]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/3c527.c
net: use symbolic values for ndo_start_xmit() return codes
[mirror_ubuntu-jammy-kernel.git] / drivers / net / 3c527.c
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
2 *
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
8 *
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
11 *
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
14 *
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
17 *
18 */
19
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
23
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
26
27 /**
28 * DOC: Traps for the unwary
29 *
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
32 *
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
36 *
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
39 *
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
43 *
44 * DOC: Theory Of Operation
45 *
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
52 *
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
62 *
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
67 *
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
74 *
75 * DOC: Notes
76 *
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
79 *
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
84
85 #include <linux/module.h>
86
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
107
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
112
113 #include "3c527.h"
114
115 MODULE_LICENSE("GPL");
116
117 /*
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
120 */
121 static const char* cardname = DRV_NAME;
122
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
127
128 static unsigned int mc32_debug = NET_DEBUG;
129
130 /* The number of low I/O ports used by the ethercard. */
131 #define MC32_IO_EXTENT 8
132
133 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
134 #define TX_RING_LEN 32 /* Typically the card supports 37 */
135 #define RX_RING_LEN 8 /* " " " */
136
137 /* Copy break point, see above for details.
138 * Setting to > 1512 effectively disables this feature. */
139 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
140
141 /* Issue the 82586 workaround command - this is for "busy lans", but
142 * basically means for all lans now days - has a performance (latency)
143 * cost, but best set. */
144 static const int WORKAROUND_82586=1;
145
146 /* Pointers to buffers and their on-card records */
147 struct mc32_ring_desc
148 {
149 volatile struct skb_header *p;
150 struct sk_buff *skb;
151 };
152
153 /* Information that needs to be kept for each board. */
154 struct mc32_local
155 {
156 int slot;
157
158 u32 base;
159 volatile struct mc32_mailbox *rx_box;
160 volatile struct mc32_mailbox *tx_box;
161 volatile struct mc32_mailbox *exec_box;
162 volatile struct mc32_stats *stats; /* Start of on-card statistics */
163 u16 tx_chain; /* Transmit list start offset */
164 u16 rx_chain; /* Receive list start offset */
165 u16 tx_len; /* Transmit list count */
166 u16 rx_len; /* Receive list count */
167
168 u16 xceiver_desired_state; /* HALTED or RUNNING */
169 u16 cmd_nonblocking; /* Thread is uninterested in command result */
170 u16 mc_reload_wait; /* A multicast load request is pending */
171 u32 mc_list_valid; /* True when the mclist is set */
172
173 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
174 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
175
176 atomic_t tx_count; /* buffers left */
177 atomic_t tx_ring_head; /* index to tx en-queue end */
178 u16 tx_ring_tail; /* index to tx de-queue end */
179
180 u16 rx_ring_tail; /* index to rx de-queue end */
181
182 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
183 struct completion execution_cmd; /* Card has completed an execute command */
184 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
185 };
186
187 /* The station (ethernet) address prefix, used for a sanity check. */
188 #define SA_ADDR0 0x02
189 #define SA_ADDR1 0x60
190 #define SA_ADDR2 0xAC
191
192 struct mca_adapters_t {
193 unsigned int id;
194 char *name;
195 };
196
197 static const struct mca_adapters_t mc32_adapters[] = {
198 { 0x0041, "3COM EtherLink MC/32" },
199 { 0x8EF5, "IBM High Performance Lan Adapter" },
200 { 0x0000, NULL }
201 };
202
203
204 /* Macros for ring index manipulations */
205 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
206 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
207
208 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
209
210
211 /* Index to functions, as function prototypes. */
212 static int mc32_probe1(struct net_device *dev, int ioaddr);
213 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
214 static int mc32_open(struct net_device *dev);
215 static void mc32_timeout(struct net_device *dev);
216 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev);
217 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
218 static int mc32_close(struct net_device *dev);
219 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
220 static void mc32_set_multicast_list(struct net_device *dev);
221 static void mc32_reset_multicast_list(struct net_device *dev);
222 static const struct ethtool_ops netdev_ethtool_ops;
223
224 static void cleanup_card(struct net_device *dev)
225 {
226 struct mc32_local *lp = netdev_priv(dev);
227 unsigned slot = lp->slot;
228 mca_mark_as_unused(slot);
229 mca_set_adapter_name(slot, NULL);
230 free_irq(dev->irq, dev);
231 release_region(dev->base_addr, MC32_IO_EXTENT);
232 }
233
234 /**
235 * mc32_probe - Search for supported boards
236 * @unit: interface number to use
237 *
238 * Because MCA bus is a real bus and we can scan for cards we could do a
239 * single scan for all boards here. Right now we use the passed in device
240 * structure and scan for only one board. This needs fixing for modules
241 * in particular.
242 */
243
244 struct net_device *__init mc32_probe(int unit)
245 {
246 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
247 static int current_mca_slot = -1;
248 int i;
249 int err;
250
251 if (!dev)
252 return ERR_PTR(-ENOMEM);
253
254 if (unit >= 0)
255 sprintf(dev->name, "eth%d", unit);
256
257 /* Do not check any supplied i/o locations.
258 POS registers usually don't fail :) */
259
260 /* MCA cards have POS registers.
261 Autodetecting MCA cards is extremely simple.
262 Just search for the card. */
263
264 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
265 current_mca_slot =
266 mca_find_unused_adapter(mc32_adapters[i].id, 0);
267
268 if(current_mca_slot != MCA_NOTFOUND) {
269 if(!mc32_probe1(dev, current_mca_slot))
270 {
271 mca_set_adapter_name(current_mca_slot,
272 mc32_adapters[i].name);
273 mca_mark_as_used(current_mca_slot);
274 err = register_netdev(dev);
275 if (err) {
276 cleanup_card(dev);
277 free_netdev(dev);
278 dev = ERR_PTR(err);
279 }
280 return dev;
281 }
282
283 }
284 }
285 free_netdev(dev);
286 return ERR_PTR(-ENODEV);
287 }
288
289 static const struct net_device_ops netdev_ops = {
290 .ndo_open = mc32_open,
291 .ndo_stop = mc32_close,
292 .ndo_start_xmit = mc32_send_packet,
293 .ndo_get_stats = mc32_get_stats,
294 .ndo_set_multicast_list = mc32_set_multicast_list,
295 .ndo_tx_timeout = mc32_timeout,
296 .ndo_change_mtu = eth_change_mtu,
297 .ndo_set_mac_address = eth_mac_addr,
298 .ndo_validate_addr = eth_validate_addr,
299 };
300
301 /**
302 * mc32_probe1 - Check a given slot for a board and test the card
303 * @dev: Device structure to fill in
304 * @slot: The MCA bus slot being used by this card
305 *
306 * Decode the slot data and configure the card structures. Having done this we
307 * can reset the card and configure it. The card does a full self test cycle
308 * in firmware so we have to wait for it to return and post us either a
309 * failure case or some addresses we use to find the board internals.
310 */
311
312 static int __init mc32_probe1(struct net_device *dev, int slot)
313 {
314 static unsigned version_printed;
315 int i, err;
316 u8 POS;
317 u32 base;
318 struct mc32_local *lp = netdev_priv(dev);
319 static u16 mca_io_bases[]={
320 0x7280,0x7290,
321 0x7680,0x7690,
322 0x7A80,0x7A90,
323 0x7E80,0x7E90
324 };
325 static u32 mca_mem_bases[]={
326 0x00C0000,
327 0x00C4000,
328 0x00C8000,
329 0x00CC000,
330 0x00D0000,
331 0x00D4000,
332 0x00D8000,
333 0x00DC000
334 };
335 static char *failures[]={
336 "Processor instruction",
337 "Processor data bus",
338 "Processor data bus",
339 "Processor data bus",
340 "Adapter bus",
341 "ROM checksum",
342 "Base RAM",
343 "Extended RAM",
344 "82586 internal loopback",
345 "82586 initialisation failure",
346 "Adapter list configuration error"
347 };
348
349 /* Time to play MCA games */
350
351 if (mc32_debug && version_printed++ == 0)
352 pr_debug("%s", version);
353
354 pr_info("%s: %s found in slot %d: ", dev->name, cardname, slot);
355
356 POS = mca_read_stored_pos(slot, 2);
357
358 if(!(POS&1))
359 {
360 pr_cont("disabled.\n");
361 return -ENODEV;
362 }
363
364 /* Fill in the 'dev' fields. */
365 dev->base_addr = mca_io_bases[(POS>>1)&7];
366 dev->mem_start = mca_mem_bases[(POS>>4)&7];
367
368 POS = mca_read_stored_pos(slot, 4);
369 if(!(POS&1))
370 {
371 pr_cont("memory window disabled.\n");
372 return -ENODEV;
373 }
374
375 POS = mca_read_stored_pos(slot, 5);
376
377 i=(POS>>4)&3;
378 if(i==3)
379 {
380 pr_cont("invalid memory window.\n");
381 return -ENODEV;
382 }
383
384 i*=16384;
385 i+=16384;
386
387 dev->mem_end=dev->mem_start + i;
388
389 dev->irq = ((POS>>2)&3)+9;
390
391 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
392 {
393 pr_cont("io 0x%3lX, which is busy.\n", dev->base_addr);
394 return -EBUSY;
395 }
396
397 pr_cont("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
398 dev->base_addr, dev->irq, dev->mem_start, i/1024);
399
400
401 /* We ought to set the cache line size here.. */
402
403
404 /*
405 * Go PROM browsing
406 */
407
408 /* Retrieve and print the ethernet address. */
409 for (i = 0; i < 6; i++)
410 {
411 mca_write_pos(slot, 6, i+12);
412 mca_write_pos(slot, 7, 0);
413
414 dev->dev_addr[i] = mca_read_pos(slot,3);
415 }
416
417 pr_info("%s: Address %pM ", dev->name, dev->dev_addr);
418
419 mca_write_pos(slot, 6, 0);
420 mca_write_pos(slot, 7, 0);
421
422 POS = mca_read_stored_pos(slot, 4);
423
424 if(POS&2)
425 pr_cont(": BNC port selected.\n");
426 else
427 pr_cont(": AUI port selected.\n");
428
429 POS=inb(dev->base_addr+HOST_CTRL);
430 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
431 POS&=~HOST_CTRL_INTE;
432 outb(POS, dev->base_addr+HOST_CTRL);
433 /* Reset adapter */
434 udelay(100);
435 /* Reset off */
436 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
437 outb(POS, dev->base_addr+HOST_CTRL);
438
439 udelay(300);
440
441 /*
442 * Grab the IRQ
443 */
444
445 err = request_irq(dev->irq, &mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
446 if (err) {
447 release_region(dev->base_addr, MC32_IO_EXTENT);
448 pr_err("%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
449 goto err_exit_ports;
450 }
451
452 memset(lp, 0, sizeof(struct mc32_local));
453 lp->slot = slot;
454
455 i=0;
456
457 base = inb(dev->base_addr);
458
459 while(base == 0xFF)
460 {
461 i++;
462 if(i == 1000)
463 {
464 pr_err("%s: failed to boot adapter.\n", dev->name);
465 err = -ENODEV;
466 goto err_exit_irq;
467 }
468 udelay(1000);
469 if(inb(dev->base_addr+2)&(1<<5))
470 base = inb(dev->base_addr);
471 }
472
473 if(base>0)
474 {
475 if(base < 0x0C)
476 pr_err("%s: %s%s.\n", dev->name, failures[base-1],
477 base<0x0A?" test failure":"");
478 else
479 pr_err("%s: unknown failure %d.\n", dev->name, base);
480 err = -ENODEV;
481 goto err_exit_irq;
482 }
483
484 base=0;
485 for(i=0;i<4;i++)
486 {
487 int n=0;
488
489 while(!(inb(dev->base_addr+2)&(1<<5)))
490 {
491 n++;
492 udelay(50);
493 if(n>100)
494 {
495 pr_err("%s: mailbox read fail (%d).\n", dev->name, i);
496 err = -ENODEV;
497 goto err_exit_irq;
498 }
499 }
500
501 base|=(inb(dev->base_addr)<<(8*i));
502 }
503
504 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
505
506 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
507
508 lp->base = dev->mem_start+base;
509
510 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
511 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
512
513 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
514
515 /*
516 * Descriptor chains (card relative)
517 */
518
519 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
520 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
521 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
522 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
523
524 init_MUTEX_LOCKED(&lp->cmd_mutex);
525 init_completion(&lp->execution_cmd);
526 init_completion(&lp->xceiver_cmd);
527
528 pr_info("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
529 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
530
531 dev->netdev_ops = &netdev_ops;
532 dev->watchdog_timeo = HZ*5; /* Board does all the work */
533 dev->ethtool_ops = &netdev_ethtool_ops;
534
535 return 0;
536
537 err_exit_irq:
538 free_irq(dev->irq, dev);
539 err_exit_ports:
540 release_region(dev->base_addr, MC32_IO_EXTENT);
541 return err;
542 }
543
544
545 /**
546 * mc32_ready_poll - wait until we can feed it a command
547 * @dev: The device to wait for
548 *
549 * Wait until the card becomes ready to accept a command via the
550 * command register. This tells us nothing about the completion
551 * status of any pending commands and takes very little time at all.
552 */
553
554 static inline void mc32_ready_poll(struct net_device *dev)
555 {
556 int ioaddr = dev->base_addr;
557 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
558 }
559
560
561 /**
562 * mc32_command_nowait - send a command non blocking
563 * @dev: The 3c527 to issue the command to
564 * @cmd: The command word to write to the mailbox
565 * @data: A data block if the command expects one
566 * @len: Length of the data block
567 *
568 * Send a command from interrupt state. If there is a command
569 * currently being executed then we return an error of -1. It
570 * simply isn't viable to wait around as commands may be
571 * slow. This can theoretically be starved on SMP, but it's hard
572 * to see a realistic situation. We do not wait for the command
573 * to complete --- we rely on the interrupt handler to tidy up
574 * after us.
575 */
576
577 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
578 {
579 struct mc32_local *lp = netdev_priv(dev);
580 int ioaddr = dev->base_addr;
581 int ret = -1;
582
583 if (down_trylock(&lp->cmd_mutex) == 0)
584 {
585 lp->cmd_nonblocking=1;
586 lp->exec_box->mbox=0;
587 lp->exec_box->mbox=cmd;
588 memcpy((void *)lp->exec_box->data, data, len);
589 barrier(); /* the memcpy forgot the volatile so be sure */
590
591 /* Send the command */
592 mc32_ready_poll(dev);
593 outb(1<<6, ioaddr+HOST_CMD);
594
595 ret = 0;
596
597 /* Interrupt handler will signal mutex on completion */
598 }
599
600 return ret;
601 }
602
603
604 /**
605 * mc32_command - send a command and sleep until completion
606 * @dev: The 3c527 card to issue the command to
607 * @cmd: The command word to write to the mailbox
608 * @data: A data block if the command expects one
609 * @len: Length of the data block
610 *
611 * Sends exec commands in a user context. This permits us to wait around
612 * for the replies and also to wait for the command buffer to complete
613 * from a previous command before we execute our command. After our
614 * command completes we will attempt any pending multicast reload
615 * we blocked off by hogging the exec buffer.
616 *
617 * You feed the card a command, you wait, it interrupts you get a
618 * reply. All well and good. The complication arises because you use
619 * commands for filter list changes which come in at bh level from things
620 * like IPV6 group stuff.
621 */
622
623 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
624 {
625 struct mc32_local *lp = netdev_priv(dev);
626 int ioaddr = dev->base_addr;
627 int ret = 0;
628
629 down(&lp->cmd_mutex);
630
631 /*
632 * My Turn
633 */
634
635 lp->cmd_nonblocking=0;
636 lp->exec_box->mbox=0;
637 lp->exec_box->mbox=cmd;
638 memcpy((void *)lp->exec_box->data, data, len);
639 barrier(); /* the memcpy forgot the volatile so be sure */
640
641 mc32_ready_poll(dev);
642 outb(1<<6, ioaddr+HOST_CMD);
643
644 wait_for_completion(&lp->execution_cmd);
645
646 if(lp->exec_box->mbox&(1<<13))
647 ret = -1;
648
649 up(&lp->cmd_mutex);
650
651 /*
652 * A multicast set got blocked - try it now
653 */
654
655 if(lp->mc_reload_wait)
656 {
657 mc32_reset_multicast_list(dev);
658 }
659
660 return ret;
661 }
662
663
664 /**
665 * mc32_start_transceiver - tell board to restart tx/rx
666 * @dev: The 3c527 card to issue the command to
667 *
668 * This may be called from the interrupt state, where it is used
669 * to restart the rx ring if the card runs out of rx buffers.
670 *
671 * We must first check if it's ok to (re)start the transceiver. See
672 * mc32_close for details.
673 */
674
675 static void mc32_start_transceiver(struct net_device *dev) {
676
677 struct mc32_local *lp = netdev_priv(dev);
678 int ioaddr = dev->base_addr;
679
680 /* Ignore RX overflow on device closure */
681 if (lp->xceiver_desired_state==HALTED)
682 return;
683
684 /* Give the card the offset to the post-EOL-bit RX descriptor */
685 mc32_ready_poll(dev);
686 lp->rx_box->mbox=0;
687 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
688 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
689
690 mc32_ready_poll(dev);
691 lp->tx_box->mbox=0;
692 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
693
694 /* We are not interrupted on start completion */
695 }
696
697
698 /**
699 * mc32_halt_transceiver - tell board to stop tx/rx
700 * @dev: The 3c527 card to issue the command to
701 *
702 * We issue the commands to halt the card's transceiver. In fact,
703 * after some experimenting we now simply tell the card to
704 * suspend. When issuing aborts occasionally odd things happened.
705 *
706 * We then sleep until the card has notified us that both rx and
707 * tx have been suspended.
708 */
709
710 static void mc32_halt_transceiver(struct net_device *dev)
711 {
712 struct mc32_local *lp = netdev_priv(dev);
713 int ioaddr = dev->base_addr;
714
715 mc32_ready_poll(dev);
716 lp->rx_box->mbox=0;
717 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
718 wait_for_completion(&lp->xceiver_cmd);
719
720 mc32_ready_poll(dev);
721 lp->tx_box->mbox=0;
722 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
723 wait_for_completion(&lp->xceiver_cmd);
724 }
725
726
727 /**
728 * mc32_load_rx_ring - load the ring of receive buffers
729 * @dev: 3c527 to build the ring for
730 *
731 * This initalises the on-card and driver datastructures to
732 * the point where mc32_start_transceiver() can be called.
733 *
734 * The card sets up the receive ring for us. We are required to use the
735 * ring it provides, although the size of the ring is configurable.
736 *
737 * We allocate an sk_buff for each ring entry in turn and
738 * initalise its house-keeping info. At the same time, we read
739 * each 'next' pointer in our rx_ring array. This reduces slow
740 * shared-memory reads and makes it easy to access predecessor
741 * descriptors.
742 *
743 * We then set the end-of-list bit for the last entry so that the
744 * card will know when it has run out of buffers.
745 */
746
747 static int mc32_load_rx_ring(struct net_device *dev)
748 {
749 struct mc32_local *lp = netdev_priv(dev);
750 int i;
751 u16 rx_base;
752 volatile struct skb_header *p;
753
754 rx_base=lp->rx_chain;
755
756 for(i=0; i<RX_RING_LEN; i++) {
757 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
758 if (lp->rx_ring[i].skb==NULL) {
759 for (;i>=0;i--)
760 kfree_skb(lp->rx_ring[i].skb);
761 return -ENOBUFS;
762 }
763 skb_reserve(lp->rx_ring[i].skb, 18);
764
765 p=isa_bus_to_virt(lp->base+rx_base);
766
767 p->control=0;
768 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
769 p->status=0;
770 p->length=1532;
771
772 lp->rx_ring[i].p=p;
773 rx_base=p->next;
774 }
775
776 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
777
778 lp->rx_ring_tail=0;
779
780 return 0;
781 }
782
783
784 /**
785 * mc32_flush_rx_ring - free the ring of receive buffers
786 * @lp: Local data of 3c527 to flush the rx ring of
787 *
788 * Free the buffer for each ring slot. This may be called
789 * before mc32_load_rx_ring(), eg. on error in mc32_open().
790 * Requires rx skb pointers to point to a valid skb, or NULL.
791 */
792
793 static void mc32_flush_rx_ring(struct net_device *dev)
794 {
795 struct mc32_local *lp = netdev_priv(dev);
796 int i;
797
798 for(i=0; i < RX_RING_LEN; i++)
799 {
800 if (lp->rx_ring[i].skb) {
801 dev_kfree_skb(lp->rx_ring[i].skb);
802 lp->rx_ring[i].skb = NULL;
803 }
804 lp->rx_ring[i].p=NULL;
805 }
806 }
807
808
809 /**
810 * mc32_load_tx_ring - load transmit ring
811 * @dev: The 3c527 card to issue the command to
812 *
813 * This sets up the host transmit data-structures.
814 *
815 * First, we obtain from the card it's current postion in the tx
816 * ring, so that we will know where to begin transmitting
817 * packets.
818 *
819 * Then, we read the 'next' pointers from the on-card tx ring into
820 * our tx_ring array to reduce slow shared-mem reads. Finally, we
821 * intitalise the tx house keeping variables.
822 *
823 */
824
825 static void mc32_load_tx_ring(struct net_device *dev)
826 {
827 struct mc32_local *lp = netdev_priv(dev);
828 volatile struct skb_header *p;
829 int i;
830 u16 tx_base;
831
832 tx_base=lp->tx_box->data[0];
833
834 for(i=0 ; i<TX_RING_LEN ; i++)
835 {
836 p=isa_bus_to_virt(lp->base+tx_base);
837 lp->tx_ring[i].p=p;
838 lp->tx_ring[i].skb=NULL;
839
840 tx_base=p->next;
841 }
842
843 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
844 /* see mc32_tx_ring */
845
846 atomic_set(&lp->tx_count, TX_RING_LEN-1);
847 atomic_set(&lp->tx_ring_head, 0);
848 lp->tx_ring_tail=0;
849 }
850
851
852 /**
853 * mc32_flush_tx_ring - free transmit ring
854 * @lp: Local data of 3c527 to flush the tx ring of
855 *
856 * If the ring is non-empty, zip over the it, freeing any
857 * allocated skb_buffs. The tx ring house-keeping variables are
858 * then reset. Requires rx skb pointers to point to a valid skb,
859 * or NULL.
860 */
861
862 static void mc32_flush_tx_ring(struct net_device *dev)
863 {
864 struct mc32_local *lp = netdev_priv(dev);
865 int i;
866
867 for (i=0; i < TX_RING_LEN; i++)
868 {
869 if (lp->tx_ring[i].skb)
870 {
871 dev_kfree_skb(lp->tx_ring[i].skb);
872 lp->tx_ring[i].skb = NULL;
873 }
874 }
875
876 atomic_set(&lp->tx_count, 0);
877 atomic_set(&lp->tx_ring_head, 0);
878 lp->tx_ring_tail=0;
879 }
880
881
882 /**
883 * mc32_open - handle 'up' of card
884 * @dev: device to open
885 *
886 * The user is trying to bring the card into ready state. This requires
887 * a brief dialogue with the card. Firstly we enable interrupts and then
888 * 'indications'. Without these enabled the card doesn't bother telling
889 * us what it has done. This had me puzzled for a week.
890 *
891 * We configure the number of card descriptors, then load the network
892 * address and multicast filters. Turn on the workaround mode. This
893 * works around a bug in the 82586 - it asks the firmware to do
894 * so. It has a performance (latency) hit but is needed on busy
895 * [read most] lans. We load the ring with buffers then we kick it
896 * all off.
897 */
898
899 static int mc32_open(struct net_device *dev)
900 {
901 int ioaddr = dev->base_addr;
902 struct mc32_local *lp = netdev_priv(dev);
903 u8 one=1;
904 u8 regs;
905 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
906
907 /*
908 * Interrupts enabled
909 */
910
911 regs=inb(ioaddr+HOST_CTRL);
912 regs|=HOST_CTRL_INTE;
913 outb(regs, ioaddr+HOST_CTRL);
914
915 /*
916 * Allow ourselves to issue commands
917 */
918
919 up(&lp->cmd_mutex);
920
921
922 /*
923 * Send the indications on command
924 */
925
926 mc32_command(dev, 4, &one, 2);
927
928 /*
929 * Poke it to make sure it's really dead.
930 */
931
932 mc32_halt_transceiver(dev);
933 mc32_flush_tx_ring(dev);
934
935 /*
936 * Ask card to set up on-card descriptors to our spec
937 */
938
939 if(mc32_command(dev, 8, descnumbuffs, 4)) {
940 pr_info("%s: %s rejected our buffer configuration!\n",
941 dev->name, cardname);
942 mc32_close(dev);
943 return -ENOBUFS;
944 }
945
946 /* Report new configuration */
947 mc32_command(dev, 6, NULL, 0);
948
949 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
950 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
951 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
952 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
953
954 /* Set Network Address */
955 mc32_command(dev, 1, dev->dev_addr, 6);
956
957 /* Set the filters */
958 mc32_set_multicast_list(dev);
959
960 if (WORKAROUND_82586) {
961 u16 zero_word=0;
962 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
963 }
964
965 mc32_load_tx_ring(dev);
966
967 if(mc32_load_rx_ring(dev))
968 {
969 mc32_close(dev);
970 return -ENOBUFS;
971 }
972
973 lp->xceiver_desired_state = RUNNING;
974
975 /* And finally, set the ball rolling... */
976 mc32_start_transceiver(dev);
977
978 netif_start_queue(dev);
979
980 return 0;
981 }
982
983
984 /**
985 * mc32_timeout - handle a timeout from the network layer
986 * @dev: 3c527 that timed out
987 *
988 * Handle a timeout on transmit from the 3c527. This normally means
989 * bad things as the hardware handles cable timeouts and mess for
990 * us.
991 *
992 */
993
994 static void mc32_timeout(struct net_device *dev)
995 {
996 pr_warning("%s: transmit timed out?\n", dev->name);
997 /* Try to restart the adaptor. */
998 netif_wake_queue(dev);
999 }
1000
1001
1002 /**
1003 * mc32_send_packet - queue a frame for transmit
1004 * @skb: buffer to transmit
1005 * @dev: 3c527 to send it out of
1006 *
1007 * Transmit a buffer. This normally means throwing the buffer onto
1008 * the transmit queue as the queue is quite large. If the queue is
1009 * full then we set tx_busy and return. Once the interrupt handler
1010 * gets messages telling it to reclaim transmit queue entries, we will
1011 * clear tx_busy and the kernel will start calling this again.
1012 *
1013 * We do not disable interrupts or acquire any locks; this can
1014 * run concurrently with mc32_tx_ring(), and the function itself
1015 * is serialised at a higher layer. However, similarly for the
1016 * card itself, we must ensure that we update tx_ring_head only
1017 * after we've established a valid packet on the tx ring (and
1018 * before we let the card "see" it, to prevent it racing with the
1019 * irq handler).
1020 *
1021 */
1022
1023 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev)
1024 {
1025 struct mc32_local *lp = netdev_priv(dev);
1026 u32 head = atomic_read(&lp->tx_ring_head);
1027
1028 volatile struct skb_header *p, *np;
1029
1030 netif_stop_queue(dev);
1031
1032 if(atomic_read(&lp->tx_count)==0) {
1033 return NETDEV_TX_BUSY;
1034 }
1035
1036 if (skb_padto(skb, ETH_ZLEN)) {
1037 netif_wake_queue(dev);
1038 return 0;
1039 }
1040
1041 atomic_dec(&lp->tx_count);
1042
1043 /* P is the last sending/sent buffer as a pointer */
1044 p=lp->tx_ring[head].p;
1045
1046 head = next_tx(head);
1047
1048 /* NP is the buffer we will be loading */
1049 np=lp->tx_ring[head].p;
1050
1051 /* We will need this to flush the buffer out */
1052 lp->tx_ring[head].skb=skb;
1053
1054 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1055 np->data = isa_virt_to_bus(skb->data);
1056 np->status = 0;
1057 np->control = CONTROL_EOP | CONTROL_EOL;
1058 wmb();
1059
1060 /*
1061 * The new frame has been setup; we can now
1062 * let the interrupt handler and card "see" it
1063 */
1064
1065 atomic_set(&lp->tx_ring_head, head);
1066 p->control &= ~CONTROL_EOL;
1067
1068 netif_wake_queue(dev);
1069 return 0;
1070 }
1071
1072
1073 /**
1074 * mc32_update_stats - pull off the on board statistics
1075 * @dev: 3c527 to service
1076 *
1077 *
1078 * Query and reset the on-card stats. There's the small possibility
1079 * of a race here, which would result in an underestimation of
1080 * actual errors. As such, we'd prefer to keep all our stats
1081 * collection in software. As a rule, we do. However it can't be
1082 * used for rx errors and collisions as, by default, the card discards
1083 * bad rx packets.
1084 *
1085 * Setting the SAV BP in the rx filter command supposedly
1086 * stops this behaviour. However, testing shows that it only seems to
1087 * enable the collation of on-card rx statistics --- the driver
1088 * never sees an RX descriptor with an error status set.
1089 *
1090 */
1091
1092 static void mc32_update_stats(struct net_device *dev)
1093 {
1094 struct mc32_local *lp = netdev_priv(dev);
1095 volatile struct mc32_stats *st = lp->stats;
1096
1097 u32 rx_errors=0;
1098
1099 rx_errors+=dev->stats.rx_crc_errors +=st->rx_crc_errors;
1100 st->rx_crc_errors=0;
1101 rx_errors+=dev->stats.rx_fifo_errors +=st->rx_overrun_errors;
1102 st->rx_overrun_errors=0;
1103 rx_errors+=dev->stats.rx_frame_errors +=st->rx_alignment_errors;
1104 st->rx_alignment_errors=0;
1105 rx_errors+=dev->stats.rx_length_errors+=st->rx_tooshort_errors;
1106 st->rx_tooshort_errors=0;
1107 rx_errors+=dev->stats.rx_missed_errors+=st->rx_outofresource_errors;
1108 st->rx_outofresource_errors=0;
1109 dev->stats.rx_errors=rx_errors;
1110
1111 /* Number of packets which saw one collision */
1112 dev->stats.collisions+=st->dataC[10];
1113 st->dataC[10]=0;
1114
1115 /* Number of packets which saw 2--15 collisions */
1116 dev->stats.collisions+=st->dataC[11];
1117 st->dataC[11]=0;
1118 }
1119
1120
1121 /**
1122 * mc32_rx_ring - process the receive ring
1123 * @dev: 3c527 that needs its receive ring processing
1124 *
1125 *
1126 * We have received one or more indications from the card that a
1127 * receive has completed. The buffer ring thus contains dirty
1128 * entries. We walk the ring by iterating over the circular rx_ring
1129 * array, starting at the next dirty buffer (which happens to be the
1130 * one we finished up at last time around).
1131 *
1132 * For each completed packet, we will either copy it and pass it up
1133 * the stack or, if the packet is near MTU sized, we allocate
1134 * another buffer and flip the old one up the stack.
1135 *
1136 * We must succeed in keeping a buffer on the ring. If necessary we
1137 * will toss a received packet rather than lose a ring entry. Once
1138 * the first uncompleted descriptor is found, we move the
1139 * End-Of-List bit to include the buffers just processed.
1140 *
1141 */
1142
1143 static void mc32_rx_ring(struct net_device *dev)
1144 {
1145 struct mc32_local *lp = netdev_priv(dev);
1146 volatile struct skb_header *p;
1147 u16 rx_ring_tail;
1148 u16 rx_old_tail;
1149 int x=0;
1150
1151 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1152
1153 do
1154 {
1155 p=lp->rx_ring[rx_ring_tail].p;
1156
1157 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1158 break;
1159 }
1160 if(p->status & (1<<6)) /* COMPLETED_OK */
1161 {
1162
1163 u16 length=p->length;
1164 struct sk_buff *skb;
1165 struct sk_buff *newskb;
1166
1167 /* Try to save time by avoiding a copy on big frames */
1168
1169 if ((length > RX_COPYBREAK)
1170 && ((newskb=dev_alloc_skb(1532)) != NULL))
1171 {
1172 skb=lp->rx_ring[rx_ring_tail].skb;
1173 skb_put(skb, length);
1174
1175 skb_reserve(newskb,18);
1176 lp->rx_ring[rx_ring_tail].skb=newskb;
1177 p->data=isa_virt_to_bus(newskb->data);
1178 }
1179 else
1180 {
1181 skb=dev_alloc_skb(length+2);
1182
1183 if(skb==NULL) {
1184 dev->stats.rx_dropped++;
1185 goto dropped;
1186 }
1187
1188 skb_reserve(skb,2);
1189 memcpy(skb_put(skb, length),
1190 lp->rx_ring[rx_ring_tail].skb->data, length);
1191 }
1192
1193 skb->protocol=eth_type_trans(skb,dev);
1194 dev->stats.rx_packets++;
1195 dev->stats.rx_bytes += length;
1196 netif_rx(skb);
1197 }
1198
1199 dropped:
1200 p->length = 1532;
1201 p->status = 0;
1202
1203 rx_ring_tail=next_rx(rx_ring_tail);
1204 }
1205 while(x++<48);
1206
1207 /* If there was actually a frame to be processed, place the EOL bit */
1208 /* at the descriptor prior to the one to be filled next */
1209
1210 if (rx_ring_tail != rx_old_tail)
1211 {
1212 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1213 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1214
1215 lp->rx_ring_tail=rx_ring_tail;
1216 }
1217 }
1218
1219
1220 /**
1221 * mc32_tx_ring - process completed transmits
1222 * @dev: 3c527 that needs its transmit ring processing
1223 *
1224 *
1225 * This operates in a similar fashion to mc32_rx_ring. We iterate
1226 * over the transmit ring. For each descriptor which has been
1227 * processed by the card, we free its associated buffer and note
1228 * any errors. This continues until the transmit ring is emptied
1229 * or we reach a descriptor that hasn't yet been processed by the
1230 * card.
1231 *
1232 */
1233
1234 static void mc32_tx_ring(struct net_device *dev)
1235 {
1236 struct mc32_local *lp = netdev_priv(dev);
1237 volatile struct skb_header *np;
1238
1239 /*
1240 * We rely on head==tail to mean 'queue empty'.
1241 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1242 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1243 * condition with 'queue full'
1244 */
1245
1246 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1247 {
1248 u16 t;
1249
1250 t=next_tx(lp->tx_ring_tail);
1251 np=lp->tx_ring[t].p;
1252
1253 if(!(np->status & (1<<7)))
1254 {
1255 /* Not COMPLETED */
1256 break;
1257 }
1258 dev->stats.tx_packets++;
1259 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1260 {
1261 dev->stats.tx_errors++;
1262
1263 switch(np->status&0x0F)
1264 {
1265 case 1:
1266 dev->stats.tx_aborted_errors++;
1267 break; /* Max collisions */
1268 case 2:
1269 dev->stats.tx_fifo_errors++;
1270 break;
1271 case 3:
1272 dev->stats.tx_carrier_errors++;
1273 break;
1274 case 4:
1275 dev->stats.tx_window_errors++;
1276 break; /* CTS Lost */
1277 case 5:
1278 dev->stats.tx_aborted_errors++;
1279 break; /* Transmit timeout */
1280 }
1281 }
1282 /* Packets are sent in order - this is
1283 basically a FIFO queue of buffers matching
1284 the card ring */
1285 dev->stats.tx_bytes+=lp->tx_ring[t].skb->len;
1286 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1287 lp->tx_ring[t].skb=NULL;
1288 atomic_inc(&lp->tx_count);
1289 netif_wake_queue(dev);
1290
1291 lp->tx_ring_tail=t;
1292 }
1293
1294 }
1295
1296
1297 /**
1298 * mc32_interrupt - handle an interrupt from a 3c527
1299 * @irq: Interrupt number
1300 * @dev_id: 3c527 that requires servicing
1301 * @regs: Registers (unused)
1302 *
1303 *
1304 * An interrupt is raised whenever the 3c527 writes to the command
1305 * register. This register contains the message it wishes to send us
1306 * packed into a single byte field. We keep reading status entries
1307 * until we have processed all the control items, but simply count
1308 * transmit and receive reports. When all reports are in we empty the
1309 * transceiver rings as appropriate. This saves the overhead of
1310 * multiple command requests.
1311 *
1312 * Because MCA is level-triggered, we shouldn't miss indications.
1313 * Therefore, we needn't ask the card to suspend interrupts within
1314 * this handler. The card receives an implicit acknowledgment of the
1315 * current interrupt when we read the command register.
1316 *
1317 */
1318
1319 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1320 {
1321 struct net_device *dev = dev_id;
1322 struct mc32_local *lp;
1323 int ioaddr, status, boguscount = 0;
1324 int rx_event = 0;
1325 int tx_event = 0;
1326
1327 ioaddr = dev->base_addr;
1328 lp = netdev_priv(dev);
1329
1330 /* See whats cooking */
1331
1332 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1333 {
1334 status=inb(ioaddr+HOST_CMD);
1335
1336 pr_debug("Status TX%d RX%d EX%d OV%d BC%d\n",
1337 (status&7), (status>>3)&7, (status>>6)&1,
1338 (status>>7)&1, boguscount);
1339
1340 switch(status&7)
1341 {
1342 case 0:
1343 break;
1344 case 6: /* TX fail */
1345 case 2: /* TX ok */
1346 tx_event = 1;
1347 break;
1348 case 3: /* Halt */
1349 case 4: /* Abort */
1350 complete(&lp->xceiver_cmd);
1351 break;
1352 default:
1353 pr_notice("%s: strange tx ack %d\n", dev->name, status&7);
1354 }
1355 status>>=3;
1356 switch(status&7)
1357 {
1358 case 0:
1359 break;
1360 case 2: /* RX */
1361 rx_event=1;
1362 break;
1363 case 3: /* Halt */
1364 case 4: /* Abort */
1365 complete(&lp->xceiver_cmd);
1366 break;
1367 case 6:
1368 /* Out of RX buffers stat */
1369 /* Must restart rx */
1370 dev->stats.rx_dropped++;
1371 mc32_rx_ring(dev);
1372 mc32_start_transceiver(dev);
1373 break;
1374 default:
1375 pr_notice("%s: strange rx ack %d\n",
1376 dev->name, status&7);
1377 }
1378 status>>=3;
1379 if(status&1)
1380 {
1381 /*
1382 * No thread is waiting: we need to tidy
1383 * up ourself.
1384 */
1385
1386 if (lp->cmd_nonblocking) {
1387 up(&lp->cmd_mutex);
1388 if (lp->mc_reload_wait)
1389 mc32_reset_multicast_list(dev);
1390 }
1391 else complete(&lp->execution_cmd);
1392 }
1393 if(status&2)
1394 {
1395 /*
1396 * We get interrupted once per
1397 * counter that is about to overflow.
1398 */
1399
1400 mc32_update_stats(dev);
1401 }
1402 }
1403
1404
1405 /*
1406 * Process the transmit and receive rings
1407 */
1408
1409 if(tx_event)
1410 mc32_tx_ring(dev);
1411
1412 if(rx_event)
1413 mc32_rx_ring(dev);
1414
1415 return IRQ_HANDLED;
1416 }
1417
1418
1419 /**
1420 * mc32_close - user configuring the 3c527 down
1421 * @dev: 3c527 card to shut down
1422 *
1423 * The 3c527 is a bus mastering device. We must be careful how we
1424 * shut it down. It may also be running shared interrupt so we have
1425 * to be sure to silence it properly
1426 *
1427 * We indicate that the card is closing to the rest of the
1428 * driver. Otherwise, it is possible that the card may run out
1429 * of receive buffers and restart the transceiver while we're
1430 * trying to close it.
1431 *
1432 * We abort any receive and transmits going on and then wait until
1433 * any pending exec commands have completed in other code threads.
1434 * In theory we can't get here while that is true, in practice I am
1435 * paranoid
1436 *
1437 * We turn off the interrupt enable for the board to be sure it can't
1438 * intefere with other devices.
1439 */
1440
1441 static int mc32_close(struct net_device *dev)
1442 {
1443 struct mc32_local *lp = netdev_priv(dev);
1444 int ioaddr = dev->base_addr;
1445
1446 u8 regs;
1447 u16 one=1;
1448
1449 lp->xceiver_desired_state = HALTED;
1450 netif_stop_queue(dev);
1451
1452 /*
1453 * Send the indications on command (handy debug check)
1454 */
1455
1456 mc32_command(dev, 4, &one, 2);
1457
1458 /* Shut down the transceiver */
1459
1460 mc32_halt_transceiver(dev);
1461
1462 /* Ensure we issue no more commands beyond this point */
1463
1464 down(&lp->cmd_mutex);
1465
1466 /* Ok the card is now stopping */
1467
1468 regs=inb(ioaddr+HOST_CTRL);
1469 regs&=~HOST_CTRL_INTE;
1470 outb(regs, ioaddr+HOST_CTRL);
1471
1472 mc32_flush_rx_ring(dev);
1473 mc32_flush_tx_ring(dev);
1474
1475 mc32_update_stats(dev);
1476
1477 return 0;
1478 }
1479
1480
1481 /**
1482 * mc32_get_stats - hand back stats to network layer
1483 * @dev: The 3c527 card to handle
1484 *
1485 * We've collected all the stats we can in software already. Now
1486 * it's time to update those kept on-card and return the lot.
1487 *
1488 */
1489
1490 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1491 {
1492 mc32_update_stats(dev);
1493 return &dev->stats;
1494 }
1495
1496
1497 /**
1498 * do_mc32_set_multicast_list - attempt to update multicasts
1499 * @dev: 3c527 device to load the list on
1500 * @retry: indicates this is not the first call.
1501 *
1502 *
1503 * Actually set or clear the multicast filter for this adaptor. The
1504 * locking issues are handled by this routine. We have to track
1505 * state as it may take multiple calls to get the command sequence
1506 * completed. We just keep trying to schedule the loads until we
1507 * manage to process them all.
1508 *
1509 * num_addrs == -1 Promiscuous mode, receive all packets
1510 *
1511 * num_addrs == 0 Normal mode, clear multicast list
1512 *
1513 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1514 * and do best-effort filtering.
1515 *
1516 * See mc32_update_stats() regards setting the SAV BP bit.
1517 *
1518 */
1519
1520 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1521 {
1522 struct mc32_local *lp = netdev_priv(dev);
1523 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1524
1525 if ((dev->flags&IFF_PROMISC) ||
1526 (dev->flags&IFF_ALLMULTI) ||
1527 dev->mc_count > 10)
1528 /* Enable promiscuous mode */
1529 filt |= 1;
1530 else if(dev->mc_count)
1531 {
1532 unsigned char block[62];
1533 unsigned char *bp;
1534 struct dev_mc_list *dmc=dev->mc_list;
1535
1536 int i;
1537
1538 if(retry==0)
1539 lp->mc_list_valid = 0;
1540 if(!lp->mc_list_valid)
1541 {
1542 block[1]=0;
1543 block[0]=dev->mc_count;
1544 bp=block+2;
1545
1546 for(i=0;i<dev->mc_count;i++)
1547 {
1548 memcpy(bp, dmc->dmi_addr, 6);
1549 bp+=6;
1550 dmc=dmc->next;
1551 }
1552 if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1)
1553 {
1554 lp->mc_reload_wait = 1;
1555 return;
1556 }
1557 lp->mc_list_valid=1;
1558 }
1559 }
1560
1561 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1562 {
1563 lp->mc_reload_wait = 1;
1564 }
1565 else {
1566 lp->mc_reload_wait = 0;
1567 }
1568 }
1569
1570
1571 /**
1572 * mc32_set_multicast_list - queue multicast list update
1573 * @dev: The 3c527 to use
1574 *
1575 * Commence loading the multicast list. This is called when the kernel
1576 * changes the lists. It will override any pending list we are trying to
1577 * load.
1578 */
1579
1580 static void mc32_set_multicast_list(struct net_device *dev)
1581 {
1582 do_mc32_set_multicast_list(dev,0);
1583 }
1584
1585
1586 /**
1587 * mc32_reset_multicast_list - reset multicast list
1588 * @dev: The 3c527 to use
1589 *
1590 * Attempt the next step in loading the multicast lists. If this attempt
1591 * fails to complete then it will be scheduled and this function called
1592 * again later from elsewhere.
1593 */
1594
1595 static void mc32_reset_multicast_list(struct net_device *dev)
1596 {
1597 do_mc32_set_multicast_list(dev,1);
1598 }
1599
1600 static void netdev_get_drvinfo(struct net_device *dev,
1601 struct ethtool_drvinfo *info)
1602 {
1603 strcpy(info->driver, DRV_NAME);
1604 strcpy(info->version, DRV_VERSION);
1605 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1606 }
1607
1608 static u32 netdev_get_msglevel(struct net_device *dev)
1609 {
1610 return mc32_debug;
1611 }
1612
1613 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1614 {
1615 mc32_debug = level;
1616 }
1617
1618 static const struct ethtool_ops netdev_ethtool_ops = {
1619 .get_drvinfo = netdev_get_drvinfo,
1620 .get_msglevel = netdev_get_msglevel,
1621 .set_msglevel = netdev_set_msglevel,
1622 };
1623
1624 #ifdef MODULE
1625
1626 static struct net_device *this_device;
1627
1628 /**
1629 * init_module - entry point
1630 *
1631 * Probe and locate a 3c527 card. This really should probe and locate
1632 * all the 3c527 cards in the machine not just one of them. Yes you can
1633 * insmod multiple modules for now but it's a hack.
1634 */
1635
1636 int __init init_module(void)
1637 {
1638 this_device = mc32_probe(-1);
1639 if (IS_ERR(this_device))
1640 return PTR_ERR(this_device);
1641 return 0;
1642 }
1643
1644 /**
1645 * cleanup_module - free resources for an unload
1646 *
1647 * Unloading time. We release the MCA bus resources and the interrupt
1648 * at which point everything is ready to unload. The card must be stopped
1649 * at this point or we would not have been called. When we unload we
1650 * leave the card stopped but not totally shut down. When the card is
1651 * initialized it must be rebooted or the rings reloaded before any
1652 * transmit operations are allowed to start scribbling into memory.
1653 */
1654
1655 void __exit cleanup_module(void)
1656 {
1657 unregister_netdev(this_device);
1658 cleanup_card(this_device);
1659 free_netdev(this_device);
1660 }
1661
1662 #endif /* MODULE */