]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/ubi/build.c
e26fe12b1aae47a327feae54631f841e5a0ca2ad
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74 };
75
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 #endif
85 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
86 struct class *ubi_class;
87
88 /* Slab cache for wear-leveling entries */
89 struct kmem_cache *ubi_wl_entry_slab;
90
91 /* UBI control character device */
92 static struct miscdevice ubi_ctrl_cdev = {
93 .minor = MISC_DYNAMIC_MINOR,
94 .name = "ubi_ctrl",
95 .fops = &ubi_ctrl_cdev_operations,
96 };
97
98 /* All UBI devices in system */
99 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
100
101 /* Serializes UBI devices creations and removals */
102 DEFINE_MUTEX(ubi_devices_mutex);
103
104 /* Protects @ubi_devices and @ubi->ref_count */
105 static DEFINE_SPINLOCK(ubi_devices_lock);
106
107 /* "Show" method for files in '/<sysfs>/class/ubi/' */
108 static ssize_t ubi_version_show(struct class *class,
109 struct class_attribute *attr, char *buf)
110 {
111 return sprintf(buf, "%d\n", UBI_VERSION);
112 }
113
114 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
115 static struct class_attribute ubi_version =
116 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
117
118 static ssize_t dev_attribute_show(struct device *dev,
119 struct device_attribute *attr, char *buf);
120
121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
122 static struct device_attribute dev_eraseblock_size =
123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_avail_eraseblocks =
125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_total_eraseblocks =
127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_volumes_count =
129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_max_ec =
131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_reserved_for_bad =
133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_bad_peb_count =
135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_max_vol_count =
137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_min_io_size =
139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_bgt_enabled =
141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_mtd_num =
143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
144
145 /**
146 * ubi_volume_notify - send a volume change notification.
147 * @ubi: UBI device description object
148 * @vol: volume description object of the changed volume
149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
150 *
151 * This is a helper function which notifies all subscribers about a volume
152 * change event (creation, removal, re-sizing, re-naming, updating). Returns
153 * zero in case of success and a negative error code in case of failure.
154 */
155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
156 {
157 int ret;
158 struct ubi_notification nt;
159
160 ubi_do_get_device_info(ubi, &nt.di);
161 ubi_do_get_volume_info(ubi, vol, &nt.vi);
162
163 switch (ntype) {
164 case UBI_VOLUME_ADDED:
165 case UBI_VOLUME_REMOVED:
166 case UBI_VOLUME_RESIZED:
167 case UBI_VOLUME_RENAMED:
168 ret = ubi_update_fastmap(ubi);
169 if (ret)
170 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
171 }
172
173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
174 }
175
176 /**
177 * ubi_notify_all - send a notification to all volumes.
178 * @ubi: UBI device description object
179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
180 * @nb: the notifier to call
181 *
182 * This function walks all volumes of UBI device @ubi and sends the @ntype
183 * notification for each volume. If @nb is %NULL, then all registered notifiers
184 * are called, otherwise only the @nb notifier is called. Returns the number of
185 * sent notifications.
186 */
187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
188 {
189 struct ubi_notification nt;
190 int i, count = 0;
191
192 ubi_do_get_device_info(ubi, &nt.di);
193
194 mutex_lock(&ubi->device_mutex);
195 for (i = 0; i < ubi->vtbl_slots; i++) {
196 /*
197 * Since the @ubi->device is locked, and we are not going to
198 * change @ubi->volumes, we do not have to lock
199 * @ubi->volumes_lock.
200 */
201 if (!ubi->volumes[i])
202 continue;
203
204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
205 if (nb)
206 nb->notifier_call(nb, ntype, &nt);
207 else
208 blocking_notifier_call_chain(&ubi_notifiers, ntype,
209 &nt);
210 count += 1;
211 }
212 mutex_unlock(&ubi->device_mutex);
213
214 return count;
215 }
216
217 /**
218 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
219 * @nb: the notifier to call
220 *
221 * This function walks all UBI devices and volumes and sends the
222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
223 * registered notifiers are called, otherwise only the @nb notifier is called.
224 * Returns the number of sent notifications.
225 */
226 int ubi_enumerate_volumes(struct notifier_block *nb)
227 {
228 int i, count = 0;
229
230 /*
231 * Since the @ubi_devices_mutex is locked, and we are not going to
232 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
233 */
234 for (i = 0; i < UBI_MAX_DEVICES; i++) {
235 struct ubi_device *ubi = ubi_devices[i];
236
237 if (!ubi)
238 continue;
239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
240 }
241
242 return count;
243 }
244
245 /**
246 * ubi_get_device - get UBI device.
247 * @ubi_num: UBI device number
248 *
249 * This function returns UBI device description object for UBI device number
250 * @ubi_num, or %NULL if the device does not exist. This function increases the
251 * device reference count to prevent removal of the device. In other words, the
252 * device cannot be removed if its reference count is not zero.
253 */
254 struct ubi_device *ubi_get_device(int ubi_num)
255 {
256 struct ubi_device *ubi;
257
258 spin_lock(&ubi_devices_lock);
259 ubi = ubi_devices[ubi_num];
260 if (ubi) {
261 ubi_assert(ubi->ref_count >= 0);
262 ubi->ref_count += 1;
263 get_device(&ubi->dev);
264 }
265 spin_unlock(&ubi_devices_lock);
266
267 return ubi;
268 }
269
270 /**
271 * ubi_put_device - drop an UBI device reference.
272 * @ubi: UBI device description object
273 */
274 void ubi_put_device(struct ubi_device *ubi)
275 {
276 spin_lock(&ubi_devices_lock);
277 ubi->ref_count -= 1;
278 put_device(&ubi->dev);
279 spin_unlock(&ubi_devices_lock);
280 }
281
282 /**
283 * ubi_get_by_major - get UBI device by character device major number.
284 * @major: major number
285 *
286 * This function is similar to 'ubi_get_device()', but it searches the device
287 * by its major number.
288 */
289 struct ubi_device *ubi_get_by_major(int major)
290 {
291 int i;
292 struct ubi_device *ubi;
293
294 spin_lock(&ubi_devices_lock);
295 for (i = 0; i < UBI_MAX_DEVICES; i++) {
296 ubi = ubi_devices[i];
297 if (ubi && MAJOR(ubi->cdev.dev) == major) {
298 ubi_assert(ubi->ref_count >= 0);
299 ubi->ref_count += 1;
300 get_device(&ubi->dev);
301 spin_unlock(&ubi_devices_lock);
302 return ubi;
303 }
304 }
305 spin_unlock(&ubi_devices_lock);
306
307 return NULL;
308 }
309
310 /**
311 * ubi_major2num - get UBI device number by character device major number.
312 * @major: major number
313 *
314 * This function searches UBI device number object by its major number. If UBI
315 * device was not found, this function returns -ENODEV, otherwise the UBI device
316 * number is returned.
317 */
318 int ubi_major2num(int major)
319 {
320 int i, ubi_num = -ENODEV;
321
322 spin_lock(&ubi_devices_lock);
323 for (i = 0; i < UBI_MAX_DEVICES; i++) {
324 struct ubi_device *ubi = ubi_devices[i];
325
326 if (ubi && MAJOR(ubi->cdev.dev) == major) {
327 ubi_num = ubi->ubi_num;
328 break;
329 }
330 }
331 spin_unlock(&ubi_devices_lock);
332
333 return ubi_num;
334 }
335
336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
337 static ssize_t dev_attribute_show(struct device *dev,
338 struct device_attribute *attr, char *buf)
339 {
340 ssize_t ret;
341 struct ubi_device *ubi;
342
343 /*
344 * The below code looks weird, but it actually makes sense. We get the
345 * UBI device reference from the contained 'struct ubi_device'. But it
346 * is unclear if the device was removed or not yet. Indeed, if the
347 * device was removed before we increased its reference count,
348 * 'ubi_get_device()' will return -ENODEV and we fail.
349 *
350 * Remember, 'struct ubi_device' is freed in the release function, so
351 * we still can use 'ubi->ubi_num'.
352 */
353 ubi = container_of(dev, struct ubi_device, dev);
354 ubi = ubi_get_device(ubi->ubi_num);
355 if (!ubi)
356 return -ENODEV;
357
358 if (attr == &dev_eraseblock_size)
359 ret = sprintf(buf, "%d\n", ubi->leb_size);
360 else if (attr == &dev_avail_eraseblocks)
361 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
362 else if (attr == &dev_total_eraseblocks)
363 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
364 else if (attr == &dev_volumes_count)
365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
366 else if (attr == &dev_max_ec)
367 ret = sprintf(buf, "%d\n", ubi->max_ec);
368 else if (attr == &dev_reserved_for_bad)
369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
370 else if (attr == &dev_bad_peb_count)
371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
372 else if (attr == &dev_max_vol_count)
373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
374 else if (attr == &dev_min_io_size)
375 ret = sprintf(buf, "%d\n", ubi->min_io_size);
376 else if (attr == &dev_bgt_enabled)
377 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
378 else if (attr == &dev_mtd_num)
379 ret = sprintf(buf, "%d\n", ubi->mtd->index);
380 else
381 ret = -EINVAL;
382
383 ubi_put_device(ubi);
384 return ret;
385 }
386
387 static void dev_release(struct device *dev)
388 {
389 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
390
391 kfree(ubi);
392 }
393
394 /**
395 * ubi_sysfs_init - initialize sysfs for an UBI device.
396 * @ubi: UBI device description object
397 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
398 * taken
399 *
400 * This function returns zero in case of success and a negative error code in
401 * case of failure.
402 */
403 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
404 {
405 int err;
406
407 ubi->dev.release = dev_release;
408 ubi->dev.devt = ubi->cdev.dev;
409 ubi->dev.class = ubi_class;
410 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
411 err = device_register(&ubi->dev);
412 if (err)
413 return err;
414
415 *ref = 1;
416 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
417 if (err)
418 return err;
419 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
420 if (err)
421 return err;
422 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
423 if (err)
424 return err;
425 err = device_create_file(&ubi->dev, &dev_volumes_count);
426 if (err)
427 return err;
428 err = device_create_file(&ubi->dev, &dev_max_ec);
429 if (err)
430 return err;
431 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
432 if (err)
433 return err;
434 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
435 if (err)
436 return err;
437 err = device_create_file(&ubi->dev, &dev_max_vol_count);
438 if (err)
439 return err;
440 err = device_create_file(&ubi->dev, &dev_min_io_size);
441 if (err)
442 return err;
443 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
444 if (err)
445 return err;
446 err = device_create_file(&ubi->dev, &dev_mtd_num);
447 return err;
448 }
449
450 /**
451 * ubi_sysfs_close - close sysfs for an UBI device.
452 * @ubi: UBI device description object
453 */
454 static void ubi_sysfs_close(struct ubi_device *ubi)
455 {
456 device_remove_file(&ubi->dev, &dev_mtd_num);
457 device_remove_file(&ubi->dev, &dev_bgt_enabled);
458 device_remove_file(&ubi->dev, &dev_min_io_size);
459 device_remove_file(&ubi->dev, &dev_max_vol_count);
460 device_remove_file(&ubi->dev, &dev_bad_peb_count);
461 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
462 device_remove_file(&ubi->dev, &dev_max_ec);
463 device_remove_file(&ubi->dev, &dev_volumes_count);
464 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
465 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
466 device_remove_file(&ubi->dev, &dev_eraseblock_size);
467 device_unregister(&ubi->dev);
468 }
469
470 /**
471 * kill_volumes - destroy all user volumes.
472 * @ubi: UBI device description object
473 */
474 static void kill_volumes(struct ubi_device *ubi)
475 {
476 int i;
477
478 for (i = 0; i < ubi->vtbl_slots; i++)
479 if (ubi->volumes[i])
480 ubi_free_volume(ubi, ubi->volumes[i]);
481 }
482
483 /**
484 * uif_init - initialize user interfaces for an UBI device.
485 * @ubi: UBI device description object
486 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
487 * taken, otherwise set to %0
488 *
489 * This function initializes various user interfaces for an UBI device. If the
490 * initialization fails at an early stage, this function frees all the
491 * resources it allocated, returns an error, and @ref is set to %0. However,
492 * if the initialization fails after the UBI device was registered in the
493 * driver core subsystem, this function takes a reference to @ubi->dev, because
494 * otherwise the release function ('dev_release()') would free whole @ubi
495 * object. The @ref argument is set to %1 in this case. The caller has to put
496 * this reference.
497 *
498 * This function returns zero in case of success and a negative error code in
499 * case of failure.
500 */
501 static int uif_init(struct ubi_device *ubi, int *ref)
502 {
503 int i, err;
504 dev_t dev;
505
506 *ref = 0;
507 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
508
509 /*
510 * Major numbers for the UBI character devices are allocated
511 * dynamically. Major numbers of volume character devices are
512 * equivalent to ones of the corresponding UBI character device. Minor
513 * numbers of UBI character devices are 0, while minor numbers of
514 * volume character devices start from 1. Thus, we allocate one major
515 * number and ubi->vtbl_slots + 1 minor numbers.
516 */
517 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
518 if (err) {
519 ubi_err(ubi, "cannot register UBI character devices");
520 return err;
521 }
522
523 ubi_assert(MINOR(dev) == 0);
524 cdev_init(&ubi->cdev, &ubi_cdev_operations);
525 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
526 ubi->cdev.owner = THIS_MODULE;
527
528 err = cdev_add(&ubi->cdev, dev, 1);
529 if (err) {
530 ubi_err(ubi, "cannot add character device");
531 goto out_unreg;
532 }
533
534 err = ubi_sysfs_init(ubi, ref);
535 if (err)
536 goto out_sysfs;
537
538 for (i = 0; i < ubi->vtbl_slots; i++)
539 if (ubi->volumes[i]) {
540 err = ubi_add_volume(ubi, ubi->volumes[i]);
541 if (err) {
542 ubi_err(ubi, "cannot add volume %d", i);
543 goto out_volumes;
544 }
545 }
546
547 return 0;
548
549 out_volumes:
550 kill_volumes(ubi);
551 out_sysfs:
552 if (*ref)
553 get_device(&ubi->dev);
554 ubi_sysfs_close(ubi);
555 cdev_del(&ubi->cdev);
556 out_unreg:
557 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
558 ubi_err(ubi, "cannot initialize UBI %s, error %d",
559 ubi->ubi_name, err);
560 return err;
561 }
562
563 /**
564 * uif_close - close user interfaces for an UBI device.
565 * @ubi: UBI device description object
566 *
567 * Note, since this function un-registers UBI volume device objects (@vol->dev),
568 * the memory allocated voe the volumes is freed as well (in the release
569 * function).
570 */
571 static void uif_close(struct ubi_device *ubi)
572 {
573 kill_volumes(ubi);
574 ubi_sysfs_close(ubi);
575 cdev_del(&ubi->cdev);
576 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
577 }
578
579 /**
580 * ubi_free_internal_volumes - free internal volumes.
581 * @ubi: UBI device description object
582 */
583 void ubi_free_internal_volumes(struct ubi_device *ubi)
584 {
585 int i;
586
587 for (i = ubi->vtbl_slots;
588 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
589 kfree(ubi->volumes[i]->eba_tbl);
590 kfree(ubi->volumes[i]);
591 }
592 }
593
594 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
595 {
596 int limit, device_pebs;
597 uint64_t device_size;
598
599 if (!max_beb_per1024)
600 return 0;
601
602 /*
603 * Here we are using size of the entire flash chip and
604 * not just the MTD partition size because the maximum
605 * number of bad eraseblocks is a percentage of the
606 * whole device and bad eraseblocks are not fairly
607 * distributed over the flash chip. So the worst case
608 * is that all the bad eraseblocks of the chip are in
609 * the MTD partition we are attaching (ubi->mtd).
610 */
611 device_size = mtd_get_device_size(ubi->mtd);
612 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
613 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
614
615 /* Round it up */
616 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
617 limit += 1;
618
619 return limit;
620 }
621
622 /**
623 * io_init - initialize I/O sub-system for a given UBI device.
624 * @ubi: UBI device description object
625 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
626 *
627 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
628 * assumed:
629 * o EC header is always at offset zero - this cannot be changed;
630 * o VID header starts just after the EC header at the closest address
631 * aligned to @io->hdrs_min_io_size;
632 * o data starts just after the VID header at the closest address aligned to
633 * @io->min_io_size
634 *
635 * This function returns zero in case of success and a negative error code in
636 * case of failure.
637 */
638 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
639 {
640 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
641 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
642
643 if (ubi->mtd->numeraseregions != 0) {
644 /*
645 * Some flashes have several erase regions. Different regions
646 * may have different eraseblock size and other
647 * characteristics. It looks like mostly multi-region flashes
648 * have one "main" region and one or more small regions to
649 * store boot loader code or boot parameters or whatever. I
650 * guess we should just pick the largest region. But this is
651 * not implemented.
652 */
653 ubi_err(ubi, "multiple regions, not implemented");
654 return -EINVAL;
655 }
656
657 if (ubi->vid_hdr_offset < 0)
658 return -EINVAL;
659
660 /*
661 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
662 * physical eraseblocks maximum.
663 */
664
665 ubi->peb_size = ubi->mtd->erasesize;
666 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
667 ubi->flash_size = ubi->mtd->size;
668
669 if (mtd_can_have_bb(ubi->mtd)) {
670 ubi->bad_allowed = 1;
671 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
672 }
673
674 if (ubi->mtd->type == MTD_NORFLASH) {
675 ubi_assert(ubi->mtd->writesize == 1);
676 ubi->nor_flash = 1;
677 }
678
679 ubi->min_io_size = ubi->mtd->writesize;
680 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
681
682 /*
683 * Make sure minimal I/O unit is power of 2. Note, there is no
684 * fundamental reason for this assumption. It is just an optimization
685 * which allows us to avoid costly division operations.
686 */
687 if (!is_power_of_2(ubi->min_io_size)) {
688 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
689 ubi->min_io_size);
690 return -EINVAL;
691 }
692
693 ubi_assert(ubi->hdrs_min_io_size > 0);
694 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
695 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
696
697 ubi->max_write_size = ubi->mtd->writebufsize;
698 /*
699 * Maximum write size has to be greater or equivalent to min. I/O
700 * size, and be multiple of min. I/O size.
701 */
702 if (ubi->max_write_size < ubi->min_io_size ||
703 ubi->max_write_size % ubi->min_io_size ||
704 !is_power_of_2(ubi->max_write_size)) {
705 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
706 ubi->max_write_size, ubi->min_io_size);
707 return -EINVAL;
708 }
709
710 /* Calculate default aligned sizes of EC and VID headers */
711 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
712 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
713
714 dbg_gen("min_io_size %d", ubi->min_io_size);
715 dbg_gen("max_write_size %d", ubi->max_write_size);
716 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
717 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
718 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
719
720 if (ubi->vid_hdr_offset == 0)
721 /* Default offset */
722 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
723 ubi->ec_hdr_alsize;
724 else {
725 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
726 ~(ubi->hdrs_min_io_size - 1);
727 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
728 ubi->vid_hdr_aloffset;
729 }
730
731 /* Similar for the data offset */
732 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
733 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
734
735 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
736 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
737 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
738 dbg_gen("leb_start %d", ubi->leb_start);
739
740 /* The shift must be aligned to 32-bit boundary */
741 if (ubi->vid_hdr_shift % 4) {
742 ubi_err(ubi, "unaligned VID header shift %d",
743 ubi->vid_hdr_shift);
744 return -EINVAL;
745 }
746
747 /* Check sanity */
748 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
749 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
750 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
751 ubi->leb_start & (ubi->min_io_size - 1)) {
752 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
753 ubi->vid_hdr_offset, ubi->leb_start);
754 return -EINVAL;
755 }
756
757 /*
758 * Set maximum amount of physical erroneous eraseblocks to be 10%.
759 * Erroneous PEB are those which have read errors.
760 */
761 ubi->max_erroneous = ubi->peb_count / 10;
762 if (ubi->max_erroneous < 16)
763 ubi->max_erroneous = 16;
764 dbg_gen("max_erroneous %d", ubi->max_erroneous);
765
766 /*
767 * It may happen that EC and VID headers are situated in one minimal
768 * I/O unit. In this case we can only accept this UBI image in
769 * read-only mode.
770 */
771 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
772 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
773 ubi->ro_mode = 1;
774 }
775
776 ubi->leb_size = ubi->peb_size - ubi->leb_start;
777
778 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
779 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
780 ubi->mtd->index);
781 ubi->ro_mode = 1;
782 }
783
784 /*
785 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
786 * unfortunately, MTD does not provide this information. We should loop
787 * over all physical eraseblocks and invoke mtd->block_is_bad() for
788 * each physical eraseblock. So, we leave @ubi->bad_peb_count
789 * uninitialized so far.
790 */
791
792 return 0;
793 }
794
795 /**
796 * autoresize - re-size the volume which has the "auto-resize" flag set.
797 * @ubi: UBI device description object
798 * @vol_id: ID of the volume to re-size
799 *
800 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
801 * the volume table to the largest possible size. See comments in ubi-header.h
802 * for more description of the flag. Returns zero in case of success and a
803 * negative error code in case of failure.
804 */
805 static int autoresize(struct ubi_device *ubi, int vol_id)
806 {
807 struct ubi_volume_desc desc;
808 struct ubi_volume *vol = ubi->volumes[vol_id];
809 int err, old_reserved_pebs = vol->reserved_pebs;
810
811 if (ubi->ro_mode) {
812 ubi_warn(ubi, "skip auto-resize because of R/O mode");
813 return 0;
814 }
815
816 /*
817 * Clear the auto-resize flag in the volume in-memory copy of the
818 * volume table, and 'ubi_resize_volume()' will propagate this change
819 * to the flash.
820 */
821 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
822
823 if (ubi->avail_pebs == 0) {
824 struct ubi_vtbl_record vtbl_rec;
825
826 /*
827 * No available PEBs to re-size the volume, clear the flag on
828 * flash and exit.
829 */
830 vtbl_rec = ubi->vtbl[vol_id];
831 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
832 if (err)
833 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
834 vol_id);
835 } else {
836 desc.vol = vol;
837 err = ubi_resize_volume(&desc,
838 old_reserved_pebs + ubi->avail_pebs);
839 if (err)
840 ubi_err(ubi, "cannot auto-resize volume %d",
841 vol_id);
842 }
843
844 if (err)
845 return err;
846
847 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
848 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
849 return 0;
850 }
851
852 /**
853 * ubi_attach_mtd_dev - attach an MTD device.
854 * @mtd: MTD device description object
855 * @ubi_num: number to assign to the new UBI device
856 * @vid_hdr_offset: VID header offset
857 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
858 *
859 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
860 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
861 * which case this function finds a vacant device number and assigns it
862 * automatically. Returns the new UBI device number in case of success and a
863 * negative error code in case of failure.
864 *
865 * Note, the invocations of this function has to be serialized by the
866 * @ubi_devices_mutex.
867 */
868 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
869 int vid_hdr_offset, int max_beb_per1024)
870 {
871 struct ubi_device *ubi;
872 int i, err, ref = 0;
873
874 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
875 return -EINVAL;
876
877 if (!max_beb_per1024)
878 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
879
880 /*
881 * Check if we already have the same MTD device attached.
882 *
883 * Note, this function assumes that UBI devices creations and deletions
884 * are serialized, so it does not take the &ubi_devices_lock.
885 */
886 for (i = 0; i < UBI_MAX_DEVICES; i++) {
887 ubi = ubi_devices[i];
888 if (ubi && mtd->index == ubi->mtd->index) {
889 ubi_err(ubi, "mtd%d is already attached to ubi%d",
890 mtd->index, i);
891 return -EEXIST;
892 }
893 }
894
895 /*
896 * Make sure this MTD device is not emulated on top of an UBI volume
897 * already. Well, generally this recursion works fine, but there are
898 * different problems like the UBI module takes a reference to itself
899 * by attaching (and thus, opening) the emulated MTD device. This
900 * results in inability to unload the module. And in general it makes
901 * no sense to attach emulated MTD devices, so we prohibit this.
902 */
903 if (mtd->type == MTD_UBIVOLUME) {
904 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
905 mtd->index);
906 return -EINVAL;
907 }
908
909 if (ubi_num == UBI_DEV_NUM_AUTO) {
910 /* Search for an empty slot in the @ubi_devices array */
911 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
912 if (!ubi_devices[ubi_num])
913 break;
914 if (ubi_num == UBI_MAX_DEVICES) {
915 ubi_err(ubi, "only %d UBI devices may be created",
916 UBI_MAX_DEVICES);
917 return -ENFILE;
918 }
919 } else {
920 if (ubi_num >= UBI_MAX_DEVICES)
921 return -EINVAL;
922
923 /* Make sure ubi_num is not busy */
924 if (ubi_devices[ubi_num]) {
925 ubi_err(ubi, "already exists");
926 return -EEXIST;
927 }
928 }
929
930 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
931 if (!ubi)
932 return -ENOMEM;
933
934 ubi->mtd = mtd;
935 ubi->ubi_num = ubi_num;
936 ubi->vid_hdr_offset = vid_hdr_offset;
937 ubi->autoresize_vol_id = -1;
938
939 #ifdef CONFIG_MTD_UBI_FASTMAP
940 ubi->fm_pool.used = ubi->fm_pool.size = 0;
941 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
942
943 /*
944 * fm_pool.max_size is 5% of the total number of PEBs but it's also
945 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
946 */
947 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
948 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
949 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
950 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
951
952 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
953 ubi->fm_disabled = !fm_autoconvert;
954
955 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
956 <= UBI_FM_MAX_START) {
957 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
958 UBI_FM_MAX_START);
959 ubi->fm_disabled = 1;
960 }
961
962 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
963 ubi_msg(ubi, "default fastmap WL pool size: %d",
964 ubi->fm_wl_pool.max_size);
965 #else
966 ubi->fm_disabled = 1;
967 #endif
968 mutex_init(&ubi->buf_mutex);
969 mutex_init(&ubi->ckvol_mutex);
970 mutex_init(&ubi->device_mutex);
971 spin_lock_init(&ubi->volumes_lock);
972 init_rwsem(&ubi->fm_protect);
973 init_rwsem(&ubi->fm_eba_sem);
974
975 ubi_msg(ubi, "attaching mtd%d", mtd->index);
976
977 err = io_init(ubi, max_beb_per1024);
978 if (err)
979 goto out_free;
980
981 err = -ENOMEM;
982 ubi->peb_buf = vmalloc(ubi->peb_size);
983 if (!ubi->peb_buf)
984 goto out_free;
985
986 #ifdef CONFIG_MTD_UBI_FASTMAP
987 ubi->fm_size = ubi_calc_fm_size(ubi);
988 ubi->fm_buf = vzalloc(ubi->fm_size);
989 if (!ubi->fm_buf)
990 goto out_free;
991 #endif
992 err = ubi_attach(ubi, 0);
993 if (err) {
994 ubi_err(ubi, "failed to attach mtd%d, error %d",
995 mtd->index, err);
996 goto out_free;
997 }
998
999 if (ubi->autoresize_vol_id != -1) {
1000 err = autoresize(ubi, ubi->autoresize_vol_id);
1001 if (err)
1002 goto out_detach;
1003 }
1004
1005 err = uif_init(ubi, &ref);
1006 if (err)
1007 goto out_detach;
1008
1009 err = ubi_debugfs_init_dev(ubi);
1010 if (err)
1011 goto out_uif;
1012
1013 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1014 if (IS_ERR(ubi->bgt_thread)) {
1015 err = PTR_ERR(ubi->bgt_thread);
1016 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1017 ubi->bgt_name, err);
1018 goto out_debugfs;
1019 }
1020
1021 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1022 mtd->index, mtd->name, ubi->flash_size >> 20);
1023 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1024 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1025 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1026 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1027 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1028 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1029 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1030 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1031 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1032 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1033 ubi->vtbl_slots);
1034 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1035 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1036 ubi->image_seq);
1037 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1038 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1039
1040 /*
1041 * The below lock makes sure we do not race with 'ubi_thread()' which
1042 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1043 */
1044 spin_lock(&ubi->wl_lock);
1045 ubi->thread_enabled = 1;
1046 wake_up_process(ubi->bgt_thread);
1047 spin_unlock(&ubi->wl_lock);
1048
1049 ubi_devices[ubi_num] = ubi;
1050 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1051 return ubi_num;
1052
1053 out_debugfs:
1054 ubi_debugfs_exit_dev(ubi);
1055 out_uif:
1056 get_device(&ubi->dev);
1057 ubi_assert(ref);
1058 uif_close(ubi);
1059 out_detach:
1060 ubi_wl_close(ubi);
1061 ubi_free_internal_volumes(ubi);
1062 vfree(ubi->vtbl);
1063 out_free:
1064 vfree(ubi->peb_buf);
1065 vfree(ubi->fm_buf);
1066 if (ref)
1067 put_device(&ubi->dev);
1068 else
1069 kfree(ubi);
1070 return err;
1071 }
1072
1073 /**
1074 * ubi_detach_mtd_dev - detach an MTD device.
1075 * @ubi_num: UBI device number to detach from
1076 * @anyway: detach MTD even if device reference count is not zero
1077 *
1078 * This function destroys an UBI device number @ubi_num and detaches the
1079 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1080 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1081 * exist.
1082 *
1083 * Note, the invocations of this function has to be serialized by the
1084 * @ubi_devices_mutex.
1085 */
1086 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1087 {
1088 struct ubi_device *ubi;
1089
1090 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1091 return -EINVAL;
1092
1093 ubi = ubi_get_device(ubi_num);
1094 if (!ubi)
1095 return -EINVAL;
1096
1097 spin_lock(&ubi_devices_lock);
1098 put_device(&ubi->dev);
1099 ubi->ref_count -= 1;
1100 if (ubi->ref_count) {
1101 if (!anyway) {
1102 spin_unlock(&ubi_devices_lock);
1103 return -EBUSY;
1104 }
1105 /* This may only happen if there is a bug */
1106 ubi_err(ubi, "%s reference count %d, destroy anyway",
1107 ubi->ubi_name, ubi->ref_count);
1108 }
1109 ubi_devices[ubi_num] = NULL;
1110 spin_unlock(&ubi_devices_lock);
1111
1112 ubi_assert(ubi_num == ubi->ubi_num);
1113 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1114 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1115 #ifdef CONFIG_MTD_UBI_FASTMAP
1116 /* If we don't write a new fastmap at detach time we lose all
1117 * EC updates that have been made since the last written fastmap.
1118 * In case of fastmap debugging we omit the update to simulate an
1119 * unclean shutdown. */
1120 if (!ubi_dbg_chk_fastmap(ubi))
1121 ubi_update_fastmap(ubi);
1122 #endif
1123 /*
1124 * Before freeing anything, we have to stop the background thread to
1125 * prevent it from doing anything on this device while we are freeing.
1126 */
1127 if (ubi->bgt_thread)
1128 kthread_stop(ubi->bgt_thread);
1129
1130 /*
1131 * Get a reference to the device in order to prevent 'dev_release()'
1132 * from freeing the @ubi object.
1133 */
1134 get_device(&ubi->dev);
1135
1136 ubi_debugfs_exit_dev(ubi);
1137 uif_close(ubi);
1138
1139 ubi_wl_close(ubi);
1140 ubi_free_internal_volumes(ubi);
1141 vfree(ubi->vtbl);
1142 put_mtd_device(ubi->mtd);
1143 vfree(ubi->peb_buf);
1144 vfree(ubi->fm_buf);
1145 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1146 put_device(&ubi->dev);
1147 return 0;
1148 }
1149
1150 /**
1151 * open_mtd_by_chdev - open an MTD device by its character device node path.
1152 * @mtd_dev: MTD character device node path
1153 *
1154 * This helper function opens an MTD device by its character node device path.
1155 * Returns MTD device description object in case of success and a negative
1156 * error code in case of failure.
1157 */
1158 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1159 {
1160 int err, major, minor, mode;
1161 struct path path;
1162
1163 /* Probably this is an MTD character device node path */
1164 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1165 if (err)
1166 return ERR_PTR(err);
1167
1168 /* MTD device number is defined by the major / minor numbers */
1169 major = imajor(path.dentry->d_inode);
1170 minor = iminor(path.dentry->d_inode);
1171 mode = path.dentry->d_inode->i_mode;
1172 path_put(&path);
1173 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1174 return ERR_PTR(-EINVAL);
1175
1176 if (minor & 1)
1177 /*
1178 * Just do not think the "/dev/mtdrX" devices support is need,
1179 * so do not support them to avoid doing extra work.
1180 */
1181 return ERR_PTR(-EINVAL);
1182
1183 return get_mtd_device(NULL, minor / 2);
1184 }
1185
1186 /**
1187 * open_mtd_device - open MTD device by name, character device path, or number.
1188 * @mtd_dev: name, character device node path, or MTD device device number
1189 *
1190 * This function tries to open and MTD device described by @mtd_dev string,
1191 * which is first treated as ASCII MTD device number, and if it is not true, it
1192 * is treated as MTD device name, and if that is also not true, it is treated
1193 * as MTD character device node path. Returns MTD device description object in
1194 * case of success and a negative error code in case of failure.
1195 */
1196 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1197 {
1198 struct mtd_info *mtd;
1199 int mtd_num;
1200 char *endp;
1201
1202 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1203 if (*endp != '\0' || mtd_dev == endp) {
1204 /*
1205 * This does not look like an ASCII integer, probably this is
1206 * MTD device name.
1207 */
1208 mtd = get_mtd_device_nm(mtd_dev);
1209 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1210 /* Probably this is an MTD character device node path */
1211 mtd = open_mtd_by_chdev(mtd_dev);
1212 } else
1213 mtd = get_mtd_device(NULL, mtd_num);
1214
1215 return mtd;
1216 }
1217
1218 static int __init ubi_init(void)
1219 {
1220 int err, i, k;
1221
1222 /* Ensure that EC and VID headers have correct size */
1223 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1224 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1225
1226 if (mtd_devs > UBI_MAX_DEVICES) {
1227 pr_err("UBI error: too many MTD devices, maximum is %d",
1228 UBI_MAX_DEVICES);
1229 return -EINVAL;
1230 }
1231
1232 /* Create base sysfs directory and sysfs files */
1233 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1234 if (IS_ERR(ubi_class)) {
1235 err = PTR_ERR(ubi_class);
1236 pr_err("UBI error: cannot create UBI class");
1237 goto out;
1238 }
1239
1240 err = class_create_file(ubi_class, &ubi_version);
1241 if (err) {
1242 pr_err("UBI error: cannot create sysfs file");
1243 goto out_class;
1244 }
1245
1246 err = misc_register(&ubi_ctrl_cdev);
1247 if (err) {
1248 pr_err("UBI error: cannot register device");
1249 goto out_version;
1250 }
1251
1252 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1253 sizeof(struct ubi_wl_entry),
1254 0, 0, NULL);
1255 if (!ubi_wl_entry_slab) {
1256 err = -ENOMEM;
1257 goto out_dev_unreg;
1258 }
1259
1260 err = ubi_debugfs_init();
1261 if (err)
1262 goto out_slab;
1263
1264
1265 /* Attach MTD devices */
1266 for (i = 0; i < mtd_devs; i++) {
1267 struct mtd_dev_param *p = &mtd_dev_param[i];
1268 struct mtd_info *mtd;
1269
1270 cond_resched();
1271
1272 mtd = open_mtd_device(p->name);
1273 if (IS_ERR(mtd)) {
1274 err = PTR_ERR(mtd);
1275 pr_err("UBI error: cannot open mtd %s, error %d",
1276 p->name, err);
1277 /* See comment below re-ubi_is_module(). */
1278 if (ubi_is_module())
1279 goto out_detach;
1280 continue;
1281 }
1282
1283 mutex_lock(&ubi_devices_mutex);
1284 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1285 p->vid_hdr_offs, p->max_beb_per1024);
1286 mutex_unlock(&ubi_devices_mutex);
1287 if (err < 0) {
1288 pr_err("UBI error: cannot attach mtd%d",
1289 mtd->index);
1290 put_mtd_device(mtd);
1291
1292 /*
1293 * Originally UBI stopped initializing on any error.
1294 * However, later on it was found out that this
1295 * behavior is not very good when UBI is compiled into
1296 * the kernel and the MTD devices to attach are passed
1297 * through the command line. Indeed, UBI failure
1298 * stopped whole boot sequence.
1299 *
1300 * To fix this, we changed the behavior for the
1301 * non-module case, but preserved the old behavior for
1302 * the module case, just for compatibility. This is a
1303 * little inconsistent, though.
1304 */
1305 if (ubi_is_module())
1306 goto out_detach;
1307 }
1308 }
1309
1310 err = ubiblock_init();
1311 if (err) {
1312 pr_err("UBI error: block: cannot initialize, error %d", err);
1313
1314 /* See comment above re-ubi_is_module(). */
1315 if (ubi_is_module())
1316 goto out_detach;
1317 }
1318
1319 return 0;
1320
1321 out_detach:
1322 for (k = 0; k < i; k++)
1323 if (ubi_devices[k]) {
1324 mutex_lock(&ubi_devices_mutex);
1325 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1326 mutex_unlock(&ubi_devices_mutex);
1327 }
1328 ubi_debugfs_exit();
1329 out_slab:
1330 kmem_cache_destroy(ubi_wl_entry_slab);
1331 out_dev_unreg:
1332 misc_deregister(&ubi_ctrl_cdev);
1333 out_version:
1334 class_remove_file(ubi_class, &ubi_version);
1335 out_class:
1336 class_destroy(ubi_class);
1337 out:
1338 pr_err("UBI error: cannot initialize UBI, error %d", err);
1339 return err;
1340 }
1341 late_initcall(ubi_init);
1342
1343 static void __exit ubi_exit(void)
1344 {
1345 int i;
1346
1347 ubiblock_exit();
1348
1349 for (i = 0; i < UBI_MAX_DEVICES; i++)
1350 if (ubi_devices[i]) {
1351 mutex_lock(&ubi_devices_mutex);
1352 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1353 mutex_unlock(&ubi_devices_mutex);
1354 }
1355 ubi_debugfs_exit();
1356 kmem_cache_destroy(ubi_wl_entry_slab);
1357 misc_deregister(&ubi_ctrl_cdev);
1358 class_remove_file(ubi_class, &ubi_version);
1359 class_destroy(ubi_class);
1360 }
1361 module_exit(ubi_exit);
1362
1363 /**
1364 * bytes_str_to_int - convert a number of bytes string into an integer.
1365 * @str: the string to convert
1366 *
1367 * This function returns positive resulting integer in case of success and a
1368 * negative error code in case of failure.
1369 */
1370 static int __init bytes_str_to_int(const char *str)
1371 {
1372 char *endp;
1373 unsigned long result;
1374
1375 result = simple_strtoul(str, &endp, 0);
1376 if (str == endp || result >= INT_MAX) {
1377 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1378 return -EINVAL;
1379 }
1380
1381 switch (*endp) {
1382 case 'G':
1383 result *= 1024;
1384 case 'M':
1385 result *= 1024;
1386 case 'K':
1387 result *= 1024;
1388 if (endp[1] == 'i' && endp[2] == 'B')
1389 endp += 2;
1390 case '\0':
1391 break;
1392 default:
1393 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1394 return -EINVAL;
1395 }
1396
1397 return result;
1398 }
1399
1400 /**
1401 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1402 * @val: the parameter value to parse
1403 * @kp: not used
1404 *
1405 * This function returns zero in case of success and a negative error code in
1406 * case of error.
1407 */
1408 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1409 {
1410 int i, len;
1411 struct mtd_dev_param *p;
1412 char buf[MTD_PARAM_LEN_MAX];
1413 char *pbuf = &buf[0];
1414 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1415
1416 if (!val)
1417 return -EINVAL;
1418
1419 if (mtd_devs == UBI_MAX_DEVICES) {
1420 pr_err("UBI error: too many parameters, max. is %d\n",
1421 UBI_MAX_DEVICES);
1422 return -EINVAL;
1423 }
1424
1425 len = strnlen(val, MTD_PARAM_LEN_MAX);
1426 if (len == MTD_PARAM_LEN_MAX) {
1427 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1428 val, MTD_PARAM_LEN_MAX);
1429 return -EINVAL;
1430 }
1431
1432 if (len == 0) {
1433 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1434 return 0;
1435 }
1436
1437 strcpy(buf, val);
1438
1439 /* Get rid of the final newline */
1440 if (buf[len - 1] == '\n')
1441 buf[len - 1] = '\0';
1442
1443 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1444 tokens[i] = strsep(&pbuf, ",");
1445
1446 if (pbuf) {
1447 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1448 return -EINVAL;
1449 }
1450
1451 p = &mtd_dev_param[mtd_devs];
1452 strcpy(&p->name[0], tokens[0]);
1453
1454 token = tokens[1];
1455 if (token) {
1456 p->vid_hdr_offs = bytes_str_to_int(token);
1457
1458 if (p->vid_hdr_offs < 0)
1459 return p->vid_hdr_offs;
1460 }
1461
1462 token = tokens[2];
1463 if (token) {
1464 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1465
1466 if (err) {
1467 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1468 token);
1469 return -EINVAL;
1470 }
1471 }
1472
1473 token = tokens[3];
1474 if (token) {
1475 int err = kstrtoint(token, 10, &p->ubi_num);
1476
1477 if (err) {
1478 pr_err("UBI error: bad value for ubi_num parameter: %s",
1479 token);
1480 return -EINVAL;
1481 }
1482 } else
1483 p->ubi_num = UBI_DEV_NUM_AUTO;
1484
1485 mtd_devs += 1;
1486 return 0;
1487 }
1488
1489 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1490 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1491 "Multiple \"mtd\" parameters may be specified.\n"
1492 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1493 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1494 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1495 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1496 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1497 "\n"
1498 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1499 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1500 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1501 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1502 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1503 #ifdef CONFIG_MTD_UBI_FASTMAP
1504 module_param(fm_autoconvert, bool, 0644);
1505 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1506 #endif
1507 MODULE_VERSION(__stringify(UBI_VERSION));
1508 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1509 MODULE_AUTHOR("Artem Bityutskiy");
1510 MODULE_LICENSE("GPL");