]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mtd/ubi/wl.c
treewide: kzalloc() -> kcalloc()
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
143
144 /**
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
148 *
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
151 */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 struct rb_node **p, *parent = NULL;
155
156 p = &root->rb_node;
157 while (*p) {
158 struct ubi_wl_entry *e1;
159
160 parent = *p;
161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163 if (e->ec < e1->ec)
164 p = &(*p)->rb_left;
165 else if (e->ec > e1->ec)
166 p = &(*p)->rb_right;
167 else {
168 ubi_assert(e->pnum != e1->pnum);
169 if (e->pnum < e1->pnum)
170 p = &(*p)->rb_left;
171 else
172 p = &(*p)->rb_right;
173 }
174 }
175
176 rb_link_node(&e->u.rb, parent, p);
177 rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
184 *
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
187 */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 ubi->lookuptbl[e->pnum] = NULL;
191 kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
197 *
198 * This function returns zero in case of success and a negative error code in
199 * case of failure.
200 */
201 static int do_work(struct ubi_device *ubi)
202 {
203 int err;
204 struct ubi_work *wrk;
205
206 cond_resched();
207
208 /*
209 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 * it in read mode, so many of them may be doing works at a time. But
211 * the queue flush code has to be sure the whole queue of works is
212 * done, and it takes the mutex in write mode.
213 */
214 down_read(&ubi->work_sem);
215 spin_lock(&ubi->wl_lock);
216 if (list_empty(&ubi->works)) {
217 spin_unlock(&ubi->wl_lock);
218 up_read(&ubi->work_sem);
219 return 0;
220 }
221
222 wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 list_del(&wrk->list);
224 ubi->works_count -= 1;
225 ubi_assert(ubi->works_count >= 0);
226 spin_unlock(&ubi->wl_lock);
227
228 /*
229 * Call the worker function. Do not touch the work structure
230 * after this call as it will have been freed or reused by that
231 * time by the worker function.
232 */
233 err = wrk->func(ubi, wrk, 0);
234 if (err)
235 ubi_err(ubi, "work failed with error code %d", err);
236 up_read(&ubi->work_sem);
237
238 return err;
239 }
240
241 /**
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
245 *
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
247 * is not.
248 */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 struct rb_node *p;
252
253 p = root->rb_node;
254 while (p) {
255 struct ubi_wl_entry *e1;
256
257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259 if (e->pnum == e1->pnum) {
260 ubi_assert(e == e1);
261 return 1;
262 }
263
264 if (e->ec < e1->ec)
265 p = p->rb_left;
266 else if (e->ec > e1->ec)
267 p = p->rb_right;
268 else {
269 ubi_assert(e->pnum != e1->pnum);
270 if (e->pnum < e1->pnum)
271 p = p->rb_left;
272 else
273 p = p->rb_right;
274 }
275 }
276
277 return 0;
278 }
279
280 /**
281 * prot_queue_add - add physical eraseblock to the protection queue.
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
284 *
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288 * be locked.
289 */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 int pq_tail = ubi->pq_head - 1;
293
294 if (pq_tail < 0)
295 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303 * @ubi: UBI device description object
304 * @root: the RB-tree where to look for
305 * @diff: maximum possible difference from the smallest erase counter
306 *
307 * This function looks for a wear leveling entry with erase counter closest to
308 * min + @diff, where min is the smallest erase counter.
309 */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 struct rb_root *root, int diff)
312 {
313 struct rb_node *p;
314 struct ubi_wl_entry *e, *prev_e = NULL;
315 int max;
316
317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 max = e->ec + diff;
319
320 p = root->rb_node;
321 while (p) {
322 struct ubi_wl_entry *e1;
323
324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 if (e1->ec >= max)
326 p = p->rb_left;
327 else {
328 p = p->rb_right;
329 prev_e = e;
330 e = e1;
331 }
332 }
333
334 /* If no fastmap has been written and this WL entry can be used
335 * as anchor PEB, hold it back and return the second best WL entry
336 * such that fastmap can use the anchor PEB later. */
337 if (prev_e && !ubi->fm_disabled &&
338 !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 return prev_e;
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture, bool nested)
584 {
585 struct ubi_work *wl_wrk;
586
587 ubi_assert(e);
588
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
601
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
606 return 0;
607 }
608
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
617 *
618 */
619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
621 {
622 struct ubi_work wl_wrk;
623
624 dbg_wl("sync erase of PEB %i", e->pnum);
625
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
630
631 return __erase_worker(ubi, &wl_wrk);
632 }
633
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635 /**
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
641 *
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
645 */
646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 int shutdown)
648 {
649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 #ifdef CONFIG_MTD_UBI_FASTMAP
652 int anchor = wrk->anchor;
653 #endif
654 struct ubi_wl_entry *e1, *e2;
655 struct ubi_vid_io_buf *vidb;
656 struct ubi_vid_hdr *vid_hdr;
657 int dst_leb_clean = 0;
658
659 kfree(wrk);
660 if (shutdown)
661 return 0;
662
663 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
664 if (!vidb)
665 return -ENOMEM;
666
667 vid_hdr = ubi_get_vid_hdr(vidb);
668
669 down_read(&ubi->fm_eba_sem);
670 mutex_lock(&ubi->move_mutex);
671 spin_lock(&ubi->wl_lock);
672 ubi_assert(!ubi->move_from && !ubi->move_to);
673 ubi_assert(!ubi->move_to_put);
674
675 if (!ubi->free.rb_node ||
676 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
677 /*
678 * No free physical eraseblocks? Well, they must be waiting in
679 * the queue to be erased. Cancel movement - it will be
680 * triggered again when a free physical eraseblock appears.
681 *
682 * No used physical eraseblocks? They must be temporarily
683 * protected from being moved. They will be moved to the
684 * @ubi->used tree later and the wear-leveling will be
685 * triggered again.
686 */
687 dbg_wl("cancel WL, a list is empty: free %d, used %d",
688 !ubi->free.rb_node, !ubi->used.rb_node);
689 goto out_cancel;
690 }
691
692 #ifdef CONFIG_MTD_UBI_FASTMAP
693 /* Check whether we need to produce an anchor PEB */
694 if (!anchor)
695 anchor = !anchor_pebs_available(&ubi->free);
696
697 if (anchor) {
698 e1 = find_anchor_wl_entry(&ubi->used);
699 if (!e1)
700 goto out_cancel;
701 e2 = get_peb_for_wl(ubi);
702 if (!e2)
703 goto out_cancel;
704
705 self_check_in_wl_tree(ubi, e1, &ubi->used);
706 rb_erase(&e1->u.rb, &ubi->used);
707 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
708 } else if (!ubi->scrub.rb_node) {
709 #else
710 if (!ubi->scrub.rb_node) {
711 #endif
712 /*
713 * Now pick the least worn-out used physical eraseblock and a
714 * highly worn-out free physical eraseblock. If the erase
715 * counters differ much enough, start wear-leveling.
716 */
717 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
718 e2 = get_peb_for_wl(ubi);
719 if (!e2)
720 goto out_cancel;
721
722 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
723 dbg_wl("no WL needed: min used EC %d, max free EC %d",
724 e1->ec, e2->ec);
725
726 /* Give the unused PEB back */
727 wl_tree_add(e2, &ubi->free);
728 ubi->free_count++;
729 goto out_cancel;
730 }
731 self_check_in_wl_tree(ubi, e1, &ubi->used);
732 rb_erase(&e1->u.rb, &ubi->used);
733 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 e1->pnum, e1->ec, e2->pnum, e2->ec);
735 } else {
736 /* Perform scrubbing */
737 scrubbing = 1;
738 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
739 e2 = get_peb_for_wl(ubi);
740 if (!e2)
741 goto out_cancel;
742
743 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
744 rb_erase(&e1->u.rb, &ubi->scrub);
745 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
746 }
747
748 ubi->move_from = e1;
749 ubi->move_to = e2;
750 spin_unlock(&ubi->wl_lock);
751
752 /*
753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 * We so far do not know which logical eraseblock our physical
755 * eraseblock (@e1) belongs to. We have to read the volume identifier
756 * header first.
757 *
758 * Note, we are protected from this PEB being unmapped and erased. The
759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 * which is being moved was unmapped.
761 */
762
763 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
764 if (err && err != UBI_IO_BITFLIPS) {
765 dst_leb_clean = 1;
766 if (err == UBI_IO_FF) {
767 /*
768 * We are trying to move PEB without a VID header. UBI
769 * always write VID headers shortly after the PEB was
770 * given, so we have a situation when it has not yet
771 * had a chance to write it, because it was preempted.
772 * So add this PEB to the protection queue so far,
773 * because presumably more data will be written there
774 * (including the missing VID header), and then we'll
775 * move it.
776 */
777 dbg_wl("PEB %d has no VID header", e1->pnum);
778 protect = 1;
779 goto out_not_moved;
780 } else if (err == UBI_IO_FF_BITFLIPS) {
781 /*
782 * The same situation as %UBI_IO_FF, but bit-flips were
783 * detected. It is better to schedule this PEB for
784 * scrubbing.
785 */
786 dbg_wl("PEB %d has no VID header but has bit-flips",
787 e1->pnum);
788 scrubbing = 1;
789 goto out_not_moved;
790 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
791 /*
792 * While a full scan would detect interrupted erasures
793 * at attach time we can face them here when attached from
794 * Fastmap.
795 */
796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
797 e1->pnum);
798 erase = 1;
799 goto out_not_moved;
800 }
801
802 ubi_err(ubi, "error %d while reading VID header from PEB %d",
803 err, e1->pnum);
804 goto out_error;
805 }
806
807 vol_id = be32_to_cpu(vid_hdr->vol_id);
808 lnum = be32_to_cpu(vid_hdr->lnum);
809
810 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
811 if (err) {
812 if (err == MOVE_CANCEL_RACE) {
813 /*
814 * The LEB has not been moved because the volume is
815 * being deleted or the PEB has been put meanwhile. We
816 * should prevent this PEB from being selected for
817 * wear-leveling movement again, so put it to the
818 * protection queue.
819 */
820 protect = 1;
821 dst_leb_clean = 1;
822 goto out_not_moved;
823 }
824 if (err == MOVE_RETRY) {
825 scrubbing = 1;
826 dst_leb_clean = 1;
827 goto out_not_moved;
828 }
829 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
830 err == MOVE_TARGET_RD_ERR) {
831 /*
832 * Target PEB had bit-flips or write error - torture it.
833 */
834 torture = 1;
835 keep = 1;
836 goto out_not_moved;
837 }
838
839 if (err == MOVE_SOURCE_RD_ERR) {
840 /*
841 * An error happened while reading the source PEB. Do
842 * not switch to R/O mode in this case, and give the
843 * upper layers a possibility to recover from this,
844 * e.g. by unmapping corresponding LEB. Instead, just
845 * put this PEB to the @ubi->erroneous list to prevent
846 * UBI from trying to move it over and over again.
847 */
848 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
849 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
850 ubi->erroneous_peb_count);
851 goto out_error;
852 }
853 dst_leb_clean = 1;
854 erroneous = 1;
855 goto out_not_moved;
856 }
857
858 if (err < 0)
859 goto out_error;
860
861 ubi_assert(0);
862 }
863
864 /* The PEB has been successfully moved */
865 if (scrubbing)
866 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 e1->pnum, vol_id, lnum, e2->pnum);
868 ubi_free_vid_buf(vidb);
869
870 spin_lock(&ubi->wl_lock);
871 if (!ubi->move_to_put) {
872 wl_tree_add(e2, &ubi->used);
873 e2 = NULL;
874 }
875 ubi->move_from = ubi->move_to = NULL;
876 ubi->move_to_put = ubi->wl_scheduled = 0;
877 spin_unlock(&ubi->wl_lock);
878
879 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
880 if (err) {
881 if (e2)
882 wl_entry_destroy(ubi, e2);
883 goto out_ro;
884 }
885
886 if (e2) {
887 /*
888 * Well, the target PEB was put meanwhile, schedule it for
889 * erasure.
890 */
891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 e2->pnum, vol_id, lnum);
893 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
894 if (err)
895 goto out_ro;
896 }
897
898 dbg_wl("done");
899 mutex_unlock(&ubi->move_mutex);
900 up_read(&ubi->fm_eba_sem);
901 return 0;
902
903 /*
904 * For some reasons the LEB was not moved, might be an error, might be
905 * something else. @e1 was not changed, so return it back. @e2 might
906 * have been changed, schedule it for erasure.
907 */
908 out_not_moved:
909 if (vol_id != -1)
910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 e1->pnum, vol_id, lnum, e2->pnum, err);
912 else
913 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 e1->pnum, e2->pnum, err);
915 spin_lock(&ubi->wl_lock);
916 if (protect)
917 prot_queue_add(ubi, e1);
918 else if (erroneous) {
919 wl_tree_add(e1, &ubi->erroneous);
920 ubi->erroneous_peb_count += 1;
921 } else if (scrubbing)
922 wl_tree_add(e1, &ubi->scrub);
923 else if (keep)
924 wl_tree_add(e1, &ubi->used);
925 if (dst_leb_clean) {
926 wl_tree_add(e2, &ubi->free);
927 ubi->free_count++;
928 }
929
930 ubi_assert(!ubi->move_to_put);
931 ubi->move_from = ubi->move_to = NULL;
932 ubi->wl_scheduled = 0;
933 spin_unlock(&ubi->wl_lock);
934
935 ubi_free_vid_buf(vidb);
936 if (dst_leb_clean) {
937 ensure_wear_leveling(ubi, 1);
938 } else {
939 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
940 if (err)
941 goto out_ro;
942 }
943
944 if (erase) {
945 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
946 if (err)
947 goto out_ro;
948 }
949
950 mutex_unlock(&ubi->move_mutex);
951 up_read(&ubi->fm_eba_sem);
952 return 0;
953
954 out_error:
955 if (vol_id != -1)
956 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
957 err, e1->pnum, e2->pnum);
958 else
959 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 err, e1->pnum, vol_id, lnum, e2->pnum);
961 spin_lock(&ubi->wl_lock);
962 ubi->move_from = ubi->move_to = NULL;
963 ubi->move_to_put = ubi->wl_scheduled = 0;
964 spin_unlock(&ubi->wl_lock);
965
966 ubi_free_vid_buf(vidb);
967 wl_entry_destroy(ubi, e1);
968 wl_entry_destroy(ubi, e2);
969
970 out_ro:
971 ubi_ro_mode(ubi);
972 mutex_unlock(&ubi->move_mutex);
973 up_read(&ubi->fm_eba_sem);
974 ubi_assert(err != 0);
975 return err < 0 ? err : -EIO;
976
977 out_cancel:
978 ubi->wl_scheduled = 0;
979 spin_unlock(&ubi->wl_lock);
980 mutex_unlock(&ubi->move_mutex);
981 up_read(&ubi->fm_eba_sem);
982 ubi_free_vid_buf(vidb);
983 return 0;
984 }
985
986 /**
987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
988 * @ubi: UBI device description object
989 * @nested: set to non-zero if this function is called from UBI worker
990 *
991 * This function checks if it is time to start wear-leveling and schedules it
992 * if yes. This function returns zero in case of success and a negative error
993 * code in case of failure.
994 */
995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
996 {
997 int err = 0;
998 struct ubi_wl_entry *e1;
999 struct ubi_wl_entry *e2;
1000 struct ubi_work *wrk;
1001
1002 spin_lock(&ubi->wl_lock);
1003 if (ubi->wl_scheduled)
1004 /* Wear-leveling is already in the work queue */
1005 goto out_unlock;
1006
1007 /*
1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 * the WL worker has to be scheduled anyway.
1010 */
1011 if (!ubi->scrub.rb_node) {
1012 if (!ubi->used.rb_node || !ubi->free.rb_node)
1013 /* No physical eraseblocks - no deal */
1014 goto out_unlock;
1015
1016 /*
1017 * We schedule wear-leveling only if the difference between the
1018 * lowest erase counter of used physical eraseblocks and a high
1019 * erase counter of free physical eraseblocks is greater than
1020 * %UBI_WL_THRESHOLD.
1021 */
1022 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1023 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1024
1025 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026 goto out_unlock;
1027 dbg_wl("schedule wear-leveling");
1028 } else
1029 dbg_wl("schedule scrubbing");
1030
1031 ubi->wl_scheduled = 1;
1032 spin_unlock(&ubi->wl_lock);
1033
1034 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1035 if (!wrk) {
1036 err = -ENOMEM;
1037 goto out_cancel;
1038 }
1039
1040 wrk->anchor = 0;
1041 wrk->func = &wear_leveling_worker;
1042 if (nested)
1043 __schedule_ubi_work(ubi, wrk);
1044 else
1045 schedule_ubi_work(ubi, wrk);
1046 return err;
1047
1048 out_cancel:
1049 spin_lock(&ubi->wl_lock);
1050 ubi->wl_scheduled = 0;
1051 out_unlock:
1052 spin_unlock(&ubi->wl_lock);
1053 return err;
1054 }
1055
1056 /**
1057 * __erase_worker - physical eraseblock erase worker function.
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
1062 *
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1066 * failure.
1067 */
1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1069 {
1070 struct ubi_wl_entry *e = wl_wrk->e;
1071 int pnum = e->pnum;
1072 int vol_id = wl_wrk->vol_id;
1073 int lnum = wl_wrk->lnum;
1074 int err, available_consumed = 0;
1075
1076 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078
1079 err = sync_erase(ubi, e, wl_wrk->torture);
1080 if (!err) {
1081 spin_lock(&ubi->wl_lock);
1082 wl_tree_add(e, &ubi->free);
1083 ubi->free_count++;
1084 spin_unlock(&ubi->wl_lock);
1085
1086 /*
1087 * One more erase operation has happened, take care about
1088 * protected physical eraseblocks.
1089 */
1090 serve_prot_queue(ubi);
1091
1092 /* And take care about wear-leveling */
1093 err = ensure_wear_leveling(ubi, 1);
1094 return err;
1095 }
1096
1097 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1098
1099 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1100 err == -EBUSY) {
1101 int err1;
1102
1103 /* Re-schedule the LEB for erasure */
1104 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1105 if (err1) {
1106 wl_entry_destroy(ubi, e);
1107 err = err1;
1108 goto out_ro;
1109 }
1110 return err;
1111 }
1112
1113 wl_entry_destroy(ubi, e);
1114 if (err != -EIO)
1115 /*
1116 * If this is not %-EIO, we have no idea what to do. Scheduling
1117 * this physical eraseblock for erasure again would cause
1118 * errors again and again. Well, lets switch to R/O mode.
1119 */
1120 goto out_ro;
1121
1122 /* It is %-EIO, the PEB went bad */
1123
1124 if (!ubi->bad_allowed) {
1125 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1126 goto out_ro;
1127 }
1128
1129 spin_lock(&ubi->volumes_lock);
1130 if (ubi->beb_rsvd_pebs == 0) {
1131 if (ubi->avail_pebs == 0) {
1132 spin_unlock(&ubi->volumes_lock);
1133 ubi_err(ubi, "no reserved/available physical eraseblocks");
1134 goto out_ro;
1135 }
1136 ubi->avail_pebs -= 1;
1137 available_consumed = 1;
1138 }
1139 spin_unlock(&ubi->volumes_lock);
1140
1141 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1142 err = ubi_io_mark_bad(ubi, pnum);
1143 if (err)
1144 goto out_ro;
1145
1146 spin_lock(&ubi->volumes_lock);
1147 if (ubi->beb_rsvd_pebs > 0) {
1148 if (available_consumed) {
1149 /*
1150 * The amount of reserved PEBs increased since we last
1151 * checked.
1152 */
1153 ubi->avail_pebs += 1;
1154 available_consumed = 0;
1155 }
1156 ubi->beb_rsvd_pebs -= 1;
1157 }
1158 ubi->bad_peb_count += 1;
1159 ubi->good_peb_count -= 1;
1160 ubi_calculate_reserved(ubi);
1161 if (available_consumed)
1162 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1163 else if (ubi->beb_rsvd_pebs)
1164 ubi_msg(ubi, "%d PEBs left in the reserve",
1165 ubi->beb_rsvd_pebs);
1166 else
1167 ubi_warn(ubi, "last PEB from the reserve was used");
1168 spin_unlock(&ubi->volumes_lock);
1169
1170 return err;
1171
1172 out_ro:
1173 if (available_consumed) {
1174 spin_lock(&ubi->volumes_lock);
1175 ubi->avail_pebs += 1;
1176 spin_unlock(&ubi->volumes_lock);
1177 }
1178 ubi_ro_mode(ubi);
1179 return err;
1180 }
1181
1182 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1183 int shutdown)
1184 {
1185 int ret;
1186
1187 if (shutdown) {
1188 struct ubi_wl_entry *e = wl_wrk->e;
1189
1190 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1191 kfree(wl_wrk);
1192 wl_entry_destroy(ubi, e);
1193 return 0;
1194 }
1195
1196 ret = __erase_worker(ubi, wl_wrk);
1197 kfree(wl_wrk);
1198 return ret;
1199 }
1200
1201 /**
1202 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1203 * @ubi: UBI device description object
1204 * @vol_id: the volume ID that last used this PEB
1205 * @lnum: the last used logical eraseblock number for the PEB
1206 * @pnum: physical eraseblock to return
1207 * @torture: if this physical eraseblock has to be tortured
1208 *
1209 * This function is called to return physical eraseblock @pnum to the pool of
1210 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1211 * occurred to this @pnum and it has to be tested. This function returns zero
1212 * in case of success, and a negative error code in case of failure.
1213 */
1214 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1215 int pnum, int torture)
1216 {
1217 int err;
1218 struct ubi_wl_entry *e;
1219
1220 dbg_wl("PEB %d", pnum);
1221 ubi_assert(pnum >= 0);
1222 ubi_assert(pnum < ubi->peb_count);
1223
1224 down_read(&ubi->fm_protect);
1225
1226 retry:
1227 spin_lock(&ubi->wl_lock);
1228 e = ubi->lookuptbl[pnum];
1229 if (e == ubi->move_from) {
1230 /*
1231 * User is putting the physical eraseblock which was selected to
1232 * be moved. It will be scheduled for erasure in the
1233 * wear-leveling worker.
1234 */
1235 dbg_wl("PEB %d is being moved, wait", pnum);
1236 spin_unlock(&ubi->wl_lock);
1237
1238 /* Wait for the WL worker by taking the @ubi->move_mutex */
1239 mutex_lock(&ubi->move_mutex);
1240 mutex_unlock(&ubi->move_mutex);
1241 goto retry;
1242 } else if (e == ubi->move_to) {
1243 /*
1244 * User is putting the physical eraseblock which was selected
1245 * as the target the data is moved to. It may happen if the EBA
1246 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1247 * but the WL sub-system has not put the PEB to the "used" tree
1248 * yet, but it is about to do this. So we just set a flag which
1249 * will tell the WL worker that the PEB is not needed anymore
1250 * and should be scheduled for erasure.
1251 */
1252 dbg_wl("PEB %d is the target of data moving", pnum);
1253 ubi_assert(!ubi->move_to_put);
1254 ubi->move_to_put = 1;
1255 spin_unlock(&ubi->wl_lock);
1256 up_read(&ubi->fm_protect);
1257 return 0;
1258 } else {
1259 if (in_wl_tree(e, &ubi->used)) {
1260 self_check_in_wl_tree(ubi, e, &ubi->used);
1261 rb_erase(&e->u.rb, &ubi->used);
1262 } else if (in_wl_tree(e, &ubi->scrub)) {
1263 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1264 rb_erase(&e->u.rb, &ubi->scrub);
1265 } else if (in_wl_tree(e, &ubi->erroneous)) {
1266 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1267 rb_erase(&e->u.rb, &ubi->erroneous);
1268 ubi->erroneous_peb_count -= 1;
1269 ubi_assert(ubi->erroneous_peb_count >= 0);
1270 /* Erroneous PEBs should be tortured */
1271 torture = 1;
1272 } else {
1273 err = prot_queue_del(ubi, e->pnum);
1274 if (err) {
1275 ubi_err(ubi, "PEB %d not found", pnum);
1276 ubi_ro_mode(ubi);
1277 spin_unlock(&ubi->wl_lock);
1278 up_read(&ubi->fm_protect);
1279 return err;
1280 }
1281 }
1282 }
1283 spin_unlock(&ubi->wl_lock);
1284
1285 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1286 if (err) {
1287 spin_lock(&ubi->wl_lock);
1288 wl_tree_add(e, &ubi->used);
1289 spin_unlock(&ubi->wl_lock);
1290 }
1291
1292 up_read(&ubi->fm_protect);
1293 return err;
1294 }
1295
1296 /**
1297 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1298 * @ubi: UBI device description object
1299 * @pnum: the physical eraseblock to schedule
1300 *
1301 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1302 * needs scrubbing. This function schedules a physical eraseblock for
1303 * scrubbing which is done in background. This function returns zero in case of
1304 * success and a negative error code in case of failure.
1305 */
1306 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1307 {
1308 struct ubi_wl_entry *e;
1309
1310 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1311
1312 retry:
1313 spin_lock(&ubi->wl_lock);
1314 e = ubi->lookuptbl[pnum];
1315 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1316 in_wl_tree(e, &ubi->erroneous)) {
1317 spin_unlock(&ubi->wl_lock);
1318 return 0;
1319 }
1320
1321 if (e == ubi->move_to) {
1322 /*
1323 * This physical eraseblock was used to move data to. The data
1324 * was moved but the PEB was not yet inserted to the proper
1325 * tree. We should just wait a little and let the WL worker
1326 * proceed.
1327 */
1328 spin_unlock(&ubi->wl_lock);
1329 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1330 yield();
1331 goto retry;
1332 }
1333
1334 if (in_wl_tree(e, &ubi->used)) {
1335 self_check_in_wl_tree(ubi, e, &ubi->used);
1336 rb_erase(&e->u.rb, &ubi->used);
1337 } else {
1338 int err;
1339
1340 err = prot_queue_del(ubi, e->pnum);
1341 if (err) {
1342 ubi_err(ubi, "PEB %d not found", pnum);
1343 ubi_ro_mode(ubi);
1344 spin_unlock(&ubi->wl_lock);
1345 return err;
1346 }
1347 }
1348
1349 wl_tree_add(e, &ubi->scrub);
1350 spin_unlock(&ubi->wl_lock);
1351
1352 /*
1353 * Technically scrubbing is the same as wear-leveling, so it is done
1354 * by the WL worker.
1355 */
1356 return ensure_wear_leveling(ubi, 0);
1357 }
1358
1359 /**
1360 * ubi_wl_flush - flush all pending works.
1361 * @ubi: UBI device description object
1362 * @vol_id: the volume id to flush for
1363 * @lnum: the logical eraseblock number to flush for
1364 *
1365 * This function executes all pending works for a particular volume id /
1366 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1367 * acts as a wildcard for all of the corresponding volume numbers or logical
1368 * eraseblock numbers. It returns zero in case of success and a negative error
1369 * code in case of failure.
1370 */
1371 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1372 {
1373 int err = 0;
1374 int found = 1;
1375
1376 /*
1377 * Erase while the pending works queue is not empty, but not more than
1378 * the number of currently pending works.
1379 */
1380 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1381 vol_id, lnum, ubi->works_count);
1382
1383 while (found) {
1384 struct ubi_work *wrk, *tmp;
1385 found = 0;
1386
1387 down_read(&ubi->work_sem);
1388 spin_lock(&ubi->wl_lock);
1389 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1390 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1391 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1392 list_del(&wrk->list);
1393 ubi->works_count -= 1;
1394 ubi_assert(ubi->works_count >= 0);
1395 spin_unlock(&ubi->wl_lock);
1396
1397 err = wrk->func(ubi, wrk, 0);
1398 if (err) {
1399 up_read(&ubi->work_sem);
1400 return err;
1401 }
1402
1403 spin_lock(&ubi->wl_lock);
1404 found = 1;
1405 break;
1406 }
1407 }
1408 spin_unlock(&ubi->wl_lock);
1409 up_read(&ubi->work_sem);
1410 }
1411
1412 /*
1413 * Make sure all the works which have been done in parallel are
1414 * finished.
1415 */
1416 down_write(&ubi->work_sem);
1417 up_write(&ubi->work_sem);
1418
1419 return err;
1420 }
1421
1422 /**
1423 * tree_destroy - destroy an RB-tree.
1424 * @ubi: UBI device description object
1425 * @root: the root of the tree to destroy
1426 */
1427 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1428 {
1429 struct rb_node *rb;
1430 struct ubi_wl_entry *e;
1431
1432 rb = root->rb_node;
1433 while (rb) {
1434 if (rb->rb_left)
1435 rb = rb->rb_left;
1436 else if (rb->rb_right)
1437 rb = rb->rb_right;
1438 else {
1439 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1440
1441 rb = rb_parent(rb);
1442 if (rb) {
1443 if (rb->rb_left == &e->u.rb)
1444 rb->rb_left = NULL;
1445 else
1446 rb->rb_right = NULL;
1447 }
1448
1449 wl_entry_destroy(ubi, e);
1450 }
1451 }
1452 }
1453
1454 /**
1455 * ubi_thread - UBI background thread.
1456 * @u: the UBI device description object pointer
1457 */
1458 int ubi_thread(void *u)
1459 {
1460 int failures = 0;
1461 struct ubi_device *ubi = u;
1462
1463 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1464 ubi->bgt_name, task_pid_nr(current));
1465
1466 set_freezable();
1467 for (;;) {
1468 int err;
1469
1470 if (kthread_should_stop())
1471 break;
1472
1473 if (try_to_freeze())
1474 continue;
1475
1476 spin_lock(&ubi->wl_lock);
1477 if (list_empty(&ubi->works) || ubi->ro_mode ||
1478 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1479 set_current_state(TASK_INTERRUPTIBLE);
1480 spin_unlock(&ubi->wl_lock);
1481 schedule();
1482 continue;
1483 }
1484 spin_unlock(&ubi->wl_lock);
1485
1486 err = do_work(ubi);
1487 if (err) {
1488 ubi_err(ubi, "%s: work failed with error code %d",
1489 ubi->bgt_name, err);
1490 if (failures++ > WL_MAX_FAILURES) {
1491 /*
1492 * Too many failures, disable the thread and
1493 * switch to read-only mode.
1494 */
1495 ubi_msg(ubi, "%s: %d consecutive failures",
1496 ubi->bgt_name, WL_MAX_FAILURES);
1497 ubi_ro_mode(ubi);
1498 ubi->thread_enabled = 0;
1499 continue;
1500 }
1501 } else
1502 failures = 0;
1503
1504 cond_resched();
1505 }
1506
1507 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1508 ubi->thread_enabled = 0;
1509 return 0;
1510 }
1511
1512 /**
1513 * shutdown_work - shutdown all pending works.
1514 * @ubi: UBI device description object
1515 */
1516 static void shutdown_work(struct ubi_device *ubi)
1517 {
1518 while (!list_empty(&ubi->works)) {
1519 struct ubi_work *wrk;
1520
1521 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1522 list_del(&wrk->list);
1523 wrk->func(ubi, wrk, 1);
1524 ubi->works_count -= 1;
1525 ubi_assert(ubi->works_count >= 0);
1526 }
1527 }
1528
1529 /**
1530 * erase_aeb - erase a PEB given in UBI attach info PEB
1531 * @ubi: UBI device description object
1532 * @aeb: UBI attach info PEB
1533 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1534 */
1535 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1536 {
1537 struct ubi_wl_entry *e;
1538 int err;
1539
1540 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1541 if (!e)
1542 return -ENOMEM;
1543
1544 e->pnum = aeb->pnum;
1545 e->ec = aeb->ec;
1546 ubi->lookuptbl[e->pnum] = e;
1547
1548 if (sync) {
1549 err = sync_erase(ubi, e, false);
1550 if (err)
1551 goto out_free;
1552
1553 wl_tree_add(e, &ubi->free);
1554 ubi->free_count++;
1555 } else {
1556 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1557 if (err)
1558 goto out_free;
1559 }
1560
1561 return 0;
1562
1563 out_free:
1564 wl_entry_destroy(ubi, e);
1565
1566 return err;
1567 }
1568
1569 /**
1570 * ubi_wl_init - initialize the WL sub-system using attaching information.
1571 * @ubi: UBI device description object
1572 * @ai: attaching information
1573 *
1574 * This function returns zero in case of success, and a negative error code in
1575 * case of failure.
1576 */
1577 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1578 {
1579 int err, i, reserved_pebs, found_pebs = 0;
1580 struct rb_node *rb1, *rb2;
1581 struct ubi_ainf_volume *av;
1582 struct ubi_ainf_peb *aeb, *tmp;
1583 struct ubi_wl_entry *e;
1584
1585 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1586 spin_lock_init(&ubi->wl_lock);
1587 mutex_init(&ubi->move_mutex);
1588 init_rwsem(&ubi->work_sem);
1589 ubi->max_ec = ai->max_ec;
1590 INIT_LIST_HEAD(&ubi->works);
1591
1592 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1593
1594 err = -ENOMEM;
1595 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1596 if (!ubi->lookuptbl)
1597 return err;
1598
1599 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1600 INIT_LIST_HEAD(&ubi->pq[i]);
1601 ubi->pq_head = 0;
1602
1603 ubi->free_count = 0;
1604 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1605 cond_resched();
1606
1607 err = erase_aeb(ubi, aeb, false);
1608 if (err)
1609 goto out_free;
1610
1611 found_pebs++;
1612 }
1613
1614 list_for_each_entry(aeb, &ai->free, u.list) {
1615 cond_resched();
1616
1617 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1618 if (!e) {
1619 err = -ENOMEM;
1620 goto out_free;
1621 }
1622
1623 e->pnum = aeb->pnum;
1624 e->ec = aeb->ec;
1625 ubi_assert(e->ec >= 0);
1626
1627 wl_tree_add(e, &ubi->free);
1628 ubi->free_count++;
1629
1630 ubi->lookuptbl[e->pnum] = e;
1631
1632 found_pebs++;
1633 }
1634
1635 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1636 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1637 cond_resched();
1638
1639 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1640 if (!e) {
1641 err = -ENOMEM;
1642 goto out_free;
1643 }
1644
1645 e->pnum = aeb->pnum;
1646 e->ec = aeb->ec;
1647 ubi->lookuptbl[e->pnum] = e;
1648
1649 if (!aeb->scrub) {
1650 dbg_wl("add PEB %d EC %d to the used tree",
1651 e->pnum, e->ec);
1652 wl_tree_add(e, &ubi->used);
1653 } else {
1654 dbg_wl("add PEB %d EC %d to the scrub tree",
1655 e->pnum, e->ec);
1656 wl_tree_add(e, &ubi->scrub);
1657 }
1658
1659 found_pebs++;
1660 }
1661 }
1662
1663 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1664 cond_resched();
1665
1666 e = ubi_find_fm_block(ubi, aeb->pnum);
1667
1668 if (e) {
1669 ubi_assert(!ubi->lookuptbl[e->pnum]);
1670 ubi->lookuptbl[e->pnum] = e;
1671 } else {
1672 bool sync = false;
1673
1674 /*
1675 * Usually old Fastmap PEBs are scheduled for erasure
1676 * and we don't have to care about them but if we face
1677 * an power cut before scheduling them we need to
1678 * take care of them here.
1679 */
1680 if (ubi->lookuptbl[aeb->pnum])
1681 continue;
1682
1683 /*
1684 * The fastmap update code might not find a free PEB for
1685 * writing the fastmap anchor to and then reuses the
1686 * current fastmap anchor PEB. When this PEB gets erased
1687 * and a power cut happens before it is written again we
1688 * must make sure that the fastmap attach code doesn't
1689 * find any outdated fastmap anchors, hence we erase the
1690 * outdated fastmap anchor PEBs synchronously here.
1691 */
1692 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1693 sync = true;
1694
1695 err = erase_aeb(ubi, aeb, sync);
1696 if (err)
1697 goto out_free;
1698 }
1699
1700 found_pebs++;
1701 }
1702
1703 dbg_wl("found %i PEBs", found_pebs);
1704
1705 ubi_assert(ubi->good_peb_count == found_pebs);
1706
1707 reserved_pebs = WL_RESERVED_PEBS;
1708 ubi_fastmap_init(ubi, &reserved_pebs);
1709
1710 if (ubi->avail_pebs < reserved_pebs) {
1711 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1712 ubi->avail_pebs, reserved_pebs);
1713 if (ubi->corr_peb_count)
1714 ubi_err(ubi, "%d PEBs are corrupted and not used",
1715 ubi->corr_peb_count);
1716 err = -ENOSPC;
1717 goto out_free;
1718 }
1719 ubi->avail_pebs -= reserved_pebs;
1720 ubi->rsvd_pebs += reserved_pebs;
1721
1722 /* Schedule wear-leveling if needed */
1723 err = ensure_wear_leveling(ubi, 0);
1724 if (err)
1725 goto out_free;
1726
1727 return 0;
1728
1729 out_free:
1730 shutdown_work(ubi);
1731 tree_destroy(ubi, &ubi->used);
1732 tree_destroy(ubi, &ubi->free);
1733 tree_destroy(ubi, &ubi->scrub);
1734 kfree(ubi->lookuptbl);
1735 return err;
1736 }
1737
1738 /**
1739 * protection_queue_destroy - destroy the protection queue.
1740 * @ubi: UBI device description object
1741 */
1742 static void protection_queue_destroy(struct ubi_device *ubi)
1743 {
1744 int i;
1745 struct ubi_wl_entry *e, *tmp;
1746
1747 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1748 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1749 list_del(&e->u.list);
1750 wl_entry_destroy(ubi, e);
1751 }
1752 }
1753 }
1754
1755 /**
1756 * ubi_wl_close - close the wear-leveling sub-system.
1757 * @ubi: UBI device description object
1758 */
1759 void ubi_wl_close(struct ubi_device *ubi)
1760 {
1761 dbg_wl("close the WL sub-system");
1762 ubi_fastmap_close(ubi);
1763 shutdown_work(ubi);
1764 protection_queue_destroy(ubi);
1765 tree_destroy(ubi, &ubi->used);
1766 tree_destroy(ubi, &ubi->erroneous);
1767 tree_destroy(ubi, &ubi->free);
1768 tree_destroy(ubi, &ubi->scrub);
1769 kfree(ubi->lookuptbl);
1770 }
1771
1772 /**
1773 * self_check_ec - make sure that the erase counter of a PEB is correct.
1774 * @ubi: UBI device description object
1775 * @pnum: the physical eraseblock number to check
1776 * @ec: the erase counter to check
1777 *
1778 * This function returns zero if the erase counter of physical eraseblock @pnum
1779 * is equivalent to @ec, and a negative error code if not or if an error
1780 * occurred.
1781 */
1782 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1783 {
1784 int err;
1785 long long read_ec;
1786 struct ubi_ec_hdr *ec_hdr;
1787
1788 if (!ubi_dbg_chk_gen(ubi))
1789 return 0;
1790
1791 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1792 if (!ec_hdr)
1793 return -ENOMEM;
1794
1795 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1796 if (err && err != UBI_IO_BITFLIPS) {
1797 /* The header does not have to exist */
1798 err = 0;
1799 goto out_free;
1800 }
1801
1802 read_ec = be64_to_cpu(ec_hdr->ec);
1803 if (ec != read_ec && read_ec - ec > 1) {
1804 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1805 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1806 dump_stack();
1807 err = 1;
1808 } else
1809 err = 0;
1810
1811 out_free:
1812 kfree(ec_hdr);
1813 return err;
1814 }
1815
1816 /**
1817 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1818 * @ubi: UBI device description object
1819 * @e: the wear-leveling entry to check
1820 * @root: the root of the tree
1821 *
1822 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1823 * is not.
1824 */
1825 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1826 struct ubi_wl_entry *e, struct rb_root *root)
1827 {
1828 if (!ubi_dbg_chk_gen(ubi))
1829 return 0;
1830
1831 if (in_wl_tree(e, root))
1832 return 0;
1833
1834 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1835 e->pnum, e->ec, root);
1836 dump_stack();
1837 return -EINVAL;
1838 }
1839
1840 /**
1841 * self_check_in_pq - check if wear-leveling entry is in the protection
1842 * queue.
1843 * @ubi: UBI device description object
1844 * @e: the wear-leveling entry to check
1845 *
1846 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1847 */
1848 static int self_check_in_pq(const struct ubi_device *ubi,
1849 struct ubi_wl_entry *e)
1850 {
1851 struct ubi_wl_entry *p;
1852 int i;
1853
1854 if (!ubi_dbg_chk_gen(ubi))
1855 return 0;
1856
1857 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1858 list_for_each_entry(p, &ubi->pq[i], u.list)
1859 if (p == e)
1860 return 0;
1861
1862 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1863 e->pnum, e->ec);
1864 dump_stack();
1865 return -EINVAL;
1866 }
1867 #ifndef CONFIG_MTD_UBI_FASTMAP
1868 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1869 {
1870 struct ubi_wl_entry *e;
1871
1872 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1873 self_check_in_wl_tree(ubi, e, &ubi->free);
1874 ubi->free_count--;
1875 ubi_assert(ubi->free_count >= 0);
1876 rb_erase(&e->u.rb, &ubi->free);
1877
1878 return e;
1879 }
1880
1881 /**
1882 * produce_free_peb - produce a free physical eraseblock.
1883 * @ubi: UBI device description object
1884 *
1885 * This function tries to make a free PEB by means of synchronous execution of
1886 * pending works. This may be needed if, for example the background thread is
1887 * disabled. Returns zero in case of success and a negative error code in case
1888 * of failure.
1889 */
1890 static int produce_free_peb(struct ubi_device *ubi)
1891 {
1892 int err;
1893
1894 while (!ubi->free.rb_node && ubi->works_count) {
1895 spin_unlock(&ubi->wl_lock);
1896
1897 dbg_wl("do one work synchronously");
1898 err = do_work(ubi);
1899
1900 spin_lock(&ubi->wl_lock);
1901 if (err)
1902 return err;
1903 }
1904
1905 return 0;
1906 }
1907
1908 /**
1909 * ubi_wl_get_peb - get a physical eraseblock.
1910 * @ubi: UBI device description object
1911 *
1912 * This function returns a physical eraseblock in case of success and a
1913 * negative error code in case of failure.
1914 * Returns with ubi->fm_eba_sem held in read mode!
1915 */
1916 int ubi_wl_get_peb(struct ubi_device *ubi)
1917 {
1918 int err;
1919 struct ubi_wl_entry *e;
1920
1921 retry:
1922 down_read(&ubi->fm_eba_sem);
1923 spin_lock(&ubi->wl_lock);
1924 if (!ubi->free.rb_node) {
1925 if (ubi->works_count == 0) {
1926 ubi_err(ubi, "no free eraseblocks");
1927 ubi_assert(list_empty(&ubi->works));
1928 spin_unlock(&ubi->wl_lock);
1929 return -ENOSPC;
1930 }
1931
1932 err = produce_free_peb(ubi);
1933 if (err < 0) {
1934 spin_unlock(&ubi->wl_lock);
1935 return err;
1936 }
1937 spin_unlock(&ubi->wl_lock);
1938 up_read(&ubi->fm_eba_sem);
1939 goto retry;
1940
1941 }
1942 e = wl_get_wle(ubi);
1943 prot_queue_add(ubi, e);
1944 spin_unlock(&ubi->wl_lock);
1945
1946 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1947 ubi->peb_size - ubi->vid_hdr_aloffset);
1948 if (err) {
1949 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1950 return err;
1951 }
1952
1953 return e->pnum;
1954 }
1955 #else
1956 #include "fastmap-wl.c"
1957 #endif