]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mtd/ubi/wl.c
Merge branch 'for-linus' of git://ceph.newdream.net/git/ceph-client
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / ubi / wl.c
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22 /*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
49 *
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
52 *
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
56 *
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 *
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
67 *
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
71 *
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
75 *
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 *
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
91 *
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
94 *
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
99 *
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
107 */
108
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
113 #include "ubi.h"
114
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
117
118 /*
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
123 */
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125
126 /*
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
136 */
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138
139 /*
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
142 */
143 #define WL_MAX_FAILURES 32
144
145 /**
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
151 *
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
156 */
157 struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
163 };
164
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170 static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172 #else
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
176 #endif
177
178 /**
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
182 *
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
185 */
186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187 {
188 struct rb_node **p, *parent = NULL;
189
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
193
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
207 }
208 }
209
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
212 }
213
214 /**
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
217 *
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
220 */
221 static int do_work(struct ubi_device *ubi)
222 {
223 int err;
224 struct ubi_work *wrk;
225
226 cond_resched();
227
228 /*
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
233 */
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
240 }
241
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
247
248 /*
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
252 */
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
257
258 return err;
259 }
260
261 /**
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
264 *
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
269 */
270 static int produce_free_peb(struct ubi_device *ubi)
271 {
272 int err;
273
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
277
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
282
283 spin_lock(&ubi->wl_lock);
284 }
285 spin_unlock(&ubi->wl_lock);
286
287 return 0;
288 }
289
290 /**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327 }
328
329 /**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @max: highest possible erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * @max and less than @max.
357 */
358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
359 {
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
362
363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
364 max += e->ec;
365
366 p = root->rb_node;
367 while (p) {
368 struct ubi_wl_entry *e1;
369
370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
371 if (e1->ec >= max)
372 p = p->rb_left;
373 else {
374 p = p->rb_right;
375 e = e1;
376 }
377 }
378
379 return e;
380 }
381
382 /**
383 * ubi_wl_get_peb - get a physical eraseblock.
384 * @ubi: UBI device description object
385 * @dtype: type of data which will be stored in this physical eraseblock
386 *
387 * This function returns a physical eraseblock in case of success and a
388 * negative error code in case of failure. Might sleep.
389 */
390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
391 {
392 int err, medium_ec;
393 struct ubi_wl_entry *e, *first, *last;
394
395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
396 dtype == UBI_UNKNOWN);
397
398 retry:
399 spin_lock(&ubi->wl_lock);
400 if (!ubi->free.rb_node) {
401 if (ubi->works_count == 0) {
402 ubi_assert(list_empty(&ubi->works));
403 ubi_err("no free eraseblocks");
404 spin_unlock(&ubi->wl_lock);
405 return -ENOSPC;
406 }
407 spin_unlock(&ubi->wl_lock);
408
409 err = produce_free_peb(ubi);
410 if (err < 0)
411 return err;
412 goto retry;
413 }
414
415 switch (dtype) {
416 case UBI_LONGTERM:
417 /*
418 * For long term data we pick a physical eraseblock with high
419 * erase counter. But the highest erase counter we can pick is
420 * bounded by the the lowest erase counter plus
421 * %WL_FREE_MAX_DIFF.
422 */
423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 break;
425 case UBI_UNKNOWN:
426 /*
427 * For unknown data we pick a physical eraseblock with medium
428 * erase counter. But we by no means can pick a physical
429 * eraseblock with erase counter greater or equivalent than the
430 * lowest erase counter plus %WL_FREE_MAX_DIFF.
431 */
432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
433 u.rb);
434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
435
436 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
437 e = rb_entry(ubi->free.rb_node,
438 struct ubi_wl_entry, u.rb);
439 else {
440 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
441 e = find_wl_entry(&ubi->free, medium_ec);
442 }
443 break;
444 case UBI_SHORTTERM:
445 /*
446 * For short term data we pick a physical eraseblock with the
447 * lowest erase counter as we expect it will be erased soon.
448 */
449 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
450 break;
451 default:
452 BUG();
453 }
454
455 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
456
457 /*
458 * Move the physical eraseblock to the protection queue where it will
459 * be protected from being moved for some time.
460 */
461 rb_erase(&e->u.rb, &ubi->free);
462 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
463 prot_queue_add(ubi, e);
464 spin_unlock(&ubi->wl_lock);
465
466 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
467 ubi->peb_size - ubi->vid_hdr_aloffset);
468 if (err) {
469 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
470 return err;
471 }
472
473 return e->pnum;
474 }
475
476 /**
477 * prot_queue_del - remove a physical eraseblock from the protection queue.
478 * @ubi: UBI device description object
479 * @pnum: the physical eraseblock to remove
480 *
481 * This function deletes PEB @pnum from the protection queue and returns zero
482 * in case of success and %-ENODEV if the PEB was not found.
483 */
484 static int prot_queue_del(struct ubi_device *ubi, int pnum)
485 {
486 struct ubi_wl_entry *e;
487
488 e = ubi->lookuptbl[pnum];
489 if (!e)
490 return -ENODEV;
491
492 if (paranoid_check_in_pq(ubi, e))
493 return -ENODEV;
494
495 list_del(&e->u.list);
496 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
497 return 0;
498 }
499
500 /**
501 * sync_erase - synchronously erase a physical eraseblock.
502 * @ubi: UBI device description object
503 * @e: the the physical eraseblock to erase
504 * @torture: if the physical eraseblock has to be tortured
505 *
506 * This function returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
510 int torture)
511 {
512 int err;
513 struct ubi_ec_hdr *ec_hdr;
514 unsigned long long ec = e->ec;
515
516 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
517
518 err = paranoid_check_ec(ubi, e->pnum, e->ec);
519 if (err)
520 return -EINVAL;
521
522 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
523 if (!ec_hdr)
524 return -ENOMEM;
525
526 err = ubi_io_sync_erase(ubi, e->pnum, torture);
527 if (err < 0)
528 goto out_free;
529
530 ec += err;
531 if (ec > UBI_MAX_ERASECOUNTER) {
532 /*
533 * Erase counter overflow. Upgrade UBI and use 64-bit
534 * erase counters internally.
535 */
536 ubi_err("erase counter overflow at PEB %d, EC %llu",
537 e->pnum, ec);
538 err = -EINVAL;
539 goto out_free;
540 }
541
542 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
543
544 ec_hdr->ec = cpu_to_be64(ec);
545
546 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
547 if (err)
548 goto out_free;
549
550 e->ec = ec;
551 spin_lock(&ubi->wl_lock);
552 if (e->ec > ubi->max_ec)
553 ubi->max_ec = e->ec;
554 spin_unlock(&ubi->wl_lock);
555
556 out_free:
557 kfree(ec_hdr);
558 return err;
559 }
560
561 /**
562 * serve_prot_queue - check if it is time to stop protecting PEBs.
563 * @ubi: UBI device description object
564 *
565 * This function is called after each erase operation and removes PEBs from the
566 * tail of the protection queue. These PEBs have been protected for long enough
567 * and should be moved to the used tree.
568 */
569 static void serve_prot_queue(struct ubi_device *ubi)
570 {
571 struct ubi_wl_entry *e, *tmp;
572 int count;
573
574 /*
575 * There may be several protected physical eraseblock to remove,
576 * process them all.
577 */
578 repeat:
579 count = 0;
580 spin_lock(&ubi->wl_lock);
581 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
582 dbg_wl("PEB %d EC %d protection over, move to used tree",
583 e->pnum, e->ec);
584
585 list_del(&e->u.list);
586 wl_tree_add(e, &ubi->used);
587 if (count++ > 32) {
588 /*
589 * Let's be nice and avoid holding the spinlock for
590 * too long.
591 */
592 spin_unlock(&ubi->wl_lock);
593 cond_resched();
594 goto repeat;
595 }
596 }
597
598 ubi->pq_head += 1;
599 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
600 ubi->pq_head = 0;
601 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
602 spin_unlock(&ubi->wl_lock);
603 }
604
605 /**
606 * schedule_ubi_work - schedule a work.
607 * @ubi: UBI device description object
608 * @wrk: the work to schedule
609 *
610 * This function adds a work defined by @wrk to the tail of the pending works
611 * list.
612 */
613 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
614 {
615 spin_lock(&ubi->wl_lock);
616 list_add_tail(&wrk->list, &ubi->works);
617 ubi_assert(ubi->works_count >= 0);
618 ubi->works_count += 1;
619 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
620 wake_up_process(ubi->bgt_thread);
621 spin_unlock(&ubi->wl_lock);
622 }
623
624 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
625 int cancel);
626
627 /**
628 * schedule_erase - schedule an erase work.
629 * @ubi: UBI device description object
630 * @e: the WL entry of the physical eraseblock to erase
631 * @torture: if the physical eraseblock has to be tortured
632 *
633 * This function returns zero in case of success and a %-ENOMEM in case of
634 * failure.
635 */
636 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
637 int torture)
638 {
639 struct ubi_work *wl_wrk;
640
641 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
642 e->pnum, e->ec, torture);
643
644 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
645 if (!wl_wrk)
646 return -ENOMEM;
647
648 wl_wrk->func = &erase_worker;
649 wl_wrk->e = e;
650 wl_wrk->torture = torture;
651
652 schedule_ubi_work(ubi, wl_wrk);
653 return 0;
654 }
655
656 /**
657 * wear_leveling_worker - wear-leveling worker function.
658 * @ubi: UBI device description object
659 * @wrk: the work object
660 * @cancel: non-zero if the worker has to free memory and exit
661 *
662 * This function copies a more worn out physical eraseblock to a less worn out
663 * one. Returns zero in case of success and a negative error code in case of
664 * failure.
665 */
666 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
667 int cancel)
668 {
669 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
670 int vol_id = -1, uninitialized_var(lnum);
671 struct ubi_wl_entry *e1, *e2;
672 struct ubi_vid_hdr *vid_hdr;
673
674 kfree(wrk);
675 if (cancel)
676 return 0;
677
678 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
679 if (!vid_hdr)
680 return -ENOMEM;
681
682 mutex_lock(&ubi->move_mutex);
683 spin_lock(&ubi->wl_lock);
684 ubi_assert(!ubi->move_from && !ubi->move_to);
685 ubi_assert(!ubi->move_to_put);
686
687 if (!ubi->free.rb_node ||
688 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
689 /*
690 * No free physical eraseblocks? Well, they must be waiting in
691 * the queue to be erased. Cancel movement - it will be
692 * triggered again when a free physical eraseblock appears.
693 *
694 * No used physical eraseblocks? They must be temporarily
695 * protected from being moved. They will be moved to the
696 * @ubi->used tree later and the wear-leveling will be
697 * triggered again.
698 */
699 dbg_wl("cancel WL, a list is empty: free %d, used %d",
700 !ubi->free.rb_node, !ubi->used.rb_node);
701 goto out_cancel;
702 }
703
704 if (!ubi->scrub.rb_node) {
705 /*
706 * Now pick the least worn-out used physical eraseblock and a
707 * highly worn-out free physical eraseblock. If the erase
708 * counters differ much enough, start wear-leveling.
709 */
710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
712
713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714 dbg_wl("no WL needed: min used EC %d, max free EC %d",
715 e1->ec, e2->ec);
716 goto out_cancel;
717 }
718 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
719 rb_erase(&e1->u.rb, &ubi->used);
720 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
721 e1->pnum, e1->ec, e2->pnum, e2->ec);
722 } else {
723 /* Perform scrubbing */
724 scrubbing = 1;
725 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
726 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
727 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
728 rb_erase(&e1->u.rb, &ubi->scrub);
729 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
730 }
731
732 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
733 rb_erase(&e2->u.rb, &ubi->free);
734 ubi->move_from = e1;
735 ubi->move_to = e2;
736 spin_unlock(&ubi->wl_lock);
737
738 /*
739 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
740 * We so far do not know which logical eraseblock our physical
741 * eraseblock (@e1) belongs to. We have to read the volume identifier
742 * header first.
743 *
744 * Note, we are protected from this PEB being unmapped and erased. The
745 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
746 * which is being moved was unmapped.
747 */
748
749 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
750 if (err && err != UBI_IO_BITFLIPS) {
751 if (err == UBI_IO_FF) {
752 /*
753 * We are trying to move PEB without a VID header. UBI
754 * always write VID headers shortly after the PEB was
755 * given, so we have a situation when it has not yet
756 * had a chance to write it, because it was preempted.
757 * So add this PEB to the protection queue so far,
758 * because presumably more data will be written there
759 * (including the missing VID header), and then we'll
760 * move it.
761 */
762 dbg_wl("PEB %d has no VID header", e1->pnum);
763 protect = 1;
764 goto out_not_moved;
765 } else if (err == UBI_IO_FF_BITFLIPS) {
766 /*
767 * The same situation as %UBI_IO_FF, but bit-flips were
768 * detected. It is better to schedule this PEB for
769 * scrubbing.
770 */
771 dbg_wl("PEB %d has no VID header but has bit-flips",
772 e1->pnum);
773 scrubbing = 1;
774 goto out_not_moved;
775 }
776
777 ubi_err("error %d while reading VID header from PEB %d",
778 err, e1->pnum);
779 goto out_error;
780 }
781
782 vol_id = be32_to_cpu(vid_hdr->vol_id);
783 lnum = be32_to_cpu(vid_hdr->lnum);
784
785 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
786 if (err) {
787 if (err == MOVE_CANCEL_RACE) {
788 /*
789 * The LEB has not been moved because the volume is
790 * being deleted or the PEB has been put meanwhile. We
791 * should prevent this PEB from being selected for
792 * wear-leveling movement again, so put it to the
793 * protection queue.
794 */
795 protect = 1;
796 goto out_not_moved;
797 }
798
799 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
800 err == MOVE_TARGET_RD_ERR) {
801 /*
802 * Target PEB had bit-flips or write error - torture it.
803 */
804 torture = 1;
805 goto out_not_moved;
806 }
807
808 if (err == MOVE_SOURCE_RD_ERR) {
809 /*
810 * An error happened while reading the source PEB. Do
811 * not switch to R/O mode in this case, and give the
812 * upper layers a possibility to recover from this,
813 * e.g. by unmapping corresponding LEB. Instead, just
814 * put this PEB to the @ubi->erroneous list to prevent
815 * UBI from trying to move it over and over again.
816 */
817 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
818 ubi_err("too many erroneous eraseblocks (%d)",
819 ubi->erroneous_peb_count);
820 goto out_error;
821 }
822 erroneous = 1;
823 goto out_not_moved;
824 }
825
826 if (err < 0)
827 goto out_error;
828
829 ubi_assert(0);
830 }
831
832 /* The PEB has been successfully moved */
833 if (scrubbing)
834 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
835 e1->pnum, vol_id, lnum, e2->pnum);
836 ubi_free_vid_hdr(ubi, vid_hdr);
837
838 spin_lock(&ubi->wl_lock);
839 if (!ubi->move_to_put) {
840 wl_tree_add(e2, &ubi->used);
841 e2 = NULL;
842 }
843 ubi->move_from = ubi->move_to = NULL;
844 ubi->move_to_put = ubi->wl_scheduled = 0;
845 spin_unlock(&ubi->wl_lock);
846
847 err = schedule_erase(ubi, e1, 0);
848 if (err) {
849 kmem_cache_free(ubi_wl_entry_slab, e1);
850 if (e2)
851 kmem_cache_free(ubi_wl_entry_slab, e2);
852 goto out_ro;
853 }
854
855 if (e2) {
856 /*
857 * Well, the target PEB was put meanwhile, schedule it for
858 * erasure.
859 */
860 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
861 e2->pnum, vol_id, lnum);
862 err = schedule_erase(ubi, e2, 0);
863 if (err) {
864 kmem_cache_free(ubi_wl_entry_slab, e2);
865 goto out_ro;
866 }
867 }
868
869 dbg_wl("done");
870 mutex_unlock(&ubi->move_mutex);
871 return 0;
872
873 /*
874 * For some reasons the LEB was not moved, might be an error, might be
875 * something else. @e1 was not changed, so return it back. @e2 might
876 * have been changed, schedule it for erasure.
877 */
878 out_not_moved:
879 if (vol_id != -1)
880 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
881 e1->pnum, vol_id, lnum, e2->pnum, err);
882 else
883 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
884 e1->pnum, e2->pnum, err);
885 spin_lock(&ubi->wl_lock);
886 if (protect)
887 prot_queue_add(ubi, e1);
888 else if (erroneous) {
889 wl_tree_add(e1, &ubi->erroneous);
890 ubi->erroneous_peb_count += 1;
891 } else if (scrubbing)
892 wl_tree_add(e1, &ubi->scrub);
893 else
894 wl_tree_add(e1, &ubi->used);
895 ubi_assert(!ubi->move_to_put);
896 ubi->move_from = ubi->move_to = NULL;
897 ubi->wl_scheduled = 0;
898 spin_unlock(&ubi->wl_lock);
899
900 ubi_free_vid_hdr(ubi, vid_hdr);
901 err = schedule_erase(ubi, e2, torture);
902 if (err) {
903 kmem_cache_free(ubi_wl_entry_slab, e2);
904 goto out_ro;
905 }
906 mutex_unlock(&ubi->move_mutex);
907 return 0;
908
909 out_error:
910 if (vol_id != -1)
911 ubi_err("error %d while moving PEB %d to PEB %d",
912 err, e1->pnum, e2->pnum);
913 else
914 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
915 err, e1->pnum, vol_id, lnum, e2->pnum);
916 spin_lock(&ubi->wl_lock);
917 ubi->move_from = ubi->move_to = NULL;
918 ubi->move_to_put = ubi->wl_scheduled = 0;
919 spin_unlock(&ubi->wl_lock);
920
921 ubi_free_vid_hdr(ubi, vid_hdr);
922 kmem_cache_free(ubi_wl_entry_slab, e1);
923 kmem_cache_free(ubi_wl_entry_slab, e2);
924
925 out_ro:
926 ubi_ro_mode(ubi);
927 mutex_unlock(&ubi->move_mutex);
928 ubi_assert(err != 0);
929 return err < 0 ? err : -EIO;
930
931 out_cancel:
932 ubi->wl_scheduled = 0;
933 spin_unlock(&ubi->wl_lock);
934 mutex_unlock(&ubi->move_mutex);
935 ubi_free_vid_hdr(ubi, vid_hdr);
936 return 0;
937 }
938
939 /**
940 * ensure_wear_leveling - schedule wear-leveling if it is needed.
941 * @ubi: UBI device description object
942 *
943 * This function checks if it is time to start wear-leveling and schedules it
944 * if yes. This function returns zero in case of success and a negative error
945 * code in case of failure.
946 */
947 static int ensure_wear_leveling(struct ubi_device *ubi)
948 {
949 int err = 0;
950 struct ubi_wl_entry *e1;
951 struct ubi_wl_entry *e2;
952 struct ubi_work *wrk;
953
954 spin_lock(&ubi->wl_lock);
955 if (ubi->wl_scheduled)
956 /* Wear-leveling is already in the work queue */
957 goto out_unlock;
958
959 /*
960 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
961 * the WL worker has to be scheduled anyway.
962 */
963 if (!ubi->scrub.rb_node) {
964 if (!ubi->used.rb_node || !ubi->free.rb_node)
965 /* No physical eraseblocks - no deal */
966 goto out_unlock;
967
968 /*
969 * We schedule wear-leveling only if the difference between the
970 * lowest erase counter of used physical eraseblocks and a high
971 * erase counter of free physical eraseblocks is greater than
972 * %UBI_WL_THRESHOLD.
973 */
974 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
975 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
976
977 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
978 goto out_unlock;
979 dbg_wl("schedule wear-leveling");
980 } else
981 dbg_wl("schedule scrubbing");
982
983 ubi->wl_scheduled = 1;
984 spin_unlock(&ubi->wl_lock);
985
986 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
987 if (!wrk) {
988 err = -ENOMEM;
989 goto out_cancel;
990 }
991
992 wrk->func = &wear_leveling_worker;
993 schedule_ubi_work(ubi, wrk);
994 return err;
995
996 out_cancel:
997 spin_lock(&ubi->wl_lock);
998 ubi->wl_scheduled = 0;
999 out_unlock:
1000 spin_unlock(&ubi->wl_lock);
1001 return err;
1002 }
1003
1004 /**
1005 * erase_worker - physical eraseblock erase worker function.
1006 * @ubi: UBI device description object
1007 * @wl_wrk: the work object
1008 * @cancel: non-zero if the worker has to free memory and exit
1009 *
1010 * This function erases a physical eraseblock and perform torture testing if
1011 * needed. It also takes care about marking the physical eraseblock bad if
1012 * needed. Returns zero in case of success and a negative error code in case of
1013 * failure.
1014 */
1015 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1016 int cancel)
1017 {
1018 struct ubi_wl_entry *e = wl_wrk->e;
1019 int pnum = e->pnum, err, need;
1020
1021 if (cancel) {
1022 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1023 kfree(wl_wrk);
1024 kmem_cache_free(ubi_wl_entry_slab, e);
1025 return 0;
1026 }
1027
1028 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1029
1030 err = sync_erase(ubi, e, wl_wrk->torture);
1031 if (!err) {
1032 /* Fine, we've erased it successfully */
1033 kfree(wl_wrk);
1034
1035 spin_lock(&ubi->wl_lock);
1036 wl_tree_add(e, &ubi->free);
1037 spin_unlock(&ubi->wl_lock);
1038
1039 /*
1040 * One more erase operation has happened, take care about
1041 * protected physical eraseblocks.
1042 */
1043 serve_prot_queue(ubi);
1044
1045 /* And take care about wear-leveling */
1046 err = ensure_wear_leveling(ubi);
1047 return err;
1048 }
1049
1050 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1051 kfree(wl_wrk);
1052 kmem_cache_free(ubi_wl_entry_slab, e);
1053
1054 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1055 err == -EBUSY) {
1056 int err1;
1057
1058 /* Re-schedule the LEB for erasure */
1059 err1 = schedule_erase(ubi, e, 0);
1060 if (err1) {
1061 err = err1;
1062 goto out_ro;
1063 }
1064 return err;
1065 } else if (err != -EIO) {
1066 /*
1067 * If this is not %-EIO, we have no idea what to do. Scheduling
1068 * this physical eraseblock for erasure again would cause
1069 * errors again and again. Well, lets switch to R/O mode.
1070 */
1071 goto out_ro;
1072 }
1073
1074 /* It is %-EIO, the PEB went bad */
1075
1076 if (!ubi->bad_allowed) {
1077 ubi_err("bad physical eraseblock %d detected", pnum);
1078 goto out_ro;
1079 }
1080
1081 spin_lock(&ubi->volumes_lock);
1082 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1083 if (need > 0) {
1084 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1085 ubi->avail_pebs -= need;
1086 ubi->rsvd_pebs += need;
1087 ubi->beb_rsvd_pebs += need;
1088 if (need > 0)
1089 ubi_msg("reserve more %d PEBs", need);
1090 }
1091
1092 if (ubi->beb_rsvd_pebs == 0) {
1093 spin_unlock(&ubi->volumes_lock);
1094 ubi_err("no reserved physical eraseblocks");
1095 goto out_ro;
1096 }
1097 spin_unlock(&ubi->volumes_lock);
1098
1099 ubi_msg("mark PEB %d as bad", pnum);
1100 err = ubi_io_mark_bad(ubi, pnum);
1101 if (err)
1102 goto out_ro;
1103
1104 spin_lock(&ubi->volumes_lock);
1105 ubi->beb_rsvd_pebs -= 1;
1106 ubi->bad_peb_count += 1;
1107 ubi->good_peb_count -= 1;
1108 ubi_calculate_reserved(ubi);
1109 if (ubi->beb_rsvd_pebs)
1110 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1111 else
1112 ubi_warn("last PEB from the reserved pool was used");
1113 spin_unlock(&ubi->volumes_lock);
1114
1115 return err;
1116
1117 out_ro:
1118 ubi_ro_mode(ubi);
1119 return err;
1120 }
1121
1122 /**
1123 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1124 * @ubi: UBI device description object
1125 * @pnum: physical eraseblock to return
1126 * @torture: if this physical eraseblock has to be tortured
1127 *
1128 * This function is called to return physical eraseblock @pnum to the pool of
1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1130 * occurred to this @pnum and it has to be tested. This function returns zero
1131 * in case of success, and a negative error code in case of failure.
1132 */
1133 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1134 {
1135 int err;
1136 struct ubi_wl_entry *e;
1137
1138 dbg_wl("PEB %d", pnum);
1139 ubi_assert(pnum >= 0);
1140 ubi_assert(pnum < ubi->peb_count);
1141
1142 retry:
1143 spin_lock(&ubi->wl_lock);
1144 e = ubi->lookuptbl[pnum];
1145 if (e == ubi->move_from) {
1146 /*
1147 * User is putting the physical eraseblock which was selected to
1148 * be moved. It will be scheduled for erasure in the
1149 * wear-leveling worker.
1150 */
1151 dbg_wl("PEB %d is being moved, wait", pnum);
1152 spin_unlock(&ubi->wl_lock);
1153
1154 /* Wait for the WL worker by taking the @ubi->move_mutex */
1155 mutex_lock(&ubi->move_mutex);
1156 mutex_unlock(&ubi->move_mutex);
1157 goto retry;
1158 } else if (e == ubi->move_to) {
1159 /*
1160 * User is putting the physical eraseblock which was selected
1161 * as the target the data is moved to. It may happen if the EBA
1162 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1163 * but the WL sub-system has not put the PEB to the "used" tree
1164 * yet, but it is about to do this. So we just set a flag which
1165 * will tell the WL worker that the PEB is not needed anymore
1166 * and should be scheduled for erasure.
1167 */
1168 dbg_wl("PEB %d is the target of data moving", pnum);
1169 ubi_assert(!ubi->move_to_put);
1170 ubi->move_to_put = 1;
1171 spin_unlock(&ubi->wl_lock);
1172 return 0;
1173 } else {
1174 if (in_wl_tree(e, &ubi->used)) {
1175 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1176 rb_erase(&e->u.rb, &ubi->used);
1177 } else if (in_wl_tree(e, &ubi->scrub)) {
1178 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1179 rb_erase(&e->u.rb, &ubi->scrub);
1180 } else if (in_wl_tree(e, &ubi->erroneous)) {
1181 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1182 rb_erase(&e->u.rb, &ubi->erroneous);
1183 ubi->erroneous_peb_count -= 1;
1184 ubi_assert(ubi->erroneous_peb_count >= 0);
1185 /* Erroneous PEBs should be tortured */
1186 torture = 1;
1187 } else {
1188 err = prot_queue_del(ubi, e->pnum);
1189 if (err) {
1190 ubi_err("PEB %d not found", pnum);
1191 ubi_ro_mode(ubi);
1192 spin_unlock(&ubi->wl_lock);
1193 return err;
1194 }
1195 }
1196 }
1197 spin_unlock(&ubi->wl_lock);
1198
1199 err = schedule_erase(ubi, e, torture);
1200 if (err) {
1201 spin_lock(&ubi->wl_lock);
1202 wl_tree_add(e, &ubi->used);
1203 spin_unlock(&ubi->wl_lock);
1204 }
1205
1206 return err;
1207 }
1208
1209 /**
1210 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1211 * @ubi: UBI device description object
1212 * @pnum: the physical eraseblock to schedule
1213 *
1214 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1215 * needs scrubbing. This function schedules a physical eraseblock for
1216 * scrubbing which is done in background. This function returns zero in case of
1217 * success and a negative error code in case of failure.
1218 */
1219 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1220 {
1221 struct ubi_wl_entry *e;
1222
1223 dbg_msg("schedule PEB %d for scrubbing", pnum);
1224
1225 retry:
1226 spin_lock(&ubi->wl_lock);
1227 e = ubi->lookuptbl[pnum];
1228 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1229 in_wl_tree(e, &ubi->erroneous)) {
1230 spin_unlock(&ubi->wl_lock);
1231 return 0;
1232 }
1233
1234 if (e == ubi->move_to) {
1235 /*
1236 * This physical eraseblock was used to move data to. The data
1237 * was moved but the PEB was not yet inserted to the proper
1238 * tree. We should just wait a little and let the WL worker
1239 * proceed.
1240 */
1241 spin_unlock(&ubi->wl_lock);
1242 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1243 yield();
1244 goto retry;
1245 }
1246
1247 if (in_wl_tree(e, &ubi->used)) {
1248 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1249 rb_erase(&e->u.rb, &ubi->used);
1250 } else {
1251 int err;
1252
1253 err = prot_queue_del(ubi, e->pnum);
1254 if (err) {
1255 ubi_err("PEB %d not found", pnum);
1256 ubi_ro_mode(ubi);
1257 spin_unlock(&ubi->wl_lock);
1258 return err;
1259 }
1260 }
1261
1262 wl_tree_add(e, &ubi->scrub);
1263 spin_unlock(&ubi->wl_lock);
1264
1265 /*
1266 * Technically scrubbing is the same as wear-leveling, so it is done
1267 * by the WL worker.
1268 */
1269 return ensure_wear_leveling(ubi);
1270 }
1271
1272 /**
1273 * ubi_wl_flush - flush all pending works.
1274 * @ubi: UBI device description object
1275 *
1276 * This function returns zero in case of success and a negative error code in
1277 * case of failure.
1278 */
1279 int ubi_wl_flush(struct ubi_device *ubi)
1280 {
1281 int err;
1282
1283 /*
1284 * Erase while the pending works queue is not empty, but not more than
1285 * the number of currently pending works.
1286 */
1287 dbg_wl("flush (%d pending works)", ubi->works_count);
1288 while (ubi->works_count) {
1289 err = do_work(ubi);
1290 if (err)
1291 return err;
1292 }
1293
1294 /*
1295 * Make sure all the works which have been done in parallel are
1296 * finished.
1297 */
1298 down_write(&ubi->work_sem);
1299 up_write(&ubi->work_sem);
1300
1301 /*
1302 * And in case last was the WL worker and it canceled the LEB
1303 * movement, flush again.
1304 */
1305 while (ubi->works_count) {
1306 dbg_wl("flush more (%d pending works)", ubi->works_count);
1307 err = do_work(ubi);
1308 if (err)
1309 return err;
1310 }
1311
1312 return 0;
1313 }
1314
1315 /**
1316 * tree_destroy - destroy an RB-tree.
1317 * @root: the root of the tree to destroy
1318 */
1319 static void tree_destroy(struct rb_root *root)
1320 {
1321 struct rb_node *rb;
1322 struct ubi_wl_entry *e;
1323
1324 rb = root->rb_node;
1325 while (rb) {
1326 if (rb->rb_left)
1327 rb = rb->rb_left;
1328 else if (rb->rb_right)
1329 rb = rb->rb_right;
1330 else {
1331 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1332
1333 rb = rb_parent(rb);
1334 if (rb) {
1335 if (rb->rb_left == &e->u.rb)
1336 rb->rb_left = NULL;
1337 else
1338 rb->rb_right = NULL;
1339 }
1340
1341 kmem_cache_free(ubi_wl_entry_slab, e);
1342 }
1343 }
1344 }
1345
1346 /**
1347 * ubi_thread - UBI background thread.
1348 * @u: the UBI device description object pointer
1349 */
1350 int ubi_thread(void *u)
1351 {
1352 int failures = 0;
1353 struct ubi_device *ubi = u;
1354
1355 ubi_msg("background thread \"%s\" started, PID %d",
1356 ubi->bgt_name, task_pid_nr(current));
1357
1358 set_freezable();
1359 for (;;) {
1360 int err;
1361
1362 if (kthread_should_stop())
1363 break;
1364
1365 if (try_to_freeze())
1366 continue;
1367
1368 spin_lock(&ubi->wl_lock);
1369 if (list_empty(&ubi->works) || ubi->ro_mode ||
1370 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1371 set_current_state(TASK_INTERRUPTIBLE);
1372 spin_unlock(&ubi->wl_lock);
1373 schedule();
1374 continue;
1375 }
1376 spin_unlock(&ubi->wl_lock);
1377
1378 err = do_work(ubi);
1379 if (err) {
1380 ubi_err("%s: work failed with error code %d",
1381 ubi->bgt_name, err);
1382 if (failures++ > WL_MAX_FAILURES) {
1383 /*
1384 * Too many failures, disable the thread and
1385 * switch to read-only mode.
1386 */
1387 ubi_msg("%s: %d consecutive failures",
1388 ubi->bgt_name, WL_MAX_FAILURES);
1389 ubi_ro_mode(ubi);
1390 ubi->thread_enabled = 0;
1391 continue;
1392 }
1393 } else
1394 failures = 0;
1395
1396 cond_resched();
1397 }
1398
1399 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1400 return 0;
1401 }
1402
1403 /**
1404 * cancel_pending - cancel all pending works.
1405 * @ubi: UBI device description object
1406 */
1407 static void cancel_pending(struct ubi_device *ubi)
1408 {
1409 while (!list_empty(&ubi->works)) {
1410 struct ubi_work *wrk;
1411
1412 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1413 list_del(&wrk->list);
1414 wrk->func(ubi, wrk, 1);
1415 ubi->works_count -= 1;
1416 ubi_assert(ubi->works_count >= 0);
1417 }
1418 }
1419
1420 /**
1421 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1422 * @ubi: UBI device description object
1423 * @si: scanning information
1424 *
1425 * This function returns zero in case of success, and a negative error code in
1426 * case of failure.
1427 */
1428 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1429 {
1430 int err, i;
1431 struct rb_node *rb1, *rb2;
1432 struct ubi_scan_volume *sv;
1433 struct ubi_scan_leb *seb, *tmp;
1434 struct ubi_wl_entry *e;
1435
1436 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1437 spin_lock_init(&ubi->wl_lock);
1438 mutex_init(&ubi->move_mutex);
1439 init_rwsem(&ubi->work_sem);
1440 ubi->max_ec = si->max_ec;
1441 INIT_LIST_HEAD(&ubi->works);
1442
1443 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1444
1445 err = -ENOMEM;
1446 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1447 if (!ubi->lookuptbl)
1448 return err;
1449
1450 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1451 INIT_LIST_HEAD(&ubi->pq[i]);
1452 ubi->pq_head = 0;
1453
1454 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1455 cond_resched();
1456
1457 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1458 if (!e)
1459 goto out_free;
1460
1461 e->pnum = seb->pnum;
1462 e->ec = seb->ec;
1463 ubi->lookuptbl[e->pnum] = e;
1464 if (schedule_erase(ubi, e, 0)) {
1465 kmem_cache_free(ubi_wl_entry_slab, e);
1466 goto out_free;
1467 }
1468 }
1469
1470 list_for_each_entry(seb, &si->free, u.list) {
1471 cond_resched();
1472
1473 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1474 if (!e)
1475 goto out_free;
1476
1477 e->pnum = seb->pnum;
1478 e->ec = seb->ec;
1479 ubi_assert(e->ec >= 0);
1480 wl_tree_add(e, &ubi->free);
1481 ubi->lookuptbl[e->pnum] = e;
1482 }
1483
1484 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1485 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1486 cond_resched();
1487
1488 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1489 if (!e)
1490 goto out_free;
1491
1492 e->pnum = seb->pnum;
1493 e->ec = seb->ec;
1494 ubi->lookuptbl[e->pnum] = e;
1495 if (!seb->scrub) {
1496 dbg_wl("add PEB %d EC %d to the used tree",
1497 e->pnum, e->ec);
1498 wl_tree_add(e, &ubi->used);
1499 } else {
1500 dbg_wl("add PEB %d EC %d to the scrub tree",
1501 e->pnum, e->ec);
1502 wl_tree_add(e, &ubi->scrub);
1503 }
1504 }
1505 }
1506
1507 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1508 ubi_err("no enough physical eraseblocks (%d, need %d)",
1509 ubi->avail_pebs, WL_RESERVED_PEBS);
1510 if (ubi->corr_peb_count)
1511 ubi_err("%d PEBs are corrupted and not used",
1512 ubi->corr_peb_count);
1513 goto out_free;
1514 }
1515 ubi->avail_pebs -= WL_RESERVED_PEBS;
1516 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1517
1518 /* Schedule wear-leveling if needed */
1519 err = ensure_wear_leveling(ubi);
1520 if (err)
1521 goto out_free;
1522
1523 return 0;
1524
1525 out_free:
1526 cancel_pending(ubi);
1527 tree_destroy(&ubi->used);
1528 tree_destroy(&ubi->free);
1529 tree_destroy(&ubi->scrub);
1530 kfree(ubi->lookuptbl);
1531 return err;
1532 }
1533
1534 /**
1535 * protection_queue_destroy - destroy the protection queue.
1536 * @ubi: UBI device description object
1537 */
1538 static void protection_queue_destroy(struct ubi_device *ubi)
1539 {
1540 int i;
1541 struct ubi_wl_entry *e, *tmp;
1542
1543 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1544 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1545 list_del(&e->u.list);
1546 kmem_cache_free(ubi_wl_entry_slab, e);
1547 }
1548 }
1549 }
1550
1551 /**
1552 * ubi_wl_close - close the wear-leveling sub-system.
1553 * @ubi: UBI device description object
1554 */
1555 void ubi_wl_close(struct ubi_device *ubi)
1556 {
1557 dbg_wl("close the WL sub-system");
1558 cancel_pending(ubi);
1559 protection_queue_destroy(ubi);
1560 tree_destroy(&ubi->used);
1561 tree_destroy(&ubi->erroneous);
1562 tree_destroy(&ubi->free);
1563 tree_destroy(&ubi->scrub);
1564 kfree(ubi->lookuptbl);
1565 }
1566
1567 #ifdef CONFIG_MTD_UBI_DEBUG
1568
1569 /**
1570 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1571 * @ubi: UBI device description object
1572 * @pnum: the physical eraseblock number to check
1573 * @ec: the erase counter to check
1574 *
1575 * This function returns zero if the erase counter of physical eraseblock @pnum
1576 * is equivalent to @ec, and a negative error code if not or if an error
1577 * occurred.
1578 */
1579 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1580 {
1581 int err;
1582 long long read_ec;
1583 struct ubi_ec_hdr *ec_hdr;
1584
1585 if (!ubi->dbg->chk_gen)
1586 return 0;
1587
1588 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1589 if (!ec_hdr)
1590 return -ENOMEM;
1591
1592 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1593 if (err && err != UBI_IO_BITFLIPS) {
1594 /* The header does not have to exist */
1595 err = 0;
1596 goto out_free;
1597 }
1598
1599 read_ec = be64_to_cpu(ec_hdr->ec);
1600 if (ec != read_ec) {
1601 ubi_err("paranoid check failed for PEB %d", pnum);
1602 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1603 ubi_dbg_dump_stack();
1604 err = 1;
1605 } else
1606 err = 0;
1607
1608 out_free:
1609 kfree(ec_hdr);
1610 return err;
1611 }
1612
1613 /**
1614 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1615 * @ubi: UBI device description object
1616 * @e: the wear-leveling entry to check
1617 * @root: the root of the tree
1618 *
1619 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1620 * is not.
1621 */
1622 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1623 struct ubi_wl_entry *e,
1624 struct rb_root *root)
1625 {
1626 if (!ubi->dbg->chk_gen)
1627 return 0;
1628
1629 if (in_wl_tree(e, root))
1630 return 0;
1631
1632 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1633 e->pnum, e->ec, root);
1634 ubi_dbg_dump_stack();
1635 return -EINVAL;
1636 }
1637
1638 /**
1639 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1640 * queue.
1641 * @ubi: UBI device description object
1642 * @e: the wear-leveling entry to check
1643 *
1644 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1645 */
1646 static int paranoid_check_in_pq(const struct ubi_device *ubi,
1647 struct ubi_wl_entry *e)
1648 {
1649 struct ubi_wl_entry *p;
1650 int i;
1651
1652 if (!ubi->dbg->chk_gen)
1653 return 0;
1654
1655 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1656 list_for_each_entry(p, &ubi->pq[i], u.list)
1657 if (p == e)
1658 return 0;
1659
1660 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1661 e->pnum, e->ec);
1662 ubi_dbg_dump_stack();
1663 return -EINVAL;
1664 }
1665
1666 #endif /* CONFIG_MTD_UBI_DEBUG */