]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/ubi/io.c
b812f88053675b1c0928dd2070b236624df1baff
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109
110 /**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134 {
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
147 return err;
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
153 if (err == -EUCLEAN) {
154 /*
155 * -EUCLEAN is reported if there was a bit-flip which
156 * was corrected, so this is harmless.
157 *
158 * We do not report about it here unless debugging is
159 * enabled. A corresponding message will be printed
160 * later, when it is has been scrubbed.
161 */
162 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
163 ubi_assert(len == read);
164 return UBI_IO_BITFLIPS;
165 }
166
167 if (read != len && retries++ < UBI_IO_RETRIES) {
168 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
169 " read only %zd bytes, retry",
170 err, len, pnum, offset, read);
171 yield();
172 goto retry;
173 }
174
175 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
176 "read %zd bytes", err, len, pnum, offset, read);
177 ubi_dbg_dump_stack();
178
179 /*
180 * The driver should never return -EBADMSG if it failed to read
181 * all the requested data. But some buggy drivers might do
182 * this, so we change it to -EIO.
183 */
184 if (read != len && err == -EBADMSG) {
185 ubi_assert(0);
186 err = -EIO;
187 }
188 } else {
189 ubi_assert(len == read);
190
191 if (ubi_dbg_is_bitflip()) {
192 dbg_gen("bit-flip (emulated)");
193 err = UBI_IO_BITFLIPS;
194 }
195 }
196
197 return err;
198 }
199
200 /**
201 * ubi_io_write - write data to a physical eraseblock.
202 * @ubi: UBI device description object
203 * @buf: buffer with the data to write
204 * @pnum: physical eraseblock number to write to
205 * @offset: offset within the physical eraseblock where to write
206 * @len: how many bytes to write
207 *
208 * This function writes @len bytes of data from buffer @buf to offset @offset
209 * of physical eraseblock @pnum. If all the data were successfully written,
210 * zero is returned. If an error occurred, this function returns a negative
211 * error code. If %-EIO is returned, the physical eraseblock most probably went
212 * bad.
213 *
214 * Note, in case of an error, it is possible that something was still written
215 * to the flash media, but may be some garbage.
216 */
217 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
218 int len)
219 {
220 int err;
221 size_t written;
222 loff_t addr;
223
224 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
225
226 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
227 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
228 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
229 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
230
231 if (ubi->ro_mode) {
232 ubi_err("read-only mode");
233 return -EROFS;
234 }
235
236 /* The below has to be compiled out if paranoid checks are disabled */
237
238 err = paranoid_check_not_bad(ubi, pnum);
239 if (err)
240 return err;
241
242 /* The area we are writing to has to contain all 0xFF bytes */
243 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
244 if (err)
245 return err;
246
247 if (offset >= ubi->leb_start) {
248 /*
249 * We write to the data area of the physical eraseblock. Make
250 * sure it has valid EC and VID headers.
251 */
252 err = paranoid_check_peb_ec_hdr(ubi, pnum);
253 if (err)
254 return err;
255 err = paranoid_check_peb_vid_hdr(ubi, pnum);
256 if (err)
257 return err;
258 }
259
260 if (ubi_dbg_is_write_failure()) {
261 dbg_err("cannot write %d bytes to PEB %d:%d "
262 "(emulated)", len, pnum, offset);
263 ubi_dbg_dump_stack();
264 return -EIO;
265 }
266
267 addr = (loff_t)pnum * ubi->peb_size + offset;
268 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
269 if (err) {
270 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
271 "%zd bytes", err, len, pnum, offset, written);
272 ubi_dbg_dump_stack();
273 ubi_dbg_dump_flash(ubi, pnum, offset, len);
274 } else
275 ubi_assert(written == len);
276
277 if (!err) {
278 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
279 if (err)
280 return err;
281
282 /*
283 * Since we always write sequentially, the rest of the PEB has
284 * to contain only 0xFF bytes.
285 */
286 offset += len;
287 len = ubi->peb_size - offset;
288 if (len)
289 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
290 }
291
292 return err;
293 }
294
295 /**
296 * erase_callback - MTD erasure call-back.
297 * @ei: MTD erase information object.
298 *
299 * Note, even though MTD erase interface is asynchronous, all the current
300 * implementations are synchronous anyway.
301 */
302 static void erase_callback(struct erase_info *ei)
303 {
304 wake_up_interruptible((wait_queue_head_t *)ei->priv);
305 }
306
307 /**
308 * do_sync_erase - synchronously erase a physical eraseblock.
309 * @ubi: UBI device description object
310 * @pnum: the physical eraseblock number to erase
311 *
312 * This function synchronously erases physical eraseblock @pnum and returns
313 * zero in case of success and a negative error code in case of failure. If
314 * %-EIO is returned, the physical eraseblock most probably went bad.
315 */
316 static int do_sync_erase(struct ubi_device *ubi, int pnum)
317 {
318 int err, retries = 0;
319 struct erase_info ei;
320 wait_queue_head_t wq;
321
322 dbg_io("erase PEB %d", pnum);
323
324 retry:
325 init_waitqueue_head(&wq);
326 memset(&ei, 0, sizeof(struct erase_info));
327
328 ei.mtd = ubi->mtd;
329 ei.addr = (loff_t)pnum * ubi->peb_size;
330 ei.len = ubi->peb_size;
331 ei.callback = erase_callback;
332 ei.priv = (unsigned long)&wq;
333
334 err = ubi->mtd->erase(ubi->mtd, &ei);
335 if (err) {
336 if (retries++ < UBI_IO_RETRIES) {
337 dbg_io("error %d while erasing PEB %d, retry",
338 err, pnum);
339 yield();
340 goto retry;
341 }
342 ubi_err("cannot erase PEB %d, error %d", pnum, err);
343 ubi_dbg_dump_stack();
344 return err;
345 }
346
347 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
348 ei.state == MTD_ERASE_FAILED);
349 if (err) {
350 ubi_err("interrupted PEB %d erasure", pnum);
351 return -EINTR;
352 }
353
354 if (ei.state == MTD_ERASE_FAILED) {
355 if (retries++ < UBI_IO_RETRIES) {
356 dbg_io("error while erasing PEB %d, retry", pnum);
357 yield();
358 goto retry;
359 }
360 ubi_err("cannot erase PEB %d", pnum);
361 ubi_dbg_dump_stack();
362 return -EIO;
363 }
364
365 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
366 if (err)
367 return err;
368
369 if (ubi_dbg_is_erase_failure() && !err) {
370 dbg_err("cannot erase PEB %d (emulated)", pnum);
371 return -EIO;
372 }
373
374 return 0;
375 }
376
377 /**
378 * check_pattern - check if buffer contains only a certain byte pattern.
379 * @buf: buffer to check
380 * @patt: the pattern to check
381 * @size: buffer size in bytes
382 *
383 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
384 * something else was also found.
385 */
386 static int check_pattern(const void *buf, uint8_t patt, int size)
387 {
388 int i;
389
390 for (i = 0; i < size; i++)
391 if (((const uint8_t *)buf)[i] != patt)
392 return 0;
393 return 1;
394 }
395
396 /* Patterns to write to a physical eraseblock when torturing it */
397 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
398
399 /**
400 * torture_peb - test a supposedly bad physical eraseblock.
401 * @ubi: UBI device description object
402 * @pnum: the physical eraseblock number to test
403 *
404 * This function returns %-EIO if the physical eraseblock did not pass the
405 * test, a positive number of erase operations done if the test was
406 * successfully passed, and other negative error codes in case of other errors.
407 */
408 static int torture_peb(struct ubi_device *ubi, int pnum)
409 {
410 int err, i, patt_count;
411
412 ubi_msg("run torture test for PEB %d", pnum);
413 patt_count = ARRAY_SIZE(patterns);
414 ubi_assert(patt_count > 0);
415
416 mutex_lock(&ubi->buf_mutex);
417 for (i = 0; i < patt_count; i++) {
418 err = do_sync_erase(ubi, pnum);
419 if (err)
420 goto out;
421
422 /* Make sure the PEB contains only 0xFF bytes */
423 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 if (err)
425 goto out;
426
427 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
428 if (err == 0) {
429 ubi_err("erased PEB %d, but a non-0xFF byte found",
430 pnum);
431 err = -EIO;
432 goto out;
433 }
434
435 /* Write a pattern and check it */
436 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
437 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
438 if (err)
439 goto out;
440
441 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
442 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
443 if (err)
444 goto out;
445
446 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
447 if (err == 0) {
448 ubi_err("pattern %x checking failed for PEB %d",
449 patterns[i], pnum);
450 err = -EIO;
451 goto out;
452 }
453 }
454
455 err = patt_count;
456 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
457
458 out:
459 mutex_unlock(&ubi->buf_mutex);
460 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
461 /*
462 * If a bit-flip or data integrity error was detected, the test
463 * has not passed because it happened on a freshly erased
464 * physical eraseblock which means something is wrong with it.
465 */
466 ubi_err("read problems on freshly erased PEB %d, must be bad",
467 pnum);
468 err = -EIO;
469 }
470 return err;
471 }
472
473 /**
474 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
475 * @ubi: UBI device description object
476 * @pnum: physical eraseblock number to prepare
477 *
478 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
479 * algorithm: the PEB is first filled with zeroes, then it is erased. And
480 * filling with zeroes starts from the end of the PEB. This was observed with
481 * Spansion S29GL512N NOR flash.
482 *
483 * This means that in case of a power cut we may end up with intact data at the
484 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
485 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
486 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
487 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
488 *
489 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
490 * magic numbers in order to invalidate them and prevent the failures. Returns
491 * zero in case of success and a negative error code in case of failure.
492 */
493 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
494 {
495 int err, err1;
496 size_t written;
497 loff_t addr;
498 uint32_t data = 0;
499 struct ubi_vid_hdr vid_hdr;
500
501 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
502 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
503 if (!err) {
504 addr -= ubi->vid_hdr_aloffset;
505 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
506 (void *)&data);
507 if (!err)
508 return 0;
509 }
510
511 /*
512 * We failed to write to the media. This was observed with Spansion
513 * S29GL512N NOR flash. Most probably the eraseblock erasure was
514 * interrupted at a very inappropriate moment, so it became unwritable.
515 * In this case we probably anyway have garbage in this PEB.
516 */
517 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
518 if (err1 == UBI_IO_BAD_HDR_READ || err1 == UBI_IO_BAD_HDR)
519 /*
520 * The VID header is corrupted, so we can safely erase this
521 * PEB and not afraid that it will be treated as a valid PEB in
522 * case of an unclean reboot.
523 */
524 return 0;
525
526 /*
527 * The PEB contains a valid VID header, but we cannot invalidate it.
528 * Supposedly the flash media or the driver is screwed up, so return an
529 * error.
530 */
531 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
532 pnum, err, err1);
533 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
534 return -EIO;
535 }
536
537 /**
538 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
539 * @ubi: UBI device description object
540 * @pnum: physical eraseblock number to erase
541 * @torture: if this physical eraseblock has to be tortured
542 *
543 * This function synchronously erases physical eraseblock @pnum. If @torture
544 * flag is not zero, the physical eraseblock is checked by means of writing
545 * different patterns to it and reading them back. If the torturing is enabled,
546 * the physical eraseblock is erased more than once.
547 *
548 * This function returns the number of erasures made in case of success, %-EIO
549 * if the erasure failed or the torturing test failed, and other negative error
550 * codes in case of other errors. Note, %-EIO means that the physical
551 * eraseblock is bad.
552 */
553 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
554 {
555 int err, ret = 0;
556
557 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
558
559 err = paranoid_check_not_bad(ubi, pnum);
560 if (err != 0)
561 return err;
562
563 if (ubi->ro_mode) {
564 ubi_err("read-only mode");
565 return -EROFS;
566 }
567
568 if (ubi->nor_flash) {
569 err = nor_erase_prepare(ubi, pnum);
570 if (err)
571 return err;
572 }
573
574 if (torture) {
575 ret = torture_peb(ubi, pnum);
576 if (ret < 0)
577 return ret;
578 }
579
580 err = do_sync_erase(ubi, pnum);
581 if (err)
582 return err;
583
584 return ret + 1;
585 }
586
587 /**
588 * ubi_io_is_bad - check if a physical eraseblock is bad.
589 * @ubi: UBI device description object
590 * @pnum: the physical eraseblock number to check
591 *
592 * This function returns a positive number if the physical eraseblock is bad,
593 * zero if not, and a negative error code if an error occurred.
594 */
595 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
596 {
597 struct mtd_info *mtd = ubi->mtd;
598
599 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
600
601 if (ubi->bad_allowed) {
602 int ret;
603
604 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
605 if (ret < 0)
606 ubi_err("error %d while checking if PEB %d is bad",
607 ret, pnum);
608 else if (ret)
609 dbg_io("PEB %d is bad", pnum);
610 return ret;
611 }
612
613 return 0;
614 }
615
616 /**
617 * ubi_io_mark_bad - mark a physical eraseblock as bad.
618 * @ubi: UBI device description object
619 * @pnum: the physical eraseblock number to mark
620 *
621 * This function returns zero in case of success and a negative error code in
622 * case of failure.
623 */
624 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
625 {
626 int err;
627 struct mtd_info *mtd = ubi->mtd;
628
629 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
630
631 if (ubi->ro_mode) {
632 ubi_err("read-only mode");
633 return -EROFS;
634 }
635
636 if (!ubi->bad_allowed)
637 return 0;
638
639 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
640 if (err)
641 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
642 return err;
643 }
644
645 /**
646 * validate_ec_hdr - validate an erase counter header.
647 * @ubi: UBI device description object
648 * @ec_hdr: the erase counter header to check
649 *
650 * This function returns zero if the erase counter header is OK, and %1 if
651 * not.
652 */
653 static int validate_ec_hdr(const struct ubi_device *ubi,
654 const struct ubi_ec_hdr *ec_hdr)
655 {
656 long long ec;
657 int vid_hdr_offset, leb_start;
658
659 ec = be64_to_cpu(ec_hdr->ec);
660 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
661 leb_start = be32_to_cpu(ec_hdr->data_offset);
662
663 if (ec_hdr->version != UBI_VERSION) {
664 ubi_err("node with incompatible UBI version found: "
665 "this UBI version is %d, image version is %d",
666 UBI_VERSION, (int)ec_hdr->version);
667 goto bad;
668 }
669
670 if (vid_hdr_offset != ubi->vid_hdr_offset) {
671 ubi_err("bad VID header offset %d, expected %d",
672 vid_hdr_offset, ubi->vid_hdr_offset);
673 goto bad;
674 }
675
676 if (leb_start != ubi->leb_start) {
677 ubi_err("bad data offset %d, expected %d",
678 leb_start, ubi->leb_start);
679 goto bad;
680 }
681
682 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
683 ubi_err("bad erase counter %lld", ec);
684 goto bad;
685 }
686
687 return 0;
688
689 bad:
690 ubi_err("bad EC header");
691 ubi_dbg_dump_ec_hdr(ec_hdr);
692 ubi_dbg_dump_stack();
693 return 1;
694 }
695
696 /**
697 * ubi_io_read_ec_hdr - read and check an erase counter header.
698 * @ubi: UBI device description object
699 * @pnum: physical eraseblock to read from
700 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
701 * header
702 * @verbose: be verbose if the header is corrupted or was not found
703 *
704 * This function reads erase counter header from physical eraseblock @pnum and
705 * stores it in @ec_hdr. This function also checks CRC checksum of the read
706 * erase counter header. The following codes may be returned:
707 *
708 * o %0 if the CRC checksum is correct and the header was successfully read;
709 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
710 * and corrected by the flash driver; this is harmless but may indicate that
711 * this eraseblock may become bad soon (but may be not);
712 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
713 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
714 * o a negative error code in case of failure.
715 */
716 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
717 struct ubi_ec_hdr *ec_hdr, int verbose)
718 {
719 int err, read_err = 0;
720 uint32_t crc, magic, hdr_crc;
721
722 dbg_io("read EC header from PEB %d", pnum);
723 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
724
725 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
726 if (err) {
727 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
728 return err;
729
730 /*
731 * We read all the data, but either a correctable bit-flip
732 * occurred, or MTD reported about some data integrity error,
733 * like an ECC error in case of NAND. The former is harmless,
734 * the later may mean that the read data is corrupted. But we
735 * have a CRC check-sum and we will detect this. If the EC
736 * header is still OK, we just report this as there was a
737 * bit-flip.
738 */
739 if (err == -EBADMSG)
740 read_err = UBI_IO_BAD_HDR_READ;
741 }
742
743 magic = be32_to_cpu(ec_hdr->magic);
744 if (magic != UBI_EC_HDR_MAGIC) {
745 if (read_err)
746 return read_err;
747
748 /*
749 * The magic field is wrong. Let's check if we have read all
750 * 0xFF. If yes, this physical eraseblock is assumed to be
751 * empty.
752 */
753 if (check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
754 /* The physical eraseblock is supposedly empty */
755 if (verbose)
756 ubi_warn("no EC header found at PEB %d, "
757 "only 0xFF bytes", pnum);
758 else if (UBI_IO_DEBUG)
759 dbg_msg("no EC header found at PEB %d, "
760 "only 0xFF bytes", pnum);
761 return UBI_IO_PEB_EMPTY;
762 }
763
764 /*
765 * This is not a valid erase counter header, and these are not
766 * 0xFF bytes. Report that the header is corrupted.
767 */
768 if (verbose) {
769 ubi_warn("bad magic number at PEB %d: %08x instead of "
770 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
771 ubi_dbg_dump_ec_hdr(ec_hdr);
772 } else if (UBI_IO_DEBUG)
773 dbg_msg("bad magic number at PEB %d: %08x instead of "
774 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
775 return UBI_IO_BAD_HDR;
776 }
777
778 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
779 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
780
781 if (hdr_crc != crc) {
782 if (verbose) {
783 ubi_warn("bad EC header CRC at PEB %d, calculated "
784 "%#08x, read %#08x", pnum, crc, hdr_crc);
785 ubi_dbg_dump_ec_hdr(ec_hdr);
786 } else if (UBI_IO_DEBUG)
787 dbg_msg("bad EC header CRC at PEB %d, calculated "
788 "%#08x, read %#08x", pnum, crc, hdr_crc);
789 return read_err ?: UBI_IO_BAD_HDR;
790 }
791
792 /* And of course validate what has just been read from the media */
793 err = validate_ec_hdr(ubi, ec_hdr);
794 if (err) {
795 ubi_err("validation failed for PEB %d", pnum);
796 return -EINVAL;
797 }
798
799 /*
800 * If there was %-EBADMSG, but the header CRC is still OK, report about
801 * a bit-flip to force scrubbing on this PEB.
802 */
803 return read_err ? UBI_IO_BITFLIPS : 0;
804 }
805
806 /**
807 * ubi_io_write_ec_hdr - write an erase counter header.
808 * @ubi: UBI device description object
809 * @pnum: physical eraseblock to write to
810 * @ec_hdr: the erase counter header to write
811 *
812 * This function writes erase counter header described by @ec_hdr to physical
813 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
814 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
815 * field.
816 *
817 * This function returns zero in case of success and a negative error code in
818 * case of failure. If %-EIO is returned, the physical eraseblock most probably
819 * went bad.
820 */
821 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
822 struct ubi_ec_hdr *ec_hdr)
823 {
824 int err;
825 uint32_t crc;
826
827 dbg_io("write EC header to PEB %d", pnum);
828 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
829
830 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
831 ec_hdr->version = UBI_VERSION;
832 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
833 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
834 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
835 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
836 ec_hdr->hdr_crc = cpu_to_be32(crc);
837
838 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
839 if (err)
840 return err;
841
842 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
843 return err;
844 }
845
846 /**
847 * validate_vid_hdr - validate a volume identifier header.
848 * @ubi: UBI device description object
849 * @vid_hdr: the volume identifier header to check
850 *
851 * This function checks that data stored in the volume identifier header
852 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
853 */
854 static int validate_vid_hdr(const struct ubi_device *ubi,
855 const struct ubi_vid_hdr *vid_hdr)
856 {
857 int vol_type = vid_hdr->vol_type;
858 int copy_flag = vid_hdr->copy_flag;
859 int vol_id = be32_to_cpu(vid_hdr->vol_id);
860 int lnum = be32_to_cpu(vid_hdr->lnum);
861 int compat = vid_hdr->compat;
862 int data_size = be32_to_cpu(vid_hdr->data_size);
863 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
864 int data_pad = be32_to_cpu(vid_hdr->data_pad);
865 int data_crc = be32_to_cpu(vid_hdr->data_crc);
866 int usable_leb_size = ubi->leb_size - data_pad;
867
868 if (copy_flag != 0 && copy_flag != 1) {
869 dbg_err("bad copy_flag");
870 goto bad;
871 }
872
873 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
874 data_pad < 0) {
875 dbg_err("negative values");
876 goto bad;
877 }
878
879 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
880 dbg_err("bad vol_id");
881 goto bad;
882 }
883
884 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
885 dbg_err("bad compat");
886 goto bad;
887 }
888
889 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
890 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
891 compat != UBI_COMPAT_REJECT) {
892 dbg_err("bad compat");
893 goto bad;
894 }
895
896 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
897 dbg_err("bad vol_type");
898 goto bad;
899 }
900
901 if (data_pad >= ubi->leb_size / 2) {
902 dbg_err("bad data_pad");
903 goto bad;
904 }
905
906 if (vol_type == UBI_VID_STATIC) {
907 /*
908 * Although from high-level point of view static volumes may
909 * contain zero bytes of data, but no VID headers can contain
910 * zero at these fields, because they empty volumes do not have
911 * mapped logical eraseblocks.
912 */
913 if (used_ebs == 0) {
914 dbg_err("zero used_ebs");
915 goto bad;
916 }
917 if (data_size == 0) {
918 dbg_err("zero data_size");
919 goto bad;
920 }
921 if (lnum < used_ebs - 1) {
922 if (data_size != usable_leb_size) {
923 dbg_err("bad data_size");
924 goto bad;
925 }
926 } else if (lnum == used_ebs - 1) {
927 if (data_size == 0) {
928 dbg_err("bad data_size at last LEB");
929 goto bad;
930 }
931 } else {
932 dbg_err("too high lnum");
933 goto bad;
934 }
935 } else {
936 if (copy_flag == 0) {
937 if (data_crc != 0) {
938 dbg_err("non-zero data CRC");
939 goto bad;
940 }
941 if (data_size != 0) {
942 dbg_err("non-zero data_size");
943 goto bad;
944 }
945 } else {
946 if (data_size == 0) {
947 dbg_err("zero data_size of copy");
948 goto bad;
949 }
950 }
951 if (used_ebs != 0) {
952 dbg_err("bad used_ebs");
953 goto bad;
954 }
955 }
956
957 return 0;
958
959 bad:
960 ubi_err("bad VID header");
961 ubi_dbg_dump_vid_hdr(vid_hdr);
962 ubi_dbg_dump_stack();
963 return 1;
964 }
965
966 /**
967 * ubi_io_read_vid_hdr - read and check a volume identifier header.
968 * @ubi: UBI device description object
969 * @pnum: physical eraseblock number to read from
970 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
971 * identifier header
972 * @verbose: be verbose if the header is corrupted or wasn't found
973 *
974 * This function reads the volume identifier header from physical eraseblock
975 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
976 * volume identifier header. The following codes may be returned:
977 *
978 * o %0 if the CRC checksum is correct and the header was successfully read;
979 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
980 * and corrected by the flash driver; this is harmless but may indicate that
981 * this eraseblock may become bad soon;
982 * o %UBI_IO_BAD_HDR if the volume identifier header is corrupted (a CRC
983 * error detected);
984 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
985 * header there);
986 * o a negative error code in case of failure.
987 */
988 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
989 struct ubi_vid_hdr *vid_hdr, int verbose)
990 {
991 int err, read_err = 0;
992 uint32_t crc, magic, hdr_crc;
993 void *p;
994
995 dbg_io("read VID header from PEB %d", pnum);
996 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
997
998 p = (char *)vid_hdr - ubi->vid_hdr_shift;
999 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1000 ubi->vid_hdr_alsize);
1001 if (err) {
1002 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1003 return err;
1004
1005 /*
1006 * We read all the data, but either a correctable bit-flip
1007 * occurred, or MTD reported about some data integrity error,
1008 * like an ECC error in case of NAND. The former is harmless,
1009 * the later may mean the read data is corrupted. But we have a
1010 * CRC check-sum and we will identify this. If the VID header is
1011 * still OK, we just report this as there was a bit-flip.
1012 */
1013 if (err == -EBADMSG)
1014 read_err = UBI_IO_BAD_HDR_READ;
1015 }
1016
1017 magic = be32_to_cpu(vid_hdr->magic);
1018 if (magic != UBI_VID_HDR_MAGIC) {
1019 if (read_err)
1020 return read_err;
1021
1022 /*
1023 * If we have read all 0xFF bytes, the VID header probably does
1024 * not exist and the physical eraseblock is assumed to be free.
1025 */
1026 if (check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1027 /* The physical eraseblock is supposedly free */
1028 if (verbose)
1029 ubi_warn("no VID header found at PEB %d, "
1030 "only 0xFF bytes", pnum);
1031 else if (UBI_IO_DEBUG)
1032 dbg_msg("no VID header found at PEB %d, "
1033 "only 0xFF bytes", pnum);
1034 return UBI_IO_PEB_FREE;
1035 }
1036
1037 /*
1038 * This is not a valid VID header, and these are not 0xFF
1039 * bytes. Report that the header is corrupted.
1040 */
1041 if (verbose) {
1042 ubi_warn("bad magic number at PEB %d: %08x instead of "
1043 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1044 ubi_dbg_dump_vid_hdr(vid_hdr);
1045 } else if (UBI_IO_DEBUG)
1046 dbg_msg("bad magic number at PEB %d: %08x instead of "
1047 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1048 return UBI_IO_BAD_HDR;
1049 }
1050
1051 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1052 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1053
1054 if (hdr_crc != crc) {
1055 if (verbose) {
1056 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1057 "read %#08x", pnum, crc, hdr_crc);
1058 ubi_dbg_dump_vid_hdr(vid_hdr);
1059 } else if (UBI_IO_DEBUG)
1060 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1061 "read %#08x", pnum, crc, hdr_crc);
1062 return read_err ?: UBI_IO_BAD_HDR;
1063 }
1064
1065 /* Validate the VID header that we have just read */
1066 err = validate_vid_hdr(ubi, vid_hdr);
1067 if (err) {
1068 ubi_err("validation failed for PEB %d", pnum);
1069 return -EINVAL;
1070 }
1071
1072 /*
1073 * If there was a read error (%-EBADMSG), but the header CRC is still
1074 * OK, report about a bit-flip to force scrubbing on this PEB.
1075 */
1076 return read_err ? UBI_IO_BITFLIPS : 0;
1077 }
1078
1079 /**
1080 * ubi_io_write_vid_hdr - write a volume identifier header.
1081 * @ubi: UBI device description object
1082 * @pnum: the physical eraseblock number to write to
1083 * @vid_hdr: the volume identifier header to write
1084 *
1085 * This function writes the volume identifier header described by @vid_hdr to
1086 * physical eraseblock @pnum. This function automatically fills the
1087 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1088 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1089 *
1090 * This function returns zero in case of success and a negative error code in
1091 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1092 * bad.
1093 */
1094 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1095 struct ubi_vid_hdr *vid_hdr)
1096 {
1097 int err;
1098 uint32_t crc;
1099 void *p;
1100
1101 dbg_io("write VID header to PEB %d", pnum);
1102 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1103
1104 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1105 if (err)
1106 return err;
1107
1108 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1109 vid_hdr->version = UBI_VERSION;
1110 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1111 vid_hdr->hdr_crc = cpu_to_be32(crc);
1112
1113 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1114 if (err)
1115 return err;
1116
1117 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1118 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1119 ubi->vid_hdr_alsize);
1120 return err;
1121 }
1122
1123 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1124
1125 /**
1126 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock number to check
1129 *
1130 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1131 * it is bad and a negative error code if an error occurred.
1132 */
1133 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1134 {
1135 int err;
1136
1137 err = ubi_io_is_bad(ubi, pnum);
1138 if (!err)
1139 return err;
1140
1141 ubi_err("paranoid check failed for PEB %d", pnum);
1142 ubi_dbg_dump_stack();
1143 return err > 0 ? -EINVAL : err;
1144 }
1145
1146 /**
1147 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1148 * @ubi: UBI device description object
1149 * @pnum: physical eraseblock number the erase counter header belongs to
1150 * @ec_hdr: the erase counter header to check
1151 *
1152 * This function returns zero if the erase counter header contains valid
1153 * values, and %-EINVAL if not.
1154 */
1155 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1156 const struct ubi_ec_hdr *ec_hdr)
1157 {
1158 int err;
1159 uint32_t magic;
1160
1161 magic = be32_to_cpu(ec_hdr->magic);
1162 if (magic != UBI_EC_HDR_MAGIC) {
1163 ubi_err("bad magic %#08x, must be %#08x",
1164 magic, UBI_EC_HDR_MAGIC);
1165 goto fail;
1166 }
1167
1168 err = validate_ec_hdr(ubi, ec_hdr);
1169 if (err) {
1170 ubi_err("paranoid check failed for PEB %d", pnum);
1171 goto fail;
1172 }
1173
1174 return 0;
1175
1176 fail:
1177 ubi_dbg_dump_ec_hdr(ec_hdr);
1178 ubi_dbg_dump_stack();
1179 return -EINVAL;
1180 }
1181
1182 /**
1183 * paranoid_check_peb_ec_hdr - check erase counter header.
1184 * @ubi: UBI device description object
1185 * @pnum: the physical eraseblock number to check
1186 *
1187 * This function returns zero if the erase counter header is all right and and
1188 * a negative error code if not or if an error occurred.
1189 */
1190 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1191 {
1192 int err;
1193 uint32_t crc, hdr_crc;
1194 struct ubi_ec_hdr *ec_hdr;
1195
1196 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1197 if (!ec_hdr)
1198 return -ENOMEM;
1199
1200 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1201 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1202 goto exit;
1203
1204 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1205 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1206 if (hdr_crc != crc) {
1207 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1208 ubi_err("paranoid check failed for PEB %d", pnum);
1209 ubi_dbg_dump_ec_hdr(ec_hdr);
1210 ubi_dbg_dump_stack();
1211 err = -EINVAL;
1212 goto exit;
1213 }
1214
1215 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1216
1217 exit:
1218 kfree(ec_hdr);
1219 return err;
1220 }
1221
1222 /**
1223 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1224 * @ubi: UBI device description object
1225 * @pnum: physical eraseblock number the volume identifier header belongs to
1226 * @vid_hdr: the volume identifier header to check
1227 *
1228 * This function returns zero if the volume identifier header is all right, and
1229 * %-EINVAL if not.
1230 */
1231 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1232 const struct ubi_vid_hdr *vid_hdr)
1233 {
1234 int err;
1235 uint32_t magic;
1236
1237 magic = be32_to_cpu(vid_hdr->magic);
1238 if (magic != UBI_VID_HDR_MAGIC) {
1239 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1240 magic, pnum, UBI_VID_HDR_MAGIC);
1241 goto fail;
1242 }
1243
1244 err = validate_vid_hdr(ubi, vid_hdr);
1245 if (err) {
1246 ubi_err("paranoid check failed for PEB %d", pnum);
1247 goto fail;
1248 }
1249
1250 return err;
1251
1252 fail:
1253 ubi_err("paranoid check failed for PEB %d", pnum);
1254 ubi_dbg_dump_vid_hdr(vid_hdr);
1255 ubi_dbg_dump_stack();
1256 return -EINVAL;
1257
1258 }
1259
1260 /**
1261 * paranoid_check_peb_vid_hdr - check volume identifier header.
1262 * @ubi: UBI device description object
1263 * @pnum: the physical eraseblock number to check
1264 *
1265 * This function returns zero if the volume identifier header is all right,
1266 * and a negative error code if not or if an error occurred.
1267 */
1268 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1269 {
1270 int err;
1271 uint32_t crc, hdr_crc;
1272 struct ubi_vid_hdr *vid_hdr;
1273 void *p;
1274
1275 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1276 if (!vid_hdr)
1277 return -ENOMEM;
1278
1279 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1280 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1281 ubi->vid_hdr_alsize);
1282 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1283 goto exit;
1284
1285 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1286 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1287 if (hdr_crc != crc) {
1288 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1289 "read %#08x", pnum, crc, hdr_crc);
1290 ubi_err("paranoid check failed for PEB %d", pnum);
1291 ubi_dbg_dump_vid_hdr(vid_hdr);
1292 ubi_dbg_dump_stack();
1293 err = -EINVAL;
1294 goto exit;
1295 }
1296
1297 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1298
1299 exit:
1300 ubi_free_vid_hdr(ubi, vid_hdr);
1301 return err;
1302 }
1303
1304 /**
1305 * ubi_dbg_check_write - make sure write succeeded.
1306 * @ubi: UBI device description object
1307 * @buf: buffer with data which were written
1308 * @pnum: physical eraseblock number the data were written to
1309 * @offset: offset within the physical eraseblock the data were written to
1310 * @len: how many bytes were written
1311 *
1312 * This functions reads data which were recently written and compares it with
1313 * the original data buffer - the data have to match. Returns zero if the data
1314 * match and a negative error code if not or in case of failure.
1315 */
1316 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1317 int offset, int len)
1318 {
1319 int err, i;
1320
1321 mutex_lock(&ubi->dbg_buf_mutex);
1322 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1323 if (err)
1324 goto out_unlock;
1325
1326 for (i = 0; i < len; i++) {
1327 uint8_t c = ((uint8_t *)buf)[i];
1328 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1329 int dump_len;
1330
1331 if (c == c1)
1332 continue;
1333
1334 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1335 pnum, offset, len);
1336 ubi_msg("data differ at position %d", i);
1337 dump_len = max_t(int, 128, len - i);
1338 ubi_msg("hex dump of the original buffer from %d to %d",
1339 i, i + dump_len);
1340 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1341 buf + i, dump_len, 1);
1342 ubi_msg("hex dump of the read buffer from %d to %d",
1343 i, i + dump_len);
1344 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1345 ubi->dbg_peb_buf + i, dump_len, 1);
1346 ubi_dbg_dump_stack();
1347 err = -EINVAL;
1348 goto out_unlock;
1349 }
1350 mutex_unlock(&ubi->dbg_buf_mutex);
1351
1352 return 0;
1353
1354 out_unlock:
1355 mutex_unlock(&ubi->dbg_buf_mutex);
1356 return err;
1357 }
1358
1359 /**
1360 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1361 * @ubi: UBI device description object
1362 * @pnum: the physical eraseblock number to check
1363 * @offset: the starting offset within the physical eraseblock to check
1364 * @len: the length of the region to check
1365 *
1366 * This function returns zero if only 0xFF bytes are present at offset
1367 * @offset of the physical eraseblock @pnum, and a negative error code if not
1368 * or if an error occurred.
1369 */
1370 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1371 {
1372 size_t read;
1373 int err;
1374 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1375
1376 mutex_lock(&ubi->dbg_buf_mutex);
1377 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1378 if (err && err != -EUCLEAN) {
1379 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1380 "read %zd bytes", err, len, pnum, offset, read);
1381 goto error;
1382 }
1383
1384 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1385 if (err == 0) {
1386 ubi_err("flash region at PEB %d:%d, length %d does not "
1387 "contain all 0xFF bytes", pnum, offset, len);
1388 goto fail;
1389 }
1390 mutex_unlock(&ubi->dbg_buf_mutex);
1391
1392 return 0;
1393
1394 fail:
1395 ubi_err("paranoid check failed for PEB %d", pnum);
1396 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1397 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1398 ubi->dbg_peb_buf, len, 1);
1399 err = -EINVAL;
1400 error:
1401 ubi_dbg_dump_stack();
1402 mutex_unlock(&ubi->dbg_buf_mutex);
1403 return err;
1404 }
1405
1406 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */