]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/ubi/eba.c
pinctrl: sirf: move sgpio lock into state container
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / eba.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) sub-system.
23 *
24 * This sub-system is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69 }
70
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84 }
85
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
98 {
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
104
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122 }
123
124 /**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
137 {
138 struct ubi_ltree_entry *le, *le1, *le_free;
139
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
192 kfree(le_free);
193 return le;
194 }
195
196 /**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 struct ubi_ltree_entry *le;
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214 }
215
216 /**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 struct ubi_ltree_entry *le;
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
234 }
235 spin_unlock(&ubi->ltree_lock);
236 }
237
238 /**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 struct ubi_ltree_entry *le;
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256 }
257
258 /**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
286 }
287 spin_unlock(&ubi->ltree_lock);
288
289 return 1;
290 }
291
292 /**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 struct ubi_ltree_entry *le;
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
310 }
311 spin_unlock(&ubi->ltree_lock);
312 }
313
314 /**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
326 {
327 int err, pnum, vol_id = vol->vol_id;
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
343 down_read(&ubi->fm_sem);
344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 up_read(&ubi->fm_sem);
346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347
348 out_unlock:
349 leb_write_unlock(ubi, vol_id, lnum);
350 return err;
351 }
352
353 /**
354 * ubi_eba_read_leb - read data.
355 * @ubi: UBI device description object
356 * @vol: volume description object
357 * @lnum: logical eraseblock number
358 * @buf: buffer to store the read data
359 * @offset: offset from where to read
360 * @len: how many bytes to read
361 * @check: data CRC check flag
362 *
363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364 * bytes. The @check flag only makes sense for static volumes and forces
365 * eraseblock data CRC checking.
366 *
367 * In case of success this function returns zero. In case of a static volume,
368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369 * returned for any volume type if an ECC error was detected by the MTD device
370 * driver. Other negative error cored may be returned in case of other errors.
371 */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 void *buf, int offset, int len, int check)
374 {
375 int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 struct ubi_vid_hdr *vid_hdr;
377 uint32_t uninitialized_var(crc);
378
379 err = leb_read_lock(ubi, vol_id, lnum);
380 if (err)
381 return err;
382
383 pnum = vol->eba_tbl[lnum];
384 if (pnum < 0) {
385 /*
386 * The logical eraseblock is not mapped, fill the whole buffer
387 * with 0xFF bytes. The exception is static volumes for which
388 * it is an error to read unmapped logical eraseblocks.
389 */
390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 len, offset, vol_id, lnum);
392 leb_read_unlock(ubi, vol_id, lnum);
393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 memset(buf, 0xFF, len);
395 return 0;
396 }
397
398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 len, offset, vol_id, lnum, pnum);
400
401 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 check = 0;
403
404 retry:
405 if (check) {
406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 if (!vid_hdr) {
408 err = -ENOMEM;
409 goto out_unlock;
410 }
411
412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 if (err && err != UBI_IO_BITFLIPS) {
414 if (err > 0) {
415 /*
416 * The header is either absent or corrupted.
417 * The former case means there is a bug -
418 * switch to read-only mode just in case.
419 * The latter case means a real corruption - we
420 * may try to recover data. FIXME: but this is
421 * not implemented.
422 */
423 if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 err == UBI_IO_BAD_HDR) {
425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 pnum, vol_id, lnum);
427 err = -EBADMSG;
428 } else
429 err = -EINVAL;
430 ubi_ro_mode(ubi);
431 }
432 goto out_free;
433 } else if (err == UBI_IO_BITFLIPS)
434 scrub = 1;
435
436 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
437 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
438
439 crc = be32_to_cpu(vid_hdr->data_crc);
440 ubi_free_vid_hdr(ubi, vid_hdr);
441 }
442
443 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
444 if (err) {
445 if (err == UBI_IO_BITFLIPS)
446 scrub = 1;
447 else if (mtd_is_eccerr(err)) {
448 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
449 goto out_unlock;
450 scrub = 1;
451 if (!check) {
452 ubi_msg(ubi, "force data checking");
453 check = 1;
454 goto retry;
455 }
456 } else
457 goto out_unlock;
458 }
459
460 if (check) {
461 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
462 if (crc1 != crc) {
463 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
464 crc1, crc);
465 err = -EBADMSG;
466 goto out_unlock;
467 }
468 }
469
470 if (scrub)
471 err = ubi_wl_scrub_peb(ubi, pnum);
472
473 leb_read_unlock(ubi, vol_id, lnum);
474 return err;
475
476 out_free:
477 ubi_free_vid_hdr(ubi, vid_hdr);
478 out_unlock:
479 leb_read_unlock(ubi, vol_id, lnum);
480 return err;
481 }
482
483 /**
484 * ubi_eba_read_leb_sg - read data into a scatter gather list.
485 * @ubi: UBI device description object
486 * @vol: volume description object
487 * @lnum: logical eraseblock number
488 * @sgl: UBI scatter gather list to store the read data
489 * @offset: offset from where to read
490 * @len: how many bytes to read
491 * @check: data CRC check flag
492 *
493 * This function works exactly like ubi_eba_read_leb(). But instead of
494 * storing the read data into a buffer it writes to an UBI scatter gather
495 * list.
496 */
497 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
498 struct ubi_sgl *sgl, int lnum, int offset, int len,
499 int check)
500 {
501 int to_read;
502 int ret;
503 struct scatterlist *sg;
504
505 for (;;) {
506 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
507 sg = &sgl->sg[sgl->list_pos];
508 if (len < sg->length - sgl->page_pos)
509 to_read = len;
510 else
511 to_read = sg->length - sgl->page_pos;
512
513 ret = ubi_eba_read_leb(ubi, vol, lnum,
514 sg_virt(sg) + sgl->page_pos, offset,
515 to_read, check);
516 if (ret < 0)
517 return ret;
518
519 offset += to_read;
520 len -= to_read;
521 if (!len) {
522 sgl->page_pos += to_read;
523 if (sgl->page_pos == sg->length) {
524 sgl->list_pos++;
525 sgl->page_pos = 0;
526 }
527
528 break;
529 }
530
531 sgl->list_pos++;
532 sgl->page_pos = 0;
533 }
534
535 return ret;
536 }
537
538 /**
539 * recover_peb - recover from write failure.
540 * @ubi: UBI device description object
541 * @pnum: the physical eraseblock to recover
542 * @vol_id: volume ID
543 * @lnum: logical eraseblock number
544 * @buf: data which was not written because of the write failure
545 * @offset: offset of the failed write
546 * @len: how many bytes should have been written
547 *
548 * This function is called in case of a write failure and moves all good data
549 * from the potentially bad physical eraseblock to a good physical eraseblock.
550 * This function also writes the data which was not written due to the failure.
551 * Returns new physical eraseblock number in case of success, and a negative
552 * error code in case of failure.
553 */
554 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
555 const void *buf, int offset, int len)
556 {
557 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
558 struct ubi_volume *vol = ubi->volumes[idx];
559 struct ubi_vid_hdr *vid_hdr;
560
561 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
562 if (!vid_hdr)
563 return -ENOMEM;
564
565 retry:
566 new_pnum = ubi_wl_get_peb(ubi);
567 if (new_pnum < 0) {
568 ubi_free_vid_hdr(ubi, vid_hdr);
569 return new_pnum;
570 }
571
572 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
573 pnum, new_pnum);
574
575 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
576 if (err && err != UBI_IO_BITFLIPS) {
577 if (err > 0)
578 err = -EIO;
579 goto out_put;
580 }
581
582 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
583 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
584 if (err)
585 goto write_error;
586
587 data_size = offset + len;
588 mutex_lock(&ubi->buf_mutex);
589 memset(ubi->peb_buf + offset, 0xFF, len);
590
591 /* Read everything before the area where the write failure happened */
592 if (offset > 0) {
593 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
594 if (err && err != UBI_IO_BITFLIPS)
595 goto out_unlock;
596 }
597
598 memcpy(ubi->peb_buf + offset, buf, len);
599
600 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
601 if (err) {
602 mutex_unlock(&ubi->buf_mutex);
603 goto write_error;
604 }
605
606 mutex_unlock(&ubi->buf_mutex);
607 ubi_free_vid_hdr(ubi, vid_hdr);
608
609 down_read(&ubi->fm_sem);
610 vol->eba_tbl[lnum] = new_pnum;
611 up_read(&ubi->fm_sem);
612 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
613
614 ubi_msg(ubi, "data was successfully recovered");
615 return 0;
616
617 out_unlock:
618 mutex_unlock(&ubi->buf_mutex);
619 out_put:
620 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
621 ubi_free_vid_hdr(ubi, vid_hdr);
622 return err;
623
624 write_error:
625 /*
626 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
627 * get another one.
628 */
629 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
630 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
631 if (++tries > UBI_IO_RETRIES) {
632 ubi_free_vid_hdr(ubi, vid_hdr);
633 return err;
634 }
635 ubi_msg(ubi, "try again");
636 goto retry;
637 }
638
639 /**
640 * ubi_eba_write_leb - write data to dynamic volume.
641 * @ubi: UBI device description object
642 * @vol: volume description object
643 * @lnum: logical eraseblock number
644 * @buf: the data to write
645 * @offset: offset within the logical eraseblock where to write
646 * @len: how many bytes to write
647 *
648 * This function writes data to logical eraseblock @lnum of a dynamic volume
649 * @vol. Returns zero in case of success and a negative error code in case
650 * of failure. In case of error, it is possible that something was still
651 * written to the flash media, but may be some garbage.
652 */
653 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
654 const void *buf, int offset, int len)
655 {
656 int err, pnum, tries = 0, vol_id = vol->vol_id;
657 struct ubi_vid_hdr *vid_hdr;
658
659 if (ubi->ro_mode)
660 return -EROFS;
661
662 err = leb_write_lock(ubi, vol_id, lnum);
663 if (err)
664 return err;
665
666 pnum = vol->eba_tbl[lnum];
667 if (pnum >= 0) {
668 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
669 len, offset, vol_id, lnum, pnum);
670
671 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
672 if (err) {
673 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
674 if (err == -EIO && ubi->bad_allowed)
675 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
676 offset, len);
677 if (err)
678 ubi_ro_mode(ubi);
679 }
680 leb_write_unlock(ubi, vol_id, lnum);
681 return err;
682 }
683
684 /*
685 * The logical eraseblock is not mapped. We have to get a free physical
686 * eraseblock and write the volume identifier header there first.
687 */
688 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
689 if (!vid_hdr) {
690 leb_write_unlock(ubi, vol_id, lnum);
691 return -ENOMEM;
692 }
693
694 vid_hdr->vol_type = UBI_VID_DYNAMIC;
695 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
696 vid_hdr->vol_id = cpu_to_be32(vol_id);
697 vid_hdr->lnum = cpu_to_be32(lnum);
698 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
699 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
700
701 retry:
702 pnum = ubi_wl_get_peb(ubi);
703 if (pnum < 0) {
704 ubi_free_vid_hdr(ubi, vid_hdr);
705 leb_write_unlock(ubi, vol_id, lnum);
706 return pnum;
707 }
708
709 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
710 len, offset, vol_id, lnum, pnum);
711
712 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
713 if (err) {
714 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
715 vol_id, lnum, pnum);
716 goto write_error;
717 }
718
719 if (len) {
720 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
721 if (err) {
722 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
723 len, offset, vol_id, lnum, pnum);
724 goto write_error;
725 }
726 }
727
728 down_read(&ubi->fm_sem);
729 vol->eba_tbl[lnum] = pnum;
730 up_read(&ubi->fm_sem);
731
732 leb_write_unlock(ubi, vol_id, lnum);
733 ubi_free_vid_hdr(ubi, vid_hdr);
734 return 0;
735
736 write_error:
737 if (err != -EIO || !ubi->bad_allowed) {
738 ubi_ro_mode(ubi);
739 leb_write_unlock(ubi, vol_id, lnum);
740 ubi_free_vid_hdr(ubi, vid_hdr);
741 return err;
742 }
743
744 /*
745 * Fortunately, this is the first write operation to this physical
746 * eraseblock, so just put it and request a new one. We assume that if
747 * this physical eraseblock went bad, the erase code will handle that.
748 */
749 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
750 if (err || ++tries > UBI_IO_RETRIES) {
751 ubi_ro_mode(ubi);
752 leb_write_unlock(ubi, vol_id, lnum);
753 ubi_free_vid_hdr(ubi, vid_hdr);
754 return err;
755 }
756
757 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
758 ubi_msg(ubi, "try another PEB");
759 goto retry;
760 }
761
762 /**
763 * ubi_eba_write_leb_st - write data to static volume.
764 * @ubi: UBI device description object
765 * @vol: volume description object
766 * @lnum: logical eraseblock number
767 * @buf: data to write
768 * @len: how many bytes to write
769 * @used_ebs: how many logical eraseblocks will this volume contain
770 *
771 * This function writes data to logical eraseblock @lnum of static volume
772 * @vol. The @used_ebs argument should contain total number of logical
773 * eraseblock in this static volume.
774 *
775 * When writing to the last logical eraseblock, the @len argument doesn't have
776 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
777 * to the real data size, although the @buf buffer has to contain the
778 * alignment. In all other cases, @len has to be aligned.
779 *
780 * It is prohibited to write more than once to logical eraseblocks of static
781 * volumes. This function returns zero in case of success and a negative error
782 * code in case of failure.
783 */
784 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
785 int lnum, const void *buf, int len, int used_ebs)
786 {
787 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
788 struct ubi_vid_hdr *vid_hdr;
789 uint32_t crc;
790
791 if (ubi->ro_mode)
792 return -EROFS;
793
794 if (lnum == used_ebs - 1)
795 /* If this is the last LEB @len may be unaligned */
796 len = ALIGN(data_size, ubi->min_io_size);
797 else
798 ubi_assert(!(len & (ubi->min_io_size - 1)));
799
800 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801 if (!vid_hdr)
802 return -ENOMEM;
803
804 err = leb_write_lock(ubi, vol_id, lnum);
805 if (err) {
806 ubi_free_vid_hdr(ubi, vid_hdr);
807 return err;
808 }
809
810 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
811 vid_hdr->vol_id = cpu_to_be32(vol_id);
812 vid_hdr->lnum = cpu_to_be32(lnum);
813 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
814 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
815
816 crc = crc32(UBI_CRC32_INIT, buf, data_size);
817 vid_hdr->vol_type = UBI_VID_STATIC;
818 vid_hdr->data_size = cpu_to_be32(data_size);
819 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
820 vid_hdr->data_crc = cpu_to_be32(crc);
821
822 retry:
823 pnum = ubi_wl_get_peb(ubi);
824 if (pnum < 0) {
825 ubi_free_vid_hdr(ubi, vid_hdr);
826 leb_write_unlock(ubi, vol_id, lnum);
827 return pnum;
828 }
829
830 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
831 len, vol_id, lnum, pnum, used_ebs);
832
833 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
834 if (err) {
835 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
836 vol_id, lnum, pnum);
837 goto write_error;
838 }
839
840 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
841 if (err) {
842 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
843 len, pnum);
844 goto write_error;
845 }
846
847 ubi_assert(vol->eba_tbl[lnum] < 0);
848 down_read(&ubi->fm_sem);
849 vol->eba_tbl[lnum] = pnum;
850 up_read(&ubi->fm_sem);
851
852 leb_write_unlock(ubi, vol_id, lnum);
853 ubi_free_vid_hdr(ubi, vid_hdr);
854 return 0;
855
856 write_error:
857 if (err != -EIO || !ubi->bad_allowed) {
858 /*
859 * This flash device does not admit of bad eraseblocks or
860 * something nasty and unexpected happened. Switch to read-only
861 * mode just in case.
862 */
863 ubi_ro_mode(ubi);
864 leb_write_unlock(ubi, vol_id, lnum);
865 ubi_free_vid_hdr(ubi, vid_hdr);
866 return err;
867 }
868
869 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
870 if (err || ++tries > UBI_IO_RETRIES) {
871 ubi_ro_mode(ubi);
872 leb_write_unlock(ubi, vol_id, lnum);
873 ubi_free_vid_hdr(ubi, vid_hdr);
874 return err;
875 }
876
877 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
878 ubi_msg(ubi, "try another PEB");
879 goto retry;
880 }
881
882 /*
883 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
884 * @ubi: UBI device description object
885 * @vol: volume description object
886 * @lnum: logical eraseblock number
887 * @buf: data to write
888 * @len: how many bytes to write
889 *
890 * This function changes the contents of a logical eraseblock atomically. @buf
891 * has to contain new logical eraseblock data, and @len - the length of the
892 * data, which has to be aligned. This function guarantees that in case of an
893 * unclean reboot the old contents is preserved. Returns zero in case of
894 * success and a negative error code in case of failure.
895 *
896 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
897 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
898 */
899 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
900 int lnum, const void *buf, int len)
901 {
902 int err, pnum, tries = 0, vol_id = vol->vol_id;
903 struct ubi_vid_hdr *vid_hdr;
904 uint32_t crc;
905
906 if (ubi->ro_mode)
907 return -EROFS;
908
909 if (len == 0) {
910 /*
911 * Special case when data length is zero. In this case the LEB
912 * has to be unmapped and mapped somewhere else.
913 */
914 err = ubi_eba_unmap_leb(ubi, vol, lnum);
915 if (err)
916 return err;
917 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
918 }
919
920 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
921 if (!vid_hdr)
922 return -ENOMEM;
923
924 mutex_lock(&ubi->alc_mutex);
925 err = leb_write_lock(ubi, vol_id, lnum);
926 if (err)
927 goto out_mutex;
928
929 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
930 vid_hdr->vol_id = cpu_to_be32(vol_id);
931 vid_hdr->lnum = cpu_to_be32(lnum);
932 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
933 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
934
935 crc = crc32(UBI_CRC32_INIT, buf, len);
936 vid_hdr->vol_type = UBI_VID_DYNAMIC;
937 vid_hdr->data_size = cpu_to_be32(len);
938 vid_hdr->copy_flag = 1;
939 vid_hdr->data_crc = cpu_to_be32(crc);
940
941 retry:
942 pnum = ubi_wl_get_peb(ubi);
943 if (pnum < 0) {
944 err = pnum;
945 goto out_leb_unlock;
946 }
947
948 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
949 vol_id, lnum, vol->eba_tbl[lnum], pnum);
950
951 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
952 if (err) {
953 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
954 vol_id, lnum, pnum);
955 goto write_error;
956 }
957
958 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
959 if (err) {
960 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
961 len, pnum);
962 goto write_error;
963 }
964
965 if (vol->eba_tbl[lnum] >= 0) {
966 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
967 if (err)
968 goto out_leb_unlock;
969 }
970
971 down_read(&ubi->fm_sem);
972 vol->eba_tbl[lnum] = pnum;
973 up_read(&ubi->fm_sem);
974
975 out_leb_unlock:
976 leb_write_unlock(ubi, vol_id, lnum);
977 out_mutex:
978 mutex_unlock(&ubi->alc_mutex);
979 ubi_free_vid_hdr(ubi, vid_hdr);
980 return err;
981
982 write_error:
983 if (err != -EIO || !ubi->bad_allowed) {
984 /*
985 * This flash device does not admit of bad eraseblocks or
986 * something nasty and unexpected happened. Switch to read-only
987 * mode just in case.
988 */
989 ubi_ro_mode(ubi);
990 goto out_leb_unlock;
991 }
992
993 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
994 if (err || ++tries > UBI_IO_RETRIES) {
995 ubi_ro_mode(ubi);
996 goto out_leb_unlock;
997 }
998
999 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1000 ubi_msg(ubi, "try another PEB");
1001 goto retry;
1002 }
1003
1004 /**
1005 * is_error_sane - check whether a read error is sane.
1006 * @err: code of the error happened during reading
1007 *
1008 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1009 * cannot read data from the target PEB (an error @err happened). If the error
1010 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1011 * fatal and UBI will be switched to R/O mode later.
1012 *
1013 * The idea is that we try not to switch to R/O mode if the read error is
1014 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1015 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1016 * mode, simply because we do not know what happened at the MTD level, and we
1017 * cannot handle this. E.g., the underlying driver may have become crazy, and
1018 * it is safer to switch to R/O mode to preserve the data.
1019 *
1020 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1021 * which we have just written.
1022 */
1023 static int is_error_sane(int err)
1024 {
1025 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1026 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1027 return 0;
1028 return 1;
1029 }
1030
1031 /**
1032 * ubi_eba_copy_leb - copy logical eraseblock.
1033 * @ubi: UBI device description object
1034 * @from: physical eraseblock number from where to copy
1035 * @to: physical eraseblock number where to copy
1036 * @vid_hdr: VID header of the @from physical eraseblock
1037 *
1038 * This function copies logical eraseblock from physical eraseblock @from to
1039 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1040 * function. Returns:
1041 * o %0 in case of success;
1042 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1043 * o a negative error code in case of failure.
1044 */
1045 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1046 struct ubi_vid_hdr *vid_hdr)
1047 {
1048 int err, vol_id, lnum, data_size, aldata_size, idx;
1049 struct ubi_volume *vol;
1050 uint32_t crc;
1051
1052 vol_id = be32_to_cpu(vid_hdr->vol_id);
1053 lnum = be32_to_cpu(vid_hdr->lnum);
1054
1055 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1056
1057 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1058 data_size = be32_to_cpu(vid_hdr->data_size);
1059 aldata_size = ALIGN(data_size, ubi->min_io_size);
1060 } else
1061 data_size = aldata_size =
1062 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1063
1064 idx = vol_id2idx(ubi, vol_id);
1065 spin_lock(&ubi->volumes_lock);
1066 /*
1067 * Note, we may race with volume deletion, which means that the volume
1068 * this logical eraseblock belongs to might be being deleted. Since the
1069 * volume deletion un-maps all the volume's logical eraseblocks, it will
1070 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1071 */
1072 vol = ubi->volumes[idx];
1073 spin_unlock(&ubi->volumes_lock);
1074 if (!vol) {
1075 /* No need to do further work, cancel */
1076 dbg_wl("volume %d is being removed, cancel", vol_id);
1077 return MOVE_CANCEL_RACE;
1078 }
1079
1080 /*
1081 * We do not want anybody to write to this logical eraseblock while we
1082 * are moving it, so lock it.
1083 *
1084 * Note, we are using non-waiting locking here, because we cannot sleep
1085 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1086 * unmapping the LEB which is mapped to the PEB we are going to move
1087 * (@from). This task locks the LEB and goes sleep in the
1088 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1089 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1090 * LEB is already locked, we just do not move it and return
1091 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1092 * we do not know the reasons of the contention - it may be just a
1093 * normal I/O on this LEB, so we want to re-try.
1094 */
1095 err = leb_write_trylock(ubi, vol_id, lnum);
1096 if (err) {
1097 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1098 return MOVE_RETRY;
1099 }
1100
1101 /*
1102 * The LEB might have been put meanwhile, and the task which put it is
1103 * probably waiting on @ubi->move_mutex. No need to continue the work,
1104 * cancel it.
1105 */
1106 if (vol->eba_tbl[lnum] != from) {
1107 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1108 vol_id, lnum, from, vol->eba_tbl[lnum]);
1109 err = MOVE_CANCEL_RACE;
1110 goto out_unlock_leb;
1111 }
1112
1113 /*
1114 * OK, now the LEB is locked and we can safely start moving it. Since
1115 * this function utilizes the @ubi->peb_buf buffer which is shared
1116 * with some other functions - we lock the buffer by taking the
1117 * @ubi->buf_mutex.
1118 */
1119 mutex_lock(&ubi->buf_mutex);
1120 dbg_wl("read %d bytes of data", aldata_size);
1121 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1122 if (err && err != UBI_IO_BITFLIPS) {
1123 ubi_warn(ubi, "error %d while reading data from PEB %d",
1124 err, from);
1125 err = MOVE_SOURCE_RD_ERR;
1126 goto out_unlock_buf;
1127 }
1128
1129 /*
1130 * Now we have got to calculate how much data we have to copy. In
1131 * case of a static volume it is fairly easy - the VID header contains
1132 * the data size. In case of a dynamic volume it is more difficult - we
1133 * have to read the contents, cut 0xFF bytes from the end and copy only
1134 * the first part. We must do this to avoid writing 0xFF bytes as it
1135 * may have some side-effects. And not only this. It is important not
1136 * to include those 0xFFs to CRC because later the they may be filled
1137 * by data.
1138 */
1139 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1140 aldata_size = data_size =
1141 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1142
1143 cond_resched();
1144 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1145 cond_resched();
1146
1147 /*
1148 * It may turn out to be that the whole @from physical eraseblock
1149 * contains only 0xFF bytes. Then we have to only write the VID header
1150 * and do not write any data. This also means we should not set
1151 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1152 */
1153 if (data_size > 0) {
1154 vid_hdr->copy_flag = 1;
1155 vid_hdr->data_size = cpu_to_be32(data_size);
1156 vid_hdr->data_crc = cpu_to_be32(crc);
1157 }
1158 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1159
1160 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1161 if (err) {
1162 if (err == -EIO)
1163 err = MOVE_TARGET_WR_ERR;
1164 goto out_unlock_buf;
1165 }
1166
1167 cond_resched();
1168
1169 /* Read the VID header back and check if it was written correctly */
1170 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1171 if (err) {
1172 if (err != UBI_IO_BITFLIPS) {
1173 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1174 err, to);
1175 if (is_error_sane(err))
1176 err = MOVE_TARGET_RD_ERR;
1177 } else
1178 err = MOVE_TARGET_BITFLIPS;
1179 goto out_unlock_buf;
1180 }
1181
1182 if (data_size > 0) {
1183 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1184 if (err) {
1185 if (err == -EIO)
1186 err = MOVE_TARGET_WR_ERR;
1187 goto out_unlock_buf;
1188 }
1189
1190 cond_resched();
1191
1192 /*
1193 * We've written the data and are going to read it back to make
1194 * sure it was written correctly.
1195 */
1196 memset(ubi->peb_buf, 0xFF, aldata_size);
1197 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1198 if (err) {
1199 if (err != UBI_IO_BITFLIPS) {
1200 ubi_warn(ubi, "error %d while reading data back from PEB %d",
1201 err, to);
1202 if (is_error_sane(err))
1203 err = MOVE_TARGET_RD_ERR;
1204 } else
1205 err = MOVE_TARGET_BITFLIPS;
1206 goto out_unlock_buf;
1207 }
1208
1209 cond_resched();
1210
1211 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1212 ubi_warn(ubi, "read data back from PEB %d and it is different",
1213 to);
1214 err = -EINVAL;
1215 goto out_unlock_buf;
1216 }
1217 }
1218
1219 ubi_assert(vol->eba_tbl[lnum] == from);
1220 down_read(&ubi->fm_sem);
1221 vol->eba_tbl[lnum] = to;
1222 up_read(&ubi->fm_sem);
1223
1224 out_unlock_buf:
1225 mutex_unlock(&ubi->buf_mutex);
1226 out_unlock_leb:
1227 leb_write_unlock(ubi, vol_id, lnum);
1228 return err;
1229 }
1230
1231 /**
1232 * print_rsvd_warning - warn about not having enough reserved PEBs.
1233 * @ubi: UBI device description object
1234 *
1235 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1236 * cannot reserve enough PEBs for bad block handling. This function makes a
1237 * decision whether we have to print a warning or not. The algorithm is as
1238 * follows:
1239 * o if this is a new UBI image, then just print the warning
1240 * o if this is an UBI image which has already been used for some time, print
1241 * a warning only if we can reserve less than 10% of the expected amount of
1242 * the reserved PEB.
1243 *
1244 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1245 * of PEBs becomes smaller, which is normal and we do not want to scare users
1246 * with a warning every time they attach the MTD device. This was an issue
1247 * reported by real users.
1248 */
1249 static void print_rsvd_warning(struct ubi_device *ubi,
1250 struct ubi_attach_info *ai)
1251 {
1252 /*
1253 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1254 * large number to distinguish between newly flashed and used images.
1255 */
1256 if (ai->max_sqnum > (1 << 18)) {
1257 int min = ubi->beb_rsvd_level / 10;
1258
1259 if (!min)
1260 min = 1;
1261 if (ubi->beb_rsvd_pebs > min)
1262 return;
1263 }
1264
1265 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1266 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1267 if (ubi->corr_peb_count)
1268 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1269 ubi->corr_peb_count);
1270 }
1271
1272 /**
1273 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1274 * @ubi: UBI device description object
1275 * @ai_fastmap: UBI attach info object created by fastmap
1276 * @ai_scan: UBI attach info object created by scanning
1277 *
1278 * Returns < 0 in case of an internal error, 0 otherwise.
1279 * If a bad EBA table entry was found it will be printed out and
1280 * ubi_assert() triggers.
1281 */
1282 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1283 struct ubi_attach_info *ai_scan)
1284 {
1285 int i, j, num_volumes, ret = 0;
1286 int **scan_eba, **fm_eba;
1287 struct ubi_ainf_volume *av;
1288 struct ubi_volume *vol;
1289 struct ubi_ainf_peb *aeb;
1290 struct rb_node *rb;
1291
1292 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1293
1294 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1295 if (!scan_eba)
1296 return -ENOMEM;
1297
1298 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1299 if (!fm_eba) {
1300 kfree(scan_eba);
1301 return -ENOMEM;
1302 }
1303
1304 for (i = 0; i < num_volumes; i++) {
1305 vol = ubi->volumes[i];
1306 if (!vol)
1307 continue;
1308
1309 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1310 GFP_KERNEL);
1311 if (!scan_eba[i]) {
1312 ret = -ENOMEM;
1313 goto out_free;
1314 }
1315
1316 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1317 GFP_KERNEL);
1318 if (!fm_eba[i]) {
1319 ret = -ENOMEM;
1320 goto out_free;
1321 }
1322
1323 for (j = 0; j < vol->reserved_pebs; j++)
1324 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1325
1326 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1327 if (!av)
1328 continue;
1329
1330 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1331 scan_eba[i][aeb->lnum] = aeb->pnum;
1332
1333 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1334 if (!av)
1335 continue;
1336
1337 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1338 fm_eba[i][aeb->lnum] = aeb->pnum;
1339
1340 for (j = 0; j < vol->reserved_pebs; j++) {
1341 if (scan_eba[i][j] != fm_eba[i][j]) {
1342 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1343 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1344 continue;
1345
1346 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1347 vol->vol_id, i, fm_eba[i][j],
1348 scan_eba[i][j]);
1349 ubi_assert(0);
1350 }
1351 }
1352 }
1353
1354 out_free:
1355 for (i = 0; i < num_volumes; i++) {
1356 if (!ubi->volumes[i])
1357 continue;
1358
1359 kfree(scan_eba[i]);
1360 kfree(fm_eba[i]);
1361 }
1362
1363 kfree(scan_eba);
1364 kfree(fm_eba);
1365 return ret;
1366 }
1367
1368 /**
1369 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1370 * @ubi: UBI device description object
1371 * @ai: attaching information
1372 *
1373 * This function returns zero in case of success and a negative error code in
1374 * case of failure.
1375 */
1376 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1377 {
1378 int i, j, err, num_volumes;
1379 struct ubi_ainf_volume *av;
1380 struct ubi_volume *vol;
1381 struct ubi_ainf_peb *aeb;
1382 struct rb_node *rb;
1383
1384 dbg_eba("initialize EBA sub-system");
1385
1386 spin_lock_init(&ubi->ltree_lock);
1387 mutex_init(&ubi->alc_mutex);
1388 ubi->ltree = RB_ROOT;
1389
1390 ubi->global_sqnum = ai->max_sqnum + 1;
1391 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1392
1393 for (i = 0; i < num_volumes; i++) {
1394 vol = ubi->volumes[i];
1395 if (!vol)
1396 continue;
1397
1398 cond_resched();
1399
1400 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1401 GFP_KERNEL);
1402 if (!vol->eba_tbl) {
1403 err = -ENOMEM;
1404 goto out_free;
1405 }
1406
1407 for (j = 0; j < vol->reserved_pebs; j++)
1408 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1409
1410 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1411 if (!av)
1412 continue;
1413
1414 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1415 if (aeb->lnum >= vol->reserved_pebs)
1416 /*
1417 * This may happen in case of an unclean reboot
1418 * during re-size.
1419 */
1420 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1421 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1422 }
1423 }
1424
1425 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1426 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1427 ubi->avail_pebs, EBA_RESERVED_PEBS);
1428 if (ubi->corr_peb_count)
1429 ubi_err(ubi, "%d PEBs are corrupted and not used",
1430 ubi->corr_peb_count);
1431 err = -ENOSPC;
1432 goto out_free;
1433 }
1434 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1435 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1436
1437 if (ubi->bad_allowed) {
1438 ubi_calculate_reserved(ubi);
1439
1440 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1441 /* No enough free physical eraseblocks */
1442 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1443 print_rsvd_warning(ubi, ai);
1444 } else
1445 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1446
1447 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1448 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1449 }
1450
1451 dbg_eba("EBA sub-system is initialized");
1452 return 0;
1453
1454 out_free:
1455 for (i = 0; i < num_volumes; i++) {
1456 if (!ubi->volumes[i])
1457 continue;
1458 kfree(ubi->volumes[i]->eba_tbl);
1459 ubi->volumes[i]->eba_tbl = NULL;
1460 }
1461 return err;
1462 }