s, error %d", p->name, err);
1269 /* See comment below re-ubi_is_module(). */
1270 if (ubi_is_module())
1271 goto out_detach;
1272 continue;
1273 }
1274
1275 mutex_lock(&ubi_devices_mutex);
1276 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1277 p->vid_hdr_offs, p->max_beb_per1024);
1278 mutex_unlock(&ubi_devices_mutex);
1279 if (err < 0) {
1280 ubi_err("cannot attach mtd%d", mtd->index);
1281 put_mtd_device(mtd);
1282
1283 /*
1284 * Originally UBI stopped initializing on any error.
1285 * However, later on it was found out that this
1286 * behavior is not very good when UBI is compiled into
1287 * the kernel and the MTD devices to attach are passed
1288 * through the command line. Indeed, UBI failure
1289 * stopped whole boot sequence.
1290 *
1291 * To fix this, we changed the behavior for the
1292 * non-module case, but preserved the old behavior for
1293 * the module case, just for compatibility. This is a
1294 * little inconsistent, though.
1295 */
1296 if (ubi_is_module())
1297 goto out_detach;
1298 }
1299 }
1300
1301 err = ubiblock_init();
1302 if (err) {
1303 ubi_err("block: cannot initialize, error %d", err);
1304
1305 /* See comment above re-ubi_is_module(). */
1306 if (ubi_is_module())
1307 goto out_detach;
1308 }
1309
1310 return 0;
1311
1312 out_detach:
1313 for (k = 0; k < i; k++)
1314 if (ubi_devices[k]) {
1315 mutex_lock(&ubi_devices_mutex);
1316 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1317 mutex_unlock(&ubi_devices_mutex);
1318 }
1319 ubi_debugfs_exit();
1320 out_slab:
1321 kmem_cache_destroy(ubi_wl_entry_slab);
1322 out_dev_unreg:
1323 misc_deregister(&ubi_ctrl_cdev);
1324 out_version:
1325 class_remove_file(ubi_class, &ubi_version);
1326 out_class:
1327 class_destroy(ubi_class);
1328 out:
1329 ubi_err("cannot initialize UBI, error %d", err);
1330 return err;
1331 }
1332 late_initcall(ubi_init);
1333
1334 static void __exit ubi_exit(void)
1335 {
1336 int i;
1337
1338 ubiblock_exit();
1339
1340 for (i = 0; i < UBI_MAX_DEVICES; i++)
1341 if (ubi_devices[i]) {
1342 mutex_lock(&ubi_devices_mutex);
1343 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1344 mutex_unlock(&ubi_devices_mutex);
1345 }
1346 ubi_debugfs_exit();
1347 kmem_cache_destroy(ubi_wl_entry_slab);
1348 misc_deregister(&ubi_ctrl_cdev);
1349 class_remove_file(ubi_class, &ubi_version);
1350 class_destroy(ubi_class);
1351 }
1352 module_exit(ubi_exit);
1353
1354 /**
1355 * bytes_str_to_int - convert a number of bytes string into an integer.
1356 * @str: the string to convert
1357 *
1358 * This function returns positive resulting integer in case of success and a
1359 * negative error code in case of failure.
1360 */
1361 static int __init bytes_str_to_int(const char *str)
1362 {
1363 char *endp;
1364 unsigned long result;
1365
1366 result = simple_strtoul(str, &endp, 0);
1367 if (str == endp || result >= INT_MAX) {
1368 ubi_err("incorrect bytes count: \"%s\"\n", str);
1369 return -EINVAL;
1370 }
1371
1372 switch (*endp) {
1373 case 'G':
1374 result *= 1024;
1375 case 'M':
1376 result *= 1024;
1377 case 'K':
1378 result *= 1024;
1379 if (endp[1] == 'i' && endp[2] == 'B')
1380 endp += 2;
1381 case '\0':
1382 break;
1383 default:
1384 ubi_err("incorrect bytes count: \"%s\"\n", str);
1385 return -EINVAL;
1386 }
1387
1388 return result;
1389 }
1390
1391 /**
1392 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1393 * @val: the parameter value to parse
1394 * @kp: not used
1395 *
1396 * This function returns zero in case of success and a negative error code in
1397 * case of error.
1398 */
1399 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1400 {
1401 int i, len;
1402 struct mtd_dev_param *p;
1403 char buf[MTD_PARAM_LEN_MAX];
1404 char *pbuf = &buf[0];
1405 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1406
1407 if (!val)
1408 return -EINVAL;
1409
1410 if (mtd_devs == UBI_MAX_DEVICES) {
1411 ubi_err("too many parameters, max. is %d\n",
1412 UBI_MAX_DEVICES);
1413 return -EINVAL;
1414 }
1415
1416 len = strnlen(val, MTD_PARAM_LEN_MAX);
1417 if (len == MTD_PARAM_LEN_MAX) {
1418 ubi_err("parameter \"%s\" is too long, max. is %d\n",
1419 val, MTD_PARAM_LEN_MAX);
1420 return -EINVAL;
1421 }
1422
1423 if (len == 0) {
1424 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1425 return 0;
1426 }
1427
1428 strcpy(buf, val);
1429
1430 /* Get rid of the final newline */
1431 if (buf[len - 1] == '\n')
1432 buf[len - 1] = '\0';
1433
1434 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1435 tokens[i] = strsep(&pbuf, ",");
1436
1437 if (pbuf) {
1438 ubi_err("too many arguments at \"%s\"\n", val);
1439 return -EINVAL;
1440 }
1441
1442 p = &mtd_dev_param[mtd_devs];
1443 strcpy(&p->name[0], tokens[0]);
1444
1445 token = tokens[1];
1446 if (token) {
1447 p->vid_hdr_offs = bytes_str_to_int(token);
1448
1449 if (p->vid_hdr_offs < 0)
1450 return p->vid_hdr_offs;
1451 }
1452
1453 token = tokens[2];
1454 if (token) {
1455 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1456
1457 if (err) {
1458 ubi_err("bad value for max_beb_per1024 parameter: %s",
1459 token);
1460 return -EINVAL;
1461 }
1462 }
1463
1464 token = tokens[3];
1465 if (token) {
1466 int err = kstrtoint(token, 10, &p->ubi_num);
1467
1468 if (err) {
1469 ubi_err("bad value for ubi_num parameter: %s", token);
1470 return -EINVAL;
1471 }
1472 } else
1473 p->ubi_num = UBI_DEV_NUM_AUTO;
1474
1475 mtd_devs += 1;
1476 return 0;
1477 }
1478
1479 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1480 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1481 "Multiple \"mtd\" parameters may be specified.\n"
1482 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1483 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1484 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1485 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1486 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1487 "\n"
1488 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1489 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1490 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1491 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1492 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1493 #ifdef CONFIG_MTD_UBI_FASTMAP
1494 module_param(fm_autoconvert, bool, 0644);
1495 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1496 #endif
1497 MODULE_VERSION(__stringify(UBI_VERSION));
1498 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1499 MODULE_AUTHOR("Artem Bityutskiy");
1500 MODULE_LICENSE("GPL");