]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/3c527.c
Convert asm/semaphore.h users to linux/semaphore.h
[mirror_ubuntu-bionic-kernel.git] / drivers / net / 3c527.c
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
2 *
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
8 *
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
11 *
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
14 *
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
17 *
18 */
19
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
23
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
26
27 /**
28 * DOC: Traps for the unwary
29 *
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
32 *
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
36 *
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
39 *
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
43 *
44 * DOC: Theory Of Operation
45 *
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
52 *
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
62 *
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
67 *
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
74 *
75 * DOC: Notes
76 *
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
79 *
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
84
85 #include <linux/module.h>
86
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
107
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
112
113 #include "3c527.h"
114
115 MODULE_LICENSE("GPL");
116
117 /*
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
120 */
121 static const char* cardname = DRV_NAME;
122
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
127
128 #undef DEBUG_IRQ
129
130 static unsigned int mc32_debug = NET_DEBUG;
131
132 /* The number of low I/O ports used by the ethercard. */
133 #define MC32_IO_EXTENT 8
134
135 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
136 #define TX_RING_LEN 32 /* Typically the card supports 37 */
137 #define RX_RING_LEN 8 /* " " " */
138
139 /* Copy break point, see above for details.
140 * Setting to > 1512 effectively disables this feature. */
141 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
142
143 /* Issue the 82586 workaround command - this is for "busy lans", but
144 * basically means for all lans now days - has a performance (latency)
145 * cost, but best set. */
146 static const int WORKAROUND_82586=1;
147
148 /* Pointers to buffers and their on-card records */
149 struct mc32_ring_desc
150 {
151 volatile struct skb_header *p;
152 struct sk_buff *skb;
153 };
154
155 /* Information that needs to be kept for each board. */
156 struct mc32_local
157 {
158 int slot;
159
160 u32 base;
161 struct net_device_stats net_stats;
162 volatile struct mc32_mailbox *rx_box;
163 volatile struct mc32_mailbox *tx_box;
164 volatile struct mc32_mailbox *exec_box;
165 volatile struct mc32_stats *stats; /* Start of on-card statistics */
166 u16 tx_chain; /* Transmit list start offset */
167 u16 rx_chain; /* Receive list start offset */
168 u16 tx_len; /* Transmit list count */
169 u16 rx_len; /* Receive list count */
170
171 u16 xceiver_desired_state; /* HALTED or RUNNING */
172 u16 cmd_nonblocking; /* Thread is uninterested in command result */
173 u16 mc_reload_wait; /* A multicast load request is pending */
174 u32 mc_list_valid; /* True when the mclist is set */
175
176 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
177 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
178
179 atomic_t tx_count; /* buffers left */
180 atomic_t tx_ring_head; /* index to tx en-queue end */
181 u16 tx_ring_tail; /* index to tx de-queue end */
182
183 u16 rx_ring_tail; /* index to rx de-queue end */
184
185 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
186 struct completion execution_cmd; /* Card has completed an execute command */
187 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
188 };
189
190 /* The station (ethernet) address prefix, used for a sanity check. */
191 #define SA_ADDR0 0x02
192 #define SA_ADDR1 0x60
193 #define SA_ADDR2 0xAC
194
195 struct mca_adapters_t {
196 unsigned int id;
197 char *name;
198 };
199
200 static const struct mca_adapters_t mc32_adapters[] = {
201 { 0x0041, "3COM EtherLink MC/32" },
202 { 0x8EF5, "IBM High Performance Lan Adapter" },
203 { 0x0000, NULL }
204 };
205
206
207 /* Macros for ring index manipulations */
208 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
209 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
210
211 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
212
213
214 /* Index to functions, as function prototypes. */
215 static int mc32_probe1(struct net_device *dev, int ioaddr);
216 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
217 static int mc32_open(struct net_device *dev);
218 static void mc32_timeout(struct net_device *dev);
219 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev);
220 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
221 static int mc32_close(struct net_device *dev);
222 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
223 static void mc32_set_multicast_list(struct net_device *dev);
224 static void mc32_reset_multicast_list(struct net_device *dev);
225 static const struct ethtool_ops netdev_ethtool_ops;
226
227 static void cleanup_card(struct net_device *dev)
228 {
229 struct mc32_local *lp = netdev_priv(dev);
230 unsigned slot = lp->slot;
231 mca_mark_as_unused(slot);
232 mca_set_adapter_name(slot, NULL);
233 free_irq(dev->irq, dev);
234 release_region(dev->base_addr, MC32_IO_EXTENT);
235 }
236
237 /**
238 * mc32_probe - Search for supported boards
239 * @unit: interface number to use
240 *
241 * Because MCA bus is a real bus and we can scan for cards we could do a
242 * single scan for all boards here. Right now we use the passed in device
243 * structure and scan for only one board. This needs fixing for modules
244 * in particular.
245 */
246
247 struct net_device *__init mc32_probe(int unit)
248 {
249 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
250 static int current_mca_slot = -1;
251 int i;
252 int err;
253
254 if (!dev)
255 return ERR_PTR(-ENOMEM);
256
257 if (unit >= 0)
258 sprintf(dev->name, "eth%d", unit);
259
260 /* Do not check any supplied i/o locations.
261 POS registers usually don't fail :) */
262
263 /* MCA cards have POS registers.
264 Autodetecting MCA cards is extremely simple.
265 Just search for the card. */
266
267 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
268 current_mca_slot =
269 mca_find_unused_adapter(mc32_adapters[i].id, 0);
270
271 if(current_mca_slot != MCA_NOTFOUND) {
272 if(!mc32_probe1(dev, current_mca_slot))
273 {
274 mca_set_adapter_name(current_mca_slot,
275 mc32_adapters[i].name);
276 mca_mark_as_used(current_mca_slot);
277 err = register_netdev(dev);
278 if (err) {
279 cleanup_card(dev);
280 free_netdev(dev);
281 dev = ERR_PTR(err);
282 }
283 return dev;
284 }
285
286 }
287 }
288 free_netdev(dev);
289 return ERR_PTR(-ENODEV);
290 }
291
292 /**
293 * mc32_probe1 - Check a given slot for a board and test the card
294 * @dev: Device structure to fill in
295 * @slot: The MCA bus slot being used by this card
296 *
297 * Decode the slot data and configure the card structures. Having done this we
298 * can reset the card and configure it. The card does a full self test cycle
299 * in firmware so we have to wait for it to return and post us either a
300 * failure case or some addresses we use to find the board internals.
301 */
302
303 static int __init mc32_probe1(struct net_device *dev, int slot)
304 {
305 static unsigned version_printed;
306 int i, err;
307 u8 POS;
308 u32 base;
309 struct mc32_local *lp = netdev_priv(dev);
310 static u16 mca_io_bases[]={
311 0x7280,0x7290,
312 0x7680,0x7690,
313 0x7A80,0x7A90,
314 0x7E80,0x7E90
315 };
316 static u32 mca_mem_bases[]={
317 0x00C0000,
318 0x00C4000,
319 0x00C8000,
320 0x00CC000,
321 0x00D0000,
322 0x00D4000,
323 0x00D8000,
324 0x00DC000
325 };
326 static char *failures[]={
327 "Processor instruction",
328 "Processor data bus",
329 "Processor data bus",
330 "Processor data bus",
331 "Adapter bus",
332 "ROM checksum",
333 "Base RAM",
334 "Extended RAM",
335 "82586 internal loopback",
336 "82586 initialisation failure",
337 "Adapter list configuration error"
338 };
339 DECLARE_MAC_BUF(mac);
340
341 /* Time to play MCA games */
342
343 if (mc32_debug && version_printed++ == 0)
344 printk(KERN_DEBUG "%s", version);
345
346 printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot);
347
348 POS = mca_read_stored_pos(slot, 2);
349
350 if(!(POS&1))
351 {
352 printk(" disabled.\n");
353 return -ENODEV;
354 }
355
356 /* Fill in the 'dev' fields. */
357 dev->base_addr = mca_io_bases[(POS>>1)&7];
358 dev->mem_start = mca_mem_bases[(POS>>4)&7];
359
360 POS = mca_read_stored_pos(slot, 4);
361 if(!(POS&1))
362 {
363 printk("memory window disabled.\n");
364 return -ENODEV;
365 }
366
367 POS = mca_read_stored_pos(slot, 5);
368
369 i=(POS>>4)&3;
370 if(i==3)
371 {
372 printk("invalid memory window.\n");
373 return -ENODEV;
374 }
375
376 i*=16384;
377 i+=16384;
378
379 dev->mem_end=dev->mem_start + i;
380
381 dev->irq = ((POS>>2)&3)+9;
382
383 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
384 {
385 printk("io 0x%3lX, which is busy.\n", dev->base_addr);
386 return -EBUSY;
387 }
388
389 printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
390 dev->base_addr, dev->irq, dev->mem_start, i/1024);
391
392
393 /* We ought to set the cache line size here.. */
394
395
396 /*
397 * Go PROM browsing
398 */
399
400 /* Retrieve and print the ethernet address. */
401 for (i = 0; i < 6; i++)
402 {
403 mca_write_pos(slot, 6, i+12);
404 mca_write_pos(slot, 7, 0);
405
406 dev->dev_addr[i] = mca_read_pos(slot,3);
407 }
408
409 printk("%s: Address %s", dev->name, print_mac(mac, dev->dev_addr));
410
411 mca_write_pos(slot, 6, 0);
412 mca_write_pos(slot, 7, 0);
413
414 POS = mca_read_stored_pos(slot, 4);
415
416 if(POS&2)
417 printk(" : BNC port selected.\n");
418 else
419 printk(" : AUI port selected.\n");
420
421 POS=inb(dev->base_addr+HOST_CTRL);
422 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
423 POS&=~HOST_CTRL_INTE;
424 outb(POS, dev->base_addr+HOST_CTRL);
425 /* Reset adapter */
426 udelay(100);
427 /* Reset off */
428 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
429 outb(POS, dev->base_addr+HOST_CTRL);
430
431 udelay(300);
432
433 /*
434 * Grab the IRQ
435 */
436
437 err = request_irq(dev->irq, &mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
438 if (err) {
439 release_region(dev->base_addr, MC32_IO_EXTENT);
440 printk(KERN_ERR "%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
441 goto err_exit_ports;
442 }
443
444 memset(lp, 0, sizeof(struct mc32_local));
445 lp->slot = slot;
446
447 i=0;
448
449 base = inb(dev->base_addr);
450
451 while(base == 0xFF)
452 {
453 i++;
454 if(i == 1000)
455 {
456 printk(KERN_ERR "%s: failed to boot adapter.\n", dev->name);
457 err = -ENODEV;
458 goto err_exit_irq;
459 }
460 udelay(1000);
461 if(inb(dev->base_addr+2)&(1<<5))
462 base = inb(dev->base_addr);
463 }
464
465 if(base>0)
466 {
467 if(base < 0x0C)
468 printk(KERN_ERR "%s: %s%s.\n", dev->name, failures[base-1],
469 base<0x0A?" test failure":"");
470 else
471 printk(KERN_ERR "%s: unknown failure %d.\n", dev->name, base);
472 err = -ENODEV;
473 goto err_exit_irq;
474 }
475
476 base=0;
477 for(i=0;i<4;i++)
478 {
479 int n=0;
480
481 while(!(inb(dev->base_addr+2)&(1<<5)))
482 {
483 n++;
484 udelay(50);
485 if(n>100)
486 {
487 printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i);
488 err = -ENODEV;
489 goto err_exit_irq;
490 }
491 }
492
493 base|=(inb(dev->base_addr)<<(8*i));
494 }
495
496 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
497
498 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
499
500 lp->base = dev->mem_start+base;
501
502 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
503 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
504
505 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
506
507 /*
508 * Descriptor chains (card relative)
509 */
510
511 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
512 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
513 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
514 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
515
516 init_MUTEX_LOCKED(&lp->cmd_mutex);
517 init_completion(&lp->execution_cmd);
518 init_completion(&lp->xceiver_cmd);
519
520 printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
521 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
522
523 dev->open = mc32_open;
524 dev->stop = mc32_close;
525 dev->hard_start_xmit = mc32_send_packet;
526 dev->get_stats = mc32_get_stats;
527 dev->set_multicast_list = mc32_set_multicast_list;
528 dev->tx_timeout = mc32_timeout;
529 dev->watchdog_timeo = HZ*5; /* Board does all the work */
530 dev->ethtool_ops = &netdev_ethtool_ops;
531
532 return 0;
533
534 err_exit_irq:
535 free_irq(dev->irq, dev);
536 err_exit_ports:
537 release_region(dev->base_addr, MC32_IO_EXTENT);
538 return err;
539 }
540
541
542 /**
543 * mc32_ready_poll - wait until we can feed it a command
544 * @dev: The device to wait for
545 *
546 * Wait until the card becomes ready to accept a command via the
547 * command register. This tells us nothing about the completion
548 * status of any pending commands and takes very little time at all.
549 */
550
551 static inline void mc32_ready_poll(struct net_device *dev)
552 {
553 int ioaddr = dev->base_addr;
554 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
555 }
556
557
558 /**
559 * mc32_command_nowait - send a command non blocking
560 * @dev: The 3c527 to issue the command to
561 * @cmd: The command word to write to the mailbox
562 * @data: A data block if the command expects one
563 * @len: Length of the data block
564 *
565 * Send a command from interrupt state. If there is a command
566 * currently being executed then we return an error of -1. It
567 * simply isn't viable to wait around as commands may be
568 * slow. This can theoretically be starved on SMP, but it's hard
569 * to see a realistic situation. We do not wait for the command
570 * to complete --- we rely on the interrupt handler to tidy up
571 * after us.
572 */
573
574 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
575 {
576 struct mc32_local *lp = netdev_priv(dev);
577 int ioaddr = dev->base_addr;
578 int ret = -1;
579
580 if (down_trylock(&lp->cmd_mutex) == 0)
581 {
582 lp->cmd_nonblocking=1;
583 lp->exec_box->mbox=0;
584 lp->exec_box->mbox=cmd;
585 memcpy((void *)lp->exec_box->data, data, len);
586 barrier(); /* the memcpy forgot the volatile so be sure */
587
588 /* Send the command */
589 mc32_ready_poll(dev);
590 outb(1<<6, ioaddr+HOST_CMD);
591
592 ret = 0;
593
594 /* Interrupt handler will signal mutex on completion */
595 }
596
597 return ret;
598 }
599
600
601 /**
602 * mc32_command - send a command and sleep until completion
603 * @dev: The 3c527 card to issue the command to
604 * @cmd: The command word to write to the mailbox
605 * @data: A data block if the command expects one
606 * @len: Length of the data block
607 *
608 * Sends exec commands in a user context. This permits us to wait around
609 * for the replies and also to wait for the command buffer to complete
610 * from a previous command before we execute our command. After our
611 * command completes we will attempt any pending multicast reload
612 * we blocked off by hogging the exec buffer.
613 *
614 * You feed the card a command, you wait, it interrupts you get a
615 * reply. All well and good. The complication arises because you use
616 * commands for filter list changes which come in at bh level from things
617 * like IPV6 group stuff.
618 */
619
620 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
621 {
622 struct mc32_local *lp = netdev_priv(dev);
623 int ioaddr = dev->base_addr;
624 int ret = 0;
625
626 down(&lp->cmd_mutex);
627
628 /*
629 * My Turn
630 */
631
632 lp->cmd_nonblocking=0;
633 lp->exec_box->mbox=0;
634 lp->exec_box->mbox=cmd;
635 memcpy((void *)lp->exec_box->data, data, len);
636 barrier(); /* the memcpy forgot the volatile so be sure */
637
638 mc32_ready_poll(dev);
639 outb(1<<6, ioaddr+HOST_CMD);
640
641 wait_for_completion(&lp->execution_cmd);
642
643 if(lp->exec_box->mbox&(1<<13))
644 ret = -1;
645
646 up(&lp->cmd_mutex);
647
648 /*
649 * A multicast set got blocked - try it now
650 */
651
652 if(lp->mc_reload_wait)
653 {
654 mc32_reset_multicast_list(dev);
655 }
656
657 return ret;
658 }
659
660
661 /**
662 * mc32_start_transceiver - tell board to restart tx/rx
663 * @dev: The 3c527 card to issue the command to
664 *
665 * This may be called from the interrupt state, where it is used
666 * to restart the rx ring if the card runs out of rx buffers.
667 *
668 * We must first check if it's ok to (re)start the transceiver. See
669 * mc32_close for details.
670 */
671
672 static void mc32_start_transceiver(struct net_device *dev) {
673
674 struct mc32_local *lp = netdev_priv(dev);
675 int ioaddr = dev->base_addr;
676
677 /* Ignore RX overflow on device closure */
678 if (lp->xceiver_desired_state==HALTED)
679 return;
680
681 /* Give the card the offset to the post-EOL-bit RX descriptor */
682 mc32_ready_poll(dev);
683 lp->rx_box->mbox=0;
684 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
685 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
686
687 mc32_ready_poll(dev);
688 lp->tx_box->mbox=0;
689 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
690
691 /* We are not interrupted on start completion */
692 }
693
694
695 /**
696 * mc32_halt_transceiver - tell board to stop tx/rx
697 * @dev: The 3c527 card to issue the command to
698 *
699 * We issue the commands to halt the card's transceiver. In fact,
700 * after some experimenting we now simply tell the card to
701 * suspend. When issuing aborts occasionally odd things happened.
702 *
703 * We then sleep until the card has notified us that both rx and
704 * tx have been suspended.
705 */
706
707 static void mc32_halt_transceiver(struct net_device *dev)
708 {
709 struct mc32_local *lp = netdev_priv(dev);
710 int ioaddr = dev->base_addr;
711
712 mc32_ready_poll(dev);
713 lp->rx_box->mbox=0;
714 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
715 wait_for_completion(&lp->xceiver_cmd);
716
717 mc32_ready_poll(dev);
718 lp->tx_box->mbox=0;
719 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
720 wait_for_completion(&lp->xceiver_cmd);
721 }
722
723
724 /**
725 * mc32_load_rx_ring - load the ring of receive buffers
726 * @dev: 3c527 to build the ring for
727 *
728 * This initalises the on-card and driver datastructures to
729 * the point where mc32_start_transceiver() can be called.
730 *
731 * The card sets up the receive ring for us. We are required to use the
732 * ring it provides, although the size of the ring is configurable.
733 *
734 * We allocate an sk_buff for each ring entry in turn and
735 * initalise its house-keeping info. At the same time, we read
736 * each 'next' pointer in our rx_ring array. This reduces slow
737 * shared-memory reads and makes it easy to access predecessor
738 * descriptors.
739 *
740 * We then set the end-of-list bit for the last entry so that the
741 * card will know when it has run out of buffers.
742 */
743
744 static int mc32_load_rx_ring(struct net_device *dev)
745 {
746 struct mc32_local *lp = netdev_priv(dev);
747 int i;
748 u16 rx_base;
749 volatile struct skb_header *p;
750
751 rx_base=lp->rx_chain;
752
753 for(i=0; i<RX_RING_LEN; i++) {
754 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
755 if (lp->rx_ring[i].skb==NULL) {
756 for (;i>=0;i--)
757 kfree_skb(lp->rx_ring[i].skb);
758 return -ENOBUFS;
759 }
760 skb_reserve(lp->rx_ring[i].skb, 18);
761
762 p=isa_bus_to_virt(lp->base+rx_base);
763
764 p->control=0;
765 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
766 p->status=0;
767 p->length=1532;
768
769 lp->rx_ring[i].p=p;
770 rx_base=p->next;
771 }
772
773 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
774
775 lp->rx_ring_tail=0;
776
777 return 0;
778 }
779
780
781 /**
782 * mc32_flush_rx_ring - free the ring of receive buffers
783 * @lp: Local data of 3c527 to flush the rx ring of
784 *
785 * Free the buffer for each ring slot. This may be called
786 * before mc32_load_rx_ring(), eg. on error in mc32_open().
787 * Requires rx skb pointers to point to a valid skb, or NULL.
788 */
789
790 static void mc32_flush_rx_ring(struct net_device *dev)
791 {
792 struct mc32_local *lp = netdev_priv(dev);
793 int i;
794
795 for(i=0; i < RX_RING_LEN; i++)
796 {
797 if (lp->rx_ring[i].skb) {
798 dev_kfree_skb(lp->rx_ring[i].skb);
799 lp->rx_ring[i].skb = NULL;
800 }
801 lp->rx_ring[i].p=NULL;
802 }
803 }
804
805
806 /**
807 * mc32_load_tx_ring - load transmit ring
808 * @dev: The 3c527 card to issue the command to
809 *
810 * This sets up the host transmit data-structures.
811 *
812 * First, we obtain from the card it's current postion in the tx
813 * ring, so that we will know where to begin transmitting
814 * packets.
815 *
816 * Then, we read the 'next' pointers from the on-card tx ring into
817 * our tx_ring array to reduce slow shared-mem reads. Finally, we
818 * intitalise the tx house keeping variables.
819 *
820 */
821
822 static void mc32_load_tx_ring(struct net_device *dev)
823 {
824 struct mc32_local *lp = netdev_priv(dev);
825 volatile struct skb_header *p;
826 int i;
827 u16 tx_base;
828
829 tx_base=lp->tx_box->data[0];
830
831 for(i=0 ; i<TX_RING_LEN ; i++)
832 {
833 p=isa_bus_to_virt(lp->base+tx_base);
834 lp->tx_ring[i].p=p;
835 lp->tx_ring[i].skb=NULL;
836
837 tx_base=p->next;
838 }
839
840 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
841 /* see mc32_tx_ring */
842
843 atomic_set(&lp->tx_count, TX_RING_LEN-1);
844 atomic_set(&lp->tx_ring_head, 0);
845 lp->tx_ring_tail=0;
846 }
847
848
849 /**
850 * mc32_flush_tx_ring - free transmit ring
851 * @lp: Local data of 3c527 to flush the tx ring of
852 *
853 * If the ring is non-empty, zip over the it, freeing any
854 * allocated skb_buffs. The tx ring house-keeping variables are
855 * then reset. Requires rx skb pointers to point to a valid skb,
856 * or NULL.
857 */
858
859 static void mc32_flush_tx_ring(struct net_device *dev)
860 {
861 struct mc32_local *lp = netdev_priv(dev);
862 int i;
863
864 for (i=0; i < TX_RING_LEN; i++)
865 {
866 if (lp->tx_ring[i].skb)
867 {
868 dev_kfree_skb(lp->tx_ring[i].skb);
869 lp->tx_ring[i].skb = NULL;
870 }
871 }
872
873 atomic_set(&lp->tx_count, 0);
874 atomic_set(&lp->tx_ring_head, 0);
875 lp->tx_ring_tail=0;
876 }
877
878
879 /**
880 * mc32_open - handle 'up' of card
881 * @dev: device to open
882 *
883 * The user is trying to bring the card into ready state. This requires
884 * a brief dialogue with the card. Firstly we enable interrupts and then
885 * 'indications'. Without these enabled the card doesn't bother telling
886 * us what it has done. This had me puzzled for a week.
887 *
888 * We configure the number of card descriptors, then load the network
889 * address and multicast filters. Turn on the workaround mode. This
890 * works around a bug in the 82586 - it asks the firmware to do
891 * so. It has a performance (latency) hit but is needed on busy
892 * [read most] lans. We load the ring with buffers then we kick it
893 * all off.
894 */
895
896 static int mc32_open(struct net_device *dev)
897 {
898 int ioaddr = dev->base_addr;
899 struct mc32_local *lp = netdev_priv(dev);
900 u8 one=1;
901 u8 regs;
902 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
903
904 /*
905 * Interrupts enabled
906 */
907
908 regs=inb(ioaddr+HOST_CTRL);
909 regs|=HOST_CTRL_INTE;
910 outb(regs, ioaddr+HOST_CTRL);
911
912 /*
913 * Allow ourselves to issue commands
914 */
915
916 up(&lp->cmd_mutex);
917
918
919 /*
920 * Send the indications on command
921 */
922
923 mc32_command(dev, 4, &one, 2);
924
925 /*
926 * Poke it to make sure it's really dead.
927 */
928
929 mc32_halt_transceiver(dev);
930 mc32_flush_tx_ring(dev);
931
932 /*
933 * Ask card to set up on-card descriptors to our spec
934 */
935
936 if(mc32_command(dev, 8, descnumbuffs, 4)) {
937 printk("%s: %s rejected our buffer configuration!\n",
938 dev->name, cardname);
939 mc32_close(dev);
940 return -ENOBUFS;
941 }
942
943 /* Report new configuration */
944 mc32_command(dev, 6, NULL, 0);
945
946 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
947 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
948 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
949 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
950
951 /* Set Network Address */
952 mc32_command(dev, 1, dev->dev_addr, 6);
953
954 /* Set the filters */
955 mc32_set_multicast_list(dev);
956
957 if (WORKAROUND_82586) {
958 u16 zero_word=0;
959 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
960 }
961
962 mc32_load_tx_ring(dev);
963
964 if(mc32_load_rx_ring(dev))
965 {
966 mc32_close(dev);
967 return -ENOBUFS;
968 }
969
970 lp->xceiver_desired_state = RUNNING;
971
972 /* And finally, set the ball rolling... */
973 mc32_start_transceiver(dev);
974
975 netif_start_queue(dev);
976
977 return 0;
978 }
979
980
981 /**
982 * mc32_timeout - handle a timeout from the network layer
983 * @dev: 3c527 that timed out
984 *
985 * Handle a timeout on transmit from the 3c527. This normally means
986 * bad things as the hardware handles cable timeouts and mess for
987 * us.
988 *
989 */
990
991 static void mc32_timeout(struct net_device *dev)
992 {
993 printk(KERN_WARNING "%s: transmit timed out?\n", dev->name);
994 /* Try to restart the adaptor. */
995 netif_wake_queue(dev);
996 }
997
998
999 /**
1000 * mc32_send_packet - queue a frame for transmit
1001 * @skb: buffer to transmit
1002 * @dev: 3c527 to send it out of
1003 *
1004 * Transmit a buffer. This normally means throwing the buffer onto
1005 * the transmit queue as the queue is quite large. If the queue is
1006 * full then we set tx_busy and return. Once the interrupt handler
1007 * gets messages telling it to reclaim transmit queue entries, we will
1008 * clear tx_busy and the kernel will start calling this again.
1009 *
1010 * We do not disable interrupts or acquire any locks; this can
1011 * run concurrently with mc32_tx_ring(), and the function itself
1012 * is serialised at a higher layer. However, similarly for the
1013 * card itself, we must ensure that we update tx_ring_head only
1014 * after we've established a valid packet on the tx ring (and
1015 * before we let the card "see" it, to prevent it racing with the
1016 * irq handler).
1017 *
1018 */
1019
1020 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev)
1021 {
1022 struct mc32_local *lp = netdev_priv(dev);
1023 u32 head = atomic_read(&lp->tx_ring_head);
1024
1025 volatile struct skb_header *p, *np;
1026
1027 netif_stop_queue(dev);
1028
1029 if(atomic_read(&lp->tx_count)==0) {
1030 return 1;
1031 }
1032
1033 if (skb_padto(skb, ETH_ZLEN)) {
1034 netif_wake_queue(dev);
1035 return 0;
1036 }
1037
1038 atomic_dec(&lp->tx_count);
1039
1040 /* P is the last sending/sent buffer as a pointer */
1041 p=lp->tx_ring[head].p;
1042
1043 head = next_tx(head);
1044
1045 /* NP is the buffer we will be loading */
1046 np=lp->tx_ring[head].p;
1047
1048 /* We will need this to flush the buffer out */
1049 lp->tx_ring[head].skb=skb;
1050
1051 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1052 np->data = isa_virt_to_bus(skb->data);
1053 np->status = 0;
1054 np->control = CONTROL_EOP | CONTROL_EOL;
1055 wmb();
1056
1057 /*
1058 * The new frame has been setup; we can now
1059 * let the interrupt handler and card "see" it
1060 */
1061
1062 atomic_set(&lp->tx_ring_head, head);
1063 p->control &= ~CONTROL_EOL;
1064
1065 netif_wake_queue(dev);
1066 return 0;
1067 }
1068
1069
1070 /**
1071 * mc32_update_stats - pull off the on board statistics
1072 * @dev: 3c527 to service
1073 *
1074 *
1075 * Query and reset the on-card stats. There's the small possibility
1076 * of a race here, which would result in an underestimation of
1077 * actual errors. As such, we'd prefer to keep all our stats
1078 * collection in software. As a rule, we do. However it can't be
1079 * used for rx errors and collisions as, by default, the card discards
1080 * bad rx packets.
1081 *
1082 * Setting the SAV BP in the rx filter command supposedly
1083 * stops this behaviour. However, testing shows that it only seems to
1084 * enable the collation of on-card rx statistics --- the driver
1085 * never sees an RX descriptor with an error status set.
1086 *
1087 */
1088
1089 static void mc32_update_stats(struct net_device *dev)
1090 {
1091 struct mc32_local *lp = netdev_priv(dev);
1092 volatile struct mc32_stats *st = lp->stats;
1093
1094 u32 rx_errors=0;
1095
1096 rx_errors+=lp->net_stats.rx_crc_errors +=st->rx_crc_errors;
1097 st->rx_crc_errors=0;
1098 rx_errors+=lp->net_stats.rx_fifo_errors +=st->rx_overrun_errors;
1099 st->rx_overrun_errors=0;
1100 rx_errors+=lp->net_stats.rx_frame_errors +=st->rx_alignment_errors;
1101 st->rx_alignment_errors=0;
1102 rx_errors+=lp->net_stats.rx_length_errors+=st->rx_tooshort_errors;
1103 st->rx_tooshort_errors=0;
1104 rx_errors+=lp->net_stats.rx_missed_errors+=st->rx_outofresource_errors;
1105 st->rx_outofresource_errors=0;
1106 lp->net_stats.rx_errors=rx_errors;
1107
1108 /* Number of packets which saw one collision */
1109 lp->net_stats.collisions+=st->dataC[10];
1110 st->dataC[10]=0;
1111
1112 /* Number of packets which saw 2--15 collisions */
1113 lp->net_stats.collisions+=st->dataC[11];
1114 st->dataC[11]=0;
1115 }
1116
1117
1118 /**
1119 * mc32_rx_ring - process the receive ring
1120 * @dev: 3c527 that needs its receive ring processing
1121 *
1122 *
1123 * We have received one or more indications from the card that a
1124 * receive has completed. The buffer ring thus contains dirty
1125 * entries. We walk the ring by iterating over the circular rx_ring
1126 * array, starting at the next dirty buffer (which happens to be the
1127 * one we finished up at last time around).
1128 *
1129 * For each completed packet, we will either copy it and pass it up
1130 * the stack or, if the packet is near MTU sized, we allocate
1131 * another buffer and flip the old one up the stack.
1132 *
1133 * We must succeed in keeping a buffer on the ring. If necessary we
1134 * will toss a received packet rather than lose a ring entry. Once
1135 * the first uncompleted descriptor is found, we move the
1136 * End-Of-List bit to include the buffers just processed.
1137 *
1138 */
1139
1140 static void mc32_rx_ring(struct net_device *dev)
1141 {
1142 struct mc32_local *lp = netdev_priv(dev);
1143 volatile struct skb_header *p;
1144 u16 rx_ring_tail;
1145 u16 rx_old_tail;
1146 int x=0;
1147
1148 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1149
1150 do
1151 {
1152 p=lp->rx_ring[rx_ring_tail].p;
1153
1154 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1155 break;
1156 }
1157 if(p->status & (1<<6)) /* COMPLETED_OK */
1158 {
1159
1160 u16 length=p->length;
1161 struct sk_buff *skb;
1162 struct sk_buff *newskb;
1163
1164 /* Try to save time by avoiding a copy on big frames */
1165
1166 if ((length > RX_COPYBREAK)
1167 && ((newskb=dev_alloc_skb(1532)) != NULL))
1168 {
1169 skb=lp->rx_ring[rx_ring_tail].skb;
1170 skb_put(skb, length);
1171
1172 skb_reserve(newskb,18);
1173 lp->rx_ring[rx_ring_tail].skb=newskb;
1174 p->data=isa_virt_to_bus(newskb->data);
1175 }
1176 else
1177 {
1178 skb=dev_alloc_skb(length+2);
1179
1180 if(skb==NULL) {
1181 lp->net_stats.rx_dropped++;
1182 goto dropped;
1183 }
1184
1185 skb_reserve(skb,2);
1186 memcpy(skb_put(skb, length),
1187 lp->rx_ring[rx_ring_tail].skb->data, length);
1188 }
1189
1190 skb->protocol=eth_type_trans(skb,dev);
1191 dev->last_rx = jiffies;
1192 lp->net_stats.rx_packets++;
1193 lp->net_stats.rx_bytes += length;
1194 netif_rx(skb);
1195 }
1196
1197 dropped:
1198 p->length = 1532;
1199 p->status = 0;
1200
1201 rx_ring_tail=next_rx(rx_ring_tail);
1202 }
1203 while(x++<48);
1204
1205 /* If there was actually a frame to be processed, place the EOL bit */
1206 /* at the descriptor prior to the one to be filled next */
1207
1208 if (rx_ring_tail != rx_old_tail)
1209 {
1210 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1211 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1212
1213 lp->rx_ring_tail=rx_ring_tail;
1214 }
1215 }
1216
1217
1218 /**
1219 * mc32_tx_ring - process completed transmits
1220 * @dev: 3c527 that needs its transmit ring processing
1221 *
1222 *
1223 * This operates in a similar fashion to mc32_rx_ring. We iterate
1224 * over the transmit ring. For each descriptor which has been
1225 * processed by the card, we free its associated buffer and note
1226 * any errors. This continues until the transmit ring is emptied
1227 * or we reach a descriptor that hasn't yet been processed by the
1228 * card.
1229 *
1230 */
1231
1232 static void mc32_tx_ring(struct net_device *dev)
1233 {
1234 struct mc32_local *lp = netdev_priv(dev);
1235 volatile struct skb_header *np;
1236
1237 /*
1238 * We rely on head==tail to mean 'queue empty'.
1239 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1240 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1241 * condition with 'queue full'
1242 */
1243
1244 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1245 {
1246 u16 t;
1247
1248 t=next_tx(lp->tx_ring_tail);
1249 np=lp->tx_ring[t].p;
1250
1251 if(!(np->status & (1<<7)))
1252 {
1253 /* Not COMPLETED */
1254 break;
1255 }
1256 lp->net_stats.tx_packets++;
1257 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1258 {
1259 lp->net_stats.tx_errors++;
1260
1261 switch(np->status&0x0F)
1262 {
1263 case 1:
1264 lp->net_stats.tx_aborted_errors++;
1265 break; /* Max collisions */
1266 case 2:
1267 lp->net_stats.tx_fifo_errors++;
1268 break;
1269 case 3:
1270 lp->net_stats.tx_carrier_errors++;
1271 break;
1272 case 4:
1273 lp->net_stats.tx_window_errors++;
1274 break; /* CTS Lost */
1275 case 5:
1276 lp->net_stats.tx_aborted_errors++;
1277 break; /* Transmit timeout */
1278 }
1279 }
1280 /* Packets are sent in order - this is
1281 basically a FIFO queue of buffers matching
1282 the card ring */
1283 lp->net_stats.tx_bytes+=lp->tx_ring[t].skb->len;
1284 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1285 lp->tx_ring[t].skb=NULL;
1286 atomic_inc(&lp->tx_count);
1287 netif_wake_queue(dev);
1288
1289 lp->tx_ring_tail=t;
1290 }
1291
1292 }
1293
1294
1295 /**
1296 * mc32_interrupt - handle an interrupt from a 3c527
1297 * @irq: Interrupt number
1298 * @dev_id: 3c527 that requires servicing
1299 * @regs: Registers (unused)
1300 *
1301 *
1302 * An interrupt is raised whenever the 3c527 writes to the command
1303 * register. This register contains the message it wishes to send us
1304 * packed into a single byte field. We keep reading status entries
1305 * until we have processed all the control items, but simply count
1306 * transmit and receive reports. When all reports are in we empty the
1307 * transceiver rings as appropriate. This saves the overhead of
1308 * multiple command requests.
1309 *
1310 * Because MCA is level-triggered, we shouldn't miss indications.
1311 * Therefore, we needn't ask the card to suspend interrupts within
1312 * this handler. The card receives an implicit acknowledgment of the
1313 * current interrupt when we read the command register.
1314 *
1315 */
1316
1317 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1318 {
1319 struct net_device *dev = dev_id;
1320 struct mc32_local *lp;
1321 int ioaddr, status, boguscount = 0;
1322 int rx_event = 0;
1323 int tx_event = 0;
1324
1325 ioaddr = dev->base_addr;
1326 lp = netdev_priv(dev);
1327
1328 /* See whats cooking */
1329
1330 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1331 {
1332 status=inb(ioaddr+HOST_CMD);
1333
1334 #ifdef DEBUG_IRQ
1335 printk("Status TX%d RX%d EX%d OV%d BC%d\n",
1336 (status&7), (status>>3)&7, (status>>6)&1,
1337 (status>>7)&1, boguscount);
1338 #endif
1339
1340 switch(status&7)
1341 {
1342 case 0:
1343 break;
1344 case 6: /* TX fail */
1345 case 2: /* TX ok */
1346 tx_event = 1;
1347 break;
1348 case 3: /* Halt */
1349 case 4: /* Abort */
1350 complete(&lp->xceiver_cmd);
1351 break;
1352 default:
1353 printk("%s: strange tx ack %d\n", dev->name, status&7);
1354 }
1355 status>>=3;
1356 switch(status&7)
1357 {
1358 case 0:
1359 break;
1360 case 2: /* RX */
1361 rx_event=1;
1362 break;
1363 case 3: /* Halt */
1364 case 4: /* Abort */
1365 complete(&lp->xceiver_cmd);
1366 break;
1367 case 6:
1368 /* Out of RX buffers stat */
1369 /* Must restart rx */
1370 lp->net_stats.rx_dropped++;
1371 mc32_rx_ring(dev);
1372 mc32_start_transceiver(dev);
1373 break;
1374 default:
1375 printk("%s: strange rx ack %d\n",
1376 dev->name, status&7);
1377 }
1378 status>>=3;
1379 if(status&1)
1380 {
1381 /*
1382 * No thread is waiting: we need to tidy
1383 * up ourself.
1384 */
1385
1386 if (lp->cmd_nonblocking) {
1387 up(&lp->cmd_mutex);
1388 if (lp->mc_reload_wait)
1389 mc32_reset_multicast_list(dev);
1390 }
1391 else complete(&lp->execution_cmd);
1392 }
1393 if(status&2)
1394 {
1395 /*
1396 * We get interrupted once per
1397 * counter that is about to overflow.
1398 */
1399
1400 mc32_update_stats(dev);
1401 }
1402 }
1403
1404
1405 /*
1406 * Process the transmit and receive rings
1407 */
1408
1409 if(tx_event)
1410 mc32_tx_ring(dev);
1411
1412 if(rx_event)
1413 mc32_rx_ring(dev);
1414
1415 return IRQ_HANDLED;
1416 }
1417
1418
1419 /**
1420 * mc32_close - user configuring the 3c527 down
1421 * @dev: 3c527 card to shut down
1422 *
1423 * The 3c527 is a bus mastering device. We must be careful how we
1424 * shut it down. It may also be running shared interrupt so we have
1425 * to be sure to silence it properly
1426 *
1427 * We indicate that the card is closing to the rest of the
1428 * driver. Otherwise, it is possible that the card may run out
1429 * of receive buffers and restart the transceiver while we're
1430 * trying to close it.
1431 *
1432 * We abort any receive and transmits going on and then wait until
1433 * any pending exec commands have completed in other code threads.
1434 * In theory we can't get here while that is true, in practice I am
1435 * paranoid
1436 *
1437 * We turn off the interrupt enable for the board to be sure it can't
1438 * intefere with other devices.
1439 */
1440
1441 static int mc32_close(struct net_device *dev)
1442 {
1443 struct mc32_local *lp = netdev_priv(dev);
1444 int ioaddr = dev->base_addr;
1445
1446 u8 regs;
1447 u16 one=1;
1448
1449 lp->xceiver_desired_state = HALTED;
1450 netif_stop_queue(dev);
1451
1452 /*
1453 * Send the indications on command (handy debug check)
1454 */
1455
1456 mc32_command(dev, 4, &one, 2);
1457
1458 /* Shut down the transceiver */
1459
1460 mc32_halt_transceiver(dev);
1461
1462 /* Ensure we issue no more commands beyond this point */
1463
1464 down(&lp->cmd_mutex);
1465
1466 /* Ok the card is now stopping */
1467
1468 regs=inb(ioaddr+HOST_CTRL);
1469 regs&=~HOST_CTRL_INTE;
1470 outb(regs, ioaddr+HOST_CTRL);
1471
1472 mc32_flush_rx_ring(dev);
1473 mc32_flush_tx_ring(dev);
1474
1475 mc32_update_stats(dev);
1476
1477 return 0;
1478 }
1479
1480
1481 /**
1482 * mc32_get_stats - hand back stats to network layer
1483 * @dev: The 3c527 card to handle
1484 *
1485 * We've collected all the stats we can in software already. Now
1486 * it's time to update those kept on-card and return the lot.
1487 *
1488 */
1489
1490 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1491 {
1492 struct mc32_local *lp = netdev_priv(dev);
1493
1494 mc32_update_stats(dev);
1495 return &lp->net_stats;
1496 }
1497
1498
1499 /**
1500 * do_mc32_set_multicast_list - attempt to update multicasts
1501 * @dev: 3c527 device to load the list on
1502 * @retry: indicates this is not the first call.
1503 *
1504 *
1505 * Actually set or clear the multicast filter for this adaptor. The
1506 * locking issues are handled by this routine. We have to track
1507 * state as it may take multiple calls to get the command sequence
1508 * completed. We just keep trying to schedule the loads until we
1509 * manage to process them all.
1510 *
1511 * num_addrs == -1 Promiscuous mode, receive all packets
1512 *
1513 * num_addrs == 0 Normal mode, clear multicast list
1514 *
1515 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1516 * and do best-effort filtering.
1517 *
1518 * See mc32_update_stats() regards setting the SAV BP bit.
1519 *
1520 */
1521
1522 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1523 {
1524 struct mc32_local *lp = netdev_priv(dev);
1525 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1526
1527 if (dev->flags&IFF_PROMISC)
1528 /* Enable promiscuous mode */
1529 filt |= 1;
1530 else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > 10)
1531 {
1532 dev->flags|=IFF_PROMISC;
1533 filt |= 1;
1534 }
1535 else if(dev->mc_count)
1536 {
1537 unsigned char block[62];
1538 unsigned char *bp;
1539 struct dev_mc_list *dmc=dev->mc_list;
1540
1541 int i;
1542
1543 if(retry==0)
1544 lp->mc_list_valid = 0;
1545 if(!lp->mc_list_valid)
1546 {
1547 block[1]=0;
1548 block[0]=dev->mc_count;
1549 bp=block+2;
1550
1551 for(i=0;i<dev->mc_count;i++)
1552 {
1553 memcpy(bp, dmc->dmi_addr, 6);
1554 bp+=6;
1555 dmc=dmc->next;
1556 }
1557 if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1)
1558 {
1559 lp->mc_reload_wait = 1;
1560 return;
1561 }
1562 lp->mc_list_valid=1;
1563 }
1564 }
1565
1566 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1567 {
1568 lp->mc_reload_wait = 1;
1569 }
1570 else {
1571 lp->mc_reload_wait = 0;
1572 }
1573 }
1574
1575
1576 /**
1577 * mc32_set_multicast_list - queue multicast list update
1578 * @dev: The 3c527 to use
1579 *
1580 * Commence loading the multicast list. This is called when the kernel
1581 * changes the lists. It will override any pending list we are trying to
1582 * load.
1583 */
1584
1585 static void mc32_set_multicast_list(struct net_device *dev)
1586 {
1587 do_mc32_set_multicast_list(dev,0);
1588 }
1589
1590
1591 /**
1592 * mc32_reset_multicast_list - reset multicast list
1593 * @dev: The 3c527 to use
1594 *
1595 * Attempt the next step in loading the multicast lists. If this attempt
1596 * fails to complete then it will be scheduled and this function called
1597 * again later from elsewhere.
1598 */
1599
1600 static void mc32_reset_multicast_list(struct net_device *dev)
1601 {
1602 do_mc32_set_multicast_list(dev,1);
1603 }
1604
1605 static void netdev_get_drvinfo(struct net_device *dev,
1606 struct ethtool_drvinfo *info)
1607 {
1608 strcpy(info->driver, DRV_NAME);
1609 strcpy(info->version, DRV_VERSION);
1610 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1611 }
1612
1613 static u32 netdev_get_msglevel(struct net_device *dev)
1614 {
1615 return mc32_debug;
1616 }
1617
1618 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1619 {
1620 mc32_debug = level;
1621 }
1622
1623 static const struct ethtool_ops netdev_ethtool_ops = {
1624 .get_drvinfo = netdev_get_drvinfo,
1625 .get_msglevel = netdev_get_msglevel,
1626 .set_msglevel = netdev_set_msglevel,
1627 };
1628
1629 #ifdef MODULE
1630
1631 static struct net_device *this_device;
1632
1633 /**
1634 * init_module - entry point
1635 *
1636 * Probe and locate a 3c527 card. This really should probe and locate
1637 * all the 3c527 cards in the machine not just one of them. Yes you can
1638 * insmod multiple modules for now but it's a hack.
1639 */
1640
1641 int __init init_module(void)
1642 {
1643 this_device = mc32_probe(-1);
1644 if (IS_ERR(this_device))
1645 return PTR_ERR(this_device);
1646 return 0;
1647 }
1648
1649 /**
1650 * cleanup_module - free resources for an unload
1651 *
1652 * Unloading time. We release the MCA bus resources and the interrupt
1653 * at which point everything is ready to unload. The card must be stopped
1654 * at this point or we would not have been called. When we unload we
1655 * leave the card stopped but not totally shut down. When the card is
1656 * initialized it must be rebooted or the rings reloaded before any
1657 * transmit operations are allowed to start scribbling into memory.
1658 */
1659
1660 void __exit cleanup_module(void)
1661 {
1662 unregister_netdev(this_device);
1663 cleanup_card(this_device);
1664 free_netdev(this_device);
1665 }
1666
1667 #endif /* MODULE */