]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/acenic.c
Merge branch 'nfs-for-2.6.37' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / acenic.c
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
4 *
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6 *
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
9 *
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51 */
52
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71
72 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
73 #include <linux/if_vlan.h>
74 #endif
75
76 #ifdef SIOCETHTOOL
77 #include <linux/ethtool.h>
78 #endif
79
80 #include <net/sock.h>
81 #include <net/ip.h>
82
83 #include <asm/system.h>
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/byteorder.h>
87 #include <asm/uaccess.h>
88
89
90 #define DRV_NAME "acenic"
91
92 #undef INDEX_DEBUG
93
94 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
95 #define ACE_IS_TIGON_I(ap) 0
96 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #else
98 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
99 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
100 #endif
101
102 #ifndef PCI_VENDOR_ID_ALTEON
103 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #endif
105 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
107 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #endif
109 #ifndef PCI_DEVICE_ID_3COM_3C985
110 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #endif
112 #ifndef PCI_VENDOR_ID_NETGEAR
113 #define PCI_VENDOR_ID_NETGEAR 0x1385
114 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #endif
116 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
117 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
118 #endif
119
120
121 /*
122 * Farallon used the DEC vendor ID by mistake and they seem not
123 * to care - stinky!
124 */
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
126 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #endif
128 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
129 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #endif
131 #ifndef PCI_VENDOR_ID_SGI
132 #define PCI_VENDOR_ID_SGI 0x10a9
133 #endif
134 #ifndef PCI_DEVICE_ID_SGI_ACENIC
135 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
136 #endif
137
138 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
139 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 /*
150 * Farallon used the DEC vendor ID on their cards incorrectly,
151 * then later Alteon's ID.
152 */
153 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
156 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
157 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
158 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
159 { }
160 };
161 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
162
163 #define ace_sync_irq(irq) synchronize_irq(irq)
164
165 #ifndef offset_in_page
166 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
167 #endif
168
169 #define ACE_MAX_MOD_PARMS 8
170 #define BOARD_IDX_STATIC 0
171 #define BOARD_IDX_OVERFLOW -1
172
173 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
174 defined(NETIF_F_HW_VLAN_RX)
175 #define ACENIC_DO_VLAN 1
176 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
177 #else
178 #define ACENIC_DO_VLAN 0
179 #define ACE_RCB_VLAN_FLAG 0
180 #endif
181
182 #include "acenic.h"
183
184 /*
185 * These must be defined before the firmware is included.
186 */
187 #define MAX_TEXT_LEN 96*1024
188 #define MAX_RODATA_LEN 8*1024
189 #define MAX_DATA_LEN 2*1024
190
191 #ifndef tigon2FwReleaseLocal
192 #define tigon2FwReleaseLocal 0
193 #endif
194
195 /*
196 * This driver currently supports Tigon I and Tigon II based cards
197 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
198 * GA620. The driver should also work on the SGI, DEC and Farallon
199 * versions of the card, however I have not been able to test that
200 * myself.
201 *
202 * This card is really neat, it supports receive hardware checksumming
203 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
204 * firmware. Also the programming interface is quite neat, except for
205 * the parts dealing with the i2c eeprom on the card ;-)
206 *
207 * Using jumbo frames:
208 *
209 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
210 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
211 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
212 * interface number and <MTU> being the MTU value.
213 *
214 * Module parameters:
215 *
216 * When compiled as a loadable module, the driver allows for a number
217 * of module parameters to be specified. The driver supports the
218 * following module parameters:
219 *
220 * trace=<val> - Firmware trace level. This requires special traced
221 * firmware to replace the firmware supplied with
222 * the driver - for debugging purposes only.
223 *
224 * link=<val> - Link state. Normally you want to use the default link
225 * parameters set by the driver. This can be used to
226 * override these in case your switch doesn't negotiate
227 * the link properly. Valid values are:
228 * 0x0001 - Force half duplex link.
229 * 0x0002 - Do not negotiate line speed with the other end.
230 * 0x0010 - 10Mbit/sec link.
231 * 0x0020 - 100Mbit/sec link.
232 * 0x0040 - 1000Mbit/sec link.
233 * 0x0100 - Do not negotiate flow control.
234 * 0x0200 - Enable RX flow control Y
235 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
236 * Default value is 0x0270, ie. enable link+flow
237 * control negotiation. Negotiating the highest
238 * possible link speed with RX flow control enabled.
239 *
240 * When disabling link speed negotiation, only one link
241 * speed is allowed to be specified!
242 *
243 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
244 * to wait for more packets to arive before
245 * interrupting the host, from the time the first
246 * packet arrives.
247 *
248 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive in the transmit ring,
250 * before interrupting the host, after transmitting the
251 * first packet in the ring.
252 *
253 * max_tx_desc=<val> - maximum number of transmit descriptors
254 * (packets) transmitted before interrupting the host.
255 *
256 * max_rx_desc=<val> - maximum number of receive descriptors
257 * (packets) received before interrupting the host.
258 *
259 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
260 * increments of the NIC's on board memory to be used for
261 * transmit and receive buffers. For the 1MB NIC app. 800KB
262 * is available, on the 1/2MB NIC app. 300KB is available.
263 * 68KB will always be available as a minimum for both
264 * directions. The default value is a 50/50 split.
265 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
266 * operations, default (1) is to always disable this as
267 * that is what Alteon does on NT. I have not been able
268 * to measure any real performance differences with
269 * this on my systems. Set <val>=0 if you want to
270 * enable these operations.
271 *
272 * If you use more than one NIC, specify the parameters for the
273 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
274 * run tracing on NIC #2 but not on NIC #1 and #3.
275 *
276 * TODO:
277 *
278 * - Proper multicast support.
279 * - NIC dump support.
280 * - More tuning parameters.
281 *
282 * The mini ring is not used under Linux and I am not sure it makes sense
283 * to actually use it.
284 *
285 * New interrupt handler strategy:
286 *
287 * The old interrupt handler worked using the traditional method of
288 * replacing an skbuff with a new one when a packet arrives. However
289 * the rx rings do not need to contain a static number of buffer
290 * descriptors, thus it makes sense to move the memory allocation out
291 * of the main interrupt handler and do it in a bottom half handler
292 * and only allocate new buffers when the number of buffers in the
293 * ring is below a certain threshold. In order to avoid starving the
294 * NIC under heavy load it is however necessary to force allocation
295 * when hitting a minimum threshold. The strategy for alloction is as
296 * follows:
297 *
298 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
299 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
300 * the buffers in the interrupt handler
301 * RX_RING_THRES - maximum number of buffers in the rx ring
302 * RX_MINI_THRES - maximum number of buffers in the mini ring
303 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
304 *
305 * One advantagous side effect of this allocation approach is that the
306 * entire rx processing can be done without holding any spin lock
307 * since the rx rings and registers are totally independent of the tx
308 * ring and its registers. This of course includes the kmalloc's of
309 * new skb's. Thus start_xmit can run in parallel with rx processing
310 * and the memory allocation on SMP systems.
311 *
312 * Note that running the skb reallocation in a bottom half opens up
313 * another can of races which needs to be handled properly. In
314 * particular it can happen that the interrupt handler tries to run
315 * the reallocation while the bottom half is either running on another
316 * CPU or was interrupted on the same CPU. To get around this the
317 * driver uses bitops to prevent the reallocation routines from being
318 * reentered.
319 *
320 * TX handling can also be done without holding any spin lock, wheee
321 * this is fun! since tx_ret_csm is only written to by the interrupt
322 * handler. The case to be aware of is when shutting down the device
323 * and cleaning up where it is necessary to make sure that
324 * start_xmit() is not running while this is happening. Well DaveM
325 * informs me that this case is already protected against ... bye bye
326 * Mr. Spin Lock, it was nice to know you.
327 *
328 * TX interrupts are now partly disabled so the NIC will only generate
329 * TX interrupts for the number of coal ticks, not for the number of
330 * TX packets in the queue. This should reduce the number of TX only,
331 * ie. when no RX processing is done, interrupts seen.
332 */
333
334 /*
335 * Threshold values for RX buffer allocation - the low water marks for
336 * when to start refilling the rings are set to 75% of the ring
337 * sizes. It seems to make sense to refill the rings entirely from the
338 * intrrupt handler once it gets below the panic threshold, that way
339 * we don't risk that the refilling is moved to another CPU when the
340 * one running the interrupt handler just got the slab code hot in its
341 * cache.
342 */
343 #define RX_RING_SIZE 72
344 #define RX_MINI_SIZE 64
345 #define RX_JUMBO_SIZE 48
346
347 #define RX_PANIC_STD_THRES 16
348 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
349 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
350 #define RX_PANIC_MINI_THRES 12
351 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
352 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
353 #define RX_PANIC_JUMBO_THRES 6
354 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
355 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
356
357
358 /*
359 * Size of the mini ring entries, basically these just should be big
360 * enough to take TCP ACKs
361 */
362 #define ACE_MINI_SIZE 100
363
364 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
365 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
366 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
367
368 /*
369 * There seems to be a magic difference in the effect between 995 and 996
370 * but little difference between 900 and 995 ... no idea why.
371 *
372 * There is now a default set of tuning parameters which is set, depending
373 * on whether or not the user enables Jumbo frames. It's assumed that if
374 * Jumbo frames are enabled, the user wants optimal tuning for that case.
375 */
376 #define DEF_TX_COAL 400 /* 996 */
377 #define DEF_TX_MAX_DESC 60 /* was 40 */
378 #define DEF_RX_COAL 120 /* 1000 */
379 #define DEF_RX_MAX_DESC 25
380 #define DEF_TX_RATIO 21 /* 24 */
381
382 #define DEF_JUMBO_TX_COAL 20
383 #define DEF_JUMBO_TX_MAX_DESC 60
384 #define DEF_JUMBO_RX_COAL 30
385 #define DEF_JUMBO_RX_MAX_DESC 6
386 #define DEF_JUMBO_TX_RATIO 21
387
388 #if tigon2FwReleaseLocal < 20001118
389 /*
390 * Standard firmware and early modifications duplicate
391 * IRQ load without this flag (coal timer is never reset).
392 * Note that with this flag tx_coal should be less than
393 * time to xmit full tx ring.
394 * 400usec is not so bad for tx ring size of 128.
395 */
396 #define TX_COAL_INTS_ONLY 1 /* worth it */
397 #else
398 /*
399 * With modified firmware, this is not necessary, but still useful.
400 */
401 #define TX_COAL_INTS_ONLY 1
402 #endif
403
404 #define DEF_TRACE 0
405 #define DEF_STAT (2 * TICKS_PER_SEC)
406
407
408 static int link_state[ACE_MAX_MOD_PARMS];
409 static int trace[ACE_MAX_MOD_PARMS];
410 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
411 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
412 static int max_tx_desc[ACE_MAX_MOD_PARMS];
413 static int max_rx_desc[ACE_MAX_MOD_PARMS];
414 static int tx_ratio[ACE_MAX_MOD_PARMS];
415 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
416
417 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
418 MODULE_LICENSE("GPL");
419 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
420 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
421 MODULE_FIRMWARE("acenic/tg1.bin");
422 #endif
423 MODULE_FIRMWARE("acenic/tg2.bin");
424
425 module_param_array_named(link, link_state, int, NULL, 0);
426 module_param_array(trace, int, NULL, 0);
427 module_param_array(tx_coal_tick, int, NULL, 0);
428 module_param_array(max_tx_desc, int, NULL, 0);
429 module_param_array(rx_coal_tick, int, NULL, 0);
430 module_param_array(max_rx_desc, int, NULL, 0);
431 module_param_array(tx_ratio, int, NULL, 0);
432 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
433 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
434 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
435 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
436 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
437 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
438 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
439
440
441 static const char version[] __devinitconst =
442 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
443 " http://home.cern.ch/~jes/gige/acenic.html\n";
444
445 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
446 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
447 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
448
449 static const struct ethtool_ops ace_ethtool_ops = {
450 .get_settings = ace_get_settings,
451 .set_settings = ace_set_settings,
452 .get_drvinfo = ace_get_drvinfo,
453 };
454
455 static void ace_watchdog(struct net_device *dev);
456
457 static const struct net_device_ops ace_netdev_ops = {
458 .ndo_open = ace_open,
459 .ndo_stop = ace_close,
460 .ndo_tx_timeout = ace_watchdog,
461 .ndo_get_stats = ace_get_stats,
462 .ndo_start_xmit = ace_start_xmit,
463 .ndo_set_multicast_list = ace_set_multicast_list,
464 .ndo_validate_addr = eth_validate_addr,
465 .ndo_set_mac_address = ace_set_mac_addr,
466 .ndo_change_mtu = ace_change_mtu,
467 #if ACENIC_DO_VLAN
468 .ndo_vlan_rx_register = ace_vlan_rx_register,
469 #endif
470 };
471
472 static int __devinit acenic_probe_one(struct pci_dev *pdev,
473 const struct pci_device_id *id)
474 {
475 struct net_device *dev;
476 struct ace_private *ap;
477 static int boards_found;
478
479 dev = alloc_etherdev(sizeof(struct ace_private));
480 if (dev == NULL) {
481 printk(KERN_ERR "acenic: Unable to allocate "
482 "net_device structure!\n");
483 return -ENOMEM;
484 }
485
486 SET_NETDEV_DEV(dev, &pdev->dev);
487
488 ap = netdev_priv(dev);
489 ap->pdev = pdev;
490 ap->name = pci_name(pdev);
491
492 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
493 #if ACENIC_DO_VLAN
494 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
495 #endif
496
497 dev->watchdog_timeo = 5*HZ;
498
499 dev->netdev_ops = &ace_netdev_ops;
500 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
501
502 /* we only display this string ONCE */
503 if (!boards_found)
504 printk(version);
505
506 if (pci_enable_device(pdev))
507 goto fail_free_netdev;
508
509 /*
510 * Enable master mode before we start playing with the
511 * pci_command word since pci_set_master() will modify
512 * it.
513 */
514 pci_set_master(pdev);
515
516 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
517
518 /* OpenFirmware on Mac's does not set this - DOH.. */
519 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
520 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
521 "access - was not enabled by BIOS/Firmware\n",
522 ap->name);
523 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
524 pci_write_config_word(ap->pdev, PCI_COMMAND,
525 ap->pci_command);
526 wmb();
527 }
528
529 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
530 if (ap->pci_latency <= 0x40) {
531 ap->pci_latency = 0x40;
532 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
533 }
534
535 /*
536 * Remap the regs into kernel space - this is abuse of
537 * dev->base_addr since it was means for I/O port
538 * addresses but who gives a damn.
539 */
540 dev->base_addr = pci_resource_start(pdev, 0);
541 ap->regs = ioremap(dev->base_addr, 0x4000);
542 if (!ap->regs) {
543 printk(KERN_ERR "%s: Unable to map I/O register, "
544 "AceNIC %i will be disabled.\n",
545 ap->name, boards_found);
546 goto fail_free_netdev;
547 }
548
549 switch(pdev->vendor) {
550 case PCI_VENDOR_ID_ALTEON:
551 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
552 printk(KERN_INFO "%s: Farallon PN9100-T ",
553 ap->name);
554 } else {
555 printk(KERN_INFO "%s: Alteon AceNIC ",
556 ap->name);
557 }
558 break;
559 case PCI_VENDOR_ID_3COM:
560 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
561 break;
562 case PCI_VENDOR_ID_NETGEAR:
563 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
564 break;
565 case PCI_VENDOR_ID_DEC:
566 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
567 printk(KERN_INFO "%s: Farallon PN9000-SX ",
568 ap->name);
569 break;
570 }
571 case PCI_VENDOR_ID_SGI:
572 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
573 break;
574 default:
575 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
576 break;
577 }
578
579 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
580 printk("irq %d\n", pdev->irq);
581
582 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
583 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
584 printk(KERN_ERR "%s: Driver compiled without Tigon I"
585 " support - NIC disabled\n", dev->name);
586 goto fail_uninit;
587 }
588 #endif
589
590 if (ace_allocate_descriptors(dev))
591 goto fail_free_netdev;
592
593 #ifdef MODULE
594 if (boards_found >= ACE_MAX_MOD_PARMS)
595 ap->board_idx = BOARD_IDX_OVERFLOW;
596 else
597 ap->board_idx = boards_found;
598 #else
599 ap->board_idx = BOARD_IDX_STATIC;
600 #endif
601
602 if (ace_init(dev))
603 goto fail_free_netdev;
604
605 if (register_netdev(dev)) {
606 printk(KERN_ERR "acenic: device registration failed\n");
607 goto fail_uninit;
608 }
609 ap->name = dev->name;
610
611 if (ap->pci_using_dac)
612 dev->features |= NETIF_F_HIGHDMA;
613
614 pci_set_drvdata(pdev, dev);
615
616 boards_found++;
617 return 0;
618
619 fail_uninit:
620 ace_init_cleanup(dev);
621 fail_free_netdev:
622 free_netdev(dev);
623 return -ENODEV;
624 }
625
626 static void __devexit acenic_remove_one(struct pci_dev *pdev)
627 {
628 struct net_device *dev = pci_get_drvdata(pdev);
629 struct ace_private *ap = netdev_priv(dev);
630 struct ace_regs __iomem *regs = ap->regs;
631 short i;
632
633 unregister_netdev(dev);
634
635 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
636 if (ap->version >= 2)
637 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
638
639 /*
640 * This clears any pending interrupts
641 */
642 writel(1, &regs->Mb0Lo);
643 readl(&regs->CpuCtrl); /* flush */
644
645 /*
646 * Make sure no other CPUs are processing interrupts
647 * on the card before the buffers are being released.
648 * Otherwise one might experience some `interesting'
649 * effects.
650 *
651 * Then release the RX buffers - jumbo buffers were
652 * already released in ace_close().
653 */
654 ace_sync_irq(dev->irq);
655
656 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
657 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
658
659 if (skb) {
660 struct ring_info *ringp;
661 dma_addr_t mapping;
662
663 ringp = &ap->skb->rx_std_skbuff[i];
664 mapping = dma_unmap_addr(ringp, mapping);
665 pci_unmap_page(ap->pdev, mapping,
666 ACE_STD_BUFSIZE,
667 PCI_DMA_FROMDEVICE);
668
669 ap->rx_std_ring[i].size = 0;
670 ap->skb->rx_std_skbuff[i].skb = NULL;
671 dev_kfree_skb(skb);
672 }
673 }
674
675 if (ap->version >= 2) {
676 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
677 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
678
679 if (skb) {
680 struct ring_info *ringp;
681 dma_addr_t mapping;
682
683 ringp = &ap->skb->rx_mini_skbuff[i];
684 mapping = dma_unmap_addr(ringp,mapping);
685 pci_unmap_page(ap->pdev, mapping,
686 ACE_MINI_BUFSIZE,
687 PCI_DMA_FROMDEVICE);
688
689 ap->rx_mini_ring[i].size = 0;
690 ap->skb->rx_mini_skbuff[i].skb = NULL;
691 dev_kfree_skb(skb);
692 }
693 }
694 }
695
696 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
697 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
698 if (skb) {
699 struct ring_info *ringp;
700 dma_addr_t mapping;
701
702 ringp = &ap->skb->rx_jumbo_skbuff[i];
703 mapping = dma_unmap_addr(ringp, mapping);
704 pci_unmap_page(ap->pdev, mapping,
705 ACE_JUMBO_BUFSIZE,
706 PCI_DMA_FROMDEVICE);
707
708 ap->rx_jumbo_ring[i].size = 0;
709 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
710 dev_kfree_skb(skb);
711 }
712 }
713
714 ace_init_cleanup(dev);
715 free_netdev(dev);
716 }
717
718 static struct pci_driver acenic_pci_driver = {
719 .name = "acenic",
720 .id_table = acenic_pci_tbl,
721 .probe = acenic_probe_one,
722 .remove = __devexit_p(acenic_remove_one),
723 };
724
725 static int __init acenic_init(void)
726 {
727 return pci_register_driver(&acenic_pci_driver);
728 }
729
730 static void __exit acenic_exit(void)
731 {
732 pci_unregister_driver(&acenic_pci_driver);
733 }
734
735 module_init(acenic_init);
736 module_exit(acenic_exit);
737
738 static void ace_free_descriptors(struct net_device *dev)
739 {
740 struct ace_private *ap = netdev_priv(dev);
741 int size;
742
743 if (ap->rx_std_ring != NULL) {
744 size = (sizeof(struct rx_desc) *
745 (RX_STD_RING_ENTRIES +
746 RX_JUMBO_RING_ENTRIES +
747 RX_MINI_RING_ENTRIES +
748 RX_RETURN_RING_ENTRIES));
749 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
750 ap->rx_ring_base_dma);
751 ap->rx_std_ring = NULL;
752 ap->rx_jumbo_ring = NULL;
753 ap->rx_mini_ring = NULL;
754 ap->rx_return_ring = NULL;
755 }
756 if (ap->evt_ring != NULL) {
757 size = (sizeof(struct event) * EVT_RING_ENTRIES);
758 pci_free_consistent(ap->pdev, size, ap->evt_ring,
759 ap->evt_ring_dma);
760 ap->evt_ring = NULL;
761 }
762 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
763 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
764 pci_free_consistent(ap->pdev, size, ap->tx_ring,
765 ap->tx_ring_dma);
766 }
767 ap->tx_ring = NULL;
768
769 if (ap->evt_prd != NULL) {
770 pci_free_consistent(ap->pdev, sizeof(u32),
771 (void *)ap->evt_prd, ap->evt_prd_dma);
772 ap->evt_prd = NULL;
773 }
774 if (ap->rx_ret_prd != NULL) {
775 pci_free_consistent(ap->pdev, sizeof(u32),
776 (void *)ap->rx_ret_prd,
777 ap->rx_ret_prd_dma);
778 ap->rx_ret_prd = NULL;
779 }
780 if (ap->tx_csm != NULL) {
781 pci_free_consistent(ap->pdev, sizeof(u32),
782 (void *)ap->tx_csm, ap->tx_csm_dma);
783 ap->tx_csm = NULL;
784 }
785 }
786
787
788 static int ace_allocate_descriptors(struct net_device *dev)
789 {
790 struct ace_private *ap = netdev_priv(dev);
791 int size;
792
793 size = (sizeof(struct rx_desc) *
794 (RX_STD_RING_ENTRIES +
795 RX_JUMBO_RING_ENTRIES +
796 RX_MINI_RING_ENTRIES +
797 RX_RETURN_RING_ENTRIES));
798
799 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
800 &ap->rx_ring_base_dma);
801 if (ap->rx_std_ring == NULL)
802 goto fail;
803
804 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
805 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
806 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
807
808 size = (sizeof(struct event) * EVT_RING_ENTRIES);
809
810 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
811
812 if (ap->evt_ring == NULL)
813 goto fail;
814
815 /*
816 * Only allocate a host TX ring for the Tigon II, the Tigon I
817 * has to use PCI registers for this ;-(
818 */
819 if (!ACE_IS_TIGON_I(ap)) {
820 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
821
822 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
823 &ap->tx_ring_dma);
824
825 if (ap->tx_ring == NULL)
826 goto fail;
827 }
828
829 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
830 &ap->evt_prd_dma);
831 if (ap->evt_prd == NULL)
832 goto fail;
833
834 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
835 &ap->rx_ret_prd_dma);
836 if (ap->rx_ret_prd == NULL)
837 goto fail;
838
839 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
840 &ap->tx_csm_dma);
841 if (ap->tx_csm == NULL)
842 goto fail;
843
844 return 0;
845
846 fail:
847 /* Clean up. */
848 ace_init_cleanup(dev);
849 return 1;
850 }
851
852
853 /*
854 * Generic cleanup handling data allocated during init. Used when the
855 * module is unloaded or if an error occurs during initialization
856 */
857 static void ace_init_cleanup(struct net_device *dev)
858 {
859 struct ace_private *ap;
860
861 ap = netdev_priv(dev);
862
863 ace_free_descriptors(dev);
864
865 if (ap->info)
866 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
867 ap->info, ap->info_dma);
868 kfree(ap->skb);
869 kfree(ap->trace_buf);
870
871 if (dev->irq)
872 free_irq(dev->irq, dev);
873
874 iounmap(ap->regs);
875 }
876
877
878 /*
879 * Commands are considered to be slow.
880 */
881 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
882 {
883 u32 idx;
884
885 idx = readl(&regs->CmdPrd);
886
887 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
888 idx = (idx + 1) % CMD_RING_ENTRIES;
889
890 writel(idx, &regs->CmdPrd);
891 }
892
893
894 static int __devinit ace_init(struct net_device *dev)
895 {
896 struct ace_private *ap;
897 struct ace_regs __iomem *regs;
898 struct ace_info *info = NULL;
899 struct pci_dev *pdev;
900 unsigned long myjif;
901 u64 tmp_ptr;
902 u32 tig_ver, mac1, mac2, tmp, pci_state;
903 int board_idx, ecode = 0;
904 short i;
905 unsigned char cache_size;
906
907 ap = netdev_priv(dev);
908 regs = ap->regs;
909
910 board_idx = ap->board_idx;
911
912 /*
913 * aman@sgi.com - its useful to do a NIC reset here to
914 * address the `Firmware not running' problem subsequent
915 * to any crashes involving the NIC
916 */
917 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
918 readl(&regs->HostCtrl); /* PCI write posting */
919 udelay(5);
920
921 /*
922 * Don't access any other registers before this point!
923 */
924 #ifdef __BIG_ENDIAN
925 /*
926 * This will most likely need BYTE_SWAP once we switch
927 * to using __raw_writel()
928 */
929 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
930 &regs->HostCtrl);
931 #else
932 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
933 &regs->HostCtrl);
934 #endif
935 readl(&regs->HostCtrl); /* PCI write posting */
936
937 /*
938 * Stop the NIC CPU and clear pending interrupts
939 */
940 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
941 readl(&regs->CpuCtrl); /* PCI write posting */
942 writel(0, &regs->Mb0Lo);
943
944 tig_ver = readl(&regs->HostCtrl) >> 28;
945
946 switch(tig_ver){
947 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
948 case 4:
949 case 5:
950 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
951 tig_ver, ap->firmware_major, ap->firmware_minor,
952 ap->firmware_fix);
953 writel(0, &regs->LocalCtrl);
954 ap->version = 1;
955 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
956 break;
957 #endif
958 case 6:
959 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
960 tig_ver, ap->firmware_major, ap->firmware_minor,
961 ap->firmware_fix);
962 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
963 readl(&regs->CpuBCtrl); /* PCI write posting */
964 /*
965 * The SRAM bank size does _not_ indicate the amount
966 * of memory on the card, it controls the _bank_ size!
967 * Ie. a 1MB AceNIC will have two banks of 512KB.
968 */
969 writel(SRAM_BANK_512K, &regs->LocalCtrl);
970 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
971 ap->version = 2;
972 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
973 break;
974 default:
975 printk(KERN_WARNING " Unsupported Tigon version detected "
976 "(%i)\n", tig_ver);
977 ecode = -ENODEV;
978 goto init_error;
979 }
980
981 /*
982 * ModeStat _must_ be set after the SRAM settings as this change
983 * seems to corrupt the ModeStat and possible other registers.
984 * The SRAM settings survive resets and setting it to the same
985 * value a second time works as well. This is what caused the
986 * `Firmware not running' problem on the Tigon II.
987 */
988 #ifdef __BIG_ENDIAN
989 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
990 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
991 #else
992 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
993 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
994 #endif
995 readl(&regs->ModeStat); /* PCI write posting */
996
997 mac1 = 0;
998 for(i = 0; i < 4; i++) {
999 int t;
1000
1001 mac1 = mac1 << 8;
1002 t = read_eeprom_byte(dev, 0x8c+i);
1003 if (t < 0) {
1004 ecode = -EIO;
1005 goto init_error;
1006 } else
1007 mac1 |= (t & 0xff);
1008 }
1009 mac2 = 0;
1010 for(i = 4; i < 8; i++) {
1011 int t;
1012
1013 mac2 = mac2 << 8;
1014 t = read_eeprom_byte(dev, 0x8c+i);
1015 if (t < 0) {
1016 ecode = -EIO;
1017 goto init_error;
1018 } else
1019 mac2 |= (t & 0xff);
1020 }
1021
1022 writel(mac1, &regs->MacAddrHi);
1023 writel(mac2, &regs->MacAddrLo);
1024
1025 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1026 dev->dev_addr[1] = mac1 & 0xff;
1027 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1028 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1029 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1030 dev->dev_addr[5] = mac2 & 0xff;
1031
1032 printk("MAC: %pM\n", dev->dev_addr);
1033
1034 /*
1035 * Looks like this is necessary to deal with on all architectures,
1036 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1037 * Ie. having two NICs in the machine, one will have the cache
1038 * line set at boot time, the other will not.
1039 */
1040 pdev = ap->pdev;
1041 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1042 cache_size <<= 2;
1043 if (cache_size != SMP_CACHE_BYTES) {
1044 printk(KERN_INFO " PCI cache line size set incorrectly "
1045 "(%i bytes) by BIOS/FW, ", cache_size);
1046 if (cache_size > SMP_CACHE_BYTES)
1047 printk("expecting %i\n", SMP_CACHE_BYTES);
1048 else {
1049 printk("correcting to %i\n", SMP_CACHE_BYTES);
1050 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1051 SMP_CACHE_BYTES >> 2);
1052 }
1053 }
1054
1055 pci_state = readl(&regs->PciState);
1056 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1057 "latency: %i clks\n",
1058 (pci_state & PCI_32BIT) ? 32 : 64,
1059 (pci_state & PCI_66MHZ) ? 66 : 33,
1060 ap->pci_latency);
1061
1062 /*
1063 * Set the max DMA transfer size. Seems that for most systems
1064 * the performance is better when no MAX parameter is
1065 * set. However for systems enabling PCI write and invalidate,
1066 * DMA writes must be set to the L1 cache line size to get
1067 * optimal performance.
1068 *
1069 * The default is now to turn the PCI write and invalidate off
1070 * - that is what Alteon does for NT.
1071 */
1072 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1073 if (ap->version >= 2) {
1074 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1075 /*
1076 * Tuning parameters only supported for 8 cards
1077 */
1078 if (board_idx == BOARD_IDX_OVERFLOW ||
1079 dis_pci_mem_inval[board_idx]) {
1080 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1081 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1082 pci_write_config_word(pdev, PCI_COMMAND,
1083 ap->pci_command);
1084 printk(KERN_INFO " Disabling PCI memory "
1085 "write and invalidate\n");
1086 }
1087 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1088 printk(KERN_INFO " PCI memory write & invalidate "
1089 "enabled by BIOS, enabling counter measures\n");
1090
1091 switch(SMP_CACHE_BYTES) {
1092 case 16:
1093 tmp |= DMA_WRITE_MAX_16;
1094 break;
1095 case 32:
1096 tmp |= DMA_WRITE_MAX_32;
1097 break;
1098 case 64:
1099 tmp |= DMA_WRITE_MAX_64;
1100 break;
1101 case 128:
1102 tmp |= DMA_WRITE_MAX_128;
1103 break;
1104 default:
1105 printk(KERN_INFO " Cache line size %i not "
1106 "supported, PCI write and invalidate "
1107 "disabled\n", SMP_CACHE_BYTES);
1108 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1109 pci_write_config_word(pdev, PCI_COMMAND,
1110 ap->pci_command);
1111 }
1112 }
1113 }
1114
1115 #ifdef __sparc__
1116 /*
1117 * On this platform, we know what the best dma settings
1118 * are. We use 64-byte maximum bursts, because if we
1119 * burst larger than the cache line size (or even cross
1120 * a 64byte boundary in a single burst) the UltraSparc
1121 * PCI controller will disconnect at 64-byte multiples.
1122 *
1123 * Read-multiple will be properly enabled above, and when
1124 * set will give the PCI controller proper hints about
1125 * prefetching.
1126 */
1127 tmp &= ~DMA_READ_WRITE_MASK;
1128 tmp |= DMA_READ_MAX_64;
1129 tmp |= DMA_WRITE_MAX_64;
1130 #endif
1131 #ifdef __alpha__
1132 tmp &= ~DMA_READ_WRITE_MASK;
1133 tmp |= DMA_READ_MAX_128;
1134 /*
1135 * All the docs say MUST NOT. Well, I did.
1136 * Nothing terrible happens, if we load wrong size.
1137 * Bit w&i still works better!
1138 */
1139 tmp |= DMA_WRITE_MAX_128;
1140 #endif
1141 writel(tmp, &regs->PciState);
1142
1143 #if 0
1144 /*
1145 * The Host PCI bus controller driver has to set FBB.
1146 * If all devices on that PCI bus support FBB, then the controller
1147 * can enable FBB support in the Host PCI Bus controller (or on
1148 * the PCI-PCI bridge if that applies).
1149 * -ggg
1150 */
1151 /*
1152 * I have received reports from people having problems when this
1153 * bit is enabled.
1154 */
1155 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1156 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1157 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1158 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1159 }
1160 #endif
1161
1162 /*
1163 * Configure DMA attributes.
1164 */
1165 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1166 ap->pci_using_dac = 1;
1167 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1168 ap->pci_using_dac = 0;
1169 } else {
1170 ecode = -ENODEV;
1171 goto init_error;
1172 }
1173
1174 /*
1175 * Initialize the generic info block and the command+event rings
1176 * and the control blocks for the transmit and receive rings
1177 * as they need to be setup once and for all.
1178 */
1179 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1180 &ap->info_dma))) {
1181 ecode = -EAGAIN;
1182 goto init_error;
1183 }
1184 ap->info = info;
1185
1186 /*
1187 * Get the memory for the skb rings.
1188 */
1189 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1190 ecode = -EAGAIN;
1191 goto init_error;
1192 }
1193
1194 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1195 DRV_NAME, dev);
1196 if (ecode) {
1197 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1198 DRV_NAME, pdev->irq);
1199 goto init_error;
1200 } else
1201 dev->irq = pdev->irq;
1202
1203 #ifdef INDEX_DEBUG
1204 spin_lock_init(&ap->debug_lock);
1205 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1206 ap->last_std_rx = 0;
1207 ap->last_mini_rx = 0;
1208 #endif
1209
1210 memset(ap->info, 0, sizeof(struct ace_info));
1211 memset(ap->skb, 0, sizeof(struct ace_skb));
1212
1213 ecode = ace_load_firmware(dev);
1214 if (ecode)
1215 goto init_error;
1216
1217 ap->fw_running = 0;
1218
1219 tmp_ptr = ap->info_dma;
1220 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1221 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1222
1223 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1224
1225 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1226 info->evt_ctrl.flags = 0;
1227
1228 *(ap->evt_prd) = 0;
1229 wmb();
1230 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1231 writel(0, &regs->EvtCsm);
1232
1233 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1234 info->cmd_ctrl.flags = 0;
1235 info->cmd_ctrl.max_len = 0;
1236
1237 for (i = 0; i < CMD_RING_ENTRIES; i++)
1238 writel(0, &regs->CmdRng[i]);
1239
1240 writel(0, &regs->CmdPrd);
1241 writel(0, &regs->CmdCsm);
1242
1243 tmp_ptr = ap->info_dma;
1244 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1245 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1246
1247 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1248 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1249 info->rx_std_ctrl.flags =
1250 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1251
1252 memset(ap->rx_std_ring, 0,
1253 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1254
1255 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1256 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1257
1258 ap->rx_std_skbprd = 0;
1259 atomic_set(&ap->cur_rx_bufs, 0);
1260
1261 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1262 (ap->rx_ring_base_dma +
1263 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1264 info->rx_jumbo_ctrl.max_len = 0;
1265 info->rx_jumbo_ctrl.flags =
1266 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1267
1268 memset(ap->rx_jumbo_ring, 0,
1269 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1270
1271 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1272 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1273
1274 ap->rx_jumbo_skbprd = 0;
1275 atomic_set(&ap->cur_jumbo_bufs, 0);
1276
1277 memset(ap->rx_mini_ring, 0,
1278 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1279
1280 if (ap->version >= 2) {
1281 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1282 (ap->rx_ring_base_dma +
1283 (sizeof(struct rx_desc) *
1284 (RX_STD_RING_ENTRIES +
1285 RX_JUMBO_RING_ENTRIES))));
1286 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1287 info->rx_mini_ctrl.flags =
1288 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1289
1290 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1291 ap->rx_mini_ring[i].flags =
1292 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1293 } else {
1294 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1295 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1296 info->rx_mini_ctrl.max_len = 0;
1297 }
1298
1299 ap->rx_mini_skbprd = 0;
1300 atomic_set(&ap->cur_mini_bufs, 0);
1301
1302 set_aceaddr(&info->rx_return_ctrl.rngptr,
1303 (ap->rx_ring_base_dma +
1304 (sizeof(struct rx_desc) *
1305 (RX_STD_RING_ENTRIES +
1306 RX_JUMBO_RING_ENTRIES +
1307 RX_MINI_RING_ENTRIES))));
1308 info->rx_return_ctrl.flags = 0;
1309 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1310
1311 memset(ap->rx_return_ring, 0,
1312 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1313
1314 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1315 *(ap->rx_ret_prd) = 0;
1316
1317 writel(TX_RING_BASE, &regs->WinBase);
1318
1319 if (ACE_IS_TIGON_I(ap)) {
1320 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1321 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1322 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1323 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1324
1325 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1326 } else {
1327 memset(ap->tx_ring, 0,
1328 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1329
1330 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1331 }
1332
1333 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1334 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1335
1336 /*
1337 * The Tigon I does not like having the TX ring in host memory ;-(
1338 */
1339 if (!ACE_IS_TIGON_I(ap))
1340 tmp |= RCB_FLG_TX_HOST_RING;
1341 #if TX_COAL_INTS_ONLY
1342 tmp |= RCB_FLG_COAL_INT_ONLY;
1343 #endif
1344 info->tx_ctrl.flags = tmp;
1345
1346 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1347
1348 /*
1349 * Potential item for tuning parameter
1350 */
1351 #if 0 /* NO */
1352 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1353 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1354 #else
1355 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1356 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1357 #endif
1358
1359 writel(0, &regs->MaskInt);
1360 writel(1, &regs->IfIdx);
1361 #if 0
1362 /*
1363 * McKinley boxes do not like us fiddling with AssistState
1364 * this early
1365 */
1366 writel(1, &regs->AssistState);
1367 #endif
1368
1369 writel(DEF_STAT, &regs->TuneStatTicks);
1370 writel(DEF_TRACE, &regs->TuneTrace);
1371
1372 ace_set_rxtx_parms(dev, 0);
1373
1374 if (board_idx == BOARD_IDX_OVERFLOW) {
1375 printk(KERN_WARNING "%s: more than %i NICs detected, "
1376 "ignoring module parameters!\n",
1377 ap->name, ACE_MAX_MOD_PARMS);
1378 } else if (board_idx >= 0) {
1379 if (tx_coal_tick[board_idx])
1380 writel(tx_coal_tick[board_idx],
1381 &regs->TuneTxCoalTicks);
1382 if (max_tx_desc[board_idx])
1383 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1384
1385 if (rx_coal_tick[board_idx])
1386 writel(rx_coal_tick[board_idx],
1387 &regs->TuneRxCoalTicks);
1388 if (max_rx_desc[board_idx])
1389 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1390
1391 if (trace[board_idx])
1392 writel(trace[board_idx], &regs->TuneTrace);
1393
1394 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1395 writel(tx_ratio[board_idx], &regs->TxBufRat);
1396 }
1397
1398 /*
1399 * Default link parameters
1400 */
1401 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1402 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1403 if(ap->version >= 2)
1404 tmp |= LNK_TX_FLOW_CTL_Y;
1405
1406 /*
1407 * Override link default parameters
1408 */
1409 if ((board_idx >= 0) && link_state[board_idx]) {
1410 int option = link_state[board_idx];
1411
1412 tmp = LNK_ENABLE;
1413
1414 if (option & 0x01) {
1415 printk(KERN_INFO "%s: Setting half duplex link\n",
1416 ap->name);
1417 tmp &= ~LNK_FULL_DUPLEX;
1418 }
1419 if (option & 0x02)
1420 tmp &= ~LNK_NEGOTIATE;
1421 if (option & 0x10)
1422 tmp |= LNK_10MB;
1423 if (option & 0x20)
1424 tmp |= LNK_100MB;
1425 if (option & 0x40)
1426 tmp |= LNK_1000MB;
1427 if ((option & 0x70) == 0) {
1428 printk(KERN_WARNING "%s: No media speed specified, "
1429 "forcing auto negotiation\n", ap->name);
1430 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1431 LNK_100MB | LNK_10MB;
1432 }
1433 if ((option & 0x100) == 0)
1434 tmp |= LNK_NEG_FCTL;
1435 else
1436 printk(KERN_INFO "%s: Disabling flow control "
1437 "negotiation\n", ap->name);
1438 if (option & 0x200)
1439 tmp |= LNK_RX_FLOW_CTL_Y;
1440 if ((option & 0x400) && (ap->version >= 2)) {
1441 printk(KERN_INFO "%s: Enabling TX flow control\n",
1442 ap->name);
1443 tmp |= LNK_TX_FLOW_CTL_Y;
1444 }
1445 }
1446
1447 ap->link = tmp;
1448 writel(tmp, &regs->TuneLink);
1449 if (ap->version >= 2)
1450 writel(tmp, &regs->TuneFastLink);
1451
1452 writel(ap->firmware_start, &regs->Pc);
1453
1454 writel(0, &regs->Mb0Lo);
1455
1456 /*
1457 * Set tx_csm before we start receiving interrupts, otherwise
1458 * the interrupt handler might think it is supposed to process
1459 * tx ints before we are up and running, which may cause a null
1460 * pointer access in the int handler.
1461 */
1462 ap->cur_rx = 0;
1463 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1464
1465 wmb();
1466 ace_set_txprd(regs, ap, 0);
1467 writel(0, &regs->RxRetCsm);
1468
1469 /*
1470 * Enable DMA engine now.
1471 * If we do this sooner, Mckinley box pukes.
1472 * I assume it's because Tigon II DMA engine wants to check
1473 * *something* even before the CPU is started.
1474 */
1475 writel(1, &regs->AssistState); /* enable DMA */
1476
1477 /*
1478 * Start the NIC CPU
1479 */
1480 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1481 readl(&regs->CpuCtrl);
1482
1483 /*
1484 * Wait for the firmware to spin up - max 3 seconds.
1485 */
1486 myjif = jiffies + 3 * HZ;
1487 while (time_before(jiffies, myjif) && !ap->fw_running)
1488 cpu_relax();
1489
1490 if (!ap->fw_running) {
1491 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1492
1493 ace_dump_trace(ap);
1494 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1495 readl(&regs->CpuCtrl);
1496
1497 /* aman@sgi.com - account for badly behaving firmware/NIC:
1498 * - have observed that the NIC may continue to generate
1499 * interrupts for some reason; attempt to stop it - halt
1500 * second CPU for Tigon II cards, and also clear Mb0
1501 * - if we're a module, we'll fail to load if this was
1502 * the only GbE card in the system => if the kernel does
1503 * see an interrupt from the NIC, code to handle it is
1504 * gone and OOps! - so free_irq also
1505 */
1506 if (ap->version >= 2)
1507 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1508 &regs->CpuBCtrl);
1509 writel(0, &regs->Mb0Lo);
1510 readl(&regs->Mb0Lo);
1511
1512 ecode = -EBUSY;
1513 goto init_error;
1514 }
1515
1516 /*
1517 * We load the ring here as there seem to be no way to tell the
1518 * firmware to wipe the ring without re-initializing it.
1519 */
1520 if (!test_and_set_bit(0, &ap->std_refill_busy))
1521 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1522 else
1523 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1524 ap->name);
1525 if (ap->version >= 2) {
1526 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1527 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1528 else
1529 printk(KERN_ERR "%s: Someone is busy refilling "
1530 "the RX mini ring\n", ap->name);
1531 }
1532 return 0;
1533
1534 init_error:
1535 ace_init_cleanup(dev);
1536 return ecode;
1537 }
1538
1539
1540 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1541 {
1542 struct ace_private *ap = netdev_priv(dev);
1543 struct ace_regs __iomem *regs = ap->regs;
1544 int board_idx = ap->board_idx;
1545
1546 if (board_idx >= 0) {
1547 if (!jumbo) {
1548 if (!tx_coal_tick[board_idx])
1549 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1550 if (!max_tx_desc[board_idx])
1551 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1552 if (!rx_coal_tick[board_idx])
1553 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1554 if (!max_rx_desc[board_idx])
1555 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1556 if (!tx_ratio[board_idx])
1557 writel(DEF_TX_RATIO, &regs->TxBufRat);
1558 } else {
1559 if (!tx_coal_tick[board_idx])
1560 writel(DEF_JUMBO_TX_COAL,
1561 &regs->TuneTxCoalTicks);
1562 if (!max_tx_desc[board_idx])
1563 writel(DEF_JUMBO_TX_MAX_DESC,
1564 &regs->TuneMaxTxDesc);
1565 if (!rx_coal_tick[board_idx])
1566 writel(DEF_JUMBO_RX_COAL,
1567 &regs->TuneRxCoalTicks);
1568 if (!max_rx_desc[board_idx])
1569 writel(DEF_JUMBO_RX_MAX_DESC,
1570 &regs->TuneMaxRxDesc);
1571 if (!tx_ratio[board_idx])
1572 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1573 }
1574 }
1575 }
1576
1577
1578 static void ace_watchdog(struct net_device *data)
1579 {
1580 struct net_device *dev = data;
1581 struct ace_private *ap = netdev_priv(dev);
1582 struct ace_regs __iomem *regs = ap->regs;
1583
1584 /*
1585 * We haven't received a stats update event for more than 2.5
1586 * seconds and there is data in the transmit queue, thus we
1587 * asume the card is stuck.
1588 */
1589 if (*ap->tx_csm != ap->tx_ret_csm) {
1590 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1591 dev->name, (unsigned int)readl(&regs->HostCtrl));
1592 /* This can happen due to ieee flow control. */
1593 } else {
1594 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1595 dev->name);
1596 #if 0
1597 netif_wake_queue(dev);
1598 #endif
1599 }
1600 }
1601
1602
1603 static void ace_tasklet(unsigned long dev)
1604 {
1605 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1606 int cur_size;
1607
1608 cur_size = atomic_read(&ap->cur_rx_bufs);
1609 if ((cur_size < RX_LOW_STD_THRES) &&
1610 !test_and_set_bit(0, &ap->std_refill_busy)) {
1611 #ifdef DEBUG
1612 printk("refilling buffers (current %i)\n", cur_size);
1613 #endif
1614 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1615 }
1616
1617 if (ap->version >= 2) {
1618 cur_size = atomic_read(&ap->cur_mini_bufs);
1619 if ((cur_size < RX_LOW_MINI_THRES) &&
1620 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1621 #ifdef DEBUG
1622 printk("refilling mini buffers (current %i)\n",
1623 cur_size);
1624 #endif
1625 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1626 }
1627 }
1628
1629 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1630 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1631 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1632 #ifdef DEBUG
1633 printk("refilling jumbo buffers (current %i)\n", cur_size);
1634 #endif
1635 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1636 }
1637 ap->tasklet_pending = 0;
1638 }
1639
1640
1641 /*
1642 * Copy the contents of the NIC's trace buffer to kernel memory.
1643 */
1644 static void ace_dump_trace(struct ace_private *ap)
1645 {
1646 #if 0
1647 if (!ap->trace_buf)
1648 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1649 return;
1650 #endif
1651 }
1652
1653
1654 /*
1655 * Load the standard rx ring.
1656 *
1657 * Loading rings is safe without holding the spin lock since this is
1658 * done only before the device is enabled, thus no interrupts are
1659 * generated and by the interrupt handler/tasklet handler.
1660 */
1661 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1662 {
1663 struct ace_regs __iomem *regs = ap->regs;
1664 short i, idx;
1665
1666
1667 prefetchw(&ap->cur_rx_bufs);
1668
1669 idx = ap->rx_std_skbprd;
1670
1671 for (i = 0; i < nr_bufs; i++) {
1672 struct sk_buff *skb;
1673 struct rx_desc *rd;
1674 dma_addr_t mapping;
1675
1676 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1677 if (!skb)
1678 break;
1679
1680 skb_reserve(skb, NET_IP_ALIGN);
1681 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1682 offset_in_page(skb->data),
1683 ACE_STD_BUFSIZE,
1684 PCI_DMA_FROMDEVICE);
1685 ap->skb->rx_std_skbuff[idx].skb = skb;
1686 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1687 mapping, mapping);
1688
1689 rd = &ap->rx_std_ring[idx];
1690 set_aceaddr(&rd->addr, mapping);
1691 rd->size = ACE_STD_BUFSIZE;
1692 rd->idx = idx;
1693 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1694 }
1695
1696 if (!i)
1697 goto error_out;
1698
1699 atomic_add(i, &ap->cur_rx_bufs);
1700 ap->rx_std_skbprd = idx;
1701
1702 if (ACE_IS_TIGON_I(ap)) {
1703 struct cmd cmd;
1704 cmd.evt = C_SET_RX_PRD_IDX;
1705 cmd.code = 0;
1706 cmd.idx = ap->rx_std_skbprd;
1707 ace_issue_cmd(regs, &cmd);
1708 } else {
1709 writel(idx, &regs->RxStdPrd);
1710 wmb();
1711 }
1712
1713 out:
1714 clear_bit(0, &ap->std_refill_busy);
1715 return;
1716
1717 error_out:
1718 printk(KERN_INFO "Out of memory when allocating "
1719 "standard receive buffers\n");
1720 goto out;
1721 }
1722
1723
1724 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1725 {
1726 struct ace_regs __iomem *regs = ap->regs;
1727 short i, idx;
1728
1729 prefetchw(&ap->cur_mini_bufs);
1730
1731 idx = ap->rx_mini_skbprd;
1732 for (i = 0; i < nr_bufs; i++) {
1733 struct sk_buff *skb;
1734 struct rx_desc *rd;
1735 dma_addr_t mapping;
1736
1737 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1738 if (!skb)
1739 break;
1740
1741 skb_reserve(skb, NET_IP_ALIGN);
1742 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1743 offset_in_page(skb->data),
1744 ACE_MINI_BUFSIZE,
1745 PCI_DMA_FROMDEVICE);
1746 ap->skb->rx_mini_skbuff[idx].skb = skb;
1747 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1748 mapping, mapping);
1749
1750 rd = &ap->rx_mini_ring[idx];
1751 set_aceaddr(&rd->addr, mapping);
1752 rd->size = ACE_MINI_BUFSIZE;
1753 rd->idx = idx;
1754 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1755 }
1756
1757 if (!i)
1758 goto error_out;
1759
1760 atomic_add(i, &ap->cur_mini_bufs);
1761
1762 ap->rx_mini_skbprd = idx;
1763
1764 writel(idx, &regs->RxMiniPrd);
1765 wmb();
1766
1767 out:
1768 clear_bit(0, &ap->mini_refill_busy);
1769 return;
1770 error_out:
1771 printk(KERN_INFO "Out of memory when allocating "
1772 "mini receive buffers\n");
1773 goto out;
1774 }
1775
1776
1777 /*
1778 * Load the jumbo rx ring, this may happen at any time if the MTU
1779 * is changed to a value > 1500.
1780 */
1781 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1782 {
1783 struct ace_regs __iomem *regs = ap->regs;
1784 short i, idx;
1785
1786 idx = ap->rx_jumbo_skbprd;
1787
1788 for (i = 0; i < nr_bufs; i++) {
1789 struct sk_buff *skb;
1790 struct rx_desc *rd;
1791 dma_addr_t mapping;
1792
1793 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1794 if (!skb)
1795 break;
1796
1797 skb_reserve(skb, NET_IP_ALIGN);
1798 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1799 offset_in_page(skb->data),
1800 ACE_JUMBO_BUFSIZE,
1801 PCI_DMA_FROMDEVICE);
1802 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1803 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1804 mapping, mapping);
1805
1806 rd = &ap->rx_jumbo_ring[idx];
1807 set_aceaddr(&rd->addr, mapping);
1808 rd->size = ACE_JUMBO_BUFSIZE;
1809 rd->idx = idx;
1810 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1811 }
1812
1813 if (!i)
1814 goto error_out;
1815
1816 atomic_add(i, &ap->cur_jumbo_bufs);
1817 ap->rx_jumbo_skbprd = idx;
1818
1819 if (ACE_IS_TIGON_I(ap)) {
1820 struct cmd cmd;
1821 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1822 cmd.code = 0;
1823 cmd.idx = ap->rx_jumbo_skbprd;
1824 ace_issue_cmd(regs, &cmd);
1825 } else {
1826 writel(idx, &regs->RxJumboPrd);
1827 wmb();
1828 }
1829
1830 out:
1831 clear_bit(0, &ap->jumbo_refill_busy);
1832 return;
1833 error_out:
1834 if (net_ratelimit())
1835 printk(KERN_INFO "Out of memory when allocating "
1836 "jumbo receive buffers\n");
1837 goto out;
1838 }
1839
1840
1841 /*
1842 * All events are considered to be slow (RX/TX ints do not generate
1843 * events) and are handled here, outside the main interrupt handler,
1844 * to reduce the size of the handler.
1845 */
1846 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1847 {
1848 struct ace_private *ap;
1849
1850 ap = netdev_priv(dev);
1851
1852 while (evtcsm != evtprd) {
1853 switch (ap->evt_ring[evtcsm].evt) {
1854 case E_FW_RUNNING:
1855 printk(KERN_INFO "%s: Firmware up and running\n",
1856 ap->name);
1857 ap->fw_running = 1;
1858 wmb();
1859 break;
1860 case E_STATS_UPDATED:
1861 break;
1862 case E_LNK_STATE:
1863 {
1864 u16 code = ap->evt_ring[evtcsm].code;
1865 switch (code) {
1866 case E_C_LINK_UP:
1867 {
1868 u32 state = readl(&ap->regs->GigLnkState);
1869 printk(KERN_WARNING "%s: Optical link UP "
1870 "(%s Duplex, Flow Control: %s%s)\n",
1871 ap->name,
1872 state & LNK_FULL_DUPLEX ? "Full":"Half",
1873 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1874 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1875 break;
1876 }
1877 case E_C_LINK_DOWN:
1878 printk(KERN_WARNING "%s: Optical link DOWN\n",
1879 ap->name);
1880 break;
1881 case E_C_LINK_10_100:
1882 printk(KERN_WARNING "%s: 10/100BaseT link "
1883 "UP\n", ap->name);
1884 break;
1885 default:
1886 printk(KERN_ERR "%s: Unknown optical link "
1887 "state %02x\n", ap->name, code);
1888 }
1889 break;
1890 }
1891 case E_ERROR:
1892 switch(ap->evt_ring[evtcsm].code) {
1893 case E_C_ERR_INVAL_CMD:
1894 printk(KERN_ERR "%s: invalid command error\n",
1895 ap->name);
1896 break;
1897 case E_C_ERR_UNIMP_CMD:
1898 printk(KERN_ERR "%s: unimplemented command "
1899 "error\n", ap->name);
1900 break;
1901 case E_C_ERR_BAD_CFG:
1902 printk(KERN_ERR "%s: bad config error\n",
1903 ap->name);
1904 break;
1905 default:
1906 printk(KERN_ERR "%s: unknown error %02x\n",
1907 ap->name, ap->evt_ring[evtcsm].code);
1908 }
1909 break;
1910 case E_RESET_JUMBO_RNG:
1911 {
1912 int i;
1913 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1914 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1915 ap->rx_jumbo_ring[i].size = 0;
1916 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1917 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1918 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1919 }
1920 }
1921
1922 if (ACE_IS_TIGON_I(ap)) {
1923 struct cmd cmd;
1924 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1925 cmd.code = 0;
1926 cmd.idx = 0;
1927 ace_issue_cmd(ap->regs, &cmd);
1928 } else {
1929 writel(0, &((ap->regs)->RxJumboPrd));
1930 wmb();
1931 }
1932
1933 ap->jumbo = 0;
1934 ap->rx_jumbo_skbprd = 0;
1935 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1936 ap->name);
1937 clear_bit(0, &ap->jumbo_refill_busy);
1938 break;
1939 }
1940 default:
1941 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1942 ap->name, ap->evt_ring[evtcsm].evt);
1943 }
1944 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1945 }
1946
1947 return evtcsm;
1948 }
1949
1950
1951 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1952 {
1953 struct ace_private *ap = netdev_priv(dev);
1954 u32 idx;
1955 int mini_count = 0, std_count = 0;
1956
1957 idx = rxretcsm;
1958
1959 prefetchw(&ap->cur_rx_bufs);
1960 prefetchw(&ap->cur_mini_bufs);
1961
1962 while (idx != rxretprd) {
1963 struct ring_info *rip;
1964 struct sk_buff *skb;
1965 struct rx_desc *rxdesc, *retdesc;
1966 u32 skbidx;
1967 int bd_flags, desc_type, mapsize;
1968 u16 csum;
1969
1970
1971 /* make sure the rx descriptor isn't read before rxretprd */
1972 if (idx == rxretcsm)
1973 rmb();
1974
1975 retdesc = &ap->rx_return_ring[idx];
1976 skbidx = retdesc->idx;
1977 bd_flags = retdesc->flags;
1978 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1979
1980 switch(desc_type) {
1981 /*
1982 * Normal frames do not have any flags set
1983 *
1984 * Mini and normal frames arrive frequently,
1985 * so use a local counter to avoid doing
1986 * atomic operations for each packet arriving.
1987 */
1988 case 0:
1989 rip = &ap->skb->rx_std_skbuff[skbidx];
1990 mapsize = ACE_STD_BUFSIZE;
1991 rxdesc = &ap->rx_std_ring[skbidx];
1992 std_count++;
1993 break;
1994 case BD_FLG_JUMBO:
1995 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1996 mapsize = ACE_JUMBO_BUFSIZE;
1997 rxdesc = &ap->rx_jumbo_ring[skbidx];
1998 atomic_dec(&ap->cur_jumbo_bufs);
1999 break;
2000 case BD_FLG_MINI:
2001 rip = &ap->skb->rx_mini_skbuff[skbidx];
2002 mapsize = ACE_MINI_BUFSIZE;
2003 rxdesc = &ap->rx_mini_ring[skbidx];
2004 mini_count++;
2005 break;
2006 default:
2007 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2008 "returned by NIC\n", dev->name,
2009 retdesc->flags);
2010 goto error;
2011 }
2012
2013 skb = rip->skb;
2014 rip->skb = NULL;
2015 pci_unmap_page(ap->pdev,
2016 dma_unmap_addr(rip, mapping),
2017 mapsize,
2018 PCI_DMA_FROMDEVICE);
2019 skb_put(skb, retdesc->size);
2020
2021 /*
2022 * Fly baby, fly!
2023 */
2024 csum = retdesc->tcp_udp_csum;
2025
2026 skb->protocol = eth_type_trans(skb, dev);
2027
2028 /*
2029 * Instead of forcing the poor tigon mips cpu to calculate
2030 * pseudo hdr checksum, we do this ourselves.
2031 */
2032 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2033 skb->csum = htons(csum);
2034 skb->ip_summed = CHECKSUM_COMPLETE;
2035 } else {
2036 skb_checksum_none_assert(skb);
2037 }
2038
2039 /* send it up */
2040 #if ACENIC_DO_VLAN
2041 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2042 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2043 } else
2044 #endif
2045 netif_rx(skb);
2046
2047 dev->stats.rx_packets++;
2048 dev->stats.rx_bytes += retdesc->size;
2049
2050 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2051 }
2052
2053 atomic_sub(std_count, &ap->cur_rx_bufs);
2054 if (!ACE_IS_TIGON_I(ap))
2055 atomic_sub(mini_count, &ap->cur_mini_bufs);
2056
2057 out:
2058 /*
2059 * According to the documentation RxRetCsm is obsolete with
2060 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2061 */
2062 if (ACE_IS_TIGON_I(ap)) {
2063 writel(idx, &ap->regs->RxRetCsm);
2064 }
2065 ap->cur_rx = idx;
2066
2067 return;
2068 error:
2069 idx = rxretprd;
2070 goto out;
2071 }
2072
2073
2074 static inline void ace_tx_int(struct net_device *dev,
2075 u32 txcsm, u32 idx)
2076 {
2077 struct ace_private *ap = netdev_priv(dev);
2078
2079 do {
2080 struct sk_buff *skb;
2081 struct tx_ring_info *info;
2082
2083 info = ap->skb->tx_skbuff + idx;
2084 skb = info->skb;
2085
2086 if (dma_unmap_len(info, maplen)) {
2087 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2088 dma_unmap_len(info, maplen),
2089 PCI_DMA_TODEVICE);
2090 dma_unmap_len_set(info, maplen, 0);
2091 }
2092
2093 if (skb) {
2094 dev->stats.tx_packets++;
2095 dev->stats.tx_bytes += skb->len;
2096 dev_kfree_skb_irq(skb);
2097 info->skb = NULL;
2098 }
2099
2100 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2101 } while (idx != txcsm);
2102
2103 if (netif_queue_stopped(dev))
2104 netif_wake_queue(dev);
2105
2106 wmb();
2107 ap->tx_ret_csm = txcsm;
2108
2109 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2110 *
2111 * We could try to make it before. In this case we would get
2112 * the following race condition: hard_start_xmit on other cpu
2113 * enters after we advanced tx_ret_csm and fills space,
2114 * which we have just freed, so that we make illegal device wakeup.
2115 * There is no good way to workaround this (at entry
2116 * to ace_start_xmit detects this condition and prevents
2117 * ring corruption, but it is not a good workaround.)
2118 *
2119 * When tx_ret_csm is advanced after, we wake up device _only_
2120 * if we really have some space in ring (though the core doing
2121 * hard_start_xmit can see full ring for some period and has to
2122 * synchronize.) Superb.
2123 * BUT! We get another subtle race condition. hard_start_xmit
2124 * may think that ring is full between wakeup and advancing
2125 * tx_ret_csm and will stop device instantly! It is not so bad.
2126 * We are guaranteed that there is something in ring, so that
2127 * the next irq will resume transmission. To speedup this we could
2128 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2129 * (see ace_start_xmit).
2130 *
2131 * Well, this dilemma exists in all lock-free devices.
2132 * We, following scheme used in drivers by Donald Becker,
2133 * select the least dangerous.
2134 * --ANK
2135 */
2136 }
2137
2138
2139 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2140 {
2141 struct net_device *dev = (struct net_device *)dev_id;
2142 struct ace_private *ap = netdev_priv(dev);
2143 struct ace_regs __iomem *regs = ap->regs;
2144 u32 idx;
2145 u32 txcsm, rxretcsm, rxretprd;
2146 u32 evtcsm, evtprd;
2147
2148 /*
2149 * In case of PCI shared interrupts or spurious interrupts,
2150 * we want to make sure it is actually our interrupt before
2151 * spending any time in here.
2152 */
2153 if (!(readl(&regs->HostCtrl) & IN_INT))
2154 return IRQ_NONE;
2155
2156 /*
2157 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2158 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2159 * writel(0, &regs->Mb0Lo).
2160 *
2161 * "IRQ avoidance" recommended in docs applies to IRQs served
2162 * threads and it is wrong even for that case.
2163 */
2164 writel(0, &regs->Mb0Lo);
2165 readl(&regs->Mb0Lo);
2166
2167 /*
2168 * There is no conflict between transmit handling in
2169 * start_xmit and receive processing, thus there is no reason
2170 * to take a spin lock for RX handling. Wait until we start
2171 * working on the other stuff - hey we don't need a spin lock
2172 * anymore.
2173 */
2174 rxretprd = *ap->rx_ret_prd;
2175 rxretcsm = ap->cur_rx;
2176
2177 if (rxretprd != rxretcsm)
2178 ace_rx_int(dev, rxretprd, rxretcsm);
2179
2180 txcsm = *ap->tx_csm;
2181 idx = ap->tx_ret_csm;
2182
2183 if (txcsm != idx) {
2184 /*
2185 * If each skb takes only one descriptor this check degenerates
2186 * to identity, because new space has just been opened.
2187 * But if skbs are fragmented we must check that this index
2188 * update releases enough of space, otherwise we just
2189 * wait for device to make more work.
2190 */
2191 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2192 ace_tx_int(dev, txcsm, idx);
2193 }
2194
2195 evtcsm = readl(&regs->EvtCsm);
2196 evtprd = *ap->evt_prd;
2197
2198 if (evtcsm != evtprd) {
2199 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2200 writel(evtcsm, &regs->EvtCsm);
2201 }
2202
2203 /*
2204 * This has to go last in the interrupt handler and run with
2205 * the spin lock released ... what lock?
2206 */
2207 if (netif_running(dev)) {
2208 int cur_size;
2209 int run_tasklet = 0;
2210
2211 cur_size = atomic_read(&ap->cur_rx_bufs);
2212 if (cur_size < RX_LOW_STD_THRES) {
2213 if ((cur_size < RX_PANIC_STD_THRES) &&
2214 !test_and_set_bit(0, &ap->std_refill_busy)) {
2215 #ifdef DEBUG
2216 printk("low on std buffers %i\n", cur_size);
2217 #endif
2218 ace_load_std_rx_ring(ap,
2219 RX_RING_SIZE - cur_size);
2220 } else
2221 run_tasklet = 1;
2222 }
2223
2224 if (!ACE_IS_TIGON_I(ap)) {
2225 cur_size = atomic_read(&ap->cur_mini_bufs);
2226 if (cur_size < RX_LOW_MINI_THRES) {
2227 if ((cur_size < RX_PANIC_MINI_THRES) &&
2228 !test_and_set_bit(0,
2229 &ap->mini_refill_busy)) {
2230 #ifdef DEBUG
2231 printk("low on mini buffers %i\n",
2232 cur_size);
2233 #endif
2234 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2235 } else
2236 run_tasklet = 1;
2237 }
2238 }
2239
2240 if (ap->jumbo) {
2241 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2242 if (cur_size < RX_LOW_JUMBO_THRES) {
2243 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2244 !test_and_set_bit(0,
2245 &ap->jumbo_refill_busy)){
2246 #ifdef DEBUG
2247 printk("low on jumbo buffers %i\n",
2248 cur_size);
2249 #endif
2250 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2251 } else
2252 run_tasklet = 1;
2253 }
2254 }
2255 if (run_tasklet && !ap->tasklet_pending) {
2256 ap->tasklet_pending = 1;
2257 tasklet_schedule(&ap->ace_tasklet);
2258 }
2259 }
2260
2261 return IRQ_HANDLED;
2262 }
2263
2264
2265 #if ACENIC_DO_VLAN
2266 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2267 {
2268 struct ace_private *ap = netdev_priv(dev);
2269 unsigned long flags;
2270
2271 local_irq_save(flags);
2272 ace_mask_irq(dev);
2273
2274 ap->vlgrp = grp;
2275
2276 ace_unmask_irq(dev);
2277 local_irq_restore(flags);
2278 }
2279 #endif /* ACENIC_DO_VLAN */
2280
2281
2282 static int ace_open(struct net_device *dev)
2283 {
2284 struct ace_private *ap = netdev_priv(dev);
2285 struct ace_regs __iomem *regs = ap->regs;
2286 struct cmd cmd;
2287
2288 if (!(ap->fw_running)) {
2289 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2290 return -EBUSY;
2291 }
2292
2293 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2294
2295 cmd.evt = C_CLEAR_STATS;
2296 cmd.code = 0;
2297 cmd.idx = 0;
2298 ace_issue_cmd(regs, &cmd);
2299
2300 cmd.evt = C_HOST_STATE;
2301 cmd.code = C_C_STACK_UP;
2302 cmd.idx = 0;
2303 ace_issue_cmd(regs, &cmd);
2304
2305 if (ap->jumbo &&
2306 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2307 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2308
2309 if (dev->flags & IFF_PROMISC) {
2310 cmd.evt = C_SET_PROMISC_MODE;
2311 cmd.code = C_C_PROMISC_ENABLE;
2312 cmd.idx = 0;
2313 ace_issue_cmd(regs, &cmd);
2314
2315 ap->promisc = 1;
2316 }else
2317 ap->promisc = 0;
2318 ap->mcast_all = 0;
2319
2320 #if 0
2321 cmd.evt = C_LNK_NEGOTIATION;
2322 cmd.code = 0;
2323 cmd.idx = 0;
2324 ace_issue_cmd(regs, &cmd);
2325 #endif
2326
2327 netif_start_queue(dev);
2328
2329 /*
2330 * Setup the bottom half rx ring refill handler
2331 */
2332 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2333 return 0;
2334 }
2335
2336
2337 static int ace_close(struct net_device *dev)
2338 {
2339 struct ace_private *ap = netdev_priv(dev);
2340 struct ace_regs __iomem *regs = ap->regs;
2341 struct cmd cmd;
2342 unsigned long flags;
2343 short i;
2344
2345 /*
2346 * Without (or before) releasing irq and stopping hardware, this
2347 * is an absolute non-sense, by the way. It will be reset instantly
2348 * by the first irq.
2349 */
2350 netif_stop_queue(dev);
2351
2352
2353 if (ap->promisc) {
2354 cmd.evt = C_SET_PROMISC_MODE;
2355 cmd.code = C_C_PROMISC_DISABLE;
2356 cmd.idx = 0;
2357 ace_issue_cmd(regs, &cmd);
2358 ap->promisc = 0;
2359 }
2360
2361 cmd.evt = C_HOST_STATE;
2362 cmd.code = C_C_STACK_DOWN;
2363 cmd.idx = 0;
2364 ace_issue_cmd(regs, &cmd);
2365
2366 tasklet_kill(&ap->ace_tasklet);
2367
2368 /*
2369 * Make sure one CPU is not processing packets while
2370 * buffers are being released by another.
2371 */
2372
2373 local_irq_save(flags);
2374 ace_mask_irq(dev);
2375
2376 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2377 struct sk_buff *skb;
2378 struct tx_ring_info *info;
2379
2380 info = ap->skb->tx_skbuff + i;
2381 skb = info->skb;
2382
2383 if (dma_unmap_len(info, maplen)) {
2384 if (ACE_IS_TIGON_I(ap)) {
2385 /* NB: TIGON_1 is special, tx_ring is in io space */
2386 struct tx_desc __iomem *tx;
2387 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2388 writel(0, &tx->addr.addrhi);
2389 writel(0, &tx->addr.addrlo);
2390 writel(0, &tx->flagsize);
2391 } else
2392 memset(ap->tx_ring + i, 0,
2393 sizeof(struct tx_desc));
2394 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2395 dma_unmap_len(info, maplen),
2396 PCI_DMA_TODEVICE);
2397 dma_unmap_len_set(info, maplen, 0);
2398 }
2399 if (skb) {
2400 dev_kfree_skb(skb);
2401 info->skb = NULL;
2402 }
2403 }
2404
2405 if (ap->jumbo) {
2406 cmd.evt = C_RESET_JUMBO_RNG;
2407 cmd.code = 0;
2408 cmd.idx = 0;
2409 ace_issue_cmd(regs, &cmd);
2410 }
2411
2412 ace_unmask_irq(dev);
2413 local_irq_restore(flags);
2414
2415 return 0;
2416 }
2417
2418
2419 static inline dma_addr_t
2420 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2421 struct sk_buff *tail, u32 idx)
2422 {
2423 dma_addr_t mapping;
2424 struct tx_ring_info *info;
2425
2426 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2427 offset_in_page(skb->data),
2428 skb->len, PCI_DMA_TODEVICE);
2429
2430 info = ap->skb->tx_skbuff + idx;
2431 info->skb = tail;
2432 dma_unmap_addr_set(info, mapping, mapping);
2433 dma_unmap_len_set(info, maplen, skb->len);
2434 return mapping;
2435 }
2436
2437
2438 static inline void
2439 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2440 u32 flagsize, u32 vlan_tag)
2441 {
2442 #if !USE_TX_COAL_NOW
2443 flagsize &= ~BD_FLG_COAL_NOW;
2444 #endif
2445
2446 if (ACE_IS_TIGON_I(ap)) {
2447 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2448 writel(addr >> 32, &io->addr.addrhi);
2449 writel(addr & 0xffffffff, &io->addr.addrlo);
2450 writel(flagsize, &io->flagsize);
2451 #if ACENIC_DO_VLAN
2452 writel(vlan_tag, &io->vlanres);
2453 #endif
2454 } else {
2455 desc->addr.addrhi = addr >> 32;
2456 desc->addr.addrlo = addr;
2457 desc->flagsize = flagsize;
2458 #if ACENIC_DO_VLAN
2459 desc->vlanres = vlan_tag;
2460 #endif
2461 }
2462 }
2463
2464
2465 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2466 struct net_device *dev)
2467 {
2468 struct ace_private *ap = netdev_priv(dev);
2469 struct ace_regs __iomem *regs = ap->regs;
2470 struct tx_desc *desc;
2471 u32 idx, flagsize;
2472 unsigned long maxjiff = jiffies + 3*HZ;
2473
2474 restart:
2475 idx = ap->tx_prd;
2476
2477 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2478 goto overflow;
2479
2480 if (!skb_shinfo(skb)->nr_frags) {
2481 dma_addr_t mapping;
2482 u32 vlan_tag = 0;
2483
2484 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2485 flagsize = (skb->len << 16) | (BD_FLG_END);
2486 if (skb->ip_summed == CHECKSUM_PARTIAL)
2487 flagsize |= BD_FLG_TCP_UDP_SUM;
2488 #if ACENIC_DO_VLAN
2489 if (vlan_tx_tag_present(skb)) {
2490 flagsize |= BD_FLG_VLAN_TAG;
2491 vlan_tag = vlan_tx_tag_get(skb);
2492 }
2493 #endif
2494 desc = ap->tx_ring + idx;
2495 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2496
2497 /* Look at ace_tx_int for explanations. */
2498 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2499 flagsize |= BD_FLG_COAL_NOW;
2500
2501 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2502 } else {
2503 dma_addr_t mapping;
2504 u32 vlan_tag = 0;
2505 int i, len = 0;
2506
2507 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2508 flagsize = (skb_headlen(skb) << 16);
2509 if (skb->ip_summed == CHECKSUM_PARTIAL)
2510 flagsize |= BD_FLG_TCP_UDP_SUM;
2511 #if ACENIC_DO_VLAN
2512 if (vlan_tx_tag_present(skb)) {
2513 flagsize |= BD_FLG_VLAN_TAG;
2514 vlan_tag = vlan_tx_tag_get(skb);
2515 }
2516 #endif
2517
2518 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2519
2520 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2521
2522 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2523 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2524 struct tx_ring_info *info;
2525
2526 len += frag->size;
2527 info = ap->skb->tx_skbuff + idx;
2528 desc = ap->tx_ring + idx;
2529
2530 mapping = pci_map_page(ap->pdev, frag->page,
2531 frag->page_offset, frag->size,
2532 PCI_DMA_TODEVICE);
2533
2534 flagsize = (frag->size << 16);
2535 if (skb->ip_summed == CHECKSUM_PARTIAL)
2536 flagsize |= BD_FLG_TCP_UDP_SUM;
2537 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2538
2539 if (i == skb_shinfo(skb)->nr_frags - 1) {
2540 flagsize |= BD_FLG_END;
2541 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2542 flagsize |= BD_FLG_COAL_NOW;
2543
2544 /*
2545 * Only the last fragment frees
2546 * the skb!
2547 */
2548 info->skb = skb;
2549 } else {
2550 info->skb = NULL;
2551 }
2552 dma_unmap_addr_set(info, mapping, mapping);
2553 dma_unmap_len_set(info, maplen, frag->size);
2554 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2555 }
2556 }
2557
2558 wmb();
2559 ap->tx_prd = idx;
2560 ace_set_txprd(regs, ap, idx);
2561
2562 if (flagsize & BD_FLG_COAL_NOW) {
2563 netif_stop_queue(dev);
2564
2565 /*
2566 * A TX-descriptor producer (an IRQ) might have gotten
2567 * inbetween, making the ring free again. Since xmit is
2568 * serialized, this is the only situation we have to
2569 * re-test.
2570 */
2571 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2572 netif_wake_queue(dev);
2573 }
2574
2575 return NETDEV_TX_OK;
2576
2577 overflow:
2578 /*
2579 * This race condition is unavoidable with lock-free drivers.
2580 * We wake up the queue _before_ tx_prd is advanced, so that we can
2581 * enter hard_start_xmit too early, while tx ring still looks closed.
2582 * This happens ~1-4 times per 100000 packets, so that we can allow
2583 * to loop syncing to other CPU. Probably, we need an additional
2584 * wmb() in ace_tx_intr as well.
2585 *
2586 * Note that this race is relieved by reserving one more entry
2587 * in tx ring than it is necessary (see original non-SG driver).
2588 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2589 * is already overkill.
2590 *
2591 * Alternative is to return with 1 not throttling queue. In this
2592 * case loop becomes longer, no more useful effects.
2593 */
2594 if (time_before(jiffies, maxjiff)) {
2595 barrier();
2596 cpu_relax();
2597 goto restart;
2598 }
2599
2600 /* The ring is stuck full. */
2601 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2602 return NETDEV_TX_BUSY;
2603 }
2604
2605
2606 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2607 {
2608 struct ace_private *ap = netdev_priv(dev);
2609 struct ace_regs __iomem *regs = ap->regs;
2610
2611 if (new_mtu > ACE_JUMBO_MTU)
2612 return -EINVAL;
2613
2614 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2615 dev->mtu = new_mtu;
2616
2617 if (new_mtu > ACE_STD_MTU) {
2618 if (!(ap->jumbo)) {
2619 printk(KERN_INFO "%s: Enabling Jumbo frame "
2620 "support\n", dev->name);
2621 ap->jumbo = 1;
2622 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2623 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2624 ace_set_rxtx_parms(dev, 1);
2625 }
2626 } else {
2627 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2628 ace_sync_irq(dev->irq);
2629 ace_set_rxtx_parms(dev, 0);
2630 if (ap->jumbo) {
2631 struct cmd cmd;
2632
2633 cmd.evt = C_RESET_JUMBO_RNG;
2634 cmd.code = 0;
2635 cmd.idx = 0;
2636 ace_issue_cmd(regs, &cmd);
2637 }
2638 }
2639
2640 return 0;
2641 }
2642
2643 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2644 {
2645 struct ace_private *ap = netdev_priv(dev);
2646 struct ace_regs __iomem *regs = ap->regs;
2647 u32 link;
2648
2649 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2650 ecmd->supported =
2651 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2652 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2653 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2654 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2655
2656 ecmd->port = PORT_FIBRE;
2657 ecmd->transceiver = XCVR_INTERNAL;
2658
2659 link = readl(&regs->GigLnkState);
2660 if (link & LNK_1000MB)
2661 ecmd->speed = SPEED_1000;
2662 else {
2663 link = readl(&regs->FastLnkState);
2664 if (link & LNK_100MB)
2665 ecmd->speed = SPEED_100;
2666 else if (link & LNK_10MB)
2667 ecmd->speed = SPEED_10;
2668 else
2669 ecmd->speed = 0;
2670 }
2671 if (link & LNK_FULL_DUPLEX)
2672 ecmd->duplex = DUPLEX_FULL;
2673 else
2674 ecmd->duplex = DUPLEX_HALF;
2675
2676 if (link & LNK_NEGOTIATE)
2677 ecmd->autoneg = AUTONEG_ENABLE;
2678 else
2679 ecmd->autoneg = AUTONEG_DISABLE;
2680
2681 #if 0
2682 /*
2683 * Current struct ethtool_cmd is insufficient
2684 */
2685 ecmd->trace = readl(&regs->TuneTrace);
2686
2687 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2688 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2689 #endif
2690 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2691 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2692
2693 return 0;
2694 }
2695
2696 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2697 {
2698 struct ace_private *ap = netdev_priv(dev);
2699 struct ace_regs __iomem *regs = ap->regs;
2700 u32 link, speed;
2701
2702 link = readl(&regs->GigLnkState);
2703 if (link & LNK_1000MB)
2704 speed = SPEED_1000;
2705 else {
2706 link = readl(&regs->FastLnkState);
2707 if (link & LNK_100MB)
2708 speed = SPEED_100;
2709 else if (link & LNK_10MB)
2710 speed = SPEED_10;
2711 else
2712 speed = SPEED_100;
2713 }
2714
2715 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2716 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2717 if (!ACE_IS_TIGON_I(ap))
2718 link |= LNK_TX_FLOW_CTL_Y;
2719 if (ecmd->autoneg == AUTONEG_ENABLE)
2720 link |= LNK_NEGOTIATE;
2721 if (ecmd->speed != speed) {
2722 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2723 switch (speed) {
2724 case SPEED_1000:
2725 link |= LNK_1000MB;
2726 break;
2727 case SPEED_100:
2728 link |= LNK_100MB;
2729 break;
2730 case SPEED_10:
2731 link |= LNK_10MB;
2732 break;
2733 }
2734 }
2735
2736 if (ecmd->duplex == DUPLEX_FULL)
2737 link |= LNK_FULL_DUPLEX;
2738
2739 if (link != ap->link) {
2740 struct cmd cmd;
2741 printk(KERN_INFO "%s: Renegotiating link state\n",
2742 dev->name);
2743
2744 ap->link = link;
2745 writel(link, &regs->TuneLink);
2746 if (!ACE_IS_TIGON_I(ap))
2747 writel(link, &regs->TuneFastLink);
2748 wmb();
2749
2750 cmd.evt = C_LNK_NEGOTIATION;
2751 cmd.code = 0;
2752 cmd.idx = 0;
2753 ace_issue_cmd(regs, &cmd);
2754 }
2755 return 0;
2756 }
2757
2758 static void ace_get_drvinfo(struct net_device *dev,
2759 struct ethtool_drvinfo *info)
2760 {
2761 struct ace_private *ap = netdev_priv(dev);
2762
2763 strlcpy(info->driver, "acenic", sizeof(info->driver));
2764 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2765 ap->firmware_major, ap->firmware_minor,
2766 ap->firmware_fix);
2767
2768 if (ap->pdev)
2769 strlcpy(info->bus_info, pci_name(ap->pdev),
2770 sizeof(info->bus_info));
2771
2772 }
2773
2774 /*
2775 * Set the hardware MAC address.
2776 */
2777 static int ace_set_mac_addr(struct net_device *dev, void *p)
2778 {
2779 struct ace_private *ap = netdev_priv(dev);
2780 struct ace_regs __iomem *regs = ap->regs;
2781 struct sockaddr *addr=p;
2782 u8 *da;
2783 struct cmd cmd;
2784
2785 if(netif_running(dev))
2786 return -EBUSY;
2787
2788 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2789
2790 da = (u8 *)dev->dev_addr;
2791
2792 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2793 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2794 &regs->MacAddrLo);
2795
2796 cmd.evt = C_SET_MAC_ADDR;
2797 cmd.code = 0;
2798 cmd.idx = 0;
2799 ace_issue_cmd(regs, &cmd);
2800
2801 return 0;
2802 }
2803
2804
2805 static void ace_set_multicast_list(struct net_device *dev)
2806 {
2807 struct ace_private *ap = netdev_priv(dev);
2808 struct ace_regs __iomem *regs = ap->regs;
2809 struct cmd cmd;
2810
2811 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2812 cmd.evt = C_SET_MULTICAST_MODE;
2813 cmd.code = C_C_MCAST_ENABLE;
2814 cmd.idx = 0;
2815 ace_issue_cmd(regs, &cmd);
2816 ap->mcast_all = 1;
2817 } else if (ap->mcast_all) {
2818 cmd.evt = C_SET_MULTICAST_MODE;
2819 cmd.code = C_C_MCAST_DISABLE;
2820 cmd.idx = 0;
2821 ace_issue_cmd(regs, &cmd);
2822 ap->mcast_all = 0;
2823 }
2824
2825 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2826 cmd.evt = C_SET_PROMISC_MODE;
2827 cmd.code = C_C_PROMISC_ENABLE;
2828 cmd.idx = 0;
2829 ace_issue_cmd(regs, &cmd);
2830 ap->promisc = 1;
2831 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2832 cmd.evt = C_SET_PROMISC_MODE;
2833 cmd.code = C_C_PROMISC_DISABLE;
2834 cmd.idx = 0;
2835 ace_issue_cmd(regs, &cmd);
2836 ap->promisc = 0;
2837 }
2838
2839 /*
2840 * For the time being multicast relies on the upper layers
2841 * filtering it properly. The Firmware does not allow one to
2842 * set the entire multicast list at a time and keeping track of
2843 * it here is going to be messy.
2844 */
2845 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2846 cmd.evt = C_SET_MULTICAST_MODE;
2847 cmd.code = C_C_MCAST_ENABLE;
2848 cmd.idx = 0;
2849 ace_issue_cmd(regs, &cmd);
2850 }else if (!ap->mcast_all) {
2851 cmd.evt = C_SET_MULTICAST_MODE;
2852 cmd.code = C_C_MCAST_DISABLE;
2853 cmd.idx = 0;
2854 ace_issue_cmd(regs, &cmd);
2855 }
2856 }
2857
2858
2859 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2860 {
2861 struct ace_private *ap = netdev_priv(dev);
2862 struct ace_mac_stats __iomem *mac_stats =
2863 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2864
2865 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2866 dev->stats.multicast = readl(&mac_stats->kept_mc);
2867 dev->stats.collisions = readl(&mac_stats->coll);
2868
2869 return &dev->stats;
2870 }
2871
2872
2873 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2874 u32 dest, int size)
2875 {
2876 void __iomem *tdest;
2877 short tsize, i;
2878
2879 if (size <= 0)
2880 return;
2881
2882 while (size > 0) {
2883 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2884 min_t(u32, size, ACE_WINDOW_SIZE));
2885 tdest = (void __iomem *) &regs->Window +
2886 (dest & (ACE_WINDOW_SIZE - 1));
2887 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2888 for (i = 0; i < (tsize / 4); i++) {
2889 /* Firmware is big-endian */
2890 writel(be32_to_cpup(src), tdest);
2891 src++;
2892 tdest += 4;
2893 dest += 4;
2894 size -= 4;
2895 }
2896 }
2897 }
2898
2899
2900 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2901 {
2902 void __iomem *tdest;
2903 short tsize = 0, i;
2904
2905 if (size <= 0)
2906 return;
2907
2908 while (size > 0) {
2909 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2910 min_t(u32, size, ACE_WINDOW_SIZE));
2911 tdest = (void __iomem *) &regs->Window +
2912 (dest & (ACE_WINDOW_SIZE - 1));
2913 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2914
2915 for (i = 0; i < (tsize / 4); i++) {
2916 writel(0, tdest + i*4);
2917 }
2918
2919 dest += tsize;
2920 size -= tsize;
2921 }
2922 }
2923
2924
2925 /*
2926 * Download the firmware into the SRAM on the NIC
2927 *
2928 * This operation requires the NIC to be halted and is performed with
2929 * interrupts disabled and with the spinlock hold.
2930 */
2931 static int __devinit ace_load_firmware(struct net_device *dev)
2932 {
2933 const struct firmware *fw;
2934 const char *fw_name = "acenic/tg2.bin";
2935 struct ace_private *ap = netdev_priv(dev);
2936 struct ace_regs __iomem *regs = ap->regs;
2937 const __be32 *fw_data;
2938 u32 load_addr;
2939 int ret;
2940
2941 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2942 printk(KERN_ERR "%s: trying to download firmware while the "
2943 "CPU is running!\n", ap->name);
2944 return -EFAULT;
2945 }
2946
2947 if (ACE_IS_TIGON_I(ap))
2948 fw_name = "acenic/tg1.bin";
2949
2950 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2951 if (ret) {
2952 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2953 ap->name, fw_name);
2954 return ret;
2955 }
2956
2957 fw_data = (void *)fw->data;
2958
2959 /* Firmware blob starts with version numbers, followed by
2960 load and start address. Remainder is the blob to be loaded
2961 contiguously from load address. We don't bother to represent
2962 the BSS/SBSS sections any more, since we were clearing the
2963 whole thing anyway. */
2964 ap->firmware_major = fw->data[0];
2965 ap->firmware_minor = fw->data[1];
2966 ap->firmware_fix = fw->data[2];
2967
2968 ap->firmware_start = be32_to_cpu(fw_data[1]);
2969 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2970 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2971 ap->name, ap->firmware_start, fw_name);
2972 ret = -EINVAL;
2973 goto out;
2974 }
2975
2976 load_addr = be32_to_cpu(fw_data[2]);
2977 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2978 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2979 ap->name, load_addr, fw_name);
2980 ret = -EINVAL;
2981 goto out;
2982 }
2983
2984 /*
2985 * Do not try to clear more than 512KiB or we end up seeing
2986 * funny things on NICs with only 512KiB SRAM
2987 */
2988 ace_clear(regs, 0x2000, 0x80000-0x2000);
2989 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2990 out:
2991 release_firmware(fw);
2992 return ret;
2993 }
2994
2995
2996 /*
2997 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2998 *
2999 * Accessing the EEPROM is `interesting' to say the least - don't read
3000 * this code right after dinner.
3001 *
3002 * This is all about black magic and bit-banging the device .... I
3003 * wonder in what hospital they have put the guy who designed the i2c
3004 * specs.
3005 *
3006 * Oh yes, this is only the beginning!
3007 *
3008 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3009 * code i2c readout code by beta testing all my hacks.
3010 */
3011 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3012 {
3013 u32 local;
3014
3015 readl(&regs->LocalCtrl);
3016 udelay(ACE_SHORT_DELAY);
3017 local = readl(&regs->LocalCtrl);
3018 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3019 writel(local, &regs->LocalCtrl);
3020 readl(&regs->LocalCtrl);
3021 mb();
3022 udelay(ACE_SHORT_DELAY);
3023 local |= EEPROM_CLK_OUT;
3024 writel(local, &regs->LocalCtrl);
3025 readl(&regs->LocalCtrl);
3026 mb();
3027 udelay(ACE_SHORT_DELAY);
3028 local &= ~EEPROM_DATA_OUT;
3029 writel(local, &regs->LocalCtrl);
3030 readl(&regs->LocalCtrl);
3031 mb();
3032 udelay(ACE_SHORT_DELAY);
3033 local &= ~EEPROM_CLK_OUT;
3034 writel(local, &regs->LocalCtrl);
3035 readl(&regs->LocalCtrl);
3036 mb();
3037 }
3038
3039
3040 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3041 {
3042 short i;
3043 u32 local;
3044
3045 udelay(ACE_SHORT_DELAY);
3046 local = readl(&regs->LocalCtrl);
3047 local &= ~EEPROM_DATA_OUT;
3048 local |= EEPROM_WRITE_ENABLE;
3049 writel(local, &regs->LocalCtrl);
3050 readl(&regs->LocalCtrl);
3051 mb();
3052
3053 for (i = 0; i < 8; i++, magic <<= 1) {
3054 udelay(ACE_SHORT_DELAY);
3055 if (magic & 0x80)
3056 local |= EEPROM_DATA_OUT;
3057 else
3058 local &= ~EEPROM_DATA_OUT;
3059 writel(local, &regs->LocalCtrl);
3060 readl(&regs->LocalCtrl);
3061 mb();
3062
3063 udelay(ACE_SHORT_DELAY);
3064 local |= EEPROM_CLK_OUT;
3065 writel(local, &regs->LocalCtrl);
3066 readl(&regs->LocalCtrl);
3067 mb();
3068 udelay(ACE_SHORT_DELAY);
3069 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3070 writel(local, &regs->LocalCtrl);
3071 readl(&regs->LocalCtrl);
3072 mb();
3073 }
3074 }
3075
3076
3077 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3078 {
3079 int state;
3080 u32 local;
3081
3082 local = readl(&regs->LocalCtrl);
3083 local &= ~EEPROM_WRITE_ENABLE;
3084 writel(local, &regs->LocalCtrl);
3085 readl(&regs->LocalCtrl);
3086 mb();
3087 udelay(ACE_LONG_DELAY);
3088 local |= EEPROM_CLK_OUT;
3089 writel(local, &regs->LocalCtrl);
3090 readl(&regs->LocalCtrl);
3091 mb();
3092 udelay(ACE_SHORT_DELAY);
3093 /* sample data in middle of high clk */
3094 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3095 udelay(ACE_SHORT_DELAY);
3096 mb();
3097 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3098 readl(&regs->LocalCtrl);
3099 mb();
3100
3101 return state;
3102 }
3103
3104
3105 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3106 {
3107 u32 local;
3108
3109 udelay(ACE_SHORT_DELAY);
3110 local = readl(&regs->LocalCtrl);
3111 local |= EEPROM_WRITE_ENABLE;
3112 writel(local, &regs->LocalCtrl);
3113 readl(&regs->LocalCtrl);
3114 mb();
3115 udelay(ACE_SHORT_DELAY);
3116 local &= ~EEPROM_DATA_OUT;
3117 writel(local, &regs->LocalCtrl);
3118 readl(&regs->LocalCtrl);
3119 mb();
3120 udelay(ACE_SHORT_DELAY);
3121 local |= EEPROM_CLK_OUT;
3122 writel(local, &regs->LocalCtrl);
3123 readl(&regs->LocalCtrl);
3124 mb();
3125 udelay(ACE_SHORT_DELAY);
3126 local |= EEPROM_DATA_OUT;
3127 writel(local, &regs->LocalCtrl);
3128 readl(&regs->LocalCtrl);
3129 mb();
3130 udelay(ACE_LONG_DELAY);
3131 local &= ~EEPROM_CLK_OUT;
3132 writel(local, &regs->LocalCtrl);
3133 mb();
3134 }
3135
3136
3137 /*
3138 * Read a whole byte from the EEPROM.
3139 */
3140 static int __devinit read_eeprom_byte(struct net_device *dev,
3141 unsigned long offset)
3142 {
3143 struct ace_private *ap = netdev_priv(dev);
3144 struct ace_regs __iomem *regs = ap->regs;
3145 unsigned long flags;
3146 u32 local;
3147 int result = 0;
3148 short i;
3149
3150 /*
3151 * Don't take interrupts on this CPU will bit banging
3152 * the %#%#@$ I2C device
3153 */
3154 local_irq_save(flags);
3155
3156 eeprom_start(regs);
3157
3158 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3159 if (eeprom_check_ack(regs)) {
3160 local_irq_restore(flags);
3161 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3162 result = -EIO;
3163 goto eeprom_read_error;
3164 }
3165
3166 eeprom_prep(regs, (offset >> 8) & 0xff);
3167 if (eeprom_check_ack(regs)) {
3168 local_irq_restore(flags);
3169 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3170 ap->name);
3171 result = -EIO;
3172 goto eeprom_read_error;
3173 }
3174
3175 eeprom_prep(regs, offset & 0xff);
3176 if (eeprom_check_ack(regs)) {
3177 local_irq_restore(flags);
3178 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3179 ap->name);
3180 result = -EIO;
3181 goto eeprom_read_error;
3182 }
3183
3184 eeprom_start(regs);
3185 eeprom_prep(regs, EEPROM_READ_SELECT);
3186 if (eeprom_check_ack(regs)) {
3187 local_irq_restore(flags);
3188 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3189 ap->name);
3190 result = -EIO;
3191 goto eeprom_read_error;
3192 }
3193
3194 for (i = 0; i < 8; i++) {
3195 local = readl(&regs->LocalCtrl);
3196 local &= ~EEPROM_WRITE_ENABLE;
3197 writel(local, &regs->LocalCtrl);
3198 readl(&regs->LocalCtrl);
3199 udelay(ACE_LONG_DELAY);
3200 mb();
3201 local |= EEPROM_CLK_OUT;
3202 writel(local, &regs->LocalCtrl);
3203 readl(&regs->LocalCtrl);
3204 mb();
3205 udelay(ACE_SHORT_DELAY);
3206 /* sample data mid high clk */
3207 result = (result << 1) |
3208 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3209 udelay(ACE_SHORT_DELAY);
3210 mb();
3211 local = readl(&regs->LocalCtrl);
3212 local &= ~EEPROM_CLK_OUT;
3213 writel(local, &regs->LocalCtrl);
3214 readl(&regs->LocalCtrl);
3215 udelay(ACE_SHORT_DELAY);
3216 mb();
3217 if (i == 7) {
3218 local |= EEPROM_WRITE_ENABLE;
3219 writel(local, &regs->LocalCtrl);
3220 readl(&regs->LocalCtrl);
3221 mb();
3222 udelay(ACE_SHORT_DELAY);
3223 }
3224 }
3225
3226 local |= EEPROM_DATA_OUT;
3227 writel(local, &regs->LocalCtrl);
3228 readl(&regs->LocalCtrl);
3229 mb();
3230 udelay(ACE_SHORT_DELAY);
3231 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3232 readl(&regs->LocalCtrl);
3233 udelay(ACE_LONG_DELAY);
3234 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3235 readl(&regs->LocalCtrl);
3236 mb();
3237 udelay(ACE_SHORT_DELAY);
3238 eeprom_stop(regs);
3239
3240 local_irq_restore(flags);
3241 out:
3242 return result;
3243
3244 eeprom_read_error:
3245 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3246 ap->name, offset);
3247 goto out;
3248 }