]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mtd/ubi/build.c
Merge tag 'stm32-dt-for-v5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74 };
75
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int mtd_devs;
78
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
86
87 /* Slab cache for wear-leveling entries */
88 struct kmem_cache *ubi_wl_entry_slab;
89
90 /* UBI control character device */
91 static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
95 };
96
97 /* All UBI devices in system */
98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99
100 /* Serializes UBI devices creations and removals */
101 DEFINE_MUTEX(ubi_devices_mutex);
102
103 /* Protects @ubi_devices and @ubi->ref_count */
104 static DEFINE_SPINLOCK(ubi_devices_lock);
105
106 /* "Show" method for files in '/<sysfs>/class/ubi/' */
107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
108 static ssize_t version_show(struct class *class, struct class_attribute *attr,
109 char *buf)
110 {
111 return sprintf(buf, "%d\n", UBI_VERSION);
112 }
113 static CLASS_ATTR_RO(version);
114
115 static struct attribute *ubi_class_attrs[] = {
116 &class_attr_version.attr,
117 NULL,
118 };
119 ATTRIBUTE_GROUPS(ubi_class);
120
121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
122 struct class ubi_class = {
123 .name = UBI_NAME_STR,
124 .owner = THIS_MODULE,
125 .class_groups = ubi_class_groups,
126 };
127
128 static ssize_t dev_attribute_show(struct device *dev,
129 struct device_attribute *attr, char *buf);
130
131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
132 static struct device_attribute dev_eraseblock_size =
133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_avail_eraseblocks =
135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_total_eraseblocks =
137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_volumes_count =
139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_max_ec =
141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_reserved_for_bad =
143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
144 static struct device_attribute dev_bad_peb_count =
145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
146 static struct device_attribute dev_max_vol_count =
147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
148 static struct device_attribute dev_min_io_size =
149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
150 static struct device_attribute dev_bgt_enabled =
151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_mtd_num =
153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
154 static struct device_attribute dev_ro_mode =
155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
156
157 /**
158 * ubi_volume_notify - send a volume change notification.
159 * @ubi: UBI device description object
160 * @vol: volume description object of the changed volume
161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
162 *
163 * This is a helper function which notifies all subscribers about a volume
164 * change event (creation, removal, re-sizing, re-naming, updating). Returns
165 * zero in case of success and a negative error code in case of failure.
166 */
167 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
168 {
169 int ret;
170 struct ubi_notification nt;
171
172 ubi_do_get_device_info(ubi, &nt.di);
173 ubi_do_get_volume_info(ubi, vol, &nt.vi);
174
175 switch (ntype) {
176 case UBI_VOLUME_ADDED:
177 case UBI_VOLUME_REMOVED:
178 case UBI_VOLUME_RESIZED:
179 case UBI_VOLUME_RENAMED:
180 ret = ubi_update_fastmap(ubi);
181 if (ret)
182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
183 }
184
185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
186 }
187
188 /**
189 * ubi_notify_all - send a notification to all volumes.
190 * @ubi: UBI device description object
191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
192 * @nb: the notifier to call
193 *
194 * This function walks all volumes of UBI device @ubi and sends the @ntype
195 * notification for each volume. If @nb is %NULL, then all registered notifiers
196 * are called, otherwise only the @nb notifier is called. Returns the number of
197 * sent notifications.
198 */
199 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
200 {
201 struct ubi_notification nt;
202 int i, count = 0;
203
204 ubi_do_get_device_info(ubi, &nt.di);
205
206 mutex_lock(&ubi->device_mutex);
207 for (i = 0; i < ubi->vtbl_slots; i++) {
208 /*
209 * Since the @ubi->device is locked, and we are not going to
210 * change @ubi->volumes, we do not have to lock
211 * @ubi->volumes_lock.
212 */
213 if (!ubi->volumes[i])
214 continue;
215
216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
217 if (nb)
218 nb->notifier_call(nb, ntype, &nt);
219 else
220 blocking_notifier_call_chain(&ubi_notifiers, ntype,
221 &nt);
222 count += 1;
223 }
224 mutex_unlock(&ubi->device_mutex);
225
226 return count;
227 }
228
229 /**
230 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
231 * @nb: the notifier to call
232 *
233 * This function walks all UBI devices and volumes and sends the
234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
235 * registered notifiers are called, otherwise only the @nb notifier is called.
236 * Returns the number of sent notifications.
237 */
238 int ubi_enumerate_volumes(struct notifier_block *nb)
239 {
240 int i, count = 0;
241
242 /*
243 * Since the @ubi_devices_mutex is locked, and we are not going to
244 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
245 */
246 for (i = 0; i < UBI_MAX_DEVICES; i++) {
247 struct ubi_device *ubi = ubi_devices[i];
248
249 if (!ubi)
250 continue;
251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
252 }
253
254 return count;
255 }
256
257 /**
258 * ubi_get_device - get UBI device.
259 * @ubi_num: UBI device number
260 *
261 * This function returns UBI device description object for UBI device number
262 * @ubi_num, or %NULL if the device does not exist. This function increases the
263 * device reference count to prevent removal of the device. In other words, the
264 * device cannot be removed if its reference count is not zero.
265 */
266 struct ubi_device *ubi_get_device(int ubi_num)
267 {
268 struct ubi_device *ubi;
269
270 spin_lock(&ubi_devices_lock);
271 ubi = ubi_devices[ubi_num];
272 if (ubi) {
273 ubi_assert(ubi->ref_count >= 0);
274 ubi->ref_count += 1;
275 get_device(&ubi->dev);
276 }
277 spin_unlock(&ubi_devices_lock);
278
279 return ubi;
280 }
281
282 /**
283 * ubi_put_device - drop an UBI device reference.
284 * @ubi: UBI device description object
285 */
286 void ubi_put_device(struct ubi_device *ubi)
287 {
288 spin_lock(&ubi_devices_lock);
289 ubi->ref_count -= 1;
290 put_device(&ubi->dev);
291 spin_unlock(&ubi_devices_lock);
292 }
293
294 /**
295 * ubi_get_by_major - get UBI device by character device major number.
296 * @major: major number
297 *
298 * This function is similar to 'ubi_get_device()', but it searches the device
299 * by its major number.
300 */
301 struct ubi_device *ubi_get_by_major(int major)
302 {
303 int i;
304 struct ubi_device *ubi;
305
306 spin_lock(&ubi_devices_lock);
307 for (i = 0; i < UBI_MAX_DEVICES; i++) {
308 ubi = ubi_devices[i];
309 if (ubi && MAJOR(ubi->cdev.dev) == major) {
310 ubi_assert(ubi->ref_count >= 0);
311 ubi->ref_count += 1;
312 get_device(&ubi->dev);
313 spin_unlock(&ubi_devices_lock);
314 return ubi;
315 }
316 }
317 spin_unlock(&ubi_devices_lock);
318
319 return NULL;
320 }
321
322 /**
323 * ubi_major2num - get UBI device number by character device major number.
324 * @major: major number
325 *
326 * This function searches UBI device number object by its major number. If UBI
327 * device was not found, this function returns -ENODEV, otherwise the UBI device
328 * number is returned.
329 */
330 int ubi_major2num(int major)
331 {
332 int i, ubi_num = -ENODEV;
333
334 spin_lock(&ubi_devices_lock);
335 for (i = 0; i < UBI_MAX_DEVICES; i++) {
336 struct ubi_device *ubi = ubi_devices[i];
337
338 if (ubi && MAJOR(ubi->cdev.dev) == major) {
339 ubi_num = ubi->ubi_num;
340 break;
341 }
342 }
343 spin_unlock(&ubi_devices_lock);
344
345 return ubi_num;
346 }
347
348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
349 static ssize_t dev_attribute_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351 {
352 ssize_t ret;
353 struct ubi_device *ubi;
354
355 /*
356 * The below code looks weird, but it actually makes sense. We get the
357 * UBI device reference from the contained 'struct ubi_device'. But it
358 * is unclear if the device was removed or not yet. Indeed, if the
359 * device was removed before we increased its reference count,
360 * 'ubi_get_device()' will return -ENODEV and we fail.
361 *
362 * Remember, 'struct ubi_device' is freed in the release function, so
363 * we still can use 'ubi->ubi_num'.
364 */
365 ubi = container_of(dev, struct ubi_device, dev);
366 ubi = ubi_get_device(ubi->ubi_num);
367 if (!ubi)
368 return -ENODEV;
369
370 if (attr == &dev_eraseblock_size)
371 ret = sprintf(buf, "%d\n", ubi->leb_size);
372 else if (attr == &dev_avail_eraseblocks)
373 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
374 else if (attr == &dev_total_eraseblocks)
375 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
376 else if (attr == &dev_volumes_count)
377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
378 else if (attr == &dev_max_ec)
379 ret = sprintf(buf, "%d\n", ubi->max_ec);
380 else if (attr == &dev_reserved_for_bad)
381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
382 else if (attr == &dev_bad_peb_count)
383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
384 else if (attr == &dev_max_vol_count)
385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
386 else if (attr == &dev_min_io_size)
387 ret = sprintf(buf, "%d\n", ubi->min_io_size);
388 else if (attr == &dev_bgt_enabled)
389 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
390 else if (attr == &dev_mtd_num)
391 ret = sprintf(buf, "%d\n", ubi->mtd->index);
392 else if (attr == &dev_ro_mode)
393 ret = sprintf(buf, "%d\n", ubi->ro_mode);
394 else
395 ret = -EINVAL;
396
397 ubi_put_device(ubi);
398 return ret;
399 }
400
401 static struct attribute *ubi_dev_attrs[] = {
402 &dev_eraseblock_size.attr,
403 &dev_avail_eraseblocks.attr,
404 &dev_total_eraseblocks.attr,
405 &dev_volumes_count.attr,
406 &dev_max_ec.attr,
407 &dev_reserved_for_bad.attr,
408 &dev_bad_peb_count.attr,
409 &dev_max_vol_count.attr,
410 &dev_min_io_size.attr,
411 &dev_bgt_enabled.attr,
412 &dev_mtd_num.attr,
413 &dev_ro_mode.attr,
414 NULL
415 };
416 ATTRIBUTE_GROUPS(ubi_dev);
417
418 static void dev_release(struct device *dev)
419 {
420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
421
422 kfree(ubi);
423 }
424
425 /**
426 * kill_volumes - destroy all user volumes.
427 * @ubi: UBI device description object
428 */
429 static void kill_volumes(struct ubi_device *ubi)
430 {
431 int i;
432
433 for (i = 0; i < ubi->vtbl_slots; i++)
434 if (ubi->volumes[i])
435 ubi_free_volume(ubi, ubi->volumes[i]);
436 }
437
438 /**
439 * uif_init - initialize user interfaces for an UBI device.
440 * @ubi: UBI device description object
441 *
442 * This function initializes various user interfaces for an UBI device. If the
443 * initialization fails at an early stage, this function frees all the
444 * resources it allocated, returns an error.
445 *
446 * This function returns zero in case of success and a negative error code in
447 * case of failure.
448 */
449 static int uif_init(struct ubi_device *ubi)
450 {
451 int i, err;
452 dev_t dev;
453
454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
455
456 /*
457 * Major numbers for the UBI character devices are allocated
458 * dynamically. Major numbers of volume character devices are
459 * equivalent to ones of the corresponding UBI character device. Minor
460 * numbers of UBI character devices are 0, while minor numbers of
461 * volume character devices start from 1. Thus, we allocate one major
462 * number and ubi->vtbl_slots + 1 minor numbers.
463 */
464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
465 if (err) {
466 ubi_err(ubi, "cannot register UBI character devices");
467 return err;
468 }
469
470 ubi->dev.devt = dev;
471
472 ubi_assert(MINOR(dev) == 0);
473 cdev_init(&ubi->cdev, &ubi_cdev_operations);
474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
475 ubi->cdev.owner = THIS_MODULE;
476
477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
478 err = cdev_device_add(&ubi->cdev, &ubi->dev);
479 if (err)
480 goto out_unreg;
481
482 for (i = 0; i < ubi->vtbl_slots; i++)
483 if (ubi->volumes[i]) {
484 err = ubi_add_volume(ubi, ubi->volumes[i]);
485 if (err) {
486 ubi_err(ubi, "cannot add volume %d", i);
487 goto out_volumes;
488 }
489 }
490
491 return 0;
492
493 out_volumes:
494 kill_volumes(ubi);
495 cdev_device_del(&ubi->cdev, &ubi->dev);
496 out_unreg:
497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
498 ubi_err(ubi, "cannot initialize UBI %s, error %d",
499 ubi->ubi_name, err);
500 return err;
501 }
502
503 /**
504 * uif_close - close user interfaces for an UBI device.
505 * @ubi: UBI device description object
506 *
507 * Note, since this function un-registers UBI volume device objects (@vol->dev),
508 * the memory allocated voe the volumes is freed as well (in the release
509 * function).
510 */
511 static void uif_close(struct ubi_device *ubi)
512 {
513 kill_volumes(ubi);
514 cdev_device_del(&ubi->cdev, &ubi->dev);
515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
516 }
517
518 /**
519 * ubi_free_internal_volumes - free internal volumes.
520 * @ubi: UBI device description object
521 */
522 void ubi_free_internal_volumes(struct ubi_device *ubi)
523 {
524 int i;
525
526 for (i = ubi->vtbl_slots;
527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
528 ubi_eba_replace_table(ubi->volumes[i], NULL);
529 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
530 kfree(ubi->volumes[i]);
531 }
532 }
533
534 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
535 {
536 int limit, device_pebs;
537 uint64_t device_size;
538
539 if (!max_beb_per1024) {
540 /*
541 * Since max_beb_per1024 has not been set by the user in either
542 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
543 * limit if it is supported by the device.
544 */
545 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
546 if (limit < 0)
547 return 0;
548 return limit;
549 }
550
551 /*
552 * Here we are using size of the entire flash chip and
553 * not just the MTD partition size because the maximum
554 * number of bad eraseblocks is a percentage of the
555 * whole device and bad eraseblocks are not fairly
556 * distributed over the flash chip. So the worst case
557 * is that all the bad eraseblocks of the chip are in
558 * the MTD partition we are attaching (ubi->mtd).
559 */
560 device_size = mtd_get_device_size(ubi->mtd);
561 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
562 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
563
564 /* Round it up */
565 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
566 limit += 1;
567
568 return limit;
569 }
570
571 /**
572 * io_init - initialize I/O sub-system for a given UBI device.
573 * @ubi: UBI device description object
574 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
575 *
576 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
577 * assumed:
578 * o EC header is always at offset zero - this cannot be changed;
579 * o VID header starts just after the EC header at the closest address
580 * aligned to @io->hdrs_min_io_size;
581 * o data starts just after the VID header at the closest address aligned to
582 * @io->min_io_size
583 *
584 * This function returns zero in case of success and a negative error code in
585 * case of failure.
586 */
587 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
588 {
589 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
590 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
591
592 if (ubi->mtd->numeraseregions != 0) {
593 /*
594 * Some flashes have several erase regions. Different regions
595 * may have different eraseblock size and other
596 * characteristics. It looks like mostly multi-region flashes
597 * have one "main" region and one or more small regions to
598 * store boot loader code or boot parameters or whatever. I
599 * guess we should just pick the largest region. But this is
600 * not implemented.
601 */
602 ubi_err(ubi, "multiple regions, not implemented");
603 return -EINVAL;
604 }
605
606 if (ubi->vid_hdr_offset < 0)
607 return -EINVAL;
608
609 /*
610 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
611 * physical eraseblocks maximum.
612 */
613
614 ubi->peb_size = ubi->mtd->erasesize;
615 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
616 ubi->flash_size = ubi->mtd->size;
617
618 if (mtd_can_have_bb(ubi->mtd)) {
619 ubi->bad_allowed = 1;
620 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
621 }
622
623 if (ubi->mtd->type == MTD_NORFLASH) {
624 ubi_assert(ubi->mtd->writesize == 1);
625 ubi->nor_flash = 1;
626 }
627
628 ubi->min_io_size = ubi->mtd->writesize;
629 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
630
631 /*
632 * Make sure minimal I/O unit is power of 2. Note, there is no
633 * fundamental reason for this assumption. It is just an optimization
634 * which allows us to avoid costly division operations.
635 */
636 if (!is_power_of_2(ubi->min_io_size)) {
637 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
638 ubi->min_io_size);
639 return -EINVAL;
640 }
641
642 ubi_assert(ubi->hdrs_min_io_size > 0);
643 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
644 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
645
646 ubi->max_write_size = ubi->mtd->writebufsize;
647 /*
648 * Maximum write size has to be greater or equivalent to min. I/O
649 * size, and be multiple of min. I/O size.
650 */
651 if (ubi->max_write_size < ubi->min_io_size ||
652 ubi->max_write_size % ubi->min_io_size ||
653 !is_power_of_2(ubi->max_write_size)) {
654 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
655 ubi->max_write_size, ubi->min_io_size);
656 return -EINVAL;
657 }
658
659 /* Calculate default aligned sizes of EC and VID headers */
660 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
661 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
662
663 dbg_gen("min_io_size %d", ubi->min_io_size);
664 dbg_gen("max_write_size %d", ubi->max_write_size);
665 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
666 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
667 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
668
669 if (ubi->vid_hdr_offset == 0)
670 /* Default offset */
671 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
672 ubi->ec_hdr_alsize;
673 else {
674 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
675 ~(ubi->hdrs_min_io_size - 1);
676 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
677 ubi->vid_hdr_aloffset;
678 }
679
680 /* Similar for the data offset */
681 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
682 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
683
684 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
685 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
686 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
687 dbg_gen("leb_start %d", ubi->leb_start);
688
689 /* The shift must be aligned to 32-bit boundary */
690 if (ubi->vid_hdr_shift % 4) {
691 ubi_err(ubi, "unaligned VID header shift %d",
692 ubi->vid_hdr_shift);
693 return -EINVAL;
694 }
695
696 /* Check sanity */
697 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
698 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
699 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
700 ubi->leb_start & (ubi->min_io_size - 1)) {
701 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
702 ubi->vid_hdr_offset, ubi->leb_start);
703 return -EINVAL;
704 }
705
706 /*
707 * Set maximum amount of physical erroneous eraseblocks to be 10%.
708 * Erroneous PEB are those which have read errors.
709 */
710 ubi->max_erroneous = ubi->peb_count / 10;
711 if (ubi->max_erroneous < 16)
712 ubi->max_erroneous = 16;
713 dbg_gen("max_erroneous %d", ubi->max_erroneous);
714
715 /*
716 * It may happen that EC and VID headers are situated in one minimal
717 * I/O unit. In this case we can only accept this UBI image in
718 * read-only mode.
719 */
720 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
721 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
722 ubi->ro_mode = 1;
723 }
724
725 ubi->leb_size = ubi->peb_size - ubi->leb_start;
726
727 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
728 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
729 ubi->mtd->index);
730 ubi->ro_mode = 1;
731 }
732
733 /*
734 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
735 * unfortunately, MTD does not provide this information. We should loop
736 * over all physical eraseblocks and invoke mtd->block_is_bad() for
737 * each physical eraseblock. So, we leave @ubi->bad_peb_count
738 * uninitialized so far.
739 */
740
741 return 0;
742 }
743
744 /**
745 * autoresize - re-size the volume which has the "auto-resize" flag set.
746 * @ubi: UBI device description object
747 * @vol_id: ID of the volume to re-size
748 *
749 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
750 * the volume table to the largest possible size. See comments in ubi-header.h
751 * for more description of the flag. Returns zero in case of success and a
752 * negative error code in case of failure.
753 */
754 static int autoresize(struct ubi_device *ubi, int vol_id)
755 {
756 struct ubi_volume_desc desc;
757 struct ubi_volume *vol = ubi->volumes[vol_id];
758 int err, old_reserved_pebs = vol->reserved_pebs;
759
760 if (ubi->ro_mode) {
761 ubi_warn(ubi, "skip auto-resize because of R/O mode");
762 return 0;
763 }
764
765 /*
766 * Clear the auto-resize flag in the volume in-memory copy of the
767 * volume table, and 'ubi_resize_volume()' will propagate this change
768 * to the flash.
769 */
770 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
771
772 if (ubi->avail_pebs == 0) {
773 struct ubi_vtbl_record vtbl_rec;
774
775 /*
776 * No available PEBs to re-size the volume, clear the flag on
777 * flash and exit.
778 */
779 vtbl_rec = ubi->vtbl[vol_id];
780 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
781 if (err)
782 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
783 vol_id);
784 } else {
785 desc.vol = vol;
786 err = ubi_resize_volume(&desc,
787 old_reserved_pebs + ubi->avail_pebs);
788 if (err)
789 ubi_err(ubi, "cannot auto-resize volume %d",
790 vol_id);
791 }
792
793 if (err)
794 return err;
795
796 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
797 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
798 return 0;
799 }
800
801 /**
802 * ubi_attach_mtd_dev - attach an MTD device.
803 * @mtd: MTD device description object
804 * @ubi_num: number to assign to the new UBI device
805 * @vid_hdr_offset: VID header offset
806 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
807 *
808 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
809 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
810 * which case this function finds a vacant device number and assigns it
811 * automatically. Returns the new UBI device number in case of success and a
812 * negative error code in case of failure.
813 *
814 * Note, the invocations of this function has to be serialized by the
815 * @ubi_devices_mutex.
816 */
817 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
818 int vid_hdr_offset, int max_beb_per1024)
819 {
820 struct ubi_device *ubi;
821 int i, err;
822
823 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
824 return -EINVAL;
825
826 if (!max_beb_per1024)
827 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
828
829 /*
830 * Check if we already have the same MTD device attached.
831 *
832 * Note, this function assumes that UBI devices creations and deletions
833 * are serialized, so it does not take the &ubi_devices_lock.
834 */
835 for (i = 0; i < UBI_MAX_DEVICES; i++) {
836 ubi = ubi_devices[i];
837 if (ubi && mtd->index == ubi->mtd->index) {
838 pr_err("ubi: mtd%d is already attached to ubi%d\n",
839 mtd->index, i);
840 return -EEXIST;
841 }
842 }
843
844 /*
845 * Make sure this MTD device is not emulated on top of an UBI volume
846 * already. Well, generally this recursion works fine, but there are
847 * different problems like the UBI module takes a reference to itself
848 * by attaching (and thus, opening) the emulated MTD device. This
849 * results in inability to unload the module. And in general it makes
850 * no sense to attach emulated MTD devices, so we prohibit this.
851 */
852 if (mtd->type == MTD_UBIVOLUME) {
853 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
854 mtd->index);
855 return -EINVAL;
856 }
857
858 /*
859 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
860 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
861 * will die soon and you will lose all your data.
862 */
863 if (mtd->type == MTD_MLCNANDFLASH) {
864 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
865 mtd->index);
866 return -EINVAL;
867 }
868
869 if (ubi_num == UBI_DEV_NUM_AUTO) {
870 /* Search for an empty slot in the @ubi_devices array */
871 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
872 if (!ubi_devices[ubi_num])
873 break;
874 if (ubi_num == UBI_MAX_DEVICES) {
875 pr_err("ubi: only %d UBI devices may be created\n",
876 UBI_MAX_DEVICES);
877 return -ENFILE;
878 }
879 } else {
880 if (ubi_num >= UBI_MAX_DEVICES)
881 return -EINVAL;
882
883 /* Make sure ubi_num is not busy */
884 if (ubi_devices[ubi_num]) {
885 pr_err("ubi: ubi%i already exists\n", ubi_num);
886 return -EEXIST;
887 }
888 }
889
890 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
891 if (!ubi)
892 return -ENOMEM;
893
894 device_initialize(&ubi->dev);
895 ubi->dev.release = dev_release;
896 ubi->dev.class = &ubi_class;
897 ubi->dev.groups = ubi_dev_groups;
898
899 ubi->mtd = mtd;
900 ubi->ubi_num = ubi_num;
901 ubi->vid_hdr_offset = vid_hdr_offset;
902 ubi->autoresize_vol_id = -1;
903
904 #ifdef CONFIG_MTD_UBI_FASTMAP
905 ubi->fm_pool.used = ubi->fm_pool.size = 0;
906 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
907
908 /*
909 * fm_pool.max_size is 5% of the total number of PEBs but it's also
910 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
911 */
912 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
913 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
914 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
915 UBI_FM_MIN_POOL_SIZE);
916
917 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
918 ubi->fm_disabled = !fm_autoconvert;
919 if (fm_debug)
920 ubi_enable_dbg_chk_fastmap(ubi);
921
922 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
923 <= UBI_FM_MAX_START) {
924 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
925 UBI_FM_MAX_START);
926 ubi->fm_disabled = 1;
927 }
928
929 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
930 ubi_msg(ubi, "default fastmap WL pool size: %d",
931 ubi->fm_wl_pool.max_size);
932 #else
933 ubi->fm_disabled = 1;
934 #endif
935 mutex_init(&ubi->buf_mutex);
936 mutex_init(&ubi->ckvol_mutex);
937 mutex_init(&ubi->device_mutex);
938 spin_lock_init(&ubi->volumes_lock);
939 init_rwsem(&ubi->fm_protect);
940 init_rwsem(&ubi->fm_eba_sem);
941
942 ubi_msg(ubi, "attaching mtd%d", mtd->index);
943
944 err = io_init(ubi, max_beb_per1024);
945 if (err)
946 goto out_free;
947
948 err = -ENOMEM;
949 ubi->peb_buf = vmalloc(ubi->peb_size);
950 if (!ubi->peb_buf)
951 goto out_free;
952
953 #ifdef CONFIG_MTD_UBI_FASTMAP
954 ubi->fm_size = ubi_calc_fm_size(ubi);
955 ubi->fm_buf = vzalloc(ubi->fm_size);
956 if (!ubi->fm_buf)
957 goto out_free;
958 #endif
959 err = ubi_attach(ubi, 0);
960 if (err) {
961 ubi_err(ubi, "failed to attach mtd%d, error %d",
962 mtd->index, err);
963 goto out_free;
964 }
965
966 if (ubi->autoresize_vol_id != -1) {
967 err = autoresize(ubi, ubi->autoresize_vol_id);
968 if (err)
969 goto out_detach;
970 }
971
972 /* Make device "available" before it becomes accessible via sysfs */
973 ubi_devices[ubi_num] = ubi;
974
975 err = uif_init(ubi);
976 if (err)
977 goto out_detach;
978
979 err = ubi_debugfs_init_dev(ubi);
980 if (err)
981 goto out_uif;
982
983 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
984 if (IS_ERR(ubi->bgt_thread)) {
985 err = PTR_ERR(ubi->bgt_thread);
986 ubi_err(ubi, "cannot spawn \"%s\", error %d",
987 ubi->bgt_name, err);
988 goto out_debugfs;
989 }
990
991 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
992 mtd->index, mtd->name, ubi->flash_size >> 20);
993 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
994 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
995 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
996 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
997 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
998 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
999 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1000 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1001 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1002 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1003 ubi->vtbl_slots);
1004 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1005 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1006 ubi->image_seq);
1007 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1008 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1009
1010 /*
1011 * The below lock makes sure we do not race with 'ubi_thread()' which
1012 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1013 */
1014 spin_lock(&ubi->wl_lock);
1015 ubi->thread_enabled = 1;
1016 wake_up_process(ubi->bgt_thread);
1017 spin_unlock(&ubi->wl_lock);
1018
1019 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1020 return ubi_num;
1021
1022 out_debugfs:
1023 ubi_debugfs_exit_dev(ubi);
1024 out_uif:
1025 uif_close(ubi);
1026 out_detach:
1027 ubi_devices[ubi_num] = NULL;
1028 ubi_wl_close(ubi);
1029 ubi_free_internal_volumes(ubi);
1030 vfree(ubi->vtbl);
1031 out_free:
1032 vfree(ubi->peb_buf);
1033 vfree(ubi->fm_buf);
1034 put_device(&ubi->dev);
1035 return err;
1036 }
1037
1038 /**
1039 * ubi_detach_mtd_dev - detach an MTD device.
1040 * @ubi_num: UBI device number to detach from
1041 * @anyway: detach MTD even if device reference count is not zero
1042 *
1043 * This function destroys an UBI device number @ubi_num and detaches the
1044 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1045 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1046 * exist.
1047 *
1048 * Note, the invocations of this function has to be serialized by the
1049 * @ubi_devices_mutex.
1050 */
1051 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1052 {
1053 struct ubi_device *ubi;
1054
1055 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1056 return -EINVAL;
1057
1058 ubi = ubi_get_device(ubi_num);
1059 if (!ubi)
1060 return -EINVAL;
1061
1062 spin_lock(&ubi_devices_lock);
1063 put_device(&ubi->dev);
1064 ubi->ref_count -= 1;
1065 if (ubi->ref_count) {
1066 if (!anyway) {
1067 spin_unlock(&ubi_devices_lock);
1068 return -EBUSY;
1069 }
1070 /* This may only happen if there is a bug */
1071 ubi_err(ubi, "%s reference count %d, destroy anyway",
1072 ubi->ubi_name, ubi->ref_count);
1073 }
1074 ubi_devices[ubi_num] = NULL;
1075 spin_unlock(&ubi_devices_lock);
1076
1077 ubi_assert(ubi_num == ubi->ubi_num);
1078 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1079 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1080 #ifdef CONFIG_MTD_UBI_FASTMAP
1081 /* If we don't write a new fastmap at detach time we lose all
1082 * EC updates that have been made since the last written fastmap.
1083 * In case of fastmap debugging we omit the update to simulate an
1084 * unclean shutdown. */
1085 if (!ubi_dbg_chk_fastmap(ubi))
1086 ubi_update_fastmap(ubi);
1087 #endif
1088 /*
1089 * Before freeing anything, we have to stop the background thread to
1090 * prevent it from doing anything on this device while we are freeing.
1091 */
1092 if (ubi->bgt_thread)
1093 kthread_stop(ubi->bgt_thread);
1094
1095 #ifdef CONFIG_MTD_UBI_FASTMAP
1096 cancel_work_sync(&ubi->fm_work);
1097 #endif
1098 ubi_debugfs_exit_dev(ubi);
1099 uif_close(ubi);
1100
1101 ubi_wl_close(ubi);
1102 ubi_free_internal_volumes(ubi);
1103 vfree(ubi->vtbl);
1104 vfree(ubi->peb_buf);
1105 vfree(ubi->fm_buf);
1106 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1107 put_mtd_device(ubi->mtd);
1108 put_device(&ubi->dev);
1109 return 0;
1110 }
1111
1112 /**
1113 * open_mtd_by_chdev - open an MTD device by its character device node path.
1114 * @mtd_dev: MTD character device node path
1115 *
1116 * This helper function opens an MTD device by its character node device path.
1117 * Returns MTD device description object in case of success and a negative
1118 * error code in case of failure.
1119 */
1120 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1121 {
1122 int err, minor;
1123 struct path path;
1124 struct kstat stat;
1125
1126 /* Probably this is an MTD character device node path */
1127 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1128 if (err)
1129 return ERR_PTR(err);
1130
1131 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1132 path_put(&path);
1133 if (err)
1134 return ERR_PTR(err);
1135
1136 /* MTD device number is defined by the major / minor numbers */
1137 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1138 return ERR_PTR(-EINVAL);
1139
1140 minor = MINOR(stat.rdev);
1141
1142 if (minor & 1)
1143 /*
1144 * Just do not think the "/dev/mtdrX" devices support is need,
1145 * so do not support them to avoid doing extra work.
1146 */
1147 return ERR_PTR(-EINVAL);
1148
1149 return get_mtd_device(NULL, minor / 2);
1150 }
1151
1152 /**
1153 * open_mtd_device - open MTD device by name, character device path, or number.
1154 * @mtd_dev: name, character device node path, or MTD device device number
1155 *
1156 * This function tries to open and MTD device described by @mtd_dev string,
1157 * which is first treated as ASCII MTD device number, and if it is not true, it
1158 * is treated as MTD device name, and if that is also not true, it is treated
1159 * as MTD character device node path. Returns MTD device description object in
1160 * case of success and a negative error code in case of failure.
1161 */
1162 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1163 {
1164 struct mtd_info *mtd;
1165 int mtd_num;
1166 char *endp;
1167
1168 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1169 if (*endp != '\0' || mtd_dev == endp) {
1170 /*
1171 * This does not look like an ASCII integer, probably this is
1172 * MTD device name.
1173 */
1174 mtd = get_mtd_device_nm(mtd_dev);
1175 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1176 /* Probably this is an MTD character device node path */
1177 mtd = open_mtd_by_chdev(mtd_dev);
1178 } else
1179 mtd = get_mtd_device(NULL, mtd_num);
1180
1181 return mtd;
1182 }
1183
1184 static int __init ubi_init(void)
1185 {
1186 int err, i, k;
1187
1188 /* Ensure that EC and VID headers have correct size */
1189 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1190 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1191
1192 if (mtd_devs > UBI_MAX_DEVICES) {
1193 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1194 UBI_MAX_DEVICES);
1195 return -EINVAL;
1196 }
1197
1198 /* Create base sysfs directory and sysfs files */
1199 err = class_register(&ubi_class);
1200 if (err < 0)
1201 return err;
1202
1203 err = misc_register(&ubi_ctrl_cdev);
1204 if (err) {
1205 pr_err("UBI error: cannot register device\n");
1206 goto out;
1207 }
1208
1209 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1210 sizeof(struct ubi_wl_entry),
1211 0, 0, NULL);
1212 if (!ubi_wl_entry_slab) {
1213 err = -ENOMEM;
1214 goto out_dev_unreg;
1215 }
1216
1217 err = ubi_debugfs_init();
1218 if (err)
1219 goto out_slab;
1220
1221
1222 /* Attach MTD devices */
1223 for (i = 0; i < mtd_devs; i++) {
1224 struct mtd_dev_param *p = &mtd_dev_param[i];
1225 struct mtd_info *mtd;
1226
1227 cond_resched();
1228
1229 mtd = open_mtd_device(p->name);
1230 if (IS_ERR(mtd)) {
1231 err = PTR_ERR(mtd);
1232 pr_err("UBI error: cannot open mtd %s, error %d\n",
1233 p->name, err);
1234 /* See comment below re-ubi_is_module(). */
1235 if (ubi_is_module())
1236 goto out_detach;
1237 continue;
1238 }
1239
1240 mutex_lock(&ubi_devices_mutex);
1241 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1242 p->vid_hdr_offs, p->max_beb_per1024);
1243 mutex_unlock(&ubi_devices_mutex);
1244 if (err < 0) {
1245 pr_err("UBI error: cannot attach mtd%d\n",
1246 mtd->index);
1247 put_mtd_device(mtd);
1248
1249 /*
1250 * Originally UBI stopped initializing on any error.
1251 * However, later on it was found out that this
1252 * behavior is not very good when UBI is compiled into
1253 * the kernel and the MTD devices to attach are passed
1254 * through the command line. Indeed, UBI failure
1255 * stopped whole boot sequence.
1256 *
1257 * To fix this, we changed the behavior for the
1258 * non-module case, but preserved the old behavior for
1259 * the module case, just for compatibility. This is a
1260 * little inconsistent, though.
1261 */
1262 if (ubi_is_module())
1263 goto out_detach;
1264 }
1265 }
1266
1267 err = ubiblock_init();
1268 if (err) {
1269 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1270
1271 /* See comment above re-ubi_is_module(). */
1272 if (ubi_is_module())
1273 goto out_detach;
1274 }
1275
1276 return 0;
1277
1278 out_detach:
1279 for (k = 0; k < i; k++)
1280 if (ubi_devices[k]) {
1281 mutex_lock(&ubi_devices_mutex);
1282 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1283 mutex_unlock(&ubi_devices_mutex);
1284 }
1285 ubi_debugfs_exit();
1286 out_slab:
1287 kmem_cache_destroy(ubi_wl_entry_slab);
1288 out_dev_unreg:
1289 misc_deregister(&ubi_ctrl_cdev);
1290 out:
1291 class_unregister(&ubi_class);
1292 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1293 return err;
1294 }
1295 late_initcall(ubi_init);
1296
1297 static void __exit ubi_exit(void)
1298 {
1299 int i;
1300
1301 ubiblock_exit();
1302
1303 for (i = 0; i < UBI_MAX_DEVICES; i++)
1304 if (ubi_devices[i]) {
1305 mutex_lock(&ubi_devices_mutex);
1306 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1307 mutex_unlock(&ubi_devices_mutex);
1308 }
1309 ubi_debugfs_exit();
1310 kmem_cache_destroy(ubi_wl_entry_slab);
1311 misc_deregister(&ubi_ctrl_cdev);
1312 class_unregister(&ubi_class);
1313 }
1314 module_exit(ubi_exit);
1315
1316 /**
1317 * bytes_str_to_int - convert a number of bytes string into an integer.
1318 * @str: the string to convert
1319 *
1320 * This function returns positive resulting integer in case of success and a
1321 * negative error code in case of failure.
1322 */
1323 static int bytes_str_to_int(const char *str)
1324 {
1325 char *endp;
1326 unsigned long result;
1327
1328 result = simple_strtoul(str, &endp, 0);
1329 if (str == endp || result >= INT_MAX) {
1330 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1331 return -EINVAL;
1332 }
1333
1334 switch (*endp) {
1335 case 'G':
1336 result *= 1024;
1337 /* fall through */
1338 case 'M':
1339 result *= 1024;
1340 /* fall through */
1341 case 'K':
1342 result *= 1024;
1343 if (endp[1] == 'i' && endp[2] == 'B')
1344 endp += 2;
1345 case '\0':
1346 break;
1347 default:
1348 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1349 return -EINVAL;
1350 }
1351
1352 return result;
1353 }
1354
1355 /**
1356 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1357 * @val: the parameter value to parse
1358 * @kp: not used
1359 *
1360 * This function returns zero in case of success and a negative error code in
1361 * case of error.
1362 */
1363 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1364 {
1365 int i, len;
1366 struct mtd_dev_param *p;
1367 char buf[MTD_PARAM_LEN_MAX];
1368 char *pbuf = &buf[0];
1369 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1370
1371 if (!val)
1372 return -EINVAL;
1373
1374 if (mtd_devs == UBI_MAX_DEVICES) {
1375 pr_err("UBI error: too many parameters, max. is %d\n",
1376 UBI_MAX_DEVICES);
1377 return -EINVAL;
1378 }
1379
1380 len = strnlen(val, MTD_PARAM_LEN_MAX);
1381 if (len == MTD_PARAM_LEN_MAX) {
1382 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1383 val, MTD_PARAM_LEN_MAX);
1384 return -EINVAL;
1385 }
1386
1387 if (len == 0) {
1388 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1389 return 0;
1390 }
1391
1392 strcpy(buf, val);
1393
1394 /* Get rid of the final newline */
1395 if (buf[len - 1] == '\n')
1396 buf[len - 1] = '\0';
1397
1398 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1399 tokens[i] = strsep(&pbuf, ",");
1400
1401 if (pbuf) {
1402 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1403 return -EINVAL;
1404 }
1405
1406 p = &mtd_dev_param[mtd_devs];
1407 strcpy(&p->name[0], tokens[0]);
1408
1409 token = tokens[1];
1410 if (token) {
1411 p->vid_hdr_offs = bytes_str_to_int(token);
1412
1413 if (p->vid_hdr_offs < 0)
1414 return p->vid_hdr_offs;
1415 }
1416
1417 token = tokens[2];
1418 if (token) {
1419 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1420
1421 if (err) {
1422 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1423 token);
1424 return -EINVAL;
1425 }
1426 }
1427
1428 token = tokens[3];
1429 if (token) {
1430 int err = kstrtoint(token, 10, &p->ubi_num);
1431
1432 if (err) {
1433 pr_err("UBI error: bad value for ubi_num parameter: %s",
1434 token);
1435 return -EINVAL;
1436 }
1437 } else
1438 p->ubi_num = UBI_DEV_NUM_AUTO;
1439
1440 mtd_devs += 1;
1441 return 0;
1442 }
1443
1444 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1445 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1446 "Multiple \"mtd\" parameters may be specified.\n"
1447 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1448 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1449 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1450 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1451 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1452 "\n"
1453 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1454 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1455 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1456 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1457 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1458 #ifdef CONFIG_MTD_UBI_FASTMAP
1459 module_param(fm_autoconvert, bool, 0644);
1460 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1461 module_param(fm_debug, bool, 0);
1462 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1463 #endif
1464 MODULE_VERSION(__stringify(UBI_VERSION));
1465 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1466 MODULE_AUTHOR("Artem Bityutskiy");
1467 MODULE_LICENSE("GPL");