2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/version.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl
[] = {
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
147 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
157 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
166 #define ace_sync_irq(irq) synchronize_irq(irq)
168 #ifndef offset_in_page
169 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
172 #define ACE_MAX_MOD_PARMS 8
173 #define BOARD_IDX_STATIC 0
174 #define BOARD_IDX_OVERFLOW -1
176 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
177 defined(NETIF_F_HW_VLAN_RX)
178 #define ACENIC_DO_VLAN 1
179 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
181 #define ACENIC_DO_VLAN 0
182 #define ACE_RCB_VLAN_FLAG 0
188 * These must be defined before the firmware is included.
190 #define MAX_TEXT_LEN 96*1024
191 #define MAX_RODATA_LEN 8*1024
192 #define MAX_DATA_LEN 2*1024
194 #include "acenic_firmware.h"
196 #ifndef tigon2FwReleaseLocal
197 #define tigon2FwReleaseLocal 0
201 * This driver currently supports Tigon I and Tigon II based cards
202 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
203 * GA620. The driver should also work on the SGI, DEC and Farallon
204 * versions of the card, however I have not been able to test that
207 * This card is really neat, it supports receive hardware checksumming
208 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
209 * firmware. Also the programming interface is quite neat, except for
210 * the parts dealing with the i2c eeprom on the card ;-)
212 * Using jumbo frames:
214 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
215 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
216 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
217 * interface number and <MTU> being the MTU value.
221 * When compiled as a loadable module, the driver allows for a number
222 * of module parameters to be specified. The driver supports the
223 * following module parameters:
225 * trace=<val> - Firmware trace level. This requires special traced
226 * firmware to replace the firmware supplied with
227 * the driver - for debugging purposes only.
229 * link=<val> - Link state. Normally you want to use the default link
230 * parameters set by the driver. This can be used to
231 * override these in case your switch doesn't negotiate
232 * the link properly. Valid values are:
233 * 0x0001 - Force half duplex link.
234 * 0x0002 - Do not negotiate line speed with the other end.
235 * 0x0010 - 10Mbit/sec link.
236 * 0x0020 - 100Mbit/sec link.
237 * 0x0040 - 1000Mbit/sec link.
238 * 0x0100 - Do not negotiate flow control.
239 * 0x0200 - Enable RX flow control Y
240 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
241 * Default value is 0x0270, ie. enable link+flow
242 * control negotiation. Negotiating the highest
243 * possible link speed with RX flow control enabled.
245 * When disabling link speed negotiation, only one link
246 * speed is allowed to be specified!
248 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive before
250 * interrupting the host, from the time the first
253 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive in the transmit ring,
255 * before interrupting the host, after transmitting the
256 * first packet in the ring.
258 * max_tx_desc=<val> - maximum number of transmit descriptors
259 * (packets) transmitted before interrupting the host.
261 * max_rx_desc=<val> - maximum number of receive descriptors
262 * (packets) received before interrupting the host.
264 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
265 * increments of the NIC's on board memory to be used for
266 * transmit and receive buffers. For the 1MB NIC app. 800KB
267 * is available, on the 1/2MB NIC app. 300KB is available.
268 * 68KB will always be available as a minimum for both
269 * directions. The default value is a 50/50 split.
270 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
271 * operations, default (1) is to always disable this as
272 * that is what Alteon does on NT. I have not been able
273 * to measure any real performance differences with
274 * this on my systems. Set <val>=0 if you want to
275 * enable these operations.
277 * If you use more than one NIC, specify the parameters for the
278 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
279 * run tracing on NIC #2 but not on NIC #1 and #3.
283 * - Proper multicast support.
284 * - NIC dump support.
285 * - More tuning parameters.
287 * The mini ring is not used under Linux and I am not sure it makes sense
288 * to actually use it.
290 * New interrupt handler strategy:
292 * The old interrupt handler worked using the traditional method of
293 * replacing an skbuff with a new one when a packet arrives. However
294 * the rx rings do not need to contain a static number of buffer
295 * descriptors, thus it makes sense to move the memory allocation out
296 * of the main interrupt handler and do it in a bottom half handler
297 * and only allocate new buffers when the number of buffers in the
298 * ring is below a certain threshold. In order to avoid starving the
299 * NIC under heavy load it is however necessary to force allocation
300 * when hitting a minimum threshold. The strategy for alloction is as
303 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
304 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
305 * the buffers in the interrupt handler
306 * RX_RING_THRES - maximum number of buffers in the rx ring
307 * RX_MINI_THRES - maximum number of buffers in the mini ring
308 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
310 * One advantagous side effect of this allocation approach is that the
311 * entire rx processing can be done without holding any spin lock
312 * since the rx rings and registers are totally independent of the tx
313 * ring and its registers. This of course includes the kmalloc's of
314 * new skb's. Thus start_xmit can run in parallel with rx processing
315 * and the memory allocation on SMP systems.
317 * Note that running the skb reallocation in a bottom half opens up
318 * another can of races which needs to be handled properly. In
319 * particular it can happen that the interrupt handler tries to run
320 * the reallocation while the bottom half is either running on another
321 * CPU or was interrupted on the same CPU. To get around this the
322 * driver uses bitops to prevent the reallocation routines from being
325 * TX handling can also be done without holding any spin lock, wheee
326 * this is fun! since tx_ret_csm is only written to by the interrupt
327 * handler. The case to be aware of is when shutting down the device
328 * and cleaning up where it is necessary to make sure that
329 * start_xmit() is not running while this is happening. Well DaveM
330 * informs me that this case is already protected against ... bye bye
331 * Mr. Spin Lock, it was nice to know you.
333 * TX interrupts are now partly disabled so the NIC will only generate
334 * TX interrupts for the number of coal ticks, not for the number of
335 * TX packets in the queue. This should reduce the number of TX only,
336 * ie. when no RX processing is done, interrupts seen.
340 * Threshold values for RX buffer allocation - the low water marks for
341 * when to start refilling the rings are set to 75% of the ring
342 * sizes. It seems to make sense to refill the rings entirely from the
343 * intrrupt handler once it gets below the panic threshold, that way
344 * we don't risk that the refilling is moved to another CPU when the
345 * one running the interrupt handler just got the slab code hot in its
348 #define RX_RING_SIZE 72
349 #define RX_MINI_SIZE 64
350 #define RX_JUMBO_SIZE 48
352 #define RX_PANIC_STD_THRES 16
353 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
354 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
355 #define RX_PANIC_MINI_THRES 12
356 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
357 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
358 #define RX_PANIC_JUMBO_THRES 6
359 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
360 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
364 * Size of the mini ring entries, basically these just should be big
365 * enough to take TCP ACKs
367 #define ACE_MINI_SIZE 100
369 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
370 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
371 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
374 * There seems to be a magic difference in the effect between 995 and 996
375 * but little difference between 900 and 995 ... no idea why.
377 * There is now a default set of tuning parameters which is set, depending
378 * on whether or not the user enables Jumbo frames. It's assumed that if
379 * Jumbo frames are enabled, the user wants optimal tuning for that case.
381 #define DEF_TX_COAL 400 /* 996 */
382 #define DEF_TX_MAX_DESC 60 /* was 40 */
383 #define DEF_RX_COAL 120 /* 1000 */
384 #define DEF_RX_MAX_DESC 25
385 #define DEF_TX_RATIO 21 /* 24 */
387 #define DEF_JUMBO_TX_COAL 20
388 #define DEF_JUMBO_TX_MAX_DESC 60
389 #define DEF_JUMBO_RX_COAL 30
390 #define DEF_JUMBO_RX_MAX_DESC 6
391 #define DEF_JUMBO_TX_RATIO 21
393 #if tigon2FwReleaseLocal < 20001118
395 * Standard firmware and early modifications duplicate
396 * IRQ load without this flag (coal timer is never reset).
397 * Note that with this flag tx_coal should be less than
398 * time to xmit full tx ring.
399 * 400usec is not so bad for tx ring size of 128.
401 #define TX_COAL_INTS_ONLY 1 /* worth it */
404 * With modified firmware, this is not necessary, but still useful.
406 #define TX_COAL_INTS_ONLY 1
410 #define DEF_STAT (2 * TICKS_PER_SEC)
413 static int link
[ACE_MAX_MOD_PARMS
];
414 static int trace
[ACE_MAX_MOD_PARMS
];
415 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
416 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
417 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
418 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
419 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
420 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
422 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
423 MODULE_LICENSE("GPL");
424 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
426 module_param_array(link
, int, NULL
, 0);
427 module_param_array(trace
, int, NULL
, 0);
428 module_param_array(tx_coal_tick
, int, NULL
, 0);
429 module_param_array(max_tx_desc
, int, NULL
, 0);
430 module_param_array(rx_coal_tick
, int, NULL
, 0);
431 module_param_array(max_rx_desc
, int, NULL
, 0);
432 module_param_array(tx_ratio
, int, NULL
, 0);
433 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
434 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
435 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
436 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
437 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
438 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
439 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
442 static char version
[] __devinitdata
=
443 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
444 " http://home.cern.ch/~jes/gige/acenic.html\n";
446 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
447 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
448 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
450 static const struct ethtool_ops ace_ethtool_ops
= {
451 .get_settings
= ace_get_settings
,
452 .set_settings
= ace_set_settings
,
453 .get_drvinfo
= ace_get_drvinfo
,
456 static void ace_watchdog(struct net_device
*dev
);
458 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
459 const struct pci_device_id
*id
)
461 struct net_device
*dev
;
462 struct ace_private
*ap
;
463 static int boards_found
;
465 dev
= alloc_etherdev(sizeof(struct ace_private
));
467 printk(KERN_ERR
"acenic: Unable to allocate "
468 "net_device structure!\n");
472 SET_MODULE_OWNER(dev
);
473 SET_NETDEV_DEV(dev
, &pdev
->dev
);
477 ap
->name
= pci_name(pdev
);
479 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
481 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
482 dev
->vlan_rx_register
= ace_vlan_rx_register
;
483 dev
->vlan_rx_kill_vid
= ace_vlan_rx_kill_vid
;
486 dev
->tx_timeout
= &ace_watchdog
;
487 dev
->watchdog_timeo
= 5*HZ
;
490 dev
->open
= &ace_open
;
491 dev
->stop
= &ace_close
;
492 dev
->hard_start_xmit
= &ace_start_xmit
;
493 dev
->get_stats
= &ace_get_stats
;
494 dev
->set_multicast_list
= &ace_set_multicast_list
;
495 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
496 dev
->set_mac_address
= &ace_set_mac_addr
;
497 dev
->change_mtu
= &ace_change_mtu
;
499 /* we only display this string ONCE */
503 if (pci_enable_device(pdev
))
504 goto fail_free_netdev
;
507 * Enable master mode before we start playing with the
508 * pci_command word since pci_set_master() will modify
511 pci_set_master(pdev
);
513 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
515 /* OpenFirmware on Mac's does not set this - DOH.. */
516 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
517 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
518 "access - was not enabled by BIOS/Firmware\n",
520 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
521 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
526 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
527 if (ap
->pci_latency
<= 0x40) {
528 ap
->pci_latency
= 0x40;
529 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
533 * Remap the regs into kernel space - this is abuse of
534 * dev->base_addr since it was means for I/O port
535 * addresses but who gives a damn.
537 dev
->base_addr
= pci_resource_start(pdev
, 0);
538 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
540 printk(KERN_ERR
"%s: Unable to map I/O register, "
541 "AceNIC %i will be disabled.\n",
542 ap
->name
, boards_found
);
543 goto fail_free_netdev
;
546 switch(pdev
->vendor
) {
547 case PCI_VENDOR_ID_ALTEON
:
548 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
549 printk(KERN_INFO
"%s: Farallon PN9100-T ",
552 printk(KERN_INFO
"%s: Alteon AceNIC ",
556 case PCI_VENDOR_ID_3COM
:
557 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
559 case PCI_VENDOR_ID_NETGEAR
:
560 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
562 case PCI_VENDOR_ID_DEC
:
563 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
564 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
568 case PCI_VENDOR_ID_SGI
:
569 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
572 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
576 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
577 printk("irq %d\n", pdev
->irq
);
579 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
580 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
581 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
582 " support - NIC disabled\n", dev
->name
);
587 if (ace_allocate_descriptors(dev
))
588 goto fail_free_netdev
;
591 if (boards_found
>= ACE_MAX_MOD_PARMS
)
592 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
594 ap
->board_idx
= boards_found
;
596 ap
->board_idx
= BOARD_IDX_STATIC
;
600 goto fail_free_netdev
;
602 if (register_netdev(dev
)) {
603 printk(KERN_ERR
"acenic: device registration failed\n");
606 ap
->name
= dev
->name
;
608 if (ap
->pci_using_dac
)
609 dev
->features
|= NETIF_F_HIGHDMA
;
611 pci_set_drvdata(pdev
, dev
);
617 ace_init_cleanup(dev
);
623 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
625 struct net_device
*dev
= pci_get_drvdata(pdev
);
626 struct ace_private
*ap
= netdev_priv(dev
);
627 struct ace_regs __iomem
*regs
= ap
->regs
;
630 unregister_netdev(dev
);
632 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
633 if (ap
->version
>= 2)
634 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
637 * This clears any pending interrupts
639 writel(1, ®s
->Mb0Lo
);
640 readl(®s
->CpuCtrl
); /* flush */
643 * Make sure no other CPUs are processing interrupts
644 * on the card before the buffers are being released.
645 * Otherwise one might experience some `interesting'
648 * Then release the RX buffers - jumbo buffers were
649 * already released in ace_close().
651 ace_sync_irq(dev
->irq
);
653 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
654 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
657 struct ring_info
*ringp
;
660 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
661 mapping
= pci_unmap_addr(ringp
, mapping
);
662 pci_unmap_page(ap
->pdev
, mapping
,
666 ap
->rx_std_ring
[i
].size
= 0;
667 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
672 if (ap
->version
>= 2) {
673 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
674 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
677 struct ring_info
*ringp
;
680 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
681 mapping
= pci_unmap_addr(ringp
,mapping
);
682 pci_unmap_page(ap
->pdev
, mapping
,
686 ap
->rx_mini_ring
[i
].size
= 0;
687 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
693 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
694 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
696 struct ring_info
*ringp
;
699 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
700 mapping
= pci_unmap_addr(ringp
, mapping
);
701 pci_unmap_page(ap
->pdev
, mapping
,
705 ap
->rx_jumbo_ring
[i
].size
= 0;
706 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
711 ace_init_cleanup(dev
);
715 static struct pci_driver acenic_pci_driver
= {
717 .id_table
= acenic_pci_tbl
,
718 .probe
= acenic_probe_one
,
719 .remove
= __devexit_p(acenic_remove_one
),
722 static int __init
acenic_init(void)
724 return pci_register_driver(&acenic_pci_driver
);
727 static void __exit
acenic_exit(void)
729 pci_unregister_driver(&acenic_pci_driver
);
732 module_init(acenic_init
);
733 module_exit(acenic_exit
);
735 static void ace_free_descriptors(struct net_device
*dev
)
737 struct ace_private
*ap
= netdev_priv(dev
);
740 if (ap
->rx_std_ring
!= NULL
) {
741 size
= (sizeof(struct rx_desc
) *
742 (RX_STD_RING_ENTRIES
+
743 RX_JUMBO_RING_ENTRIES
+
744 RX_MINI_RING_ENTRIES
+
745 RX_RETURN_RING_ENTRIES
));
746 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
747 ap
->rx_ring_base_dma
);
748 ap
->rx_std_ring
= NULL
;
749 ap
->rx_jumbo_ring
= NULL
;
750 ap
->rx_mini_ring
= NULL
;
751 ap
->rx_return_ring
= NULL
;
753 if (ap
->evt_ring
!= NULL
) {
754 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
755 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
759 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
760 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
761 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
766 if (ap
->evt_prd
!= NULL
) {
767 pci_free_consistent(ap
->pdev
, sizeof(u32
),
768 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
771 if (ap
->rx_ret_prd
!= NULL
) {
772 pci_free_consistent(ap
->pdev
, sizeof(u32
),
773 (void *)ap
->rx_ret_prd
,
775 ap
->rx_ret_prd
= NULL
;
777 if (ap
->tx_csm
!= NULL
) {
778 pci_free_consistent(ap
->pdev
, sizeof(u32
),
779 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
785 static int ace_allocate_descriptors(struct net_device
*dev
)
787 struct ace_private
*ap
= netdev_priv(dev
);
790 size
= (sizeof(struct rx_desc
) *
791 (RX_STD_RING_ENTRIES
+
792 RX_JUMBO_RING_ENTRIES
+
793 RX_MINI_RING_ENTRIES
+
794 RX_RETURN_RING_ENTRIES
));
796 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
797 &ap
->rx_ring_base_dma
);
798 if (ap
->rx_std_ring
== NULL
)
801 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
802 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
803 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
805 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
807 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
809 if (ap
->evt_ring
== NULL
)
813 * Only allocate a host TX ring for the Tigon II, the Tigon I
814 * has to use PCI registers for this ;-(
816 if (!ACE_IS_TIGON_I(ap
)) {
817 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
819 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
822 if (ap
->tx_ring
== NULL
)
826 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
828 if (ap
->evt_prd
== NULL
)
831 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
832 &ap
->rx_ret_prd_dma
);
833 if (ap
->rx_ret_prd
== NULL
)
836 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
838 if (ap
->tx_csm
== NULL
)
845 ace_init_cleanup(dev
);
851 * Generic cleanup handling data allocated during init. Used when the
852 * module is unloaded or if an error occurs during initialization
854 static void ace_init_cleanup(struct net_device
*dev
)
856 struct ace_private
*ap
;
858 ap
= netdev_priv(dev
);
860 ace_free_descriptors(dev
);
863 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
864 ap
->info
, ap
->info_dma
);
866 kfree(ap
->trace_buf
);
869 free_irq(dev
->irq
, dev
);
876 * Commands are considered to be slow.
878 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
882 idx
= readl(®s
->CmdPrd
);
884 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
885 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
887 writel(idx
, ®s
->CmdPrd
);
891 static int __devinit
ace_init(struct net_device
*dev
)
893 struct ace_private
*ap
;
894 struct ace_regs __iomem
*regs
;
895 struct ace_info
*info
= NULL
;
896 struct pci_dev
*pdev
;
899 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
900 int board_idx
, ecode
= 0;
902 unsigned char cache_size
;
904 ap
= netdev_priv(dev
);
907 board_idx
= ap
->board_idx
;
910 * aman@sgi.com - its useful to do a NIC reset here to
911 * address the `Firmware not running' problem subsequent
912 * to any crashes involving the NIC
914 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
915 readl(®s
->HostCtrl
); /* PCI write posting */
919 * Don't access any other registers before this point!
923 * This will most likely need BYTE_SWAP once we switch
924 * to using __raw_writel()
926 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
929 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
932 readl(®s
->HostCtrl
); /* PCI write posting */
935 * Stop the NIC CPU and clear pending interrupts
937 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
938 readl(®s
->CpuCtrl
); /* PCI write posting */
939 writel(0, ®s
->Mb0Lo
);
941 tig_ver
= readl(®s
->HostCtrl
) >> 28;
944 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
947 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
948 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
950 writel(0, ®s
->LocalCtrl
);
952 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
956 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
957 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
959 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
960 readl(®s
->CpuBCtrl
); /* PCI write posting */
962 * The SRAM bank size does _not_ indicate the amount
963 * of memory on the card, it controls the _bank_ size!
964 * Ie. a 1MB AceNIC will have two banks of 512KB.
966 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
967 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
969 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
972 printk(KERN_WARNING
" Unsupported Tigon version detected "
979 * ModeStat _must_ be set after the SRAM settings as this change
980 * seems to corrupt the ModeStat and possible other registers.
981 * The SRAM settings survive resets and setting it to the same
982 * value a second time works as well. This is what caused the
983 * `Firmware not running' problem on the Tigon II.
986 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
987 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
989 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
990 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
992 readl(®s
->ModeStat
); /* PCI write posting */
995 for(i
= 0; i
< 4; i
++) {
999 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1004 mac1
|= (tmp
& 0xff);
1007 for(i
= 4; i
< 8; i
++) {
1011 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1016 mac2
|= (tmp
& 0xff);
1019 writel(mac1
, ®s
->MacAddrHi
);
1020 writel(mac2
, ®s
->MacAddrLo
);
1022 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1023 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1024 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1026 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1027 dev
->dev_addr
[1] = mac1
& 0xff;
1028 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1029 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1030 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1031 dev
->dev_addr
[5] = mac2
& 0xff;
1034 * Looks like this is necessary to deal with on all architectures,
1035 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1036 * Ie. having two NICs in the machine, one will have the cache
1037 * line set at boot time, the other will not.
1040 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1042 if (cache_size
!= SMP_CACHE_BYTES
) {
1043 printk(KERN_INFO
" PCI cache line size set incorrectly "
1044 "(%i bytes) by BIOS/FW, ", cache_size
);
1045 if (cache_size
> SMP_CACHE_BYTES
)
1046 printk("expecting %i\n", SMP_CACHE_BYTES
);
1048 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1049 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1050 SMP_CACHE_BYTES
>> 2);
1054 pci_state
= readl(®s
->PciState
);
1055 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1056 "latency: %i clks\n",
1057 (pci_state
& PCI_32BIT
) ? 32 : 64,
1058 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1062 * Set the max DMA transfer size. Seems that for most systems
1063 * the performance is better when no MAX parameter is
1064 * set. However for systems enabling PCI write and invalidate,
1065 * DMA writes must be set to the L1 cache line size to get
1066 * optimal performance.
1068 * The default is now to turn the PCI write and invalidate off
1069 * - that is what Alteon does for NT.
1071 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1072 if (ap
->version
>= 2) {
1073 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1075 * Tuning parameters only supported for 8 cards
1077 if (board_idx
== BOARD_IDX_OVERFLOW
||
1078 dis_pci_mem_inval
[board_idx
]) {
1079 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1080 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1081 pci_write_config_word(pdev
, PCI_COMMAND
,
1083 printk(KERN_INFO
" Disabling PCI memory "
1084 "write and invalidate\n");
1086 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1087 printk(KERN_INFO
" PCI memory write & invalidate "
1088 "enabled by BIOS, enabling counter measures\n");
1090 switch(SMP_CACHE_BYTES
) {
1092 tmp
|= DMA_WRITE_MAX_16
;
1095 tmp
|= DMA_WRITE_MAX_32
;
1098 tmp
|= DMA_WRITE_MAX_64
;
1101 tmp
|= DMA_WRITE_MAX_128
;
1104 printk(KERN_INFO
" Cache line size %i not "
1105 "supported, PCI write and invalidate "
1106 "disabled\n", SMP_CACHE_BYTES
);
1107 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1108 pci_write_config_word(pdev
, PCI_COMMAND
,
1116 * On this platform, we know what the best dma settings
1117 * are. We use 64-byte maximum bursts, because if we
1118 * burst larger than the cache line size (or even cross
1119 * a 64byte boundary in a single burst) the UltraSparc
1120 * PCI controller will disconnect at 64-byte multiples.
1122 * Read-multiple will be properly enabled above, and when
1123 * set will give the PCI controller proper hints about
1126 tmp
&= ~DMA_READ_WRITE_MASK
;
1127 tmp
|= DMA_READ_MAX_64
;
1128 tmp
|= DMA_WRITE_MAX_64
;
1131 tmp
&= ~DMA_READ_WRITE_MASK
;
1132 tmp
|= DMA_READ_MAX_128
;
1134 * All the docs say MUST NOT. Well, I did.
1135 * Nothing terrible happens, if we load wrong size.
1136 * Bit w&i still works better!
1138 tmp
|= DMA_WRITE_MAX_128
;
1140 writel(tmp
, ®s
->PciState
);
1144 * The Host PCI bus controller driver has to set FBB.
1145 * If all devices on that PCI bus support FBB, then the controller
1146 * can enable FBB support in the Host PCI Bus controller (or on
1147 * the PCI-PCI bridge if that applies).
1151 * I have received reports from people having problems when this
1154 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1155 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1156 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1157 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1162 * Configure DMA attributes.
1164 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1165 ap
->pci_using_dac
= 1;
1166 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
1167 ap
->pci_using_dac
= 0;
1174 * Initialize the generic info block and the command+event rings
1175 * and the control blocks for the transmit and receive rings
1176 * as they need to be setup once and for all.
1178 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1186 * Get the memory for the skb rings.
1188 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1193 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1196 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1197 DRV_NAME
, pdev
->irq
);
1200 dev
->irq
= pdev
->irq
;
1203 spin_lock_init(&ap
->debug_lock
);
1204 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1205 ap
->last_std_rx
= 0;
1206 ap
->last_mini_rx
= 0;
1209 memset(ap
->info
, 0, sizeof(struct ace_info
));
1210 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1212 ace_load_firmware(dev
);
1215 tmp_ptr
= ap
->info_dma
;
1216 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1217 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1219 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1221 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1222 info
->evt_ctrl
.flags
= 0;
1226 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1227 writel(0, ®s
->EvtCsm
);
1229 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1230 info
->cmd_ctrl
.flags
= 0;
1231 info
->cmd_ctrl
.max_len
= 0;
1233 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1234 writel(0, ®s
->CmdRng
[i
]);
1236 writel(0, ®s
->CmdPrd
);
1237 writel(0, ®s
->CmdCsm
);
1239 tmp_ptr
= ap
->info_dma
;
1240 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1241 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1243 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1244 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1245 info
->rx_std_ctrl
.flags
=
1246 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1248 memset(ap
->rx_std_ring
, 0,
1249 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1251 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1252 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1254 ap
->rx_std_skbprd
= 0;
1255 atomic_set(&ap
->cur_rx_bufs
, 0);
1257 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1258 (ap
->rx_ring_base_dma
+
1259 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1260 info
->rx_jumbo_ctrl
.max_len
= 0;
1261 info
->rx_jumbo_ctrl
.flags
=
1262 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1264 memset(ap
->rx_jumbo_ring
, 0,
1265 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1267 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1268 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1270 ap
->rx_jumbo_skbprd
= 0;
1271 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1273 memset(ap
->rx_mini_ring
, 0,
1274 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1276 if (ap
->version
>= 2) {
1277 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1278 (ap
->rx_ring_base_dma
+
1279 (sizeof(struct rx_desc
) *
1280 (RX_STD_RING_ENTRIES
+
1281 RX_JUMBO_RING_ENTRIES
))));
1282 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1283 info
->rx_mini_ctrl
.flags
=
1284 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1286 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1287 ap
->rx_mini_ring
[i
].flags
=
1288 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1290 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1291 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1292 info
->rx_mini_ctrl
.max_len
= 0;
1295 ap
->rx_mini_skbprd
= 0;
1296 atomic_set(&ap
->cur_mini_bufs
, 0);
1298 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1299 (ap
->rx_ring_base_dma
+
1300 (sizeof(struct rx_desc
) *
1301 (RX_STD_RING_ENTRIES
+
1302 RX_JUMBO_RING_ENTRIES
+
1303 RX_MINI_RING_ENTRIES
))));
1304 info
->rx_return_ctrl
.flags
= 0;
1305 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1307 memset(ap
->rx_return_ring
, 0,
1308 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1310 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1311 *(ap
->rx_ret_prd
) = 0;
1313 writel(TX_RING_BASE
, ®s
->WinBase
);
1315 if (ACE_IS_TIGON_I(ap
)) {
1316 ap
->tx_ring
= (struct tx_desc
*) regs
->Window
;
1317 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1318 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1319 writel(0, (void __iomem
*)ap
->tx_ring
+ i
* 4);
1321 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1323 memset(ap
->tx_ring
, 0,
1324 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1326 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1329 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1330 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1333 * The Tigon I does not like having the TX ring in host memory ;-(
1335 if (!ACE_IS_TIGON_I(ap
))
1336 tmp
|= RCB_FLG_TX_HOST_RING
;
1337 #if TX_COAL_INTS_ONLY
1338 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1340 info
->tx_ctrl
.flags
= tmp
;
1342 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1345 * Potential item for tuning parameter
1348 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1349 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1351 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1352 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1355 writel(0, ®s
->MaskInt
);
1356 writel(1, ®s
->IfIdx
);
1359 * McKinley boxes do not like us fiddling with AssistState
1362 writel(1, ®s
->AssistState
);
1365 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1366 writel(DEF_TRACE
, ®s
->TuneTrace
);
1368 ace_set_rxtx_parms(dev
, 0);
1370 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1371 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1372 "ignoring module parameters!\n",
1373 ap
->name
, ACE_MAX_MOD_PARMS
);
1374 } else if (board_idx
>= 0) {
1375 if (tx_coal_tick
[board_idx
])
1376 writel(tx_coal_tick
[board_idx
],
1377 ®s
->TuneTxCoalTicks
);
1378 if (max_tx_desc
[board_idx
])
1379 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1381 if (rx_coal_tick
[board_idx
])
1382 writel(rx_coal_tick
[board_idx
],
1383 ®s
->TuneRxCoalTicks
);
1384 if (max_rx_desc
[board_idx
])
1385 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1387 if (trace
[board_idx
])
1388 writel(trace
[board_idx
], ®s
->TuneTrace
);
1390 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1391 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1395 * Default link parameters
1397 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1398 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1399 if(ap
->version
>= 2)
1400 tmp
|= LNK_TX_FLOW_CTL_Y
;
1403 * Override link default parameters
1405 if ((board_idx
>= 0) && link
[board_idx
]) {
1406 int option
= link
[board_idx
];
1410 if (option
& 0x01) {
1411 printk(KERN_INFO
"%s: Setting half duplex link\n",
1413 tmp
&= ~LNK_FULL_DUPLEX
;
1416 tmp
&= ~LNK_NEGOTIATE
;
1423 if ((option
& 0x70) == 0) {
1424 printk(KERN_WARNING
"%s: No media speed specified, "
1425 "forcing auto negotiation\n", ap
->name
);
1426 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1427 LNK_100MB
| LNK_10MB
;
1429 if ((option
& 0x100) == 0)
1430 tmp
|= LNK_NEG_FCTL
;
1432 printk(KERN_INFO
"%s: Disabling flow control "
1433 "negotiation\n", ap
->name
);
1435 tmp
|= LNK_RX_FLOW_CTL_Y
;
1436 if ((option
& 0x400) && (ap
->version
>= 2)) {
1437 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1439 tmp
|= LNK_TX_FLOW_CTL_Y
;
1444 writel(tmp
, ®s
->TuneLink
);
1445 if (ap
->version
>= 2)
1446 writel(tmp
, ®s
->TuneFastLink
);
1448 if (ACE_IS_TIGON_I(ap
))
1449 writel(tigonFwStartAddr
, ®s
->Pc
);
1450 if (ap
->version
== 2)
1451 writel(tigon2FwStartAddr
, ®s
->Pc
);
1453 writel(0, ®s
->Mb0Lo
);
1456 * Set tx_csm before we start receiving interrupts, otherwise
1457 * the interrupt handler might think it is supposed to process
1458 * tx ints before we are up and running, which may cause a null
1459 * pointer access in the int handler.
1462 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1465 ace_set_txprd(regs
, ap
, 0);
1466 writel(0, ®s
->RxRetCsm
);
1469 * Zero the stats before starting the interface
1471 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1474 * Enable DMA engine now.
1475 * If we do this sooner, Mckinley box pukes.
1476 * I assume it's because Tigon II DMA engine wants to check
1477 * *something* even before the CPU is started.
1479 writel(1, ®s
->AssistState
); /* enable DMA */
1484 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1485 readl(®s
->CpuCtrl
);
1488 * Wait for the firmware to spin up - max 3 seconds.
1490 myjif
= jiffies
+ 3 * HZ
;
1491 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1494 if (!ap
->fw_running
) {
1495 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1498 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1499 readl(®s
->CpuCtrl
);
1501 /* aman@sgi.com - account for badly behaving firmware/NIC:
1502 * - have observed that the NIC may continue to generate
1503 * interrupts for some reason; attempt to stop it - halt
1504 * second CPU for Tigon II cards, and also clear Mb0
1505 * - if we're a module, we'll fail to load if this was
1506 * the only GbE card in the system => if the kernel does
1507 * see an interrupt from the NIC, code to handle it is
1508 * gone and OOps! - so free_irq also
1510 if (ap
->version
>= 2)
1511 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1513 writel(0, ®s
->Mb0Lo
);
1514 readl(®s
->Mb0Lo
);
1521 * We load the ring here as there seem to be no way to tell the
1522 * firmware to wipe the ring without re-initializing it.
1524 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1525 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1527 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1529 if (ap
->version
>= 2) {
1530 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1531 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1533 printk(KERN_ERR
"%s: Someone is busy refilling "
1534 "the RX mini ring\n", ap
->name
);
1539 ace_init_cleanup(dev
);
1544 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1546 struct ace_private
*ap
= netdev_priv(dev
);
1547 struct ace_regs __iomem
*regs
= ap
->regs
;
1548 int board_idx
= ap
->board_idx
;
1550 if (board_idx
>= 0) {
1552 if (!tx_coal_tick
[board_idx
])
1553 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1554 if (!max_tx_desc
[board_idx
])
1555 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1556 if (!rx_coal_tick
[board_idx
])
1557 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1558 if (!max_rx_desc
[board_idx
])
1559 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1560 if (!tx_ratio
[board_idx
])
1561 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1563 if (!tx_coal_tick
[board_idx
])
1564 writel(DEF_JUMBO_TX_COAL
,
1565 ®s
->TuneTxCoalTicks
);
1566 if (!max_tx_desc
[board_idx
])
1567 writel(DEF_JUMBO_TX_MAX_DESC
,
1568 ®s
->TuneMaxTxDesc
);
1569 if (!rx_coal_tick
[board_idx
])
1570 writel(DEF_JUMBO_RX_COAL
,
1571 ®s
->TuneRxCoalTicks
);
1572 if (!max_rx_desc
[board_idx
])
1573 writel(DEF_JUMBO_RX_MAX_DESC
,
1574 ®s
->TuneMaxRxDesc
);
1575 if (!tx_ratio
[board_idx
])
1576 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1582 static void ace_watchdog(struct net_device
*data
)
1584 struct net_device
*dev
= data
;
1585 struct ace_private
*ap
= netdev_priv(dev
);
1586 struct ace_regs __iomem
*regs
= ap
->regs
;
1589 * We haven't received a stats update event for more than 2.5
1590 * seconds and there is data in the transmit queue, thus we
1591 * asume the card is stuck.
1593 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1594 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1595 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1596 /* This can happen due to ieee flow control. */
1598 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1601 netif_wake_queue(dev
);
1607 static void ace_tasklet(unsigned long dev
)
1609 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1612 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1613 if ((cur_size
< RX_LOW_STD_THRES
) &&
1614 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1616 printk("refilling buffers (current %i)\n", cur_size
);
1618 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1621 if (ap
->version
>= 2) {
1622 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1623 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1624 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1626 printk("refilling mini buffers (current %i)\n",
1629 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1633 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1634 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1635 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1637 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1639 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1641 ap
->tasklet_pending
= 0;
1646 * Copy the contents of the NIC's trace buffer to kernel memory.
1648 static void ace_dump_trace(struct ace_private
*ap
)
1652 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1659 * Load the standard rx ring.
1661 * Loading rings is safe without holding the spin lock since this is
1662 * done only before the device is enabled, thus no interrupts are
1663 * generated and by the interrupt handler/tasklet handler.
1665 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1667 struct ace_regs __iomem
*regs
= ap
->regs
;
1671 prefetchw(&ap
->cur_rx_bufs
);
1673 idx
= ap
->rx_std_skbprd
;
1675 for (i
= 0; i
< nr_bufs
; i
++) {
1676 struct sk_buff
*skb
;
1680 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1684 skb_reserve(skb
, NET_IP_ALIGN
);
1685 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1686 offset_in_page(skb
->data
),
1688 PCI_DMA_FROMDEVICE
);
1689 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1690 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1693 rd
= &ap
->rx_std_ring
[idx
];
1694 set_aceaddr(&rd
->addr
, mapping
);
1695 rd
->size
= ACE_STD_BUFSIZE
;
1697 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1703 atomic_add(i
, &ap
->cur_rx_bufs
);
1704 ap
->rx_std_skbprd
= idx
;
1706 if (ACE_IS_TIGON_I(ap
)) {
1708 cmd
.evt
= C_SET_RX_PRD_IDX
;
1710 cmd
.idx
= ap
->rx_std_skbprd
;
1711 ace_issue_cmd(regs
, &cmd
);
1713 writel(idx
, ®s
->RxStdPrd
);
1718 clear_bit(0, &ap
->std_refill_busy
);
1722 printk(KERN_INFO
"Out of memory when allocating "
1723 "standard receive buffers\n");
1728 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1730 struct ace_regs __iomem
*regs
= ap
->regs
;
1733 prefetchw(&ap
->cur_mini_bufs
);
1735 idx
= ap
->rx_mini_skbprd
;
1736 for (i
= 0; i
< nr_bufs
; i
++) {
1737 struct sk_buff
*skb
;
1741 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1745 skb_reserve(skb
, NET_IP_ALIGN
);
1746 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1747 offset_in_page(skb
->data
),
1749 PCI_DMA_FROMDEVICE
);
1750 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1751 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1754 rd
= &ap
->rx_mini_ring
[idx
];
1755 set_aceaddr(&rd
->addr
, mapping
);
1756 rd
->size
= ACE_MINI_BUFSIZE
;
1758 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1764 atomic_add(i
, &ap
->cur_mini_bufs
);
1766 ap
->rx_mini_skbprd
= idx
;
1768 writel(idx
, ®s
->RxMiniPrd
);
1772 clear_bit(0, &ap
->mini_refill_busy
);
1775 printk(KERN_INFO
"Out of memory when allocating "
1776 "mini receive buffers\n");
1782 * Load the jumbo rx ring, this may happen at any time if the MTU
1783 * is changed to a value > 1500.
1785 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1787 struct ace_regs __iomem
*regs
= ap
->regs
;
1790 idx
= ap
->rx_jumbo_skbprd
;
1792 for (i
= 0; i
< nr_bufs
; i
++) {
1793 struct sk_buff
*skb
;
1797 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1801 skb_reserve(skb
, NET_IP_ALIGN
);
1802 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1803 offset_in_page(skb
->data
),
1805 PCI_DMA_FROMDEVICE
);
1806 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1807 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1810 rd
= &ap
->rx_jumbo_ring
[idx
];
1811 set_aceaddr(&rd
->addr
, mapping
);
1812 rd
->size
= ACE_JUMBO_BUFSIZE
;
1814 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1820 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1821 ap
->rx_jumbo_skbprd
= idx
;
1823 if (ACE_IS_TIGON_I(ap
)) {
1825 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1827 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1828 ace_issue_cmd(regs
, &cmd
);
1830 writel(idx
, ®s
->RxJumboPrd
);
1835 clear_bit(0, &ap
->jumbo_refill_busy
);
1838 if (net_ratelimit())
1839 printk(KERN_INFO
"Out of memory when allocating "
1840 "jumbo receive buffers\n");
1846 * All events are considered to be slow (RX/TX ints do not generate
1847 * events) and are handled here, outside the main interrupt handler,
1848 * to reduce the size of the handler.
1850 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1852 struct ace_private
*ap
;
1854 ap
= netdev_priv(dev
);
1856 while (evtcsm
!= evtprd
) {
1857 switch (ap
->evt_ring
[evtcsm
].evt
) {
1859 printk(KERN_INFO
"%s: Firmware up and running\n",
1864 case E_STATS_UPDATED
:
1868 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1872 u32 state
= readl(&ap
->regs
->GigLnkState
);
1873 printk(KERN_WARNING
"%s: Optical link UP "
1874 "(%s Duplex, Flow Control: %s%s)\n",
1876 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1877 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1878 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1882 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1885 case E_C_LINK_10_100
:
1886 printk(KERN_WARNING
"%s: 10/100BaseT link "
1890 printk(KERN_ERR
"%s: Unknown optical link "
1891 "state %02x\n", ap
->name
, code
);
1896 switch(ap
->evt_ring
[evtcsm
].code
) {
1897 case E_C_ERR_INVAL_CMD
:
1898 printk(KERN_ERR
"%s: invalid command error\n",
1901 case E_C_ERR_UNIMP_CMD
:
1902 printk(KERN_ERR
"%s: unimplemented command "
1903 "error\n", ap
->name
);
1905 case E_C_ERR_BAD_CFG
:
1906 printk(KERN_ERR
"%s: bad config error\n",
1910 printk(KERN_ERR
"%s: unknown error %02x\n",
1911 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1914 case E_RESET_JUMBO_RNG
:
1917 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1918 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1919 ap
->rx_jumbo_ring
[i
].size
= 0;
1920 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1921 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1922 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1926 if (ACE_IS_TIGON_I(ap
)) {
1928 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1931 ace_issue_cmd(ap
->regs
, &cmd
);
1933 writel(0, &((ap
->regs
)->RxJumboPrd
));
1938 ap
->rx_jumbo_skbprd
= 0;
1939 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1941 clear_bit(0, &ap
->jumbo_refill_busy
);
1945 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1946 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1948 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1955 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1957 struct ace_private
*ap
= netdev_priv(dev
);
1959 int mini_count
= 0, std_count
= 0;
1963 prefetchw(&ap
->cur_rx_bufs
);
1964 prefetchw(&ap
->cur_mini_bufs
);
1966 while (idx
!= rxretprd
) {
1967 struct ring_info
*rip
;
1968 struct sk_buff
*skb
;
1969 struct rx_desc
*rxdesc
, *retdesc
;
1971 int bd_flags
, desc_type
, mapsize
;
1975 /* make sure the rx descriptor isn't read before rxretprd */
1976 if (idx
== rxretcsm
)
1979 retdesc
= &ap
->rx_return_ring
[idx
];
1980 skbidx
= retdesc
->idx
;
1981 bd_flags
= retdesc
->flags
;
1982 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1986 * Normal frames do not have any flags set
1988 * Mini and normal frames arrive frequently,
1989 * so use a local counter to avoid doing
1990 * atomic operations for each packet arriving.
1993 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1994 mapsize
= ACE_STD_BUFSIZE
;
1995 rxdesc
= &ap
->rx_std_ring
[skbidx
];
1999 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
2000 mapsize
= ACE_JUMBO_BUFSIZE
;
2001 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
2002 atomic_dec(&ap
->cur_jumbo_bufs
);
2005 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2006 mapsize
= ACE_MINI_BUFSIZE
;
2007 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2011 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2012 "returned by NIC\n", dev
->name
,
2019 pci_unmap_page(ap
->pdev
,
2020 pci_unmap_addr(rip
, mapping
),
2022 PCI_DMA_FROMDEVICE
);
2023 skb_put(skb
, retdesc
->size
);
2028 csum
= retdesc
->tcp_udp_csum
;
2031 skb
->protocol
= eth_type_trans(skb
, dev
);
2034 * Instead of forcing the poor tigon mips cpu to calculate
2035 * pseudo hdr checksum, we do this ourselves.
2037 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2038 skb
->csum
= htons(csum
);
2039 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2041 skb
->ip_summed
= CHECKSUM_NONE
;
2046 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2047 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2052 dev
->last_rx
= jiffies
;
2053 ap
->stats
.rx_packets
++;
2054 ap
->stats
.rx_bytes
+= retdesc
->size
;
2056 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2059 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2060 if (!ACE_IS_TIGON_I(ap
))
2061 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2065 * According to the documentation RxRetCsm is obsolete with
2066 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2068 if (ACE_IS_TIGON_I(ap
)) {
2069 writel(idx
, &ap
->regs
->RxRetCsm
);
2080 static inline void ace_tx_int(struct net_device
*dev
,
2083 struct ace_private
*ap
= netdev_priv(dev
);
2086 struct sk_buff
*skb
;
2088 struct tx_ring_info
*info
;
2090 info
= ap
->skb
->tx_skbuff
+ idx
;
2092 mapping
= pci_unmap_addr(info
, mapping
);
2095 pci_unmap_page(ap
->pdev
, mapping
,
2096 pci_unmap_len(info
, maplen
),
2098 pci_unmap_addr_set(info
, mapping
, 0);
2102 ap
->stats
.tx_packets
++;
2103 ap
->stats
.tx_bytes
+= skb
->len
;
2104 dev_kfree_skb_irq(skb
);
2108 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2109 } while (idx
!= txcsm
);
2111 if (netif_queue_stopped(dev
))
2112 netif_wake_queue(dev
);
2115 ap
->tx_ret_csm
= txcsm
;
2117 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2119 * We could try to make it before. In this case we would get
2120 * the following race condition: hard_start_xmit on other cpu
2121 * enters after we advanced tx_ret_csm and fills space,
2122 * which we have just freed, so that we make illegal device wakeup.
2123 * There is no good way to workaround this (at entry
2124 * to ace_start_xmit detects this condition and prevents
2125 * ring corruption, but it is not a good workaround.)
2127 * When tx_ret_csm is advanced after, we wake up device _only_
2128 * if we really have some space in ring (though the core doing
2129 * hard_start_xmit can see full ring for some period and has to
2130 * synchronize.) Superb.
2131 * BUT! We get another subtle race condition. hard_start_xmit
2132 * may think that ring is full between wakeup and advancing
2133 * tx_ret_csm and will stop device instantly! It is not so bad.
2134 * We are guaranteed that there is something in ring, so that
2135 * the next irq will resume transmission. To speedup this we could
2136 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2137 * (see ace_start_xmit).
2139 * Well, this dilemma exists in all lock-free devices.
2140 * We, following scheme used in drivers by Donald Becker,
2141 * select the least dangerous.
2147 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
2149 struct net_device
*dev
= (struct net_device
*)dev_id
;
2150 struct ace_private
*ap
= netdev_priv(dev
);
2151 struct ace_regs __iomem
*regs
= ap
->regs
;
2153 u32 txcsm
, rxretcsm
, rxretprd
;
2157 * In case of PCI shared interrupts or spurious interrupts,
2158 * we want to make sure it is actually our interrupt before
2159 * spending any time in here.
2161 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2165 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2166 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2167 * writel(0, ®s->Mb0Lo).
2169 * "IRQ avoidance" recommended in docs applies to IRQs served
2170 * threads and it is wrong even for that case.
2172 writel(0, ®s
->Mb0Lo
);
2173 readl(®s
->Mb0Lo
);
2176 * There is no conflict between transmit handling in
2177 * start_xmit and receive processing, thus there is no reason
2178 * to take a spin lock for RX handling. Wait until we start
2179 * working on the other stuff - hey we don't need a spin lock
2182 rxretprd
= *ap
->rx_ret_prd
;
2183 rxretcsm
= ap
->cur_rx
;
2185 if (rxretprd
!= rxretcsm
)
2186 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2188 txcsm
= *ap
->tx_csm
;
2189 idx
= ap
->tx_ret_csm
;
2193 * If each skb takes only one descriptor this check degenerates
2194 * to identity, because new space has just been opened.
2195 * But if skbs are fragmented we must check that this index
2196 * update releases enough of space, otherwise we just
2197 * wait for device to make more work.
2199 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2200 ace_tx_int(dev
, txcsm
, idx
);
2203 evtcsm
= readl(®s
->EvtCsm
);
2204 evtprd
= *ap
->evt_prd
;
2206 if (evtcsm
!= evtprd
) {
2207 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2208 writel(evtcsm
, ®s
->EvtCsm
);
2212 * This has to go last in the interrupt handler and run with
2213 * the spin lock released ... what lock?
2215 if (netif_running(dev
)) {
2217 int run_tasklet
= 0;
2219 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2220 if (cur_size
< RX_LOW_STD_THRES
) {
2221 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2222 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2224 printk("low on std buffers %i\n", cur_size
);
2226 ace_load_std_rx_ring(ap
,
2227 RX_RING_SIZE
- cur_size
);
2232 if (!ACE_IS_TIGON_I(ap
)) {
2233 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2234 if (cur_size
< RX_LOW_MINI_THRES
) {
2235 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2236 !test_and_set_bit(0,
2237 &ap
->mini_refill_busy
)) {
2239 printk("low on mini buffers %i\n",
2242 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2249 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2250 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2251 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2252 !test_and_set_bit(0,
2253 &ap
->jumbo_refill_busy
)){
2255 printk("low on jumbo buffers %i\n",
2258 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2263 if (run_tasklet
&& !ap
->tasklet_pending
) {
2264 ap
->tasklet_pending
= 1;
2265 tasklet_schedule(&ap
->ace_tasklet
);
2274 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2276 struct ace_private
*ap
= netdev_priv(dev
);
2277 unsigned long flags
;
2279 local_irq_save(flags
);
2284 ace_unmask_irq(dev
);
2285 local_irq_restore(flags
);
2289 static void ace_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
2291 struct ace_private
*ap
= netdev_priv(dev
);
2292 unsigned long flags
;
2294 local_irq_save(flags
);
2298 ap
->vlgrp
->vlan_devices
[vid
] = NULL
;
2300 ace_unmask_irq(dev
);
2301 local_irq_restore(flags
);
2303 #endif /* ACENIC_DO_VLAN */
2306 static int ace_open(struct net_device
*dev
)
2308 struct ace_private
*ap
= netdev_priv(dev
);
2309 struct ace_regs __iomem
*regs
= ap
->regs
;
2312 if (!(ap
->fw_running
)) {
2313 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2317 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2319 cmd
.evt
= C_CLEAR_STATS
;
2322 ace_issue_cmd(regs
, &cmd
);
2324 cmd
.evt
= C_HOST_STATE
;
2325 cmd
.code
= C_C_STACK_UP
;
2327 ace_issue_cmd(regs
, &cmd
);
2330 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2331 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2333 if (dev
->flags
& IFF_PROMISC
) {
2334 cmd
.evt
= C_SET_PROMISC_MODE
;
2335 cmd
.code
= C_C_PROMISC_ENABLE
;
2337 ace_issue_cmd(regs
, &cmd
);
2345 cmd
.evt
= C_LNK_NEGOTIATION
;
2348 ace_issue_cmd(regs
, &cmd
);
2351 netif_start_queue(dev
);
2354 * Setup the bottom half rx ring refill handler
2356 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2361 static int ace_close(struct net_device
*dev
)
2363 struct ace_private
*ap
= netdev_priv(dev
);
2364 struct ace_regs __iomem
*regs
= ap
->regs
;
2366 unsigned long flags
;
2370 * Without (or before) releasing irq and stopping hardware, this
2371 * is an absolute non-sense, by the way. It will be reset instantly
2374 netif_stop_queue(dev
);
2378 cmd
.evt
= C_SET_PROMISC_MODE
;
2379 cmd
.code
= C_C_PROMISC_DISABLE
;
2381 ace_issue_cmd(regs
, &cmd
);
2385 cmd
.evt
= C_HOST_STATE
;
2386 cmd
.code
= C_C_STACK_DOWN
;
2388 ace_issue_cmd(regs
, &cmd
);
2390 tasklet_kill(&ap
->ace_tasklet
);
2393 * Make sure one CPU is not processing packets while
2394 * buffers are being released by another.
2397 local_irq_save(flags
);
2400 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2401 struct sk_buff
*skb
;
2403 struct tx_ring_info
*info
;
2405 info
= ap
->skb
->tx_skbuff
+ i
;
2407 mapping
= pci_unmap_addr(info
, mapping
);
2410 if (ACE_IS_TIGON_I(ap
)) {
2411 struct tx_desc __iomem
*tx
2412 = (struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2413 writel(0, &tx
->addr
.addrhi
);
2414 writel(0, &tx
->addr
.addrlo
);
2415 writel(0, &tx
->flagsize
);
2417 memset(ap
->tx_ring
+ i
, 0,
2418 sizeof(struct tx_desc
));
2419 pci_unmap_page(ap
->pdev
, mapping
,
2420 pci_unmap_len(info
, maplen
),
2422 pci_unmap_addr_set(info
, mapping
, 0);
2431 cmd
.evt
= C_RESET_JUMBO_RNG
;
2434 ace_issue_cmd(regs
, &cmd
);
2437 ace_unmask_irq(dev
);
2438 local_irq_restore(flags
);
2444 static inline dma_addr_t
2445 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2446 struct sk_buff
*tail
, u32 idx
)
2449 struct tx_ring_info
*info
;
2451 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2452 offset_in_page(skb
->data
),
2453 skb
->len
, PCI_DMA_TODEVICE
);
2455 info
= ap
->skb
->tx_skbuff
+ idx
;
2457 pci_unmap_addr_set(info
, mapping
, mapping
);
2458 pci_unmap_len_set(info
, maplen
, skb
->len
);
2464 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2465 u32 flagsize
, u32 vlan_tag
)
2467 #if !USE_TX_COAL_NOW
2468 flagsize
&= ~BD_FLG_COAL_NOW
;
2471 if (ACE_IS_TIGON_I(ap
)) {
2472 struct tx_desc __iomem
*io
= (struct tx_desc __iomem
*) desc
;
2473 writel(addr
>> 32, &io
->addr
.addrhi
);
2474 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2475 writel(flagsize
, &io
->flagsize
);
2477 writel(vlan_tag
, &io
->vlanres
);
2480 desc
->addr
.addrhi
= addr
>> 32;
2481 desc
->addr
.addrlo
= addr
;
2482 desc
->flagsize
= flagsize
;
2484 desc
->vlanres
= vlan_tag
;
2490 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2492 struct ace_private
*ap
= netdev_priv(dev
);
2493 struct ace_regs __iomem
*regs
= ap
->regs
;
2494 struct tx_desc
*desc
;
2496 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2501 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2504 if (!skb_shinfo(skb
)->nr_frags
) {
2508 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2509 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2510 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2511 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2513 if (vlan_tx_tag_present(skb
)) {
2514 flagsize
|= BD_FLG_VLAN_TAG
;
2515 vlan_tag
= vlan_tx_tag_get(skb
);
2518 desc
= ap
->tx_ring
+ idx
;
2519 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2521 /* Look at ace_tx_int for explanations. */
2522 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2523 flagsize
|= BD_FLG_COAL_NOW
;
2525 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2531 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2532 flagsize
= (skb_headlen(skb
) << 16);
2533 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2534 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2536 if (vlan_tx_tag_present(skb
)) {
2537 flagsize
|= BD_FLG_VLAN_TAG
;
2538 vlan_tag
= vlan_tx_tag_get(skb
);
2542 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2544 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2546 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2547 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2548 struct tx_ring_info
*info
;
2551 info
= ap
->skb
->tx_skbuff
+ idx
;
2552 desc
= ap
->tx_ring
+ idx
;
2554 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2555 frag
->page_offset
, frag
->size
,
2558 flagsize
= (frag
->size
<< 16);
2559 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2560 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2561 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2563 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2564 flagsize
|= BD_FLG_END
;
2565 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2566 flagsize
|= BD_FLG_COAL_NOW
;
2569 * Only the last fragment frees
2576 pci_unmap_addr_set(info
, mapping
, mapping
);
2577 pci_unmap_len_set(info
, maplen
, frag
->size
);
2578 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2584 ace_set_txprd(regs
, ap
, idx
);
2586 if (flagsize
& BD_FLG_COAL_NOW
) {
2587 netif_stop_queue(dev
);
2590 * A TX-descriptor producer (an IRQ) might have gotten
2591 * inbetween, making the ring free again. Since xmit is
2592 * serialized, this is the only situation we have to
2595 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2596 netif_wake_queue(dev
);
2599 dev
->trans_start
= jiffies
;
2600 return NETDEV_TX_OK
;
2604 * This race condition is unavoidable with lock-free drivers.
2605 * We wake up the queue _before_ tx_prd is advanced, so that we can
2606 * enter hard_start_xmit too early, while tx ring still looks closed.
2607 * This happens ~1-4 times per 100000 packets, so that we can allow
2608 * to loop syncing to other CPU. Probably, we need an additional
2609 * wmb() in ace_tx_intr as well.
2611 * Note that this race is relieved by reserving one more entry
2612 * in tx ring than it is necessary (see original non-SG driver).
2613 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2614 * is already overkill.
2616 * Alternative is to return with 1 not throttling queue. In this
2617 * case loop becomes longer, no more useful effects.
2619 if (time_before(jiffies
, maxjiff
)) {
2625 /* The ring is stuck full. */
2626 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2627 return NETDEV_TX_BUSY
;
2631 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2633 struct ace_private
*ap
= netdev_priv(dev
);
2634 struct ace_regs __iomem
*regs
= ap
->regs
;
2636 if (new_mtu
> ACE_JUMBO_MTU
)
2639 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2642 if (new_mtu
> ACE_STD_MTU
) {
2644 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2645 "support\n", dev
->name
);
2647 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2648 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2649 ace_set_rxtx_parms(dev
, 1);
2652 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2653 ace_sync_irq(dev
->irq
);
2654 ace_set_rxtx_parms(dev
, 0);
2658 cmd
.evt
= C_RESET_JUMBO_RNG
;
2661 ace_issue_cmd(regs
, &cmd
);
2668 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2670 struct ace_private
*ap
= netdev_priv(dev
);
2671 struct ace_regs __iomem
*regs
= ap
->regs
;
2674 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2676 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2677 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2678 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2679 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2681 ecmd
->port
= PORT_FIBRE
;
2682 ecmd
->transceiver
= XCVR_INTERNAL
;
2684 link
= readl(®s
->GigLnkState
);
2685 if (link
& LNK_1000MB
)
2686 ecmd
->speed
= SPEED_1000
;
2688 link
= readl(®s
->FastLnkState
);
2689 if (link
& LNK_100MB
)
2690 ecmd
->speed
= SPEED_100
;
2691 else if (link
& LNK_10MB
)
2692 ecmd
->speed
= SPEED_10
;
2696 if (link
& LNK_FULL_DUPLEX
)
2697 ecmd
->duplex
= DUPLEX_FULL
;
2699 ecmd
->duplex
= DUPLEX_HALF
;
2701 if (link
& LNK_NEGOTIATE
)
2702 ecmd
->autoneg
= AUTONEG_ENABLE
;
2704 ecmd
->autoneg
= AUTONEG_DISABLE
;
2708 * Current struct ethtool_cmd is insufficient
2710 ecmd
->trace
= readl(®s
->TuneTrace
);
2712 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2713 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2715 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2716 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2721 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2723 struct ace_private
*ap
= netdev_priv(dev
);
2724 struct ace_regs __iomem
*regs
= ap
->regs
;
2727 link
= readl(®s
->GigLnkState
);
2728 if (link
& LNK_1000MB
)
2731 link
= readl(®s
->FastLnkState
);
2732 if (link
& LNK_100MB
)
2734 else if (link
& LNK_10MB
)
2740 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2741 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2742 if (!ACE_IS_TIGON_I(ap
))
2743 link
|= LNK_TX_FLOW_CTL_Y
;
2744 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2745 link
|= LNK_NEGOTIATE
;
2746 if (ecmd
->speed
!= speed
) {
2747 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2761 if (ecmd
->duplex
== DUPLEX_FULL
)
2762 link
|= LNK_FULL_DUPLEX
;
2764 if (link
!= ap
->link
) {
2766 printk(KERN_INFO
"%s: Renegotiating link state\n",
2770 writel(link
, ®s
->TuneLink
);
2771 if (!ACE_IS_TIGON_I(ap
))
2772 writel(link
, ®s
->TuneFastLink
);
2775 cmd
.evt
= C_LNK_NEGOTIATION
;
2778 ace_issue_cmd(regs
, &cmd
);
2783 static void ace_get_drvinfo(struct net_device
*dev
,
2784 struct ethtool_drvinfo
*info
)
2786 struct ace_private
*ap
= netdev_priv(dev
);
2788 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2789 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2790 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2794 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2795 sizeof(info
->bus_info
));
2800 * Set the hardware MAC address.
2802 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2804 struct ace_private
*ap
= netdev_priv(dev
);
2805 struct ace_regs __iomem
*regs
= ap
->regs
;
2806 struct sockaddr
*addr
=p
;
2810 if(netif_running(dev
))
2813 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2815 da
= (u8
*)dev
->dev_addr
;
2817 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2818 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2821 cmd
.evt
= C_SET_MAC_ADDR
;
2824 ace_issue_cmd(regs
, &cmd
);
2830 static void ace_set_multicast_list(struct net_device
*dev
)
2832 struct ace_private
*ap
= netdev_priv(dev
);
2833 struct ace_regs __iomem
*regs
= ap
->regs
;
2836 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2837 cmd
.evt
= C_SET_MULTICAST_MODE
;
2838 cmd
.code
= C_C_MCAST_ENABLE
;
2840 ace_issue_cmd(regs
, &cmd
);
2842 } else if (ap
->mcast_all
) {
2843 cmd
.evt
= C_SET_MULTICAST_MODE
;
2844 cmd
.code
= C_C_MCAST_DISABLE
;
2846 ace_issue_cmd(regs
, &cmd
);
2850 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2851 cmd
.evt
= C_SET_PROMISC_MODE
;
2852 cmd
.code
= C_C_PROMISC_ENABLE
;
2854 ace_issue_cmd(regs
, &cmd
);
2856 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2857 cmd
.evt
= C_SET_PROMISC_MODE
;
2858 cmd
.code
= C_C_PROMISC_DISABLE
;
2860 ace_issue_cmd(regs
, &cmd
);
2865 * For the time being multicast relies on the upper layers
2866 * filtering it properly. The Firmware does not allow one to
2867 * set the entire multicast list at a time and keeping track of
2868 * it here is going to be messy.
2870 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2871 cmd
.evt
= C_SET_MULTICAST_MODE
;
2872 cmd
.code
= C_C_MCAST_ENABLE
;
2874 ace_issue_cmd(regs
, &cmd
);
2875 }else if (!ap
->mcast_all
) {
2876 cmd
.evt
= C_SET_MULTICAST_MODE
;
2877 cmd
.code
= C_C_MCAST_DISABLE
;
2879 ace_issue_cmd(regs
, &cmd
);
2884 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2886 struct ace_private
*ap
= netdev_priv(dev
);
2887 struct ace_mac_stats __iomem
*mac_stats
=
2888 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2890 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2891 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2892 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2898 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2901 void __iomem
*tdest
;
2909 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2910 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2911 tdest
= (void __iomem
*) ®s
->Window
+
2912 (dest
& (ACE_WINDOW_SIZE
- 1));
2913 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2915 * This requires byte swapping on big endian, however
2916 * writel does that for us
2919 for (i
= 0; i
< (tsize
/ 4); i
++) {
2920 writel(wsrc
[i
], tdest
+ i
*4);
2931 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2933 void __iomem
*tdest
;
2940 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2941 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2942 tdest
= (void __iomem
*) ®s
->Window
+
2943 (dest
& (ACE_WINDOW_SIZE
- 1));
2944 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2946 for (i
= 0; i
< (tsize
/ 4); i
++) {
2947 writel(0, tdest
+ i
*4);
2959 * Download the firmware into the SRAM on the NIC
2961 * This operation requires the NIC to be halted and is performed with
2962 * interrupts disabled and with the spinlock hold.
2964 int __devinit
ace_load_firmware(struct net_device
*dev
)
2966 struct ace_private
*ap
= netdev_priv(dev
);
2967 struct ace_regs __iomem
*regs
= ap
->regs
;
2969 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2970 printk(KERN_ERR
"%s: trying to download firmware while the "
2971 "CPU is running!\n", ap
->name
);
2976 * Do not try to clear more than 512KB or we end up seeing
2977 * funny things on NICs with only 512KB SRAM
2979 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2980 if (ACE_IS_TIGON_I(ap
)) {
2981 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2982 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2983 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2985 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2986 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2987 }else if (ap
->version
== 2) {
2988 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2989 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2990 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
2991 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
2993 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
3001 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3003 * Accessing the EEPROM is `interesting' to say the least - don't read
3004 * this code right after dinner.
3006 * This is all about black magic and bit-banging the device .... I
3007 * wonder in what hospital they have put the guy who designed the i2c
3010 * Oh yes, this is only the beginning!
3012 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3013 * code i2c readout code by beta testing all my hacks.
3015 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
3019 readl(®s
->LocalCtrl
);
3020 udelay(ACE_SHORT_DELAY
);
3021 local
= readl(®s
->LocalCtrl
);
3022 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3023 writel(local
, ®s
->LocalCtrl
);
3024 readl(®s
->LocalCtrl
);
3026 udelay(ACE_SHORT_DELAY
);
3027 local
|= EEPROM_CLK_OUT
;
3028 writel(local
, ®s
->LocalCtrl
);
3029 readl(®s
->LocalCtrl
);
3031 udelay(ACE_SHORT_DELAY
);
3032 local
&= ~EEPROM_DATA_OUT
;
3033 writel(local
, ®s
->LocalCtrl
);
3034 readl(®s
->LocalCtrl
);
3036 udelay(ACE_SHORT_DELAY
);
3037 local
&= ~EEPROM_CLK_OUT
;
3038 writel(local
, ®s
->LocalCtrl
);
3039 readl(®s
->LocalCtrl
);
3044 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3049 udelay(ACE_SHORT_DELAY
);
3050 local
= readl(®s
->LocalCtrl
);
3051 local
&= ~EEPROM_DATA_OUT
;
3052 local
|= EEPROM_WRITE_ENABLE
;
3053 writel(local
, ®s
->LocalCtrl
);
3054 readl(®s
->LocalCtrl
);
3057 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3058 udelay(ACE_SHORT_DELAY
);
3060 local
|= EEPROM_DATA_OUT
;
3062 local
&= ~EEPROM_DATA_OUT
;
3063 writel(local
, ®s
->LocalCtrl
);
3064 readl(®s
->LocalCtrl
);
3067 udelay(ACE_SHORT_DELAY
);
3068 local
|= EEPROM_CLK_OUT
;
3069 writel(local
, ®s
->LocalCtrl
);
3070 readl(®s
->LocalCtrl
);
3072 udelay(ACE_SHORT_DELAY
);
3073 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3074 writel(local
, ®s
->LocalCtrl
);
3075 readl(®s
->LocalCtrl
);
3081 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3086 local
= readl(®s
->LocalCtrl
);
3087 local
&= ~EEPROM_WRITE_ENABLE
;
3088 writel(local
, ®s
->LocalCtrl
);
3089 readl(®s
->LocalCtrl
);
3091 udelay(ACE_LONG_DELAY
);
3092 local
|= EEPROM_CLK_OUT
;
3093 writel(local
, ®s
->LocalCtrl
);
3094 readl(®s
->LocalCtrl
);
3096 udelay(ACE_SHORT_DELAY
);
3097 /* sample data in middle of high clk */
3098 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3099 udelay(ACE_SHORT_DELAY
);
3101 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3102 readl(®s
->LocalCtrl
);
3109 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3113 udelay(ACE_SHORT_DELAY
);
3114 local
= readl(®s
->LocalCtrl
);
3115 local
|= EEPROM_WRITE_ENABLE
;
3116 writel(local
, ®s
->LocalCtrl
);
3117 readl(®s
->LocalCtrl
);
3119 udelay(ACE_SHORT_DELAY
);
3120 local
&= ~EEPROM_DATA_OUT
;
3121 writel(local
, ®s
->LocalCtrl
);
3122 readl(®s
->LocalCtrl
);
3124 udelay(ACE_SHORT_DELAY
);
3125 local
|= EEPROM_CLK_OUT
;
3126 writel(local
, ®s
->LocalCtrl
);
3127 readl(®s
->LocalCtrl
);
3129 udelay(ACE_SHORT_DELAY
);
3130 local
|= EEPROM_DATA_OUT
;
3131 writel(local
, ®s
->LocalCtrl
);
3132 readl(®s
->LocalCtrl
);
3134 udelay(ACE_LONG_DELAY
);
3135 local
&= ~EEPROM_CLK_OUT
;
3136 writel(local
, ®s
->LocalCtrl
);
3142 * Read a whole byte from the EEPROM.
3144 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3145 unsigned long offset
)
3147 struct ace_private
*ap
= netdev_priv(dev
);
3148 struct ace_regs __iomem
*regs
= ap
->regs
;
3149 unsigned long flags
;
3155 printk(KERN_ERR
"No device!\n");
3161 * Don't take interrupts on this CPU will bit banging
3162 * the %#%#@$ I2C device
3164 local_irq_save(flags
);
3168 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3169 if (eeprom_check_ack(regs
)) {
3170 local_irq_restore(flags
);
3171 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3173 goto eeprom_read_error
;
3176 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3177 if (eeprom_check_ack(regs
)) {
3178 local_irq_restore(flags
);
3179 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3182 goto eeprom_read_error
;
3185 eeprom_prep(regs
, offset
& 0xff);
3186 if (eeprom_check_ack(regs
)) {
3187 local_irq_restore(flags
);
3188 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3191 goto eeprom_read_error
;
3195 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3196 if (eeprom_check_ack(regs
)) {
3197 local_irq_restore(flags
);
3198 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3201 goto eeprom_read_error
;
3204 for (i
= 0; i
< 8; i
++) {
3205 local
= readl(®s
->LocalCtrl
);
3206 local
&= ~EEPROM_WRITE_ENABLE
;
3207 writel(local
, ®s
->LocalCtrl
);
3208 readl(®s
->LocalCtrl
);
3209 udelay(ACE_LONG_DELAY
);
3211 local
|= EEPROM_CLK_OUT
;
3212 writel(local
, ®s
->LocalCtrl
);
3213 readl(®s
->LocalCtrl
);
3215 udelay(ACE_SHORT_DELAY
);
3216 /* sample data mid high clk */
3217 result
= (result
<< 1) |
3218 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3219 udelay(ACE_SHORT_DELAY
);
3221 local
= readl(®s
->LocalCtrl
);
3222 local
&= ~EEPROM_CLK_OUT
;
3223 writel(local
, ®s
->LocalCtrl
);
3224 readl(®s
->LocalCtrl
);
3225 udelay(ACE_SHORT_DELAY
);
3228 local
|= EEPROM_WRITE_ENABLE
;
3229 writel(local
, ®s
->LocalCtrl
);
3230 readl(®s
->LocalCtrl
);
3232 udelay(ACE_SHORT_DELAY
);
3236 local
|= EEPROM_DATA_OUT
;
3237 writel(local
, ®s
->LocalCtrl
);
3238 readl(®s
->LocalCtrl
);
3240 udelay(ACE_SHORT_DELAY
);
3241 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3242 readl(®s
->LocalCtrl
);
3243 udelay(ACE_LONG_DELAY
);
3244 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3245 readl(®s
->LocalCtrl
);
3247 udelay(ACE_SHORT_DELAY
);
3250 local_irq_restore(flags
);
3255 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3263 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"