]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mtd/ubi/io.c
Merge schedutil governor updates for v4.10.
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
103
104 /**
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
111 *
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
115 *
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
125 */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
128 {
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
132
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
138
139 err = self_check_not_bad(ubi, pnum);
140 if (err)
141 return err;
142
143 /*
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
153 *
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
159 *
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
162 */
163 *((uint8_t *)buf) ^= 0xFF;
164
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 if (err) {
169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170
171 if (mtd_is_bitflip(err)) {
172 /*
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
175 *
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
179 */
180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 pnum);
182 ubi_assert(len == read);
183 return UBI_IO_BITFLIPS;
184 }
185
186 if (retries++ < UBI_IO_RETRIES) {
187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 err, errstr, len, pnum, offset, read);
189 yield();
190 goto retry;
191 }
192
193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 err, errstr, len, pnum, offset, read);
195 dump_stack();
196
197 /*
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
201 */
202 if (read != len && mtd_is_eccerr(err)) {
203 ubi_assert(0);
204 err = -EIO;
205 }
206 } else {
207 ubi_assert(len == read);
208
209 if (ubi_dbg_is_bitflip(ubi)) {
210 dbg_gen("bit-flip (emulated)");
211 err = UBI_IO_BITFLIPS;
212 }
213 }
214
215 return err;
216 }
217
218 /**
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
225 *
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
230 * bad.
231 *
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
234 */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 int len)
237 {
238 int err;
239 size_t written;
240 loff_t addr;
241
242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243
244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248
249 if (ubi->ro_mode) {
250 ubi_err(ubi, "read-only mode");
251 return -EROFS;
252 }
253
254 err = self_check_not_bad(ubi, pnum);
255 if (err)
256 return err;
257
258 /* The area we are writing to has to contain all 0xFF bytes */
259 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 if (err)
261 return err;
262
263 if (offset >= ubi->leb_start) {
264 /*
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
267 */
268 err = self_check_peb_ec_hdr(ubi, pnum);
269 if (err)
270 return err;
271 err = self_check_peb_vid_hdr(ubi, pnum);
272 if (err)
273 return err;
274 }
275
276 if (ubi_dbg_is_write_failure(ubi)) {
277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278 len, pnum, offset);
279 dump_stack();
280 return -EIO;
281 }
282
283 addr = (loff_t)pnum * ubi->peb_size + offset;
284 err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 if (err) {
286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 err, len, pnum, offset, written);
288 dump_stack();
289 ubi_dump_flash(ubi, pnum, offset, len);
290 } else
291 ubi_assert(written == len);
292
293 if (!err) {
294 err = self_check_write(ubi, buf, pnum, offset, len);
295 if (err)
296 return err;
297
298 /*
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
301 */
302 offset += len;
303 len = ubi->peb_size - offset;
304 if (len)
305 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 }
307
308 return err;
309 }
310
311 /**
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
314 *
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
317 */
318 static void erase_callback(struct erase_info *ei)
319 {
320 wake_up_interruptible((wait_queue_head_t *)ei->priv);
321 }
322
323 /**
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
327 *
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
331 */
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 {
334 int err, retries = 0;
335 struct erase_info ei;
336 wait_queue_head_t wq;
337
338 dbg_io("erase PEB %d", pnum);
339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340
341 if (ubi->ro_mode) {
342 ubi_err(ubi, "read-only mode");
343 return -EROFS;
344 }
345
346 retry:
347 init_waitqueue_head(&wq);
348 memset(&ei, 0, sizeof(struct erase_info));
349
350 ei.mtd = ubi->mtd;
351 ei.addr = (loff_t)pnum * ubi->peb_size;
352 ei.len = ubi->peb_size;
353 ei.callback = erase_callback;
354 ei.priv = (unsigned long)&wq;
355
356 err = mtd_erase(ubi->mtd, &ei);
357 if (err) {
358 if (retries++ < UBI_IO_RETRIES) {
359 ubi_warn(ubi, "error %d while erasing PEB %d, retry",
360 err, pnum);
361 yield();
362 goto retry;
363 }
364 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
365 dump_stack();
366 return err;
367 }
368
369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 ei.state == MTD_ERASE_FAILED);
371 if (err) {
372 ubi_err(ubi, "interrupted PEB %d erasure", pnum);
373 return -EINTR;
374 }
375
376 if (ei.state == MTD_ERASE_FAILED) {
377 if (retries++ < UBI_IO_RETRIES) {
378 ubi_warn(ubi, "error while erasing PEB %d, retry",
379 pnum);
380 yield();
381 goto retry;
382 }
383 ubi_err(ubi, "cannot erase PEB %d", pnum);
384 dump_stack();
385 return -EIO;
386 }
387
388 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
389 if (err)
390 return err;
391
392 if (ubi_dbg_is_erase_failure(ubi)) {
393 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
394 return -EIO;
395 }
396
397 return 0;
398 }
399
400 /* Patterns to write to a physical eraseblock when torturing it */
401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402
403 /**
404 * torture_peb - test a supposedly bad physical eraseblock.
405 * @ubi: UBI device description object
406 * @pnum: the physical eraseblock number to test
407 *
408 * This function returns %-EIO if the physical eraseblock did not pass the
409 * test, a positive number of erase operations done if the test was
410 * successfully passed, and other negative error codes in case of other errors.
411 */
412 static int torture_peb(struct ubi_device *ubi, int pnum)
413 {
414 int err, i, patt_count;
415
416 ubi_msg(ubi, "run torture test for PEB %d", pnum);
417 patt_count = ARRAY_SIZE(patterns);
418 ubi_assert(patt_count > 0);
419
420 mutex_lock(&ubi->buf_mutex);
421 for (i = 0; i < patt_count; i++) {
422 err = do_sync_erase(ubi, pnum);
423 if (err)
424 goto out;
425
426 /* Make sure the PEB contains only 0xFF bytes */
427 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
428 if (err)
429 goto out;
430
431 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
432 if (err == 0) {
433 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
434 pnum);
435 err = -EIO;
436 goto out;
437 }
438
439 /* Write a pattern and check it */
440 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
442 if (err)
443 goto out;
444
445 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
447 if (err)
448 goto out;
449
450 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
451 ubi->peb_size);
452 if (err == 0) {
453 ubi_err(ubi, "pattern %x checking failed for PEB %d",
454 patterns[i], pnum);
455 err = -EIO;
456 goto out;
457 }
458 }
459
460 err = patt_count;
461 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
462
463 out:
464 mutex_unlock(&ubi->buf_mutex);
465 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466 /*
467 * If a bit-flip or data integrity error was detected, the test
468 * has not passed because it happened on a freshly erased
469 * physical eraseblock which means something is wrong with it.
470 */
471 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
472 pnum);
473 err = -EIO;
474 }
475 return err;
476 }
477
478 /**
479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480 * @ubi: UBI device description object
481 * @pnum: physical eraseblock number to prepare
482 *
483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
485 * filling with zeroes starts from the end of the PEB. This was observed with
486 * Spansion S29GL512N NOR flash.
487 *
488 * This means that in case of a power cut we may end up with intact data at the
489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493 *
494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495 * magic numbers in order to invalidate them and prevent the failures. Returns
496 * zero in case of success and a negative error code in case of failure.
497 */
498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499 {
500 int err;
501 size_t written;
502 loff_t addr;
503 uint32_t data = 0;
504 struct ubi_ec_hdr ec_hdr;
505 struct ubi_vid_io_buf vidb;
506
507 /*
508 * Note, we cannot generally define VID header buffers on stack,
509 * because of the way we deal with these buffers (see the header
510 * comment in this file). But we know this is a NOR-specific piece of
511 * code, so we can do this. But yes, this is error-prone and we should
512 * (pre-)allocate VID header buffer instead.
513 */
514 struct ubi_vid_hdr vid_hdr;
515
516 /*
517 * If VID or EC is valid, we have to corrupt them before erasing.
518 * It is important to first invalidate the EC header, and then the VID
519 * header. Otherwise a power cut may lead to valid EC header and
520 * invalid VID header, in which case UBI will treat this PEB as
521 * corrupted and will try to preserve it, and print scary warnings.
522 */
523 addr = (loff_t)pnum * ubi->peb_size;
524 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
525 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
526 err != UBI_IO_FF){
527 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
528 if(err)
529 goto error;
530 }
531
532 ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
533 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
534
535 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
536 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
537 err != UBI_IO_FF){
538 addr += ubi->vid_hdr_aloffset;
539 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
540 if (err)
541 goto error;
542 }
543 return 0;
544
545 error:
546 /*
547 * The PEB contains a valid VID or EC header, but we cannot invalidate
548 * it. Supposedly the flash media or the driver is screwed up, so
549 * return an error.
550 */
551 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
552 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
553 return -EIO;
554 }
555
556 /**
557 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
558 * @ubi: UBI device description object
559 * @pnum: physical eraseblock number to erase
560 * @torture: if this physical eraseblock has to be tortured
561 *
562 * This function synchronously erases physical eraseblock @pnum. If @torture
563 * flag is not zero, the physical eraseblock is checked by means of writing
564 * different patterns to it and reading them back. If the torturing is enabled,
565 * the physical eraseblock is erased more than once.
566 *
567 * This function returns the number of erasures made in case of success, %-EIO
568 * if the erasure failed or the torturing test failed, and other negative error
569 * codes in case of other errors. Note, %-EIO means that the physical
570 * eraseblock is bad.
571 */
572 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
573 {
574 int err, ret = 0;
575
576 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
577
578 err = self_check_not_bad(ubi, pnum);
579 if (err != 0)
580 return err;
581
582 if (ubi->ro_mode) {
583 ubi_err(ubi, "read-only mode");
584 return -EROFS;
585 }
586
587 if (ubi->nor_flash) {
588 err = nor_erase_prepare(ubi, pnum);
589 if (err)
590 return err;
591 }
592
593 if (torture) {
594 ret = torture_peb(ubi, pnum);
595 if (ret < 0)
596 return ret;
597 }
598
599 err = do_sync_erase(ubi, pnum);
600 if (err)
601 return err;
602
603 return ret + 1;
604 }
605
606 /**
607 * ubi_io_is_bad - check if a physical eraseblock is bad.
608 * @ubi: UBI device description object
609 * @pnum: the physical eraseblock number to check
610 *
611 * This function returns a positive number if the physical eraseblock is bad,
612 * zero if not, and a negative error code if an error occurred.
613 */
614 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
615 {
616 struct mtd_info *mtd = ubi->mtd;
617
618 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
619
620 if (ubi->bad_allowed) {
621 int ret;
622
623 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
624 if (ret < 0)
625 ubi_err(ubi, "error %d while checking if PEB %d is bad",
626 ret, pnum);
627 else if (ret)
628 dbg_io("PEB %d is bad", pnum);
629 return ret;
630 }
631
632 return 0;
633 }
634
635 /**
636 * ubi_io_mark_bad - mark a physical eraseblock as bad.
637 * @ubi: UBI device description object
638 * @pnum: the physical eraseblock number to mark
639 *
640 * This function returns zero in case of success and a negative error code in
641 * case of failure.
642 */
643 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
644 {
645 int err;
646 struct mtd_info *mtd = ubi->mtd;
647
648 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
649
650 if (ubi->ro_mode) {
651 ubi_err(ubi, "read-only mode");
652 return -EROFS;
653 }
654
655 if (!ubi->bad_allowed)
656 return 0;
657
658 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
659 if (err)
660 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
661 return err;
662 }
663
664 /**
665 * validate_ec_hdr - validate an erase counter header.
666 * @ubi: UBI device description object
667 * @ec_hdr: the erase counter header to check
668 *
669 * This function returns zero if the erase counter header is OK, and %1 if
670 * not.
671 */
672 static int validate_ec_hdr(const struct ubi_device *ubi,
673 const struct ubi_ec_hdr *ec_hdr)
674 {
675 long long ec;
676 int vid_hdr_offset, leb_start;
677
678 ec = be64_to_cpu(ec_hdr->ec);
679 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
680 leb_start = be32_to_cpu(ec_hdr->data_offset);
681
682 if (ec_hdr->version != UBI_VERSION) {
683 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
684 UBI_VERSION, (int)ec_hdr->version);
685 goto bad;
686 }
687
688 if (vid_hdr_offset != ubi->vid_hdr_offset) {
689 ubi_err(ubi, "bad VID header offset %d, expected %d",
690 vid_hdr_offset, ubi->vid_hdr_offset);
691 goto bad;
692 }
693
694 if (leb_start != ubi->leb_start) {
695 ubi_err(ubi, "bad data offset %d, expected %d",
696 leb_start, ubi->leb_start);
697 goto bad;
698 }
699
700 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
701 ubi_err(ubi, "bad erase counter %lld", ec);
702 goto bad;
703 }
704
705 return 0;
706
707 bad:
708 ubi_err(ubi, "bad EC header");
709 ubi_dump_ec_hdr(ec_hdr);
710 dump_stack();
711 return 1;
712 }
713
714 /**
715 * ubi_io_read_ec_hdr - read and check an erase counter header.
716 * @ubi: UBI device description object
717 * @pnum: physical eraseblock to read from
718 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
719 * header
720 * @verbose: be verbose if the header is corrupted or was not found
721 *
722 * This function reads erase counter header from physical eraseblock @pnum and
723 * stores it in @ec_hdr. This function also checks CRC checksum of the read
724 * erase counter header. The following codes may be returned:
725 *
726 * o %0 if the CRC checksum is correct and the header was successfully read;
727 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
728 * and corrected by the flash driver; this is harmless but may indicate that
729 * this eraseblock may become bad soon (but may be not);
730 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
731 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
732 * a data integrity error (uncorrectable ECC error in case of NAND);
733 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
734 * o a negative error code in case of failure.
735 */
736 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
737 struct ubi_ec_hdr *ec_hdr, int verbose)
738 {
739 int err, read_err;
740 uint32_t crc, magic, hdr_crc;
741
742 dbg_io("read EC header from PEB %d", pnum);
743 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
744
745 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
746 if (read_err) {
747 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
748 return read_err;
749
750 /*
751 * We read all the data, but either a correctable bit-flip
752 * occurred, or MTD reported a data integrity error
753 * (uncorrectable ECC error in case of NAND). The former is
754 * harmless, the later may mean that the read data is
755 * corrupted. But we have a CRC check-sum and we will detect
756 * this. If the EC header is still OK, we just report this as
757 * there was a bit-flip, to force scrubbing.
758 */
759 }
760
761 magic = be32_to_cpu(ec_hdr->magic);
762 if (magic != UBI_EC_HDR_MAGIC) {
763 if (mtd_is_eccerr(read_err))
764 return UBI_IO_BAD_HDR_EBADMSG;
765
766 /*
767 * The magic field is wrong. Let's check if we have read all
768 * 0xFF. If yes, this physical eraseblock is assumed to be
769 * empty.
770 */
771 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
772 /* The physical eraseblock is supposedly empty */
773 if (verbose)
774 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
775 pnum);
776 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
777 pnum);
778 if (!read_err)
779 return UBI_IO_FF;
780 else
781 return UBI_IO_FF_BITFLIPS;
782 }
783
784 /*
785 * This is not a valid erase counter header, and these are not
786 * 0xFF bytes. Report that the header is corrupted.
787 */
788 if (verbose) {
789 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
790 pnum, magic, UBI_EC_HDR_MAGIC);
791 ubi_dump_ec_hdr(ec_hdr);
792 }
793 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
794 pnum, magic, UBI_EC_HDR_MAGIC);
795 return UBI_IO_BAD_HDR;
796 }
797
798 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
799 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
800
801 if (hdr_crc != crc) {
802 if (verbose) {
803 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
804 pnum, crc, hdr_crc);
805 ubi_dump_ec_hdr(ec_hdr);
806 }
807 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
808 pnum, crc, hdr_crc);
809
810 if (!read_err)
811 return UBI_IO_BAD_HDR;
812 else
813 return UBI_IO_BAD_HDR_EBADMSG;
814 }
815
816 /* And of course validate what has just been read from the media */
817 err = validate_ec_hdr(ubi, ec_hdr);
818 if (err) {
819 ubi_err(ubi, "validation failed for PEB %d", pnum);
820 return -EINVAL;
821 }
822
823 /*
824 * If there was %-EBADMSG, but the header CRC is still OK, report about
825 * a bit-flip to force scrubbing on this PEB.
826 */
827 return read_err ? UBI_IO_BITFLIPS : 0;
828 }
829
830 /**
831 * ubi_io_write_ec_hdr - write an erase counter header.
832 * @ubi: UBI device description object
833 * @pnum: physical eraseblock to write to
834 * @ec_hdr: the erase counter header to write
835 *
836 * This function writes erase counter header described by @ec_hdr to physical
837 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
838 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
839 * field.
840 *
841 * This function returns zero in case of success and a negative error code in
842 * case of failure. If %-EIO is returned, the physical eraseblock most probably
843 * went bad.
844 */
845 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
846 struct ubi_ec_hdr *ec_hdr)
847 {
848 int err;
849 uint32_t crc;
850
851 dbg_io("write EC header to PEB %d", pnum);
852 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
853
854 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
855 ec_hdr->version = UBI_VERSION;
856 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
857 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
858 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
859 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
860 ec_hdr->hdr_crc = cpu_to_be32(crc);
861
862 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
863 if (err)
864 return err;
865
866 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
867 return -EROFS;
868
869 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
870 return err;
871 }
872
873 /**
874 * validate_vid_hdr - validate a volume identifier header.
875 * @ubi: UBI device description object
876 * @vid_hdr: the volume identifier header to check
877 *
878 * This function checks that data stored in the volume identifier header
879 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
880 */
881 static int validate_vid_hdr(const struct ubi_device *ubi,
882 const struct ubi_vid_hdr *vid_hdr)
883 {
884 int vol_type = vid_hdr->vol_type;
885 int copy_flag = vid_hdr->copy_flag;
886 int vol_id = be32_to_cpu(vid_hdr->vol_id);
887 int lnum = be32_to_cpu(vid_hdr->lnum);
888 int compat = vid_hdr->compat;
889 int data_size = be32_to_cpu(vid_hdr->data_size);
890 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
891 int data_pad = be32_to_cpu(vid_hdr->data_pad);
892 int data_crc = be32_to_cpu(vid_hdr->data_crc);
893 int usable_leb_size = ubi->leb_size - data_pad;
894
895 if (copy_flag != 0 && copy_flag != 1) {
896 ubi_err(ubi, "bad copy_flag");
897 goto bad;
898 }
899
900 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
901 data_pad < 0) {
902 ubi_err(ubi, "negative values");
903 goto bad;
904 }
905
906 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
907 ubi_err(ubi, "bad vol_id");
908 goto bad;
909 }
910
911 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
912 ubi_err(ubi, "bad compat");
913 goto bad;
914 }
915
916 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
917 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
918 compat != UBI_COMPAT_REJECT) {
919 ubi_err(ubi, "bad compat");
920 goto bad;
921 }
922
923 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
924 ubi_err(ubi, "bad vol_type");
925 goto bad;
926 }
927
928 if (data_pad >= ubi->leb_size / 2) {
929 ubi_err(ubi, "bad data_pad");
930 goto bad;
931 }
932
933 if (data_size > ubi->leb_size) {
934 ubi_err(ubi, "bad data_size");
935 goto bad;
936 }
937
938 if (vol_type == UBI_VID_STATIC) {
939 /*
940 * Although from high-level point of view static volumes may
941 * contain zero bytes of data, but no VID headers can contain
942 * zero at these fields, because they empty volumes do not have
943 * mapped logical eraseblocks.
944 */
945 if (used_ebs == 0) {
946 ubi_err(ubi, "zero used_ebs");
947 goto bad;
948 }
949 if (data_size == 0) {
950 ubi_err(ubi, "zero data_size");
951 goto bad;
952 }
953 if (lnum < used_ebs - 1) {
954 if (data_size != usable_leb_size) {
955 ubi_err(ubi, "bad data_size");
956 goto bad;
957 }
958 } else if (lnum == used_ebs - 1) {
959 if (data_size == 0) {
960 ubi_err(ubi, "bad data_size at last LEB");
961 goto bad;
962 }
963 } else {
964 ubi_err(ubi, "too high lnum");
965 goto bad;
966 }
967 } else {
968 if (copy_flag == 0) {
969 if (data_crc != 0) {
970 ubi_err(ubi, "non-zero data CRC");
971 goto bad;
972 }
973 if (data_size != 0) {
974 ubi_err(ubi, "non-zero data_size");
975 goto bad;
976 }
977 } else {
978 if (data_size == 0) {
979 ubi_err(ubi, "zero data_size of copy");
980 goto bad;
981 }
982 }
983 if (used_ebs != 0) {
984 ubi_err(ubi, "bad used_ebs");
985 goto bad;
986 }
987 }
988
989 return 0;
990
991 bad:
992 ubi_err(ubi, "bad VID header");
993 ubi_dump_vid_hdr(vid_hdr);
994 dump_stack();
995 return 1;
996 }
997
998 /**
999 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1000 * @ubi: UBI device description object
1001 * @pnum: physical eraseblock number to read from
1002 * @vidb: the volume identifier buffer to store data in
1003 * @verbose: be verbose if the header is corrupted or wasn't found
1004 *
1005 * This function reads the volume identifier header from physical eraseblock
1006 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
1007 * volume identifier header. The error codes are the same as in
1008 * 'ubi_io_read_ec_hdr()'.
1009 *
1010 * Note, the implementation of this function is also very similar to
1011 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1012 */
1013 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1014 struct ubi_vid_io_buf *vidb, int verbose)
1015 {
1016 int err, read_err;
1017 uint32_t crc, magic, hdr_crc;
1018 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1019 void *p = vidb->buffer;
1020
1021 dbg_io("read VID header from PEB %d", pnum);
1022 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1023
1024 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1025 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
1026 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1027 return read_err;
1028
1029 magic = be32_to_cpu(vid_hdr->magic);
1030 if (magic != UBI_VID_HDR_MAGIC) {
1031 if (mtd_is_eccerr(read_err))
1032 return UBI_IO_BAD_HDR_EBADMSG;
1033
1034 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1035 if (verbose)
1036 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1037 pnum);
1038 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1039 pnum);
1040 if (!read_err)
1041 return UBI_IO_FF;
1042 else
1043 return UBI_IO_FF_BITFLIPS;
1044 }
1045
1046 if (verbose) {
1047 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1048 pnum, magic, UBI_VID_HDR_MAGIC);
1049 ubi_dump_vid_hdr(vid_hdr);
1050 }
1051 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1052 pnum, magic, UBI_VID_HDR_MAGIC);
1053 return UBI_IO_BAD_HDR;
1054 }
1055
1056 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1057 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1058
1059 if (hdr_crc != crc) {
1060 if (verbose) {
1061 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1062 pnum, crc, hdr_crc);
1063 ubi_dump_vid_hdr(vid_hdr);
1064 }
1065 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1066 pnum, crc, hdr_crc);
1067 if (!read_err)
1068 return UBI_IO_BAD_HDR;
1069 else
1070 return UBI_IO_BAD_HDR_EBADMSG;
1071 }
1072
1073 err = validate_vid_hdr(ubi, vid_hdr);
1074 if (err) {
1075 ubi_err(ubi, "validation failed for PEB %d", pnum);
1076 return -EINVAL;
1077 }
1078
1079 return read_err ? UBI_IO_BITFLIPS : 0;
1080 }
1081
1082 /**
1083 * ubi_io_write_vid_hdr - write a volume identifier header.
1084 * @ubi: UBI device description object
1085 * @pnum: the physical eraseblock number to write to
1086 * @vidb: the volume identifier buffer to write
1087 *
1088 * This function writes the volume identifier header described by @vid_hdr to
1089 * physical eraseblock @pnum. This function automatically fills the
1090 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1091 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1092 *
1093 * This function returns zero in case of success and a negative error code in
1094 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1095 * bad.
1096 */
1097 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1098 struct ubi_vid_io_buf *vidb)
1099 {
1100 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1101 int err;
1102 uint32_t crc;
1103 void *p = vidb->buffer;
1104
1105 dbg_io("write VID header to PEB %d", pnum);
1106 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1107
1108 err = self_check_peb_ec_hdr(ubi, pnum);
1109 if (err)
1110 return err;
1111
1112 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1113 vid_hdr->version = UBI_VERSION;
1114 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1115 vid_hdr->hdr_crc = cpu_to_be32(crc);
1116
1117 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1118 if (err)
1119 return err;
1120
1121 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1122 return -EROFS;
1123
1124 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125 ubi->vid_hdr_alsize);
1126 return err;
1127 }
1128
1129 /**
1130 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1131 * @ubi: UBI device description object
1132 * @pnum: physical eraseblock number to check
1133 *
1134 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1135 * it is bad and a negative error code if an error occurred.
1136 */
1137 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1138 {
1139 int err;
1140
1141 if (!ubi_dbg_chk_io(ubi))
1142 return 0;
1143
1144 err = ubi_io_is_bad(ubi, pnum);
1145 if (!err)
1146 return err;
1147
1148 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1149 dump_stack();
1150 return err > 0 ? -EINVAL : err;
1151 }
1152
1153 /**
1154 * self_check_ec_hdr - check if an erase counter header is all right.
1155 * @ubi: UBI device description object
1156 * @pnum: physical eraseblock number the erase counter header belongs to
1157 * @ec_hdr: the erase counter header to check
1158 *
1159 * This function returns zero if the erase counter header contains valid
1160 * values, and %-EINVAL if not.
1161 */
1162 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1163 const struct ubi_ec_hdr *ec_hdr)
1164 {
1165 int err;
1166 uint32_t magic;
1167
1168 if (!ubi_dbg_chk_io(ubi))
1169 return 0;
1170
1171 magic = be32_to_cpu(ec_hdr->magic);
1172 if (magic != UBI_EC_HDR_MAGIC) {
1173 ubi_err(ubi, "bad magic %#08x, must be %#08x",
1174 magic, UBI_EC_HDR_MAGIC);
1175 goto fail;
1176 }
1177
1178 err = validate_ec_hdr(ubi, ec_hdr);
1179 if (err) {
1180 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1181 goto fail;
1182 }
1183
1184 return 0;
1185
1186 fail:
1187 ubi_dump_ec_hdr(ec_hdr);
1188 dump_stack();
1189 return -EINVAL;
1190 }
1191
1192 /**
1193 * self_check_peb_ec_hdr - check erase counter header.
1194 * @ubi: UBI device description object
1195 * @pnum: the physical eraseblock number to check
1196 *
1197 * This function returns zero if the erase counter header is all right and and
1198 * a negative error code if not or if an error occurred.
1199 */
1200 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1201 {
1202 int err;
1203 uint32_t crc, hdr_crc;
1204 struct ubi_ec_hdr *ec_hdr;
1205
1206 if (!ubi_dbg_chk_io(ubi))
1207 return 0;
1208
1209 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1210 if (!ec_hdr)
1211 return -ENOMEM;
1212
1213 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1214 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1215 goto exit;
1216
1217 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1218 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1219 if (hdr_crc != crc) {
1220 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1221 crc, hdr_crc);
1222 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1223 ubi_dump_ec_hdr(ec_hdr);
1224 dump_stack();
1225 err = -EINVAL;
1226 goto exit;
1227 }
1228
1229 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1230
1231 exit:
1232 kfree(ec_hdr);
1233 return err;
1234 }
1235
1236 /**
1237 * self_check_vid_hdr - check that a volume identifier header is all right.
1238 * @ubi: UBI device description object
1239 * @pnum: physical eraseblock number the volume identifier header belongs to
1240 * @vid_hdr: the volume identifier header to check
1241 *
1242 * This function returns zero if the volume identifier header is all right, and
1243 * %-EINVAL if not.
1244 */
1245 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1246 const struct ubi_vid_hdr *vid_hdr)
1247 {
1248 int err;
1249 uint32_t magic;
1250
1251 if (!ubi_dbg_chk_io(ubi))
1252 return 0;
1253
1254 magic = be32_to_cpu(vid_hdr->magic);
1255 if (magic != UBI_VID_HDR_MAGIC) {
1256 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1257 magic, pnum, UBI_VID_HDR_MAGIC);
1258 goto fail;
1259 }
1260
1261 err = validate_vid_hdr(ubi, vid_hdr);
1262 if (err) {
1263 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264 goto fail;
1265 }
1266
1267 return err;
1268
1269 fail:
1270 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1271 ubi_dump_vid_hdr(vid_hdr);
1272 dump_stack();
1273 return -EINVAL;
1274
1275 }
1276
1277 /**
1278 * self_check_peb_vid_hdr - check volume identifier header.
1279 * @ubi: UBI device description object
1280 * @pnum: the physical eraseblock number to check
1281 *
1282 * This function returns zero if the volume identifier header is all right,
1283 * and a negative error code if not or if an error occurred.
1284 */
1285 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1286 {
1287 int err;
1288 uint32_t crc, hdr_crc;
1289 struct ubi_vid_io_buf *vidb;
1290 struct ubi_vid_hdr *vid_hdr;
1291 void *p;
1292
1293 if (!ubi_dbg_chk_io(ubi))
1294 return 0;
1295
1296 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1297 if (!vidb)
1298 return -ENOMEM;
1299
1300 vid_hdr = ubi_get_vid_hdr(vidb);
1301 p = vidb->buffer;
1302 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1303 ubi->vid_hdr_alsize);
1304 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1305 goto exit;
1306
1307 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1308 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1309 if (hdr_crc != crc) {
1310 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1311 pnum, crc, hdr_crc);
1312 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1313 ubi_dump_vid_hdr(vid_hdr);
1314 dump_stack();
1315 err = -EINVAL;
1316 goto exit;
1317 }
1318
1319 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1320
1321 exit:
1322 ubi_free_vid_buf(vidb);
1323 return err;
1324 }
1325
1326 /**
1327 * self_check_write - make sure write succeeded.
1328 * @ubi: UBI device description object
1329 * @buf: buffer with data which were written
1330 * @pnum: physical eraseblock number the data were written to
1331 * @offset: offset within the physical eraseblock the data were written to
1332 * @len: how many bytes were written
1333 *
1334 * This functions reads data which were recently written and compares it with
1335 * the original data buffer - the data have to match. Returns zero if the data
1336 * match and a negative error code if not or in case of failure.
1337 */
1338 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1339 int offset, int len)
1340 {
1341 int err, i;
1342 size_t read;
1343 void *buf1;
1344 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1345
1346 if (!ubi_dbg_chk_io(ubi))
1347 return 0;
1348
1349 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1350 if (!buf1) {
1351 ubi_err(ubi, "cannot allocate memory to check writes");
1352 return 0;
1353 }
1354
1355 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1356 if (err && !mtd_is_bitflip(err))
1357 goto out_free;
1358
1359 for (i = 0; i < len; i++) {
1360 uint8_t c = ((uint8_t *)buf)[i];
1361 uint8_t c1 = ((uint8_t *)buf1)[i];
1362 int dump_len;
1363
1364 if (c == c1)
1365 continue;
1366
1367 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1368 pnum, offset, len);
1369 ubi_msg(ubi, "data differ at position %d", i);
1370 dump_len = max_t(int, 128, len - i);
1371 ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1372 i, i + dump_len);
1373 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1374 buf + i, dump_len, 1);
1375 ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1376 i, i + dump_len);
1377 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1378 buf1 + i, dump_len, 1);
1379 dump_stack();
1380 err = -EINVAL;
1381 goto out_free;
1382 }
1383
1384 vfree(buf1);
1385 return 0;
1386
1387 out_free:
1388 vfree(buf1);
1389 return err;
1390 }
1391
1392 /**
1393 * ubi_self_check_all_ff - check that a region of flash is empty.
1394 * @ubi: UBI device description object
1395 * @pnum: the physical eraseblock number to check
1396 * @offset: the starting offset within the physical eraseblock to check
1397 * @len: the length of the region to check
1398 *
1399 * This function returns zero if only 0xFF bytes are present at offset
1400 * @offset of the physical eraseblock @pnum, and a negative error code if not
1401 * or if an error occurred.
1402 */
1403 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1404 {
1405 size_t read;
1406 int err;
1407 void *buf;
1408 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1409
1410 if (!ubi_dbg_chk_io(ubi))
1411 return 0;
1412
1413 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1414 if (!buf) {
1415 ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1416 return 0;
1417 }
1418
1419 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1420 if (err && !mtd_is_bitflip(err)) {
1421 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1422 err, len, pnum, offset, read);
1423 goto error;
1424 }
1425
1426 err = ubi_check_pattern(buf, 0xFF, len);
1427 if (err == 0) {
1428 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1429 pnum, offset, len);
1430 goto fail;
1431 }
1432
1433 vfree(buf);
1434 return 0;
1435
1436 fail:
1437 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1438 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1439 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1440 err = -EINVAL;
1441 error:
1442 dump_stack();
1443 vfree(buf);
1444 return err;
1445 }