]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/bnx2.c
bnx2: avoid compiler warnings
[mirror_ubuntu-jammy-kernel.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
69
70 #define RUN_AT(x) (jiffies + (x))
71
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
74
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
77
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
87
88 static int disable_msi = 0;
89
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
92
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
106
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 };
123
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
148 };
149
150 static const struct flash_spec flash_table[] =
151 {
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
237 };
238
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
246 };
247
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 smp_mb();
255
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
258 */
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
264 }
265 return (bp->tx_ring_size - diff);
266 }
267
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
270 {
271 u32 val;
272
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
278 }
279
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
282 {
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
287 }
288
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
291 {
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
293 }
294
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
297 {
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
299 }
300
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
303 {
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
308
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
317 }
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
321 }
322 spin_unlock_bh(&bp->indirect_lock);
323 }
324
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
328 {
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
331
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
344 }
345 return 0;
346 }
347
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
349 {
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
353
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
365 }
366
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
373 }
374
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
377 {
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
380
381 if (ops == NULL)
382 return -EINVAL;
383
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
386
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
389
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
392
393 bnx2_setup_cnic_irq_info(bp);
394
395 return 0;
396 }
397
398 static int bnx2_unregister_cnic(struct net_device *dev)
399 {
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
403
404 mutex_lock(&bp->cnic_lock);
405 cp->drv_state = 0;
406 bnapi->cnic_present = 0;
407 rcu_assign_pointer(bp->cnic_ops, NULL);
408 mutex_unlock(&bp->cnic_lock);
409 synchronize_rcu();
410 return 0;
411 }
412
413 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
414 {
415 struct bnx2 *bp = netdev_priv(dev);
416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
417
418 cp->drv_owner = THIS_MODULE;
419 cp->chip_id = bp->chip_id;
420 cp->pdev = bp->pdev;
421 cp->io_base = bp->regview;
422 cp->drv_ctl = bnx2_drv_ctl;
423 cp->drv_register_cnic = bnx2_register_cnic;
424 cp->drv_unregister_cnic = bnx2_unregister_cnic;
425
426 return cp;
427 }
428 EXPORT_SYMBOL(bnx2_cnic_probe);
429
430 static void
431 bnx2_cnic_stop(struct bnx2 *bp)
432 {
433 struct cnic_ops *c_ops;
434 struct cnic_ctl_info info;
435
436 mutex_lock(&bp->cnic_lock);
437 c_ops = bp->cnic_ops;
438 if (c_ops) {
439 info.cmd = CNIC_CTL_STOP_CMD;
440 c_ops->cnic_ctl(bp->cnic_data, &info);
441 }
442 mutex_unlock(&bp->cnic_lock);
443 }
444
445 static void
446 bnx2_cnic_start(struct bnx2 *bp)
447 {
448 struct cnic_ops *c_ops;
449 struct cnic_ctl_info info;
450
451 mutex_lock(&bp->cnic_lock);
452 c_ops = bp->cnic_ops;
453 if (c_ops) {
454 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
455 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
456
457 bnapi->cnic_tag = bnapi->last_status_idx;
458 }
459 info.cmd = CNIC_CTL_START_CMD;
460 c_ops->cnic_ctl(bp->cnic_data, &info);
461 }
462 mutex_unlock(&bp->cnic_lock);
463 }
464
465 #else
466
467 static void
468 bnx2_cnic_stop(struct bnx2 *bp)
469 {
470 }
471
472 static void
473 bnx2_cnic_start(struct bnx2 *bp)
474 {
475 }
476
477 #endif
478
479 static int
480 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
481 {
482 u32 val1;
483 int i, ret;
484
485 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
486 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
488
489 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
490 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
491
492 udelay(40);
493 }
494
495 val1 = (bp->phy_addr << 21) | (reg << 16) |
496 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
497 BNX2_EMAC_MDIO_COMM_START_BUSY;
498 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
499
500 for (i = 0; i < 50; i++) {
501 udelay(10);
502
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
505 udelay(5);
506
507 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
508 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
509
510 break;
511 }
512 }
513
514 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
515 *val = 0x0;
516 ret = -EBUSY;
517 }
518 else {
519 *val = val1;
520 ret = 0;
521 }
522
523 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
524 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
526
527 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
528 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
529
530 udelay(40);
531 }
532
533 return ret;
534 }
535
536 static int
537 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
538 {
539 u32 val1;
540 int i, ret;
541
542 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
543 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
545
546 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
547 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
548
549 udelay(40);
550 }
551
552 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
553 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
554 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
555 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
556
557 for (i = 0; i < 50; i++) {
558 udelay(10);
559
560 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
561 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
562 udelay(5);
563 break;
564 }
565 }
566
567 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
568 ret = -EBUSY;
569 else
570 ret = 0;
571
572 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
573 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
575
576 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
577 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
578
579 udelay(40);
580 }
581
582 return ret;
583 }
584
585 static void
586 bnx2_disable_int(struct bnx2 *bp)
587 {
588 int i;
589 struct bnx2_napi *bnapi;
590
591 for (i = 0; i < bp->irq_nvecs; i++) {
592 bnapi = &bp->bnx2_napi[i];
593 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
594 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
595 }
596 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
597 }
598
599 static void
600 bnx2_enable_int(struct bnx2 *bp)
601 {
602 int i;
603 struct bnx2_napi *bnapi;
604
605 for (i = 0; i < bp->irq_nvecs; i++) {
606 bnapi = &bp->bnx2_napi[i];
607
608 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
609 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
610 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
611 bnapi->last_status_idx);
612
613 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
615 bnapi->last_status_idx);
616 }
617 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
618 }
619
620 static void
621 bnx2_disable_int_sync(struct bnx2 *bp)
622 {
623 int i;
624
625 atomic_inc(&bp->intr_sem);
626 if (!netif_running(bp->dev))
627 return;
628
629 bnx2_disable_int(bp);
630 for (i = 0; i < bp->irq_nvecs; i++)
631 synchronize_irq(bp->irq_tbl[i].vector);
632 }
633
634 static void
635 bnx2_napi_disable(struct bnx2 *bp)
636 {
637 int i;
638
639 for (i = 0; i < bp->irq_nvecs; i++)
640 napi_disable(&bp->bnx2_napi[i].napi);
641 }
642
643 static void
644 bnx2_napi_enable(struct bnx2 *bp)
645 {
646 int i;
647
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_enable(&bp->bnx2_napi[i].napi);
650 }
651
652 static void
653 bnx2_netif_stop(struct bnx2 *bp)
654 {
655 bnx2_cnic_stop(bp);
656 bnx2_disable_int_sync(bp);
657 if (netif_running(bp->dev)) {
658 bnx2_napi_disable(bp);
659 netif_tx_disable(bp->dev);
660 bp->dev->trans_start = jiffies; /* prevent tx timeout */
661 }
662 }
663
664 static void
665 bnx2_netif_start(struct bnx2 *bp)
666 {
667 if (atomic_dec_and_test(&bp->intr_sem)) {
668 if (netif_running(bp->dev)) {
669 netif_tx_wake_all_queues(bp->dev);
670 bnx2_napi_enable(bp);
671 bnx2_enable_int(bp);
672 bnx2_cnic_start(bp);
673 }
674 }
675 }
676
677 static void
678 bnx2_free_tx_mem(struct bnx2 *bp)
679 {
680 int i;
681
682 for (i = 0; i < bp->num_tx_rings; i++) {
683 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
685
686 if (txr->tx_desc_ring) {
687 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
688 txr->tx_desc_ring,
689 txr->tx_desc_mapping);
690 txr->tx_desc_ring = NULL;
691 }
692 kfree(txr->tx_buf_ring);
693 txr->tx_buf_ring = NULL;
694 }
695 }
696
697 static void
698 bnx2_free_rx_mem(struct bnx2 *bp)
699 {
700 int i;
701
702 for (i = 0; i < bp->num_rx_rings; i++) {
703 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
705 int j;
706
707 for (j = 0; j < bp->rx_max_ring; j++) {
708 if (rxr->rx_desc_ring[j])
709 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
710 rxr->rx_desc_ring[j],
711 rxr->rx_desc_mapping[j]);
712 rxr->rx_desc_ring[j] = NULL;
713 }
714 vfree(rxr->rx_buf_ring);
715 rxr->rx_buf_ring = NULL;
716
717 for (j = 0; j < bp->rx_max_pg_ring; j++) {
718 if (rxr->rx_pg_desc_ring[j])
719 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
720 rxr->rx_pg_desc_ring[j],
721 rxr->rx_pg_desc_mapping[j]);
722 rxr->rx_pg_desc_ring[j] = NULL;
723 }
724 vfree(rxr->rx_pg_ring);
725 rxr->rx_pg_ring = NULL;
726 }
727 }
728
729 static int
730 bnx2_alloc_tx_mem(struct bnx2 *bp)
731 {
732 int i;
733
734 for (i = 0; i < bp->num_tx_rings; i++) {
735 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
736 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
737
738 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
739 if (txr->tx_buf_ring == NULL)
740 return -ENOMEM;
741
742 txr->tx_desc_ring =
743 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
744 &txr->tx_desc_mapping);
745 if (txr->tx_desc_ring == NULL)
746 return -ENOMEM;
747 }
748 return 0;
749 }
750
751 static int
752 bnx2_alloc_rx_mem(struct bnx2 *bp)
753 {
754 int i;
755
756 for (i = 0; i < bp->num_rx_rings; i++) {
757 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
758 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
759 int j;
760
761 rxr->rx_buf_ring =
762 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
763 if (rxr->rx_buf_ring == NULL)
764 return -ENOMEM;
765
766 memset(rxr->rx_buf_ring, 0,
767 SW_RXBD_RING_SIZE * bp->rx_max_ring);
768
769 for (j = 0; j < bp->rx_max_ring; j++) {
770 rxr->rx_desc_ring[j] =
771 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
772 &rxr->rx_desc_mapping[j]);
773 if (rxr->rx_desc_ring[j] == NULL)
774 return -ENOMEM;
775
776 }
777
778 if (bp->rx_pg_ring_size) {
779 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
780 bp->rx_max_pg_ring);
781 if (rxr->rx_pg_ring == NULL)
782 return -ENOMEM;
783
784 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
785 bp->rx_max_pg_ring);
786 }
787
788 for (j = 0; j < bp->rx_max_pg_ring; j++) {
789 rxr->rx_pg_desc_ring[j] =
790 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
791 &rxr->rx_pg_desc_mapping[j]);
792 if (rxr->rx_pg_desc_ring[j] == NULL)
793 return -ENOMEM;
794
795 }
796 }
797 return 0;
798 }
799
800 static void
801 bnx2_free_mem(struct bnx2 *bp)
802 {
803 int i;
804 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
805
806 bnx2_free_tx_mem(bp);
807 bnx2_free_rx_mem(bp);
808
809 for (i = 0; i < bp->ctx_pages; i++) {
810 if (bp->ctx_blk[i]) {
811 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
812 bp->ctx_blk[i],
813 bp->ctx_blk_mapping[i]);
814 bp->ctx_blk[i] = NULL;
815 }
816 }
817 if (bnapi->status_blk.msi) {
818 pci_free_consistent(bp->pdev, bp->status_stats_size,
819 bnapi->status_blk.msi,
820 bp->status_blk_mapping);
821 bnapi->status_blk.msi = NULL;
822 bp->stats_blk = NULL;
823 }
824 }
825
826 static int
827 bnx2_alloc_mem(struct bnx2 *bp)
828 {
829 int i, status_blk_size, err;
830 struct bnx2_napi *bnapi;
831 void *status_blk;
832
833 /* Combine status and statistics blocks into one allocation. */
834 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
835 if (bp->flags & BNX2_FLAG_MSIX_CAP)
836 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
837 BNX2_SBLK_MSIX_ALIGN_SIZE);
838 bp->status_stats_size = status_blk_size +
839 sizeof(struct statistics_block);
840
841 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
842 &bp->status_blk_mapping);
843 if (status_blk == NULL)
844 goto alloc_mem_err;
845
846 memset(status_blk, 0, bp->status_stats_size);
847
848 bnapi = &bp->bnx2_napi[0];
849 bnapi->status_blk.msi = status_blk;
850 bnapi->hw_tx_cons_ptr =
851 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
852 bnapi->hw_rx_cons_ptr =
853 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
854 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
855 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
856 struct status_block_msix *sblk;
857
858 bnapi = &bp->bnx2_napi[i];
859
860 sblk = (void *) (status_blk +
861 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
862 bnapi->status_blk.msix = sblk;
863 bnapi->hw_tx_cons_ptr =
864 &sblk->status_tx_quick_consumer_index;
865 bnapi->hw_rx_cons_ptr =
866 &sblk->status_rx_quick_consumer_index;
867 bnapi->int_num = i << 24;
868 }
869 }
870
871 bp->stats_blk = status_blk + status_blk_size;
872
873 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
874
875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
876 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
877 if (bp->ctx_pages == 0)
878 bp->ctx_pages = 1;
879 for (i = 0; i < bp->ctx_pages; i++) {
880 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
881 BCM_PAGE_SIZE,
882 &bp->ctx_blk_mapping[i]);
883 if (bp->ctx_blk[i] == NULL)
884 goto alloc_mem_err;
885 }
886 }
887
888 err = bnx2_alloc_rx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
891
892 err = bnx2_alloc_tx_mem(bp);
893 if (err)
894 goto alloc_mem_err;
895
896 return 0;
897
898 alloc_mem_err:
899 bnx2_free_mem(bp);
900 return -ENOMEM;
901 }
902
903 static void
904 bnx2_report_fw_link(struct bnx2 *bp)
905 {
906 u32 fw_link_status = 0;
907
908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
909 return;
910
911 if (bp->link_up) {
912 u32 bmsr;
913
914 switch (bp->line_speed) {
915 case SPEED_10:
916 if (bp->duplex == DUPLEX_HALF)
917 fw_link_status = BNX2_LINK_STATUS_10HALF;
918 else
919 fw_link_status = BNX2_LINK_STATUS_10FULL;
920 break;
921 case SPEED_100:
922 if (bp->duplex == DUPLEX_HALF)
923 fw_link_status = BNX2_LINK_STATUS_100HALF;
924 else
925 fw_link_status = BNX2_LINK_STATUS_100FULL;
926 break;
927 case SPEED_1000:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_1000HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_1000FULL;
932 break;
933 case SPEED_2500:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_2500HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_2500FULL;
938 break;
939 }
940
941 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
942
943 if (bp->autoneg) {
944 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
945
946 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
947 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
948
949 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
950 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
951 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
952 else
953 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
954 }
955 }
956 else
957 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
958
959 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
960 }
961
962 static char *
963 bnx2_xceiver_str(struct bnx2 *bp)
964 {
965 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
966 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
967 "Copper"));
968 }
969
970 static void
971 bnx2_report_link(struct bnx2 *bp)
972 {
973 if (bp->link_up) {
974 netif_carrier_on(bp->dev);
975 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
976 bnx2_xceiver_str(bp));
977
978 printk("%d Mbps ", bp->line_speed);
979
980 if (bp->duplex == DUPLEX_FULL)
981 printk("full duplex");
982 else
983 printk("half duplex");
984
985 if (bp->flow_ctrl) {
986 if (bp->flow_ctrl & FLOW_CTRL_RX) {
987 printk(", receive ");
988 if (bp->flow_ctrl & FLOW_CTRL_TX)
989 printk("& transmit ");
990 }
991 else {
992 printk(", transmit ");
993 }
994 printk("flow control ON");
995 }
996 printk("\n");
997 }
998 else {
999 netif_carrier_off(bp->dev);
1000 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1001 bnx2_xceiver_str(bp));
1002 }
1003
1004 bnx2_report_fw_link(bp);
1005 }
1006
1007 static void
1008 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1009 {
1010 u32 local_adv, remote_adv;
1011
1012 bp->flow_ctrl = 0;
1013 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1014 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1015
1016 if (bp->duplex == DUPLEX_FULL) {
1017 bp->flow_ctrl = bp->req_flow_ctrl;
1018 }
1019 return;
1020 }
1021
1022 if (bp->duplex != DUPLEX_FULL) {
1023 return;
1024 }
1025
1026 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1027 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1028 u32 val;
1029
1030 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1031 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_TX;
1033 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_RX;
1035 return;
1036 }
1037
1038 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1039 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1040
1041 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1042 u32 new_local_adv = 0;
1043 u32 new_remote_adv = 0;
1044
1045 if (local_adv & ADVERTISE_1000XPAUSE)
1046 new_local_adv |= ADVERTISE_PAUSE_CAP;
1047 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1049 if (remote_adv & ADVERTISE_1000XPAUSE)
1050 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1051 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1052 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1053
1054 local_adv = new_local_adv;
1055 remote_adv = new_remote_adv;
1056 }
1057
1058 /* See Table 28B-3 of 802.3ab-1999 spec. */
1059 if (local_adv & ADVERTISE_PAUSE_CAP) {
1060 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1061 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1062 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1063 }
1064 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1065 bp->flow_ctrl = FLOW_CTRL_RX;
1066 }
1067 }
1068 else {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1071 }
1072 }
1073 }
1074 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1075 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1076 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1077
1078 bp->flow_ctrl = FLOW_CTRL_TX;
1079 }
1080 }
1081 }
1082
1083 static int
1084 bnx2_5709s_linkup(struct bnx2 *bp)
1085 {
1086 u32 val, speed;
1087
1088 bp->link_up = 1;
1089
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1091 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1093
1094 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1095 bp->line_speed = bp->req_line_speed;
1096 bp->duplex = bp->req_duplex;
1097 return 0;
1098 }
1099 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1100 switch (speed) {
1101 case MII_BNX2_GP_TOP_AN_SPEED_10:
1102 bp->line_speed = SPEED_10;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_100:
1105 bp->line_speed = SPEED_100;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1108 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1109 bp->line_speed = SPEED_1000;
1110 break;
1111 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1112 bp->line_speed = SPEED_2500;
1113 break;
1114 }
1115 if (val & MII_BNX2_GP_TOP_AN_FD)
1116 bp->duplex = DUPLEX_FULL;
1117 else
1118 bp->duplex = DUPLEX_HALF;
1119 return 0;
1120 }
1121
1122 static int
1123 bnx2_5708s_linkup(struct bnx2 *bp)
1124 {
1125 u32 val;
1126
1127 bp->link_up = 1;
1128 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1129 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1130 case BCM5708S_1000X_STAT1_SPEED_10:
1131 bp->line_speed = SPEED_10;
1132 break;
1133 case BCM5708S_1000X_STAT1_SPEED_100:
1134 bp->line_speed = SPEED_100;
1135 break;
1136 case BCM5708S_1000X_STAT1_SPEED_1G:
1137 bp->line_speed = SPEED_1000;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_2G5:
1140 bp->line_speed = SPEED_2500;
1141 break;
1142 }
1143 if (val & BCM5708S_1000X_STAT1_FD)
1144 bp->duplex = DUPLEX_FULL;
1145 else
1146 bp->duplex = DUPLEX_HALF;
1147
1148 return 0;
1149 }
1150
1151 static int
1152 bnx2_5706s_linkup(struct bnx2 *bp)
1153 {
1154 u32 bmcr, local_adv, remote_adv, common;
1155
1156 bp->link_up = 1;
1157 bp->line_speed = SPEED_1000;
1158
1159 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1160 if (bmcr & BMCR_FULLDPLX) {
1161 bp->duplex = DUPLEX_FULL;
1162 }
1163 else {
1164 bp->duplex = DUPLEX_HALF;
1165 }
1166
1167 if (!(bmcr & BMCR_ANENABLE)) {
1168 return 0;
1169 }
1170
1171 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1172 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1173
1174 common = local_adv & remote_adv;
1175 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1176
1177 if (common & ADVERTISE_1000XFULL) {
1178 bp->duplex = DUPLEX_FULL;
1179 }
1180 else {
1181 bp->duplex = DUPLEX_HALF;
1182 }
1183 }
1184
1185 return 0;
1186 }
1187
1188 static int
1189 bnx2_copper_linkup(struct bnx2 *bp)
1190 {
1191 u32 bmcr;
1192
1193 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1194 if (bmcr & BMCR_ANENABLE) {
1195 u32 local_adv, remote_adv, common;
1196
1197 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1198 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1199
1200 common = local_adv & (remote_adv >> 2);
1201 if (common & ADVERTISE_1000FULL) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_FULL;
1204 }
1205 else if (common & ADVERTISE_1000HALF) {
1206 bp->line_speed = SPEED_1000;
1207 bp->duplex = DUPLEX_HALF;
1208 }
1209 else {
1210 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1211 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1212
1213 common = local_adv & remote_adv;
1214 if (common & ADVERTISE_100FULL) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_FULL;
1217 }
1218 else if (common & ADVERTISE_100HALF) {
1219 bp->line_speed = SPEED_100;
1220 bp->duplex = DUPLEX_HALF;
1221 }
1222 else if (common & ADVERTISE_10FULL) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_FULL;
1225 }
1226 else if (common & ADVERTISE_10HALF) {
1227 bp->line_speed = SPEED_10;
1228 bp->duplex = DUPLEX_HALF;
1229 }
1230 else {
1231 bp->line_speed = 0;
1232 bp->link_up = 0;
1233 }
1234 }
1235 }
1236 else {
1237 if (bmcr & BMCR_SPEED100) {
1238 bp->line_speed = SPEED_100;
1239 }
1240 else {
1241 bp->line_speed = SPEED_10;
1242 }
1243 if (bmcr & BMCR_FULLDPLX) {
1244 bp->duplex = DUPLEX_FULL;
1245 }
1246 else {
1247 bp->duplex = DUPLEX_HALF;
1248 }
1249 }
1250
1251 return 0;
1252 }
1253
1254 static void
1255 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1256 {
1257 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1258
1259 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1260 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1261 val |= 0x02 << 8;
1262
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1264 u32 lo_water, hi_water;
1265
1266 if (bp->flow_ctrl & FLOW_CTRL_TX)
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1268 else
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1270 if (lo_water >= bp->rx_ring_size)
1271 lo_water = 0;
1272
1273 hi_water = bp->rx_ring_size / 4;
1274
1275 if (hi_water <= lo_water)
1276 lo_water = 0;
1277
1278 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1279 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1280
1281 if (hi_water > 0xf)
1282 hi_water = 0xf;
1283 else if (hi_water == 0)
1284 lo_water = 0;
1285 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1286 }
1287 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1288 }
1289
1290 static void
1291 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1292 {
1293 int i;
1294 u32 cid;
1295
1296 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1297 if (i == 1)
1298 cid = RX_RSS_CID;
1299 bnx2_init_rx_context(bp, cid);
1300 }
1301 }
1302
1303 static void
1304 bnx2_set_mac_link(struct bnx2 *bp)
1305 {
1306 u32 val;
1307
1308 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1309 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1310 (bp->duplex == DUPLEX_HALF)) {
1311 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1312 }
1313
1314 /* Configure the EMAC mode register. */
1315 val = REG_RD(bp, BNX2_EMAC_MODE);
1316
1317 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1318 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1319 BNX2_EMAC_MODE_25G_MODE);
1320
1321 if (bp->link_up) {
1322 switch (bp->line_speed) {
1323 case SPEED_10:
1324 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1325 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1326 break;
1327 }
1328 /* fall through */
1329 case SPEED_100:
1330 val |= BNX2_EMAC_MODE_PORT_MII;
1331 break;
1332 case SPEED_2500:
1333 val |= BNX2_EMAC_MODE_25G_MODE;
1334 /* fall through */
1335 case SPEED_1000:
1336 val |= BNX2_EMAC_MODE_PORT_GMII;
1337 break;
1338 }
1339 }
1340 else {
1341 val |= BNX2_EMAC_MODE_PORT_GMII;
1342 }
1343
1344 /* Set the MAC to operate in the appropriate duplex mode. */
1345 if (bp->duplex == DUPLEX_HALF)
1346 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1347 REG_WR(bp, BNX2_EMAC_MODE, val);
1348
1349 /* Enable/disable rx PAUSE. */
1350 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1351
1352 if (bp->flow_ctrl & FLOW_CTRL_RX)
1353 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1354 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1355
1356 /* Enable/disable tx PAUSE. */
1357 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1358 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1359
1360 if (bp->flow_ctrl & FLOW_CTRL_TX)
1361 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1363
1364 /* Acknowledge the interrupt. */
1365 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1366
1367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1368 bnx2_init_all_rx_contexts(bp);
1369 }
1370
1371 static void
1372 bnx2_enable_bmsr1(struct bnx2 *bp)
1373 {
1374 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1375 (CHIP_NUM(bp) == CHIP_NUM_5709))
1376 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1377 MII_BNX2_BLK_ADDR_GP_STATUS);
1378 }
1379
1380 static void
1381 bnx2_disable_bmsr1(struct bnx2 *bp)
1382 {
1383 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1384 (CHIP_NUM(bp) == CHIP_NUM_5709))
1385 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1386 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1387 }
1388
1389 static int
1390 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1391 {
1392 u32 up1;
1393 int ret = 1;
1394
1395 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1396 return 0;
1397
1398 if (bp->autoneg & AUTONEG_SPEED)
1399 bp->advertising |= ADVERTISED_2500baseX_Full;
1400
1401 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1402 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1403
1404 bnx2_read_phy(bp, bp->mii_up1, &up1);
1405 if (!(up1 & BCM5708S_UP1_2G5)) {
1406 up1 |= BCM5708S_UP1_2G5;
1407 bnx2_write_phy(bp, bp->mii_up1, up1);
1408 ret = 0;
1409 }
1410
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1413 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1414
1415 return ret;
1416 }
1417
1418 static int
1419 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1420 {
1421 u32 up1;
1422 int ret = 0;
1423
1424 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1425 return 0;
1426
1427 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1428 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1429
1430 bnx2_read_phy(bp, bp->mii_up1, &up1);
1431 if (up1 & BCM5708S_UP1_2G5) {
1432 up1 &= ~BCM5708S_UP1_2G5;
1433 bnx2_write_phy(bp, bp->mii_up1, up1);
1434 ret = 1;
1435 }
1436
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1438 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1439 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1440
1441 return ret;
1442 }
1443
1444 static void
1445 bnx2_enable_forced_2g5(struct bnx2 *bp)
1446 {
1447 u32 bmcr;
1448
1449 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1450 return;
1451
1452 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1453 u32 val;
1454
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_SERDES_DIG);
1457 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1458 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1459 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1460 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1461
1462 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1464 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1465
1466 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1467 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1468 bmcr |= BCM5708S_BMCR_FORCE_2500;
1469 } else {
1470 return;
1471 }
1472
1473 if (bp->autoneg & AUTONEG_SPEED) {
1474 bmcr &= ~BMCR_ANENABLE;
1475 if (bp->req_duplex == DUPLEX_FULL)
1476 bmcr |= BMCR_FULLDPLX;
1477 }
1478 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1479 }
1480
1481 static void
1482 bnx2_disable_forced_2g5(struct bnx2 *bp)
1483 {
1484 u32 bmcr;
1485
1486 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1487 return;
1488
1489 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1490 u32 val;
1491
1492 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1493 MII_BNX2_BLK_ADDR_SERDES_DIG);
1494 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1495 val &= ~MII_BNX2_SD_MISC1_FORCE;
1496 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1497
1498 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1499 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1500 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1501
1502 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1503 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1504 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1505 } else {
1506 return;
1507 }
1508
1509 if (bp->autoneg & AUTONEG_SPEED)
1510 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1511 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1512 }
1513
1514 static void
1515 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1516 {
1517 u32 val;
1518
1519 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1520 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1521 if (start)
1522 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1523 else
1524 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1525 }
1526
1527 static int
1528 bnx2_set_link(struct bnx2 *bp)
1529 {
1530 u32 bmsr;
1531 u8 link_up;
1532
1533 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1534 bp->link_up = 1;
1535 return 0;
1536 }
1537
1538 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1539 return 0;
1540
1541 link_up = bp->link_up;
1542
1543 bnx2_enable_bmsr1(bp);
1544 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1546 bnx2_disable_bmsr1(bp);
1547
1548 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1549 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1550 u32 val, an_dbg;
1551
1552 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1553 bnx2_5706s_force_link_dn(bp, 0);
1554 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1555 }
1556 val = REG_RD(bp, BNX2_EMAC_STATUS);
1557
1558 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1559 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1561
1562 if ((val & BNX2_EMAC_STATUS_LINK) &&
1563 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1564 bmsr |= BMSR_LSTATUS;
1565 else
1566 bmsr &= ~BMSR_LSTATUS;
1567 }
1568
1569 if (bmsr & BMSR_LSTATUS) {
1570 bp->link_up = 1;
1571
1572 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1573 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1574 bnx2_5706s_linkup(bp);
1575 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1576 bnx2_5708s_linkup(bp);
1577 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1578 bnx2_5709s_linkup(bp);
1579 }
1580 else {
1581 bnx2_copper_linkup(bp);
1582 }
1583 bnx2_resolve_flow_ctrl(bp);
1584 }
1585 else {
1586 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1587 (bp->autoneg & AUTONEG_SPEED))
1588 bnx2_disable_forced_2g5(bp);
1589
1590 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1591 u32 bmcr;
1592
1593 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1594 bmcr |= BMCR_ANENABLE;
1595 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1596
1597 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1598 }
1599 bp->link_up = 0;
1600 }
1601
1602 if (bp->link_up != link_up) {
1603 bnx2_report_link(bp);
1604 }
1605
1606 bnx2_set_mac_link(bp);
1607
1608 return 0;
1609 }
1610
1611 static int
1612 bnx2_reset_phy(struct bnx2 *bp)
1613 {
1614 int i;
1615 u32 reg;
1616
1617 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1618
1619 #define PHY_RESET_MAX_WAIT 100
1620 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1621 udelay(10);
1622
1623 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1624 if (!(reg & BMCR_RESET)) {
1625 udelay(20);
1626 break;
1627 }
1628 }
1629 if (i == PHY_RESET_MAX_WAIT) {
1630 return -EBUSY;
1631 }
1632 return 0;
1633 }
1634
1635 static u32
1636 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1637 {
1638 u32 adv = 0;
1639
1640 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1641 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1642
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPAUSE;
1645 }
1646 else {
1647 adv = ADVERTISE_PAUSE_CAP;
1648 }
1649 }
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPSE_ASYM;
1653 }
1654 else {
1655 adv = ADVERTISE_PAUSE_ASYM;
1656 }
1657 }
1658 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1659 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1660 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1661 }
1662 else {
1663 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1664 }
1665 }
1666 return adv;
1667 }
1668
1669 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1670
1671 static int
1672 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1673 __releases(&bp->phy_lock)
1674 __acquires(&bp->phy_lock)
1675 {
1676 u32 speed_arg = 0, pause_adv;
1677
1678 pause_adv = bnx2_phy_get_pause_adv(bp);
1679
1680 if (bp->autoneg & AUTONEG_SPEED) {
1681 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1682 if (bp->advertising & ADVERTISED_10baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1684 if (bp->advertising & ADVERTISED_10baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1686 if (bp->advertising & ADVERTISED_100baseT_Half)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1688 if (bp->advertising & ADVERTISED_100baseT_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1690 if (bp->advertising & ADVERTISED_1000baseT_Full)
1691 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1692 if (bp->advertising & ADVERTISED_2500baseX_Full)
1693 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 } else {
1695 if (bp->req_line_speed == SPEED_2500)
1696 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1697 else if (bp->req_line_speed == SPEED_1000)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1699 else if (bp->req_line_speed == SPEED_100) {
1700 if (bp->req_duplex == DUPLEX_FULL)
1701 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1702 else
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1704 } else if (bp->req_line_speed == SPEED_10) {
1705 if (bp->req_duplex == DUPLEX_FULL)
1706 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1707 else
1708 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1709 }
1710 }
1711
1712 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1713 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1714 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1715 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1716
1717 if (port == PORT_TP)
1718 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1719 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1720
1721 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1722
1723 spin_unlock_bh(&bp->phy_lock);
1724 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1725 spin_lock_bh(&bp->phy_lock);
1726
1727 return 0;
1728 }
1729
1730 static int
1731 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1732 __releases(&bp->phy_lock)
1733 __acquires(&bp->phy_lock)
1734 {
1735 u32 adv, bmcr;
1736 u32 new_adv = 0;
1737
1738 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1739 return (bnx2_setup_remote_phy(bp, port));
1740
1741 if (!(bp->autoneg & AUTONEG_SPEED)) {
1742 u32 new_bmcr;
1743 int force_link_down = 0;
1744
1745 if (bp->req_line_speed == SPEED_2500) {
1746 if (!bnx2_test_and_enable_2g5(bp))
1747 force_link_down = 1;
1748 } else if (bp->req_line_speed == SPEED_1000) {
1749 if (bnx2_test_and_disable_2g5(bp))
1750 force_link_down = 1;
1751 }
1752 bnx2_read_phy(bp, bp->mii_adv, &adv);
1753 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1754
1755 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1756 new_bmcr = bmcr & ~BMCR_ANENABLE;
1757 new_bmcr |= BMCR_SPEED1000;
1758
1759 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 bnx2_enable_forced_2g5(bp);
1762 else if (bp->req_line_speed == SPEED_1000) {
1763 bnx2_disable_forced_2g5(bp);
1764 new_bmcr &= ~0x2000;
1765 }
1766
1767 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1768 if (bp->req_line_speed == SPEED_2500)
1769 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1770 else
1771 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1772 }
1773
1774 if (bp->req_duplex == DUPLEX_FULL) {
1775 adv |= ADVERTISE_1000XFULL;
1776 new_bmcr |= BMCR_FULLDPLX;
1777 }
1778 else {
1779 adv |= ADVERTISE_1000XHALF;
1780 new_bmcr &= ~BMCR_FULLDPLX;
1781 }
1782 if ((new_bmcr != bmcr) || (force_link_down)) {
1783 /* Force a link down visible on the other side */
1784 if (bp->link_up) {
1785 bnx2_write_phy(bp, bp->mii_adv, adv &
1786 ~(ADVERTISE_1000XFULL |
1787 ADVERTISE_1000XHALF));
1788 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1789 BMCR_ANRESTART | BMCR_ANENABLE);
1790
1791 bp->link_up = 0;
1792 netif_carrier_off(bp->dev);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 bnx2_report_link(bp);
1795 }
1796 bnx2_write_phy(bp, bp->mii_adv, adv);
1797 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1798 } else {
1799 bnx2_resolve_flow_ctrl(bp);
1800 bnx2_set_mac_link(bp);
1801 }
1802 return 0;
1803 }
1804
1805 bnx2_test_and_enable_2g5(bp);
1806
1807 if (bp->advertising & ADVERTISED_1000baseT_Full)
1808 new_adv |= ADVERTISE_1000XFULL;
1809
1810 new_adv |= bnx2_phy_get_pause_adv(bp);
1811
1812 bnx2_read_phy(bp, bp->mii_adv, &adv);
1813 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1814
1815 bp->serdes_an_pending = 0;
1816 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1817 /* Force a link down visible on the other side */
1818 if (bp->link_up) {
1819 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1820 spin_unlock_bh(&bp->phy_lock);
1821 msleep(20);
1822 spin_lock_bh(&bp->phy_lock);
1823 }
1824
1825 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1826 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1827 BMCR_ANENABLE);
1828 /* Speed up link-up time when the link partner
1829 * does not autonegotiate which is very common
1830 * in blade servers. Some blade servers use
1831 * IPMI for kerboard input and it's important
1832 * to minimize link disruptions. Autoneg. involves
1833 * exchanging base pages plus 3 next pages and
1834 * normally completes in about 120 msec.
1835 */
1836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1837 bp->serdes_an_pending = 1;
1838 mod_timer(&bp->timer, jiffies + bp->current_interval);
1839 } else {
1840 bnx2_resolve_flow_ctrl(bp);
1841 bnx2_set_mac_link(bp);
1842 }
1843
1844 return 0;
1845 }
1846
1847 #define ETHTOOL_ALL_FIBRE_SPEED \
1848 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1849 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1850 (ADVERTISED_1000baseT_Full)
1851
1852 #define ETHTOOL_ALL_COPPER_SPEED \
1853 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1854 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1855 ADVERTISED_1000baseT_Full)
1856
1857 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1858 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1859
1860 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1861
1862 static void
1863 bnx2_set_default_remote_link(struct bnx2 *bp)
1864 {
1865 u32 link;
1866
1867 if (bp->phy_port == PORT_TP)
1868 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1869 else
1870 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1871
1872 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1873 bp->req_line_speed = 0;
1874 bp->autoneg |= AUTONEG_SPEED;
1875 bp->advertising = ADVERTISED_Autoneg;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1877 bp->advertising |= ADVERTISED_10baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1879 bp->advertising |= ADVERTISED_10baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1881 bp->advertising |= ADVERTISED_100baseT_Half;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1883 bp->advertising |= ADVERTISED_100baseT_Full;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1885 bp->advertising |= ADVERTISED_1000baseT_Full;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1887 bp->advertising |= ADVERTISED_2500baseX_Full;
1888 } else {
1889 bp->autoneg = 0;
1890 bp->advertising = 0;
1891 bp->req_duplex = DUPLEX_FULL;
1892 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1893 bp->req_line_speed = SPEED_10;
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1895 bp->req_duplex = DUPLEX_HALF;
1896 }
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1898 bp->req_line_speed = SPEED_100;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1900 bp->req_duplex = DUPLEX_HALF;
1901 }
1902 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1903 bp->req_line_speed = SPEED_1000;
1904 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1905 bp->req_line_speed = SPEED_2500;
1906 }
1907 }
1908
1909 static void
1910 bnx2_set_default_link(struct bnx2 *bp)
1911 {
1912 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1913 bnx2_set_default_remote_link(bp);
1914 return;
1915 }
1916
1917 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1918 bp->req_line_speed = 0;
1919 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1920 u32 reg;
1921
1922 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1923
1924 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1925 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1926 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1927 bp->autoneg = 0;
1928 bp->req_line_speed = bp->line_speed = SPEED_1000;
1929 bp->req_duplex = DUPLEX_FULL;
1930 }
1931 } else
1932 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1933 }
1934
1935 static void
1936 bnx2_send_heart_beat(struct bnx2 *bp)
1937 {
1938 u32 msg;
1939 u32 addr;
1940
1941 spin_lock(&bp->indirect_lock);
1942 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1943 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1944 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1946 spin_unlock(&bp->indirect_lock);
1947 }
1948
1949 static void
1950 bnx2_remote_phy_event(struct bnx2 *bp)
1951 {
1952 u32 msg;
1953 u8 link_up = bp->link_up;
1954 u8 old_port;
1955
1956 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1957
1958 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1959 bnx2_send_heart_beat(bp);
1960
1961 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1962
1963 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1964 bp->link_up = 0;
1965 else {
1966 u32 speed;
1967
1968 bp->link_up = 1;
1969 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1970 bp->duplex = DUPLEX_FULL;
1971 switch (speed) {
1972 case BNX2_LINK_STATUS_10HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_10FULL:
1975 bp->line_speed = SPEED_10;
1976 break;
1977 case BNX2_LINK_STATUS_100HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_100BASE_T4:
1980 case BNX2_LINK_STATUS_100FULL:
1981 bp->line_speed = SPEED_100;
1982 break;
1983 case BNX2_LINK_STATUS_1000HALF:
1984 bp->duplex = DUPLEX_HALF;
1985 case BNX2_LINK_STATUS_1000FULL:
1986 bp->line_speed = SPEED_1000;
1987 break;
1988 case BNX2_LINK_STATUS_2500HALF:
1989 bp->duplex = DUPLEX_HALF;
1990 case BNX2_LINK_STATUS_2500FULL:
1991 bp->line_speed = SPEED_2500;
1992 break;
1993 default:
1994 bp->line_speed = 0;
1995 break;
1996 }
1997
1998 bp->flow_ctrl = 0;
1999 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2000 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2001 if (bp->duplex == DUPLEX_FULL)
2002 bp->flow_ctrl = bp->req_flow_ctrl;
2003 } else {
2004 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2005 bp->flow_ctrl |= FLOW_CTRL_TX;
2006 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2007 bp->flow_ctrl |= FLOW_CTRL_RX;
2008 }
2009
2010 old_port = bp->phy_port;
2011 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2012 bp->phy_port = PORT_FIBRE;
2013 else
2014 bp->phy_port = PORT_TP;
2015
2016 if (old_port != bp->phy_port)
2017 bnx2_set_default_link(bp);
2018
2019 }
2020 if (bp->link_up != link_up)
2021 bnx2_report_link(bp);
2022
2023 bnx2_set_mac_link(bp);
2024 }
2025
2026 static int
2027 bnx2_set_remote_link(struct bnx2 *bp)
2028 {
2029 u32 evt_code;
2030
2031 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2032 switch (evt_code) {
2033 case BNX2_FW_EVT_CODE_LINK_EVENT:
2034 bnx2_remote_phy_event(bp);
2035 break;
2036 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2037 default:
2038 bnx2_send_heart_beat(bp);
2039 break;
2040 }
2041 return 0;
2042 }
2043
2044 static int
2045 bnx2_setup_copper_phy(struct bnx2 *bp)
2046 __releases(&bp->phy_lock)
2047 __acquires(&bp->phy_lock)
2048 {
2049 u32 bmcr;
2050 u32 new_bmcr;
2051
2052 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2053
2054 if (bp->autoneg & AUTONEG_SPEED) {
2055 u32 adv_reg, adv1000_reg;
2056 u32 new_adv_reg = 0;
2057 u32 new_adv1000_reg = 0;
2058
2059 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2060 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2061 ADVERTISE_PAUSE_ASYM);
2062
2063 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2064 adv1000_reg &= PHY_ALL_1000_SPEED;
2065
2066 if (bp->advertising & ADVERTISED_10baseT_Half)
2067 new_adv_reg |= ADVERTISE_10HALF;
2068 if (bp->advertising & ADVERTISED_10baseT_Full)
2069 new_adv_reg |= ADVERTISE_10FULL;
2070 if (bp->advertising & ADVERTISED_100baseT_Half)
2071 new_adv_reg |= ADVERTISE_100HALF;
2072 if (bp->advertising & ADVERTISED_100baseT_Full)
2073 new_adv_reg |= ADVERTISE_100FULL;
2074 if (bp->advertising & ADVERTISED_1000baseT_Full)
2075 new_adv1000_reg |= ADVERTISE_1000FULL;
2076
2077 new_adv_reg |= ADVERTISE_CSMA;
2078
2079 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2080
2081 if ((adv1000_reg != new_adv1000_reg) ||
2082 (adv_reg != new_adv_reg) ||
2083 ((bmcr & BMCR_ANENABLE) == 0)) {
2084
2085 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2086 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2087 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2088 BMCR_ANENABLE);
2089 }
2090 else if (bp->link_up) {
2091 /* Flow ctrl may have changed from auto to forced */
2092 /* or vice-versa. */
2093
2094 bnx2_resolve_flow_ctrl(bp);
2095 bnx2_set_mac_link(bp);
2096 }
2097 return 0;
2098 }
2099
2100 new_bmcr = 0;
2101 if (bp->req_line_speed == SPEED_100) {
2102 new_bmcr |= BMCR_SPEED100;
2103 }
2104 if (bp->req_duplex == DUPLEX_FULL) {
2105 new_bmcr |= BMCR_FULLDPLX;
2106 }
2107 if (new_bmcr != bmcr) {
2108 u32 bmsr;
2109
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2112
2113 if (bmsr & BMSR_LSTATUS) {
2114 /* Force link down */
2115 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2116 spin_unlock_bh(&bp->phy_lock);
2117 msleep(50);
2118 spin_lock_bh(&bp->phy_lock);
2119
2120 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2121 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2122 }
2123
2124 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2125
2126 /* Normally, the new speed is setup after the link has
2127 * gone down and up again. In some cases, link will not go
2128 * down so we need to set up the new speed here.
2129 */
2130 if (bmsr & BMSR_LSTATUS) {
2131 bp->line_speed = bp->req_line_speed;
2132 bp->duplex = bp->req_duplex;
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2135 }
2136 } else {
2137 bnx2_resolve_flow_ctrl(bp);
2138 bnx2_set_mac_link(bp);
2139 }
2140 return 0;
2141 }
2142
2143 static int
2144 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2145 __releases(&bp->phy_lock)
2146 __acquires(&bp->phy_lock)
2147 {
2148 if (bp->loopback == MAC_LOOPBACK)
2149 return 0;
2150
2151 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2152 return (bnx2_setup_serdes_phy(bp, port));
2153 }
2154 else {
2155 return (bnx2_setup_copper_phy(bp));
2156 }
2157 }
2158
2159 static int
2160 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2161 {
2162 u32 val;
2163
2164 bp->mii_bmcr = MII_BMCR + 0x10;
2165 bp->mii_bmsr = MII_BMSR + 0x10;
2166 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2167 bp->mii_adv = MII_ADVERTISE + 0x10;
2168 bp->mii_lpa = MII_LPA + 0x10;
2169 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2170
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2172 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2173
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2175 if (reset_phy)
2176 bnx2_reset_phy(bp);
2177
2178 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2179
2180 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2181 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2182 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2183 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2184
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2186 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2187 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2188 val |= BCM5708S_UP1_2G5;
2189 else
2190 val &= ~BCM5708S_UP1_2G5;
2191 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2192
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2194 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2195 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2196 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2197
2198 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2199
2200 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2201 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2202 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2203
2204 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2205
2206 return 0;
2207 }
2208
2209 static int
2210 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2211 {
2212 u32 val;
2213
2214 if (reset_phy)
2215 bnx2_reset_phy(bp);
2216
2217 bp->mii_up1 = BCM5708S_UP1;
2218
2219 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2220 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2221 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2222
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2224 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2226
2227 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2228 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2229 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2230
2231 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2232 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2233 val |= BCM5708S_UP1_2G5;
2234 bnx2_write_phy(bp, BCM5708S_UP1, val);
2235 }
2236
2237 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2238 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2239 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2240 /* increase tx signal amplitude */
2241 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2242 BCM5708S_BLK_ADDR_TX_MISC);
2243 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2244 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2245 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2247 }
2248
2249 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2250 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2251
2252 if (val) {
2253 u32 is_backplane;
2254
2255 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2256 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_TX_MISC);
2259 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2260 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2261 BCM5708S_BLK_ADDR_DIG);
2262 }
2263 }
2264 return 0;
2265 }
2266
2267 static int
2268 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2269 {
2270 if (reset_phy)
2271 bnx2_reset_phy(bp);
2272
2273 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2274
2275 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2276 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2277
2278 if (bp->dev->mtu > 1500) {
2279 u32 val;
2280
2281 /* Set extended packet length bit */
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2285
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2289 }
2290 else {
2291 u32 val;
2292
2293 bnx2_write_phy(bp, 0x18, 0x7);
2294 bnx2_read_phy(bp, 0x18, &val);
2295 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2296
2297 bnx2_write_phy(bp, 0x1c, 0x6c00);
2298 bnx2_read_phy(bp, 0x1c, &val);
2299 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int
2306 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2307 {
2308 u32 val;
2309
2310 if (reset_phy)
2311 bnx2_reset_phy(bp);
2312
2313 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2314 bnx2_write_phy(bp, 0x18, 0x0c00);
2315 bnx2_write_phy(bp, 0x17, 0x000a);
2316 bnx2_write_phy(bp, 0x15, 0x310b);
2317 bnx2_write_phy(bp, 0x17, 0x201f);
2318 bnx2_write_phy(bp, 0x15, 0x9506);
2319 bnx2_write_phy(bp, 0x17, 0x401f);
2320 bnx2_write_phy(bp, 0x15, 0x14e2);
2321 bnx2_write_phy(bp, 0x18, 0x0400);
2322 }
2323
2324 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2325 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2326 MII_BNX2_DSP_EXPAND_REG | 0x8);
2327 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2328 val &= ~(1 << 8);
2329 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2330 }
2331
2332 if (bp->dev->mtu > 1500) {
2333 /* Set extended packet length bit */
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val | 0x4000);
2337
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val | 0x1);
2340 }
2341 else {
2342 bnx2_write_phy(bp, 0x18, 0x7);
2343 bnx2_read_phy(bp, 0x18, &val);
2344 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2345
2346 bnx2_read_phy(bp, 0x10, &val);
2347 bnx2_write_phy(bp, 0x10, val & ~0x1);
2348 }
2349
2350 /* ethernet@wirespeed */
2351 bnx2_write_phy(bp, 0x18, 0x7007);
2352 bnx2_read_phy(bp, 0x18, &val);
2353 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2354 return 0;
2355 }
2356
2357
2358 static int
2359 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2360 __releases(&bp->phy_lock)
2361 __acquires(&bp->phy_lock)
2362 {
2363 u32 val;
2364 int rc = 0;
2365
2366 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2367 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2368
2369 bp->mii_bmcr = MII_BMCR;
2370 bp->mii_bmsr = MII_BMSR;
2371 bp->mii_bmsr1 = MII_BMSR;
2372 bp->mii_adv = MII_ADVERTISE;
2373 bp->mii_lpa = MII_LPA;
2374
2375 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2376
2377 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2378 goto setup_phy;
2379
2380 bnx2_read_phy(bp, MII_PHYSID1, &val);
2381 bp->phy_id = val << 16;
2382 bnx2_read_phy(bp, MII_PHYSID2, &val);
2383 bp->phy_id |= val & 0xffff;
2384
2385 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2386 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2387 rc = bnx2_init_5706s_phy(bp, reset_phy);
2388 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2389 rc = bnx2_init_5708s_phy(bp, reset_phy);
2390 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2391 rc = bnx2_init_5709s_phy(bp, reset_phy);
2392 }
2393 else {
2394 rc = bnx2_init_copper_phy(bp, reset_phy);
2395 }
2396
2397 setup_phy:
2398 if (!rc)
2399 rc = bnx2_setup_phy(bp, bp->phy_port);
2400
2401 return rc;
2402 }
2403
2404 static int
2405 bnx2_set_mac_loopback(struct bnx2 *bp)
2406 {
2407 u32 mac_mode;
2408
2409 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2410 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2411 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2412 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2413 bp->link_up = 1;
2414 return 0;
2415 }
2416
2417 static int bnx2_test_link(struct bnx2 *);
2418
2419 static int
2420 bnx2_set_phy_loopback(struct bnx2 *bp)
2421 {
2422 u32 mac_mode;
2423 int rc, i;
2424
2425 spin_lock_bh(&bp->phy_lock);
2426 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2427 BMCR_SPEED1000);
2428 spin_unlock_bh(&bp->phy_lock);
2429 if (rc)
2430 return rc;
2431
2432 for (i = 0; i < 10; i++) {
2433 if (bnx2_test_link(bp) == 0)
2434 break;
2435 msleep(100);
2436 }
2437
2438 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2439 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2440 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2441 BNX2_EMAC_MODE_25G_MODE);
2442
2443 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2444 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2445 bp->link_up = 1;
2446 return 0;
2447 }
2448
2449 static int
2450 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2451 {
2452 int i;
2453 u32 val;
2454
2455 bp->fw_wr_seq++;
2456 msg_data |= bp->fw_wr_seq;
2457
2458 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2459
2460 if (!ack)
2461 return 0;
2462
2463 /* wait for an acknowledgement. */
2464 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2465 msleep(10);
2466
2467 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2468
2469 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2470 break;
2471 }
2472 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2473 return 0;
2474
2475 /* If we timed out, inform the firmware that this is the case. */
2476 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2477 if (!silent)
2478 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2479 "%x\n", msg_data);
2480
2481 msg_data &= ~BNX2_DRV_MSG_CODE;
2482 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2483
2484 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2485
2486 return -EBUSY;
2487 }
2488
2489 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2490 return -EIO;
2491
2492 return 0;
2493 }
2494
2495 static int
2496 bnx2_init_5709_context(struct bnx2 *bp)
2497 {
2498 int i, ret = 0;
2499 u32 val;
2500
2501 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2502 val |= (BCM_PAGE_BITS - 8) << 16;
2503 REG_WR(bp, BNX2_CTX_COMMAND, val);
2504 for (i = 0; i < 10; i++) {
2505 val = REG_RD(bp, BNX2_CTX_COMMAND);
2506 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2507 break;
2508 udelay(2);
2509 }
2510 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2511 return -EBUSY;
2512
2513 for (i = 0; i < bp->ctx_pages; i++) {
2514 int j;
2515
2516 if (bp->ctx_blk[i])
2517 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2518 else
2519 return -ENOMEM;
2520
2521 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2522 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2523 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2524 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2525 (u64) bp->ctx_blk_mapping[i] >> 32);
2526 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2527 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2528 for (j = 0; j < 10; j++) {
2529
2530 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2531 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2532 break;
2533 udelay(5);
2534 }
2535 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2536 ret = -EBUSY;
2537 break;
2538 }
2539 }
2540 return ret;
2541 }
2542
2543 static void
2544 bnx2_init_context(struct bnx2 *bp)
2545 {
2546 u32 vcid;
2547
2548 vcid = 96;
2549 while (vcid) {
2550 u32 vcid_addr, pcid_addr, offset;
2551 int i;
2552
2553 vcid--;
2554
2555 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2556 u32 new_vcid;
2557
2558 vcid_addr = GET_PCID_ADDR(vcid);
2559 if (vcid & 0x8) {
2560 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2561 }
2562 else {
2563 new_vcid = vcid;
2564 }
2565 pcid_addr = GET_PCID_ADDR(new_vcid);
2566 }
2567 else {
2568 vcid_addr = GET_CID_ADDR(vcid);
2569 pcid_addr = vcid_addr;
2570 }
2571
2572 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2573 vcid_addr += (i << PHY_CTX_SHIFT);
2574 pcid_addr += (i << PHY_CTX_SHIFT);
2575
2576 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2577 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2578
2579 /* Zero out the context. */
2580 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2581 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2582 }
2583 }
2584 }
2585
2586 static int
2587 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2588 {
2589 u16 *good_mbuf;
2590 u32 good_mbuf_cnt;
2591 u32 val;
2592
2593 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2594 if (good_mbuf == NULL) {
2595 printk(KERN_ERR PFX "Failed to allocate memory in "
2596 "bnx2_alloc_bad_rbuf\n");
2597 return -ENOMEM;
2598 }
2599
2600 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2601 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2602
2603 good_mbuf_cnt = 0;
2604
2605 /* Allocate a bunch of mbufs and save the good ones in an array. */
2606 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2607 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2608 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2609 BNX2_RBUF_COMMAND_ALLOC_REQ);
2610
2611 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2612
2613 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2614
2615 /* The addresses with Bit 9 set are bad memory blocks. */
2616 if (!(val & (1 << 9))) {
2617 good_mbuf[good_mbuf_cnt] = (u16) val;
2618 good_mbuf_cnt++;
2619 }
2620
2621 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2622 }
2623
2624 /* Free the good ones back to the mbuf pool thus discarding
2625 * all the bad ones. */
2626 while (good_mbuf_cnt) {
2627 good_mbuf_cnt--;
2628
2629 val = good_mbuf[good_mbuf_cnt];
2630 val = (val << 9) | val | 1;
2631
2632 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2633 }
2634 kfree(good_mbuf);
2635 return 0;
2636 }
2637
2638 static void
2639 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2640 {
2641 u32 val;
2642
2643 val = (mac_addr[0] << 8) | mac_addr[1];
2644
2645 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2646
2647 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2648 (mac_addr[4] << 8) | mac_addr[5];
2649
2650 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2651 }
2652
2653 static inline int
2654 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2655 {
2656 dma_addr_t mapping;
2657 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2658 struct rx_bd *rxbd =
2659 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2660 struct page *page = alloc_page(GFP_ATOMIC);
2661
2662 if (!page)
2663 return -ENOMEM;
2664 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2665 PCI_DMA_FROMDEVICE);
2666 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2667 __free_page(page);
2668 return -EIO;
2669 }
2670
2671 rx_pg->page = page;
2672 pci_unmap_addr_set(rx_pg, mapping, mapping);
2673 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2674 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2675 return 0;
2676 }
2677
2678 static void
2679 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2680 {
2681 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2682 struct page *page = rx_pg->page;
2683
2684 if (!page)
2685 return;
2686
2687 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2688 PCI_DMA_FROMDEVICE);
2689
2690 __free_page(page);
2691 rx_pg->page = NULL;
2692 }
2693
2694 static inline int
2695 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2696 {
2697 struct sk_buff *skb;
2698 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2699 dma_addr_t mapping;
2700 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2701 unsigned long align;
2702
2703 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2704 if (skb == NULL) {
2705 return -ENOMEM;
2706 }
2707
2708 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2709 skb_reserve(skb, BNX2_RX_ALIGN - align);
2710
2711 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2712 PCI_DMA_FROMDEVICE);
2713 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2714 dev_kfree_skb(skb);
2715 return -EIO;
2716 }
2717
2718 rx_buf->skb = skb;
2719 pci_unmap_addr_set(rx_buf, mapping, mapping);
2720
2721 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2722 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2723
2724 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2725
2726 return 0;
2727 }
2728
2729 static int
2730 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2731 {
2732 struct status_block *sblk = bnapi->status_blk.msi;
2733 u32 new_link_state, old_link_state;
2734 int is_set = 1;
2735
2736 new_link_state = sblk->status_attn_bits & event;
2737 old_link_state = sblk->status_attn_bits_ack & event;
2738 if (new_link_state != old_link_state) {
2739 if (new_link_state)
2740 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2741 else
2742 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2743 } else
2744 is_set = 0;
2745
2746 return is_set;
2747 }
2748
2749 static void
2750 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2751 {
2752 spin_lock(&bp->phy_lock);
2753
2754 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2755 bnx2_set_link(bp);
2756 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2757 bnx2_set_remote_link(bp);
2758
2759 spin_unlock(&bp->phy_lock);
2760
2761 }
2762
2763 static inline u16
2764 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2765 {
2766 u16 cons;
2767
2768 /* Tell compiler that status block fields can change. */
2769 barrier();
2770 cons = *bnapi->hw_tx_cons_ptr;
2771 barrier();
2772 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2773 cons++;
2774 return cons;
2775 }
2776
2777 static int
2778 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2779 {
2780 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2781 u16 hw_cons, sw_cons, sw_ring_cons;
2782 int tx_pkt = 0, index;
2783 struct netdev_queue *txq;
2784
2785 index = (bnapi - bp->bnx2_napi);
2786 txq = netdev_get_tx_queue(bp->dev, index);
2787
2788 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2789 sw_cons = txr->tx_cons;
2790
2791 while (sw_cons != hw_cons) {
2792 struct sw_tx_bd *tx_buf;
2793 struct sk_buff *skb;
2794 int i, last;
2795
2796 sw_ring_cons = TX_RING_IDX(sw_cons);
2797
2798 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2799 skb = tx_buf->skb;
2800
2801 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2802 prefetch(&skb->end);
2803
2804 /* partial BD completions possible with TSO packets */
2805 if (tx_buf->is_gso) {
2806 u16 last_idx, last_ring_idx;
2807
2808 last_idx = sw_cons + tx_buf->nr_frags + 1;
2809 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2810 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2811 last_idx++;
2812 }
2813 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2814 break;
2815 }
2816 }
2817
2818 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2819
2820 tx_buf->skb = NULL;
2821 last = tx_buf->nr_frags;
2822
2823 for (i = 0; i < last; i++) {
2824 sw_cons = NEXT_TX_BD(sw_cons);
2825 }
2826
2827 sw_cons = NEXT_TX_BD(sw_cons);
2828
2829 dev_kfree_skb(skb);
2830 tx_pkt++;
2831 if (tx_pkt == budget)
2832 break;
2833
2834 if (hw_cons == sw_cons)
2835 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2836 }
2837
2838 txr->hw_tx_cons = hw_cons;
2839 txr->tx_cons = sw_cons;
2840
2841 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2842 * before checking for netif_tx_queue_stopped(). Without the
2843 * memory barrier, there is a small possibility that bnx2_start_xmit()
2844 * will miss it and cause the queue to be stopped forever.
2845 */
2846 smp_mb();
2847
2848 if (unlikely(netif_tx_queue_stopped(txq)) &&
2849 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2850 __netif_tx_lock(txq, smp_processor_id());
2851 if ((netif_tx_queue_stopped(txq)) &&
2852 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2853 netif_tx_wake_queue(txq);
2854 __netif_tx_unlock(txq);
2855 }
2856
2857 return tx_pkt;
2858 }
2859
2860 static void
2861 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2862 struct sk_buff *skb, int count)
2863 {
2864 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2865 struct rx_bd *cons_bd, *prod_bd;
2866 int i;
2867 u16 hw_prod, prod;
2868 u16 cons = rxr->rx_pg_cons;
2869
2870 cons_rx_pg = &rxr->rx_pg_ring[cons];
2871
2872 /* The caller was unable to allocate a new page to replace the
2873 * last one in the frags array, so we need to recycle that page
2874 * and then free the skb.
2875 */
2876 if (skb) {
2877 struct page *page;
2878 struct skb_shared_info *shinfo;
2879
2880 shinfo = skb_shinfo(skb);
2881 shinfo->nr_frags--;
2882 page = shinfo->frags[shinfo->nr_frags].page;
2883 shinfo->frags[shinfo->nr_frags].page = NULL;
2884
2885 cons_rx_pg->page = page;
2886 dev_kfree_skb(skb);
2887 }
2888
2889 hw_prod = rxr->rx_pg_prod;
2890
2891 for (i = 0; i < count; i++) {
2892 prod = RX_PG_RING_IDX(hw_prod);
2893
2894 prod_rx_pg = &rxr->rx_pg_ring[prod];
2895 cons_rx_pg = &rxr->rx_pg_ring[cons];
2896 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2897 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2898
2899 if (prod != cons) {
2900 prod_rx_pg->page = cons_rx_pg->page;
2901 cons_rx_pg->page = NULL;
2902 pci_unmap_addr_set(prod_rx_pg, mapping,
2903 pci_unmap_addr(cons_rx_pg, mapping));
2904
2905 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2906 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2907
2908 }
2909 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2910 hw_prod = NEXT_RX_BD(hw_prod);
2911 }
2912 rxr->rx_pg_prod = hw_prod;
2913 rxr->rx_pg_cons = cons;
2914 }
2915
2916 static inline void
2917 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2918 struct sk_buff *skb, u16 cons, u16 prod)
2919 {
2920 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2921 struct rx_bd *cons_bd, *prod_bd;
2922
2923 cons_rx_buf = &rxr->rx_buf_ring[cons];
2924 prod_rx_buf = &rxr->rx_buf_ring[prod];
2925
2926 pci_dma_sync_single_for_device(bp->pdev,
2927 pci_unmap_addr(cons_rx_buf, mapping),
2928 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2929
2930 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2931
2932 prod_rx_buf->skb = skb;
2933
2934 if (cons == prod)
2935 return;
2936
2937 pci_unmap_addr_set(prod_rx_buf, mapping,
2938 pci_unmap_addr(cons_rx_buf, mapping));
2939
2940 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2941 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2942 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2943 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2944 }
2945
2946 static int
2947 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2948 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2949 u32 ring_idx)
2950 {
2951 int err;
2952 u16 prod = ring_idx & 0xffff;
2953
2954 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2955 if (unlikely(err)) {
2956 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2957 if (hdr_len) {
2958 unsigned int raw_len = len + 4;
2959 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2960
2961 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2962 }
2963 return err;
2964 }
2965
2966 skb_reserve(skb, BNX2_RX_OFFSET);
2967 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2968 PCI_DMA_FROMDEVICE);
2969
2970 if (hdr_len == 0) {
2971 skb_put(skb, len);
2972 return 0;
2973 } else {
2974 unsigned int i, frag_len, frag_size, pages;
2975 struct sw_pg *rx_pg;
2976 u16 pg_cons = rxr->rx_pg_cons;
2977 u16 pg_prod = rxr->rx_pg_prod;
2978
2979 frag_size = len + 4 - hdr_len;
2980 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2981 skb_put(skb, hdr_len);
2982
2983 for (i = 0; i < pages; i++) {
2984 dma_addr_t mapping_old;
2985
2986 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2987 if (unlikely(frag_len <= 4)) {
2988 unsigned int tail = 4 - frag_len;
2989
2990 rxr->rx_pg_cons = pg_cons;
2991 rxr->rx_pg_prod = pg_prod;
2992 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2993 pages - i);
2994 skb->len -= tail;
2995 if (i == 0) {
2996 skb->tail -= tail;
2997 } else {
2998 skb_frag_t *frag =
2999 &skb_shinfo(skb)->frags[i - 1];
3000 frag->size -= tail;
3001 skb->data_len -= tail;
3002 skb->truesize -= tail;
3003 }
3004 return 0;
3005 }
3006 rx_pg = &rxr->rx_pg_ring[pg_cons];
3007
3008 /* Don't unmap yet. If we're unable to allocate a new
3009 * page, we need to recycle the page and the DMA addr.
3010 */
3011 mapping_old = pci_unmap_addr(rx_pg, mapping);
3012 if (i == pages - 1)
3013 frag_len -= 4;
3014
3015 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3016 rx_pg->page = NULL;
3017
3018 err = bnx2_alloc_rx_page(bp, rxr,
3019 RX_PG_RING_IDX(pg_prod));
3020 if (unlikely(err)) {
3021 rxr->rx_pg_cons = pg_cons;
3022 rxr->rx_pg_prod = pg_prod;
3023 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3024 pages - i);
3025 return err;
3026 }
3027
3028 pci_unmap_page(bp->pdev, mapping_old,
3029 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3030
3031 frag_size -= frag_len;
3032 skb->data_len += frag_len;
3033 skb->truesize += frag_len;
3034 skb->len += frag_len;
3035
3036 pg_prod = NEXT_RX_BD(pg_prod);
3037 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3038 }
3039 rxr->rx_pg_prod = pg_prod;
3040 rxr->rx_pg_cons = pg_cons;
3041 }
3042 return 0;
3043 }
3044
3045 static inline u16
3046 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3047 {
3048 u16 cons;
3049
3050 /* Tell compiler that status block fields can change. */
3051 barrier();
3052 cons = *bnapi->hw_rx_cons_ptr;
3053 barrier();
3054 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3055 cons++;
3056 return cons;
3057 }
3058
3059 static int
3060 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3061 {
3062 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3063 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3064 struct l2_fhdr *rx_hdr;
3065 int rx_pkt = 0, pg_ring_used = 0;
3066
3067 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3068 sw_cons = rxr->rx_cons;
3069 sw_prod = rxr->rx_prod;
3070
3071 /* Memory barrier necessary as speculative reads of the rx
3072 * buffer can be ahead of the index in the status block
3073 */
3074 rmb();
3075 while (sw_cons != hw_cons) {
3076 unsigned int len, hdr_len;
3077 u32 status;
3078 struct sw_bd *rx_buf;
3079 struct sk_buff *skb;
3080 dma_addr_t dma_addr;
3081 u16 vtag = 0;
3082 int hw_vlan __maybe_unused = 0;
3083
3084 sw_ring_cons = RX_RING_IDX(sw_cons);
3085 sw_ring_prod = RX_RING_IDX(sw_prod);
3086
3087 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3088 skb = rx_buf->skb;
3089
3090 rx_buf->skb = NULL;
3091
3092 dma_addr = pci_unmap_addr(rx_buf, mapping);
3093
3094 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3095 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3096 PCI_DMA_FROMDEVICE);
3097
3098 rx_hdr = (struct l2_fhdr *) skb->data;
3099 len = rx_hdr->l2_fhdr_pkt_len;
3100 status = rx_hdr->l2_fhdr_status;
3101
3102 hdr_len = 0;
3103 if (status & L2_FHDR_STATUS_SPLIT) {
3104 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3105 pg_ring_used = 1;
3106 } else if (len > bp->rx_jumbo_thresh) {
3107 hdr_len = bp->rx_jumbo_thresh;
3108 pg_ring_used = 1;
3109 }
3110
3111 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3112 L2_FHDR_ERRORS_PHY_DECODE |
3113 L2_FHDR_ERRORS_ALIGNMENT |
3114 L2_FHDR_ERRORS_TOO_SHORT |
3115 L2_FHDR_ERRORS_GIANT_FRAME))) {
3116
3117 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3118 sw_ring_prod);
3119 if (pg_ring_used) {
3120 int pages;
3121
3122 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3123
3124 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3125 }
3126 goto next_rx;
3127 }
3128
3129 len -= 4;
3130
3131 if (len <= bp->rx_copy_thresh) {
3132 struct sk_buff *new_skb;
3133
3134 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3135 if (new_skb == NULL) {
3136 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3137 sw_ring_prod);
3138 goto next_rx;
3139 }
3140
3141 /* aligned copy */
3142 skb_copy_from_linear_data_offset(skb,
3143 BNX2_RX_OFFSET - 6,
3144 new_skb->data, len + 6);
3145 skb_reserve(new_skb, 6);
3146 skb_put(new_skb, len);
3147
3148 bnx2_reuse_rx_skb(bp, rxr, skb,
3149 sw_ring_cons, sw_ring_prod);
3150
3151 skb = new_skb;
3152 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3153 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3154 goto next_rx;
3155
3156 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3157 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3158 vtag = rx_hdr->l2_fhdr_vlan_tag;
3159 #ifdef BCM_VLAN
3160 if (bp->vlgrp)
3161 hw_vlan = 1;
3162 else
3163 #endif
3164 {
3165 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3166 __skb_push(skb, 4);
3167
3168 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3169 ve->h_vlan_proto = htons(ETH_P_8021Q);
3170 ve->h_vlan_TCI = htons(vtag);
3171 len += 4;
3172 }
3173 }
3174
3175 skb->protocol = eth_type_trans(skb, bp->dev);
3176
3177 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3178 (ntohs(skb->protocol) != 0x8100)) {
3179
3180 dev_kfree_skb(skb);
3181 goto next_rx;
3182
3183 }
3184
3185 skb->ip_summed = CHECKSUM_NONE;
3186 if (bp->rx_csum &&
3187 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3188 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3189
3190 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3191 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3192 skb->ip_summed = CHECKSUM_UNNECESSARY;
3193 }
3194
3195 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3196
3197 #ifdef BCM_VLAN
3198 if (hw_vlan)
3199 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3200 else
3201 #endif
3202 netif_receive_skb(skb);
3203
3204 rx_pkt++;
3205
3206 next_rx:
3207 sw_cons = NEXT_RX_BD(sw_cons);
3208 sw_prod = NEXT_RX_BD(sw_prod);
3209
3210 if ((rx_pkt == budget))
3211 break;
3212
3213 /* Refresh hw_cons to see if there is new work */
3214 if (sw_cons == hw_cons) {
3215 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3216 rmb();
3217 }
3218 }
3219 rxr->rx_cons = sw_cons;
3220 rxr->rx_prod = sw_prod;
3221
3222 if (pg_ring_used)
3223 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3224
3225 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3226
3227 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3228
3229 mmiowb();
3230
3231 return rx_pkt;
3232
3233 }
3234
3235 /* MSI ISR - The only difference between this and the INTx ISR
3236 * is that the MSI interrupt is always serviced.
3237 */
3238 static irqreturn_t
3239 bnx2_msi(int irq, void *dev_instance)
3240 {
3241 struct bnx2_napi *bnapi = dev_instance;
3242 struct bnx2 *bp = bnapi->bp;
3243
3244 prefetch(bnapi->status_blk.msi);
3245 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3246 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3247 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3248
3249 /* Return here if interrupt is disabled. */
3250 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3251 return IRQ_HANDLED;
3252
3253 napi_schedule(&bnapi->napi);
3254
3255 return IRQ_HANDLED;
3256 }
3257
3258 static irqreturn_t
3259 bnx2_msi_1shot(int irq, void *dev_instance)
3260 {
3261 struct bnx2_napi *bnapi = dev_instance;
3262 struct bnx2 *bp = bnapi->bp;
3263
3264 prefetch(bnapi->status_blk.msi);
3265
3266 /* Return here if interrupt is disabled. */
3267 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3268 return IRQ_HANDLED;
3269
3270 napi_schedule(&bnapi->napi);
3271
3272 return IRQ_HANDLED;
3273 }
3274
3275 static irqreturn_t
3276 bnx2_interrupt(int irq, void *dev_instance)
3277 {
3278 struct bnx2_napi *bnapi = dev_instance;
3279 struct bnx2 *bp = bnapi->bp;
3280 struct status_block *sblk = bnapi->status_blk.msi;
3281
3282 /* When using INTx, it is possible for the interrupt to arrive
3283 * at the CPU before the status block posted prior to the
3284 * interrupt. Reading a register will flush the status block.
3285 * When using MSI, the MSI message will always complete after
3286 * the status block write.
3287 */
3288 if ((sblk->status_idx == bnapi->last_status_idx) &&
3289 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3290 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3291 return IRQ_NONE;
3292
3293 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3294 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3295 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3296
3297 /* Read back to deassert IRQ immediately to avoid too many
3298 * spurious interrupts.
3299 */
3300 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3301
3302 /* Return here if interrupt is shared and is disabled. */
3303 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3304 return IRQ_HANDLED;
3305
3306 if (napi_schedule_prep(&bnapi->napi)) {
3307 bnapi->last_status_idx = sblk->status_idx;
3308 __napi_schedule(&bnapi->napi);
3309 }
3310
3311 return IRQ_HANDLED;
3312 }
3313
3314 static inline int
3315 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3316 {
3317 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3318 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3319
3320 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3321 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3322 return 1;
3323 return 0;
3324 }
3325
3326 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3327 STATUS_ATTN_BITS_TIMER_ABORT)
3328
3329 static inline int
3330 bnx2_has_work(struct bnx2_napi *bnapi)
3331 {
3332 struct status_block *sblk = bnapi->status_blk.msi;
3333
3334 if (bnx2_has_fast_work(bnapi))
3335 return 1;
3336
3337 #ifdef BCM_CNIC
3338 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3339 return 1;
3340 #endif
3341
3342 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3343 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3344 return 1;
3345
3346 return 0;
3347 }
3348
3349 static void
3350 bnx2_chk_missed_msi(struct bnx2 *bp)
3351 {
3352 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3353 u32 msi_ctrl;
3354
3355 if (bnx2_has_work(bnapi)) {
3356 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3357 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3358 return;
3359
3360 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3361 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3362 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3363 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3364 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3365 }
3366 }
3367
3368 bp->idle_chk_status_idx = bnapi->last_status_idx;
3369 }
3370
3371 #ifdef BCM_CNIC
3372 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3373 {
3374 struct cnic_ops *c_ops;
3375
3376 if (!bnapi->cnic_present)
3377 return;
3378
3379 rcu_read_lock();
3380 c_ops = rcu_dereference(bp->cnic_ops);
3381 if (c_ops)
3382 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3383 bnapi->status_blk.msi);
3384 rcu_read_unlock();
3385 }
3386 #endif
3387
3388 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3389 {
3390 struct status_block *sblk = bnapi->status_blk.msi;
3391 u32 status_attn_bits = sblk->status_attn_bits;
3392 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3393
3394 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3395 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3396
3397 bnx2_phy_int(bp, bnapi);
3398
3399 /* This is needed to take care of transient status
3400 * during link changes.
3401 */
3402 REG_WR(bp, BNX2_HC_COMMAND,
3403 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3404 REG_RD(bp, BNX2_HC_COMMAND);
3405 }
3406 }
3407
3408 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3409 int work_done, int budget)
3410 {
3411 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3412 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3413
3414 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3415 bnx2_tx_int(bp, bnapi, 0);
3416
3417 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3418 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3419
3420 return work_done;
3421 }
3422
3423 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3424 {
3425 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3426 struct bnx2 *bp = bnapi->bp;
3427 int work_done = 0;
3428 struct status_block_msix *sblk = bnapi->status_blk.msix;
3429
3430 while (1) {
3431 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3432 if (unlikely(work_done >= budget))
3433 break;
3434
3435 bnapi->last_status_idx = sblk->status_idx;
3436 /* status idx must be read before checking for more work. */
3437 rmb();
3438 if (likely(!bnx2_has_fast_work(bnapi))) {
3439
3440 napi_complete(napi);
3441 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3442 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3443 bnapi->last_status_idx);
3444 break;
3445 }
3446 }
3447 return work_done;
3448 }
3449
3450 static int bnx2_poll(struct napi_struct *napi, int budget)
3451 {
3452 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3453 struct bnx2 *bp = bnapi->bp;
3454 int work_done = 0;
3455 struct status_block *sblk = bnapi->status_blk.msi;
3456
3457 while (1) {
3458 bnx2_poll_link(bp, bnapi);
3459
3460 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3461
3462 #ifdef BCM_CNIC
3463 bnx2_poll_cnic(bp, bnapi);
3464 #endif
3465
3466 /* bnapi->last_status_idx is used below to tell the hw how
3467 * much work has been processed, so we must read it before
3468 * checking for more work.
3469 */
3470 bnapi->last_status_idx = sblk->status_idx;
3471
3472 if (unlikely(work_done >= budget))
3473 break;
3474
3475 rmb();
3476 if (likely(!bnx2_has_work(bnapi))) {
3477 napi_complete(napi);
3478 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3479 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3480 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3481 bnapi->last_status_idx);
3482 break;
3483 }
3484 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3485 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3486 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3487 bnapi->last_status_idx);
3488
3489 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3490 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3491 bnapi->last_status_idx);
3492 break;
3493 }
3494 }
3495
3496 return work_done;
3497 }
3498
3499 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3500 * from set_multicast.
3501 */
3502 static void
3503 bnx2_set_rx_mode(struct net_device *dev)
3504 {
3505 struct bnx2 *bp = netdev_priv(dev);
3506 u32 rx_mode, sort_mode;
3507 struct netdev_hw_addr *ha;
3508 int i;
3509
3510 if (!netif_running(dev))
3511 return;
3512
3513 spin_lock_bh(&bp->phy_lock);
3514
3515 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3516 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3517 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3518 #ifdef BCM_VLAN
3519 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3520 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3521 #else
3522 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3523 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3524 #endif
3525 if (dev->flags & IFF_PROMISC) {
3526 /* Promiscuous mode. */
3527 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3528 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3529 BNX2_RPM_SORT_USER0_PROM_VLAN;
3530 }
3531 else if (dev->flags & IFF_ALLMULTI) {
3532 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3533 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3534 0xffffffff);
3535 }
3536 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3537 }
3538 else {
3539 /* Accept one or more multicast(s). */
3540 struct dev_mc_list *mclist;
3541 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3542 u32 regidx;
3543 u32 bit;
3544 u32 crc;
3545
3546 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3547
3548 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3549 i++, mclist = mclist->next) {
3550
3551 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3552 bit = crc & 0xff;
3553 regidx = (bit & 0xe0) >> 5;
3554 bit &= 0x1f;
3555 mc_filter[regidx] |= (1 << bit);
3556 }
3557
3558 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3559 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3560 mc_filter[i]);
3561 }
3562
3563 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3564 }
3565
3566 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3567 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3568 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3569 BNX2_RPM_SORT_USER0_PROM_VLAN;
3570 } else if (!(dev->flags & IFF_PROMISC)) {
3571 /* Add all entries into to the match filter list */
3572 i = 0;
3573 list_for_each_entry(ha, &dev->uc.list, list) {
3574 bnx2_set_mac_addr(bp, ha->addr,
3575 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3576 sort_mode |= (1 <<
3577 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3578 i++;
3579 }
3580
3581 }
3582
3583 if (rx_mode != bp->rx_mode) {
3584 bp->rx_mode = rx_mode;
3585 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3586 }
3587
3588 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3589 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3590 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3591
3592 spin_unlock_bh(&bp->phy_lock);
3593 }
3594
3595 static int __devinit
3596 check_fw_section(const struct firmware *fw,
3597 const struct bnx2_fw_file_section *section,
3598 u32 alignment, bool non_empty)
3599 {
3600 u32 offset = be32_to_cpu(section->offset);
3601 u32 len = be32_to_cpu(section->len);
3602
3603 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3604 return -EINVAL;
3605 if ((non_empty && len == 0) || len > fw->size - offset ||
3606 len & (alignment - 1))
3607 return -EINVAL;
3608 return 0;
3609 }
3610
3611 static int __devinit
3612 check_mips_fw_entry(const struct firmware *fw,
3613 const struct bnx2_mips_fw_file_entry *entry)
3614 {
3615 if (check_fw_section(fw, &entry->text, 4, true) ||
3616 check_fw_section(fw, &entry->data, 4, false) ||
3617 check_fw_section(fw, &entry->rodata, 4, false))
3618 return -EINVAL;
3619 return 0;
3620 }
3621
3622 static int __devinit
3623 bnx2_request_firmware(struct bnx2 *bp)
3624 {
3625 const char *mips_fw_file, *rv2p_fw_file;
3626 const struct bnx2_mips_fw_file *mips_fw;
3627 const struct bnx2_rv2p_fw_file *rv2p_fw;
3628 int rc;
3629
3630 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3631 mips_fw_file = FW_MIPS_FILE_09;
3632 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3633 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3634 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3635 else
3636 rv2p_fw_file = FW_RV2P_FILE_09;
3637 } else {
3638 mips_fw_file = FW_MIPS_FILE_06;
3639 rv2p_fw_file = FW_RV2P_FILE_06;
3640 }
3641
3642 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3643 if (rc) {
3644 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3645 mips_fw_file);
3646 return rc;
3647 }
3648
3649 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3650 if (rc) {
3651 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3652 rv2p_fw_file);
3653 return rc;
3654 }
3655 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3656 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3657 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3658 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3659 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3660 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3661 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3662 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3663 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3664 mips_fw_file);
3665 return -EINVAL;
3666 }
3667 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3668 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3669 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3670 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3671 rv2p_fw_file);
3672 return -EINVAL;
3673 }
3674
3675 return 0;
3676 }
3677
3678 static u32
3679 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3680 {
3681 switch (idx) {
3682 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3683 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3684 rv2p_code |= RV2P_BD_PAGE_SIZE;
3685 break;
3686 }
3687 return rv2p_code;
3688 }
3689
3690 static int
3691 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3692 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3693 {
3694 u32 rv2p_code_len, file_offset;
3695 __be32 *rv2p_code;
3696 int i;
3697 u32 val, cmd, addr;
3698
3699 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3700 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3701
3702 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3703
3704 if (rv2p_proc == RV2P_PROC1) {
3705 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3706 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3707 } else {
3708 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3709 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3710 }
3711
3712 for (i = 0; i < rv2p_code_len; i += 8) {
3713 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3714 rv2p_code++;
3715 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3716 rv2p_code++;
3717
3718 val = (i / 8) | cmd;
3719 REG_WR(bp, addr, val);
3720 }
3721
3722 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3723 for (i = 0; i < 8; i++) {
3724 u32 loc, code;
3725
3726 loc = be32_to_cpu(fw_entry->fixup[i]);
3727 if (loc && ((loc * 4) < rv2p_code_len)) {
3728 code = be32_to_cpu(*(rv2p_code + loc - 1));
3729 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3730 code = be32_to_cpu(*(rv2p_code + loc));
3731 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3732 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3733
3734 val = (loc / 2) | cmd;
3735 REG_WR(bp, addr, val);
3736 }
3737 }
3738
3739 /* Reset the processor, un-stall is done later. */
3740 if (rv2p_proc == RV2P_PROC1) {
3741 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3742 }
3743 else {
3744 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3745 }
3746
3747 return 0;
3748 }
3749
3750 static int
3751 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3752 const struct bnx2_mips_fw_file_entry *fw_entry)
3753 {
3754 u32 addr, len, file_offset;
3755 __be32 *data;
3756 u32 offset;
3757 u32 val;
3758
3759 /* Halt the CPU. */
3760 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3761 val |= cpu_reg->mode_value_halt;
3762 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3763 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3764
3765 /* Load the Text area. */
3766 addr = be32_to_cpu(fw_entry->text.addr);
3767 len = be32_to_cpu(fw_entry->text.len);
3768 file_offset = be32_to_cpu(fw_entry->text.offset);
3769 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3770
3771 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3772 if (len) {
3773 int j;
3774
3775 for (j = 0; j < (len / 4); j++, offset += 4)
3776 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3777 }
3778
3779 /* Load the Data area. */
3780 addr = be32_to_cpu(fw_entry->data.addr);
3781 len = be32_to_cpu(fw_entry->data.len);
3782 file_offset = be32_to_cpu(fw_entry->data.offset);
3783 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3784
3785 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3786 if (len) {
3787 int j;
3788
3789 for (j = 0; j < (len / 4); j++, offset += 4)
3790 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3791 }
3792
3793 /* Load the Read-Only area. */
3794 addr = be32_to_cpu(fw_entry->rodata.addr);
3795 len = be32_to_cpu(fw_entry->rodata.len);
3796 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3797 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3798
3799 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3800 if (len) {
3801 int j;
3802
3803 for (j = 0; j < (len / 4); j++, offset += 4)
3804 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3805 }
3806
3807 /* Clear the pre-fetch instruction. */
3808 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3809
3810 val = be32_to_cpu(fw_entry->start_addr);
3811 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3812
3813 /* Start the CPU. */
3814 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3815 val &= ~cpu_reg->mode_value_halt;
3816 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3817 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3818
3819 return 0;
3820 }
3821
3822 static int
3823 bnx2_init_cpus(struct bnx2 *bp)
3824 {
3825 const struct bnx2_mips_fw_file *mips_fw =
3826 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3827 const struct bnx2_rv2p_fw_file *rv2p_fw =
3828 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3829 int rc;
3830
3831 /* Initialize the RV2P processor. */
3832 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3833 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3834
3835 /* Initialize the RX Processor. */
3836 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3837 if (rc)
3838 goto init_cpu_err;
3839
3840 /* Initialize the TX Processor. */
3841 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3842 if (rc)
3843 goto init_cpu_err;
3844
3845 /* Initialize the TX Patch-up Processor. */
3846 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3847 if (rc)
3848 goto init_cpu_err;
3849
3850 /* Initialize the Completion Processor. */
3851 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3852 if (rc)
3853 goto init_cpu_err;
3854
3855 /* Initialize the Command Processor. */
3856 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3857
3858 init_cpu_err:
3859 return rc;
3860 }
3861
3862 static int
3863 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3864 {
3865 u16 pmcsr;
3866
3867 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3868
3869 switch (state) {
3870 case PCI_D0: {
3871 u32 val;
3872
3873 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3874 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3875 PCI_PM_CTRL_PME_STATUS);
3876
3877 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3878 /* delay required during transition out of D3hot */
3879 msleep(20);
3880
3881 val = REG_RD(bp, BNX2_EMAC_MODE);
3882 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3883 val &= ~BNX2_EMAC_MODE_MPKT;
3884 REG_WR(bp, BNX2_EMAC_MODE, val);
3885
3886 val = REG_RD(bp, BNX2_RPM_CONFIG);
3887 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3888 REG_WR(bp, BNX2_RPM_CONFIG, val);
3889 break;
3890 }
3891 case PCI_D3hot: {
3892 int i;
3893 u32 val, wol_msg;
3894
3895 if (bp->wol) {
3896 u32 advertising;
3897 u8 autoneg;
3898
3899 autoneg = bp->autoneg;
3900 advertising = bp->advertising;
3901
3902 if (bp->phy_port == PORT_TP) {
3903 bp->autoneg = AUTONEG_SPEED;
3904 bp->advertising = ADVERTISED_10baseT_Half |
3905 ADVERTISED_10baseT_Full |
3906 ADVERTISED_100baseT_Half |
3907 ADVERTISED_100baseT_Full |
3908 ADVERTISED_Autoneg;
3909 }
3910
3911 spin_lock_bh(&bp->phy_lock);
3912 bnx2_setup_phy(bp, bp->phy_port);
3913 spin_unlock_bh(&bp->phy_lock);
3914
3915 bp->autoneg = autoneg;
3916 bp->advertising = advertising;
3917
3918 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3919
3920 val = REG_RD(bp, BNX2_EMAC_MODE);
3921
3922 /* Enable port mode. */
3923 val &= ~BNX2_EMAC_MODE_PORT;
3924 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3925 BNX2_EMAC_MODE_ACPI_RCVD |
3926 BNX2_EMAC_MODE_MPKT;
3927 if (bp->phy_port == PORT_TP)
3928 val |= BNX2_EMAC_MODE_PORT_MII;
3929 else {
3930 val |= BNX2_EMAC_MODE_PORT_GMII;
3931 if (bp->line_speed == SPEED_2500)
3932 val |= BNX2_EMAC_MODE_25G_MODE;
3933 }
3934
3935 REG_WR(bp, BNX2_EMAC_MODE, val);
3936
3937 /* receive all multicast */
3938 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3939 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3940 0xffffffff);
3941 }
3942 REG_WR(bp, BNX2_EMAC_RX_MODE,
3943 BNX2_EMAC_RX_MODE_SORT_MODE);
3944
3945 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3946 BNX2_RPM_SORT_USER0_MC_EN;
3947 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3948 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3949 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3950 BNX2_RPM_SORT_USER0_ENA);
3951
3952 /* Need to enable EMAC and RPM for WOL. */
3953 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3954 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3955 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3956 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3957
3958 val = REG_RD(bp, BNX2_RPM_CONFIG);
3959 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3960 REG_WR(bp, BNX2_RPM_CONFIG, val);
3961
3962 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3963 }
3964 else {
3965 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3966 }
3967
3968 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3969 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3970 1, 0);
3971
3972 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3973 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3974 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3975
3976 if (bp->wol)
3977 pmcsr |= 3;
3978 }
3979 else {
3980 pmcsr |= 3;
3981 }
3982 if (bp->wol) {
3983 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3984 }
3985 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3986 pmcsr);
3987
3988 /* No more memory access after this point until
3989 * device is brought back to D0.
3990 */
3991 udelay(50);
3992 break;
3993 }
3994 default:
3995 return -EINVAL;
3996 }
3997 return 0;
3998 }
3999
4000 static int
4001 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4002 {
4003 u32 val;
4004 int j;
4005
4006 /* Request access to the flash interface. */
4007 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4008 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4009 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4010 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4011 break;
4012
4013 udelay(5);
4014 }
4015
4016 if (j >= NVRAM_TIMEOUT_COUNT)
4017 return -EBUSY;
4018
4019 return 0;
4020 }
4021
4022 static int
4023 bnx2_release_nvram_lock(struct bnx2 *bp)
4024 {
4025 int j;
4026 u32 val;
4027
4028 /* Relinquish nvram interface. */
4029 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4030
4031 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4032 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4033 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4034 break;
4035
4036 udelay(5);
4037 }
4038
4039 if (j >= NVRAM_TIMEOUT_COUNT)
4040 return -EBUSY;
4041
4042 return 0;
4043 }
4044
4045
4046 static int
4047 bnx2_enable_nvram_write(struct bnx2 *bp)
4048 {
4049 u32 val;
4050
4051 val = REG_RD(bp, BNX2_MISC_CFG);
4052 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4053
4054 if (bp->flash_info->flags & BNX2_NV_WREN) {
4055 int j;
4056
4057 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4058 REG_WR(bp, BNX2_NVM_COMMAND,
4059 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4060
4061 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4062 udelay(5);
4063
4064 val = REG_RD(bp, BNX2_NVM_COMMAND);
4065 if (val & BNX2_NVM_COMMAND_DONE)
4066 break;
4067 }
4068
4069 if (j >= NVRAM_TIMEOUT_COUNT)
4070 return -EBUSY;
4071 }
4072 return 0;
4073 }
4074
4075 static void
4076 bnx2_disable_nvram_write(struct bnx2 *bp)
4077 {
4078 u32 val;
4079
4080 val = REG_RD(bp, BNX2_MISC_CFG);
4081 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4082 }
4083
4084
4085 static void
4086 bnx2_enable_nvram_access(struct bnx2 *bp)
4087 {
4088 u32 val;
4089
4090 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4091 /* Enable both bits, even on read. */
4092 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4093 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4094 }
4095
4096 static void
4097 bnx2_disable_nvram_access(struct bnx2 *bp)
4098 {
4099 u32 val;
4100
4101 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4102 /* Disable both bits, even after read. */
4103 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4104 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4105 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4106 }
4107
4108 static int
4109 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4110 {
4111 u32 cmd;
4112 int j;
4113
4114 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4115 /* Buffered flash, no erase needed */
4116 return 0;
4117
4118 /* Build an erase command */
4119 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4120 BNX2_NVM_COMMAND_DOIT;
4121
4122 /* Need to clear DONE bit separately. */
4123 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4124
4125 /* Address of the NVRAM to read from. */
4126 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4127
4128 /* Issue an erase command. */
4129 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4130
4131 /* Wait for completion. */
4132 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4133 u32 val;
4134
4135 udelay(5);
4136
4137 val = REG_RD(bp, BNX2_NVM_COMMAND);
4138 if (val & BNX2_NVM_COMMAND_DONE)
4139 break;
4140 }
4141
4142 if (j >= NVRAM_TIMEOUT_COUNT)
4143 return -EBUSY;
4144
4145 return 0;
4146 }
4147
4148 static int
4149 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4150 {
4151 u32 cmd;
4152 int j;
4153
4154 /* Build the command word. */
4155 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4156
4157 /* Calculate an offset of a buffered flash, not needed for 5709. */
4158 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4159 offset = ((offset / bp->flash_info->page_size) <<
4160 bp->flash_info->page_bits) +
4161 (offset % bp->flash_info->page_size);
4162 }
4163
4164 /* Need to clear DONE bit separately. */
4165 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4166
4167 /* Address of the NVRAM to read from. */
4168 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4169
4170 /* Issue a read command. */
4171 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4172
4173 /* Wait for completion. */
4174 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4175 u32 val;
4176
4177 udelay(5);
4178
4179 val = REG_RD(bp, BNX2_NVM_COMMAND);
4180 if (val & BNX2_NVM_COMMAND_DONE) {
4181 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4182 memcpy(ret_val, &v, 4);
4183 break;
4184 }
4185 }
4186 if (j >= NVRAM_TIMEOUT_COUNT)
4187 return -EBUSY;
4188
4189 return 0;
4190 }
4191
4192
4193 static int
4194 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4195 {
4196 u32 cmd;
4197 __be32 val32;
4198 int j;
4199
4200 /* Build the command word. */
4201 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4202
4203 /* Calculate an offset of a buffered flash, not needed for 5709. */
4204 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4205 offset = ((offset / bp->flash_info->page_size) <<
4206 bp->flash_info->page_bits) +
4207 (offset % bp->flash_info->page_size);
4208 }
4209
4210 /* Need to clear DONE bit separately. */
4211 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4212
4213 memcpy(&val32, val, 4);
4214
4215 /* Write the data. */
4216 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4217
4218 /* Address of the NVRAM to write to. */
4219 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4220
4221 /* Issue the write command. */
4222 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4223
4224 /* Wait for completion. */
4225 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4226 udelay(5);
4227
4228 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4229 break;
4230 }
4231 if (j >= NVRAM_TIMEOUT_COUNT)
4232 return -EBUSY;
4233
4234 return 0;
4235 }
4236
4237 static int
4238 bnx2_init_nvram(struct bnx2 *bp)
4239 {
4240 u32 val;
4241 int j, entry_count, rc = 0;
4242 const struct flash_spec *flash;
4243
4244 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4245 bp->flash_info = &flash_5709;
4246 goto get_flash_size;
4247 }
4248
4249 /* Determine the selected interface. */
4250 val = REG_RD(bp, BNX2_NVM_CFG1);
4251
4252 entry_count = ARRAY_SIZE(flash_table);
4253
4254 if (val & 0x40000000) {
4255
4256 /* Flash interface has been reconfigured */
4257 for (j = 0, flash = &flash_table[0]; j < entry_count;
4258 j++, flash++) {
4259 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4260 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4261 bp->flash_info = flash;
4262 break;
4263 }
4264 }
4265 }
4266 else {
4267 u32 mask;
4268 /* Not yet been reconfigured */
4269
4270 if (val & (1 << 23))
4271 mask = FLASH_BACKUP_STRAP_MASK;
4272 else
4273 mask = FLASH_STRAP_MASK;
4274
4275 for (j = 0, flash = &flash_table[0]; j < entry_count;
4276 j++, flash++) {
4277
4278 if ((val & mask) == (flash->strapping & mask)) {
4279 bp->flash_info = flash;
4280
4281 /* Request access to the flash interface. */
4282 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4283 return rc;
4284
4285 /* Enable access to flash interface */
4286 bnx2_enable_nvram_access(bp);
4287
4288 /* Reconfigure the flash interface */
4289 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4290 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4291 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4292 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4293
4294 /* Disable access to flash interface */
4295 bnx2_disable_nvram_access(bp);
4296 bnx2_release_nvram_lock(bp);
4297
4298 break;
4299 }
4300 }
4301 } /* if (val & 0x40000000) */
4302
4303 if (j == entry_count) {
4304 bp->flash_info = NULL;
4305 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4306 return -ENODEV;
4307 }
4308
4309 get_flash_size:
4310 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4311 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4312 if (val)
4313 bp->flash_size = val;
4314 else
4315 bp->flash_size = bp->flash_info->total_size;
4316
4317 return rc;
4318 }
4319
4320 static int
4321 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4322 int buf_size)
4323 {
4324 int rc = 0;
4325 u32 cmd_flags, offset32, len32, extra;
4326
4327 if (buf_size == 0)
4328 return 0;
4329
4330 /* Request access to the flash interface. */
4331 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4332 return rc;
4333
4334 /* Enable access to flash interface */
4335 bnx2_enable_nvram_access(bp);
4336
4337 len32 = buf_size;
4338 offset32 = offset;
4339 extra = 0;
4340
4341 cmd_flags = 0;
4342
4343 if (offset32 & 3) {
4344 u8 buf[4];
4345 u32 pre_len;
4346
4347 offset32 &= ~3;
4348 pre_len = 4 - (offset & 3);
4349
4350 if (pre_len >= len32) {
4351 pre_len = len32;
4352 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4353 BNX2_NVM_COMMAND_LAST;
4354 }
4355 else {
4356 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4357 }
4358
4359 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4360
4361 if (rc)
4362 return rc;
4363
4364 memcpy(ret_buf, buf + (offset & 3), pre_len);
4365
4366 offset32 += 4;
4367 ret_buf += pre_len;
4368 len32 -= pre_len;
4369 }
4370 if (len32 & 3) {
4371 extra = 4 - (len32 & 3);
4372 len32 = (len32 + 4) & ~3;
4373 }
4374
4375 if (len32 == 4) {
4376 u8 buf[4];
4377
4378 if (cmd_flags)
4379 cmd_flags = BNX2_NVM_COMMAND_LAST;
4380 else
4381 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4382 BNX2_NVM_COMMAND_LAST;
4383
4384 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4385
4386 memcpy(ret_buf, buf, 4 - extra);
4387 }
4388 else if (len32 > 0) {
4389 u8 buf[4];
4390
4391 /* Read the first word. */
4392 if (cmd_flags)
4393 cmd_flags = 0;
4394 else
4395 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4396
4397 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4398
4399 /* Advance to the next dword. */
4400 offset32 += 4;
4401 ret_buf += 4;
4402 len32 -= 4;
4403
4404 while (len32 > 4 && rc == 0) {
4405 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4406
4407 /* Advance to the next dword. */
4408 offset32 += 4;
4409 ret_buf += 4;
4410 len32 -= 4;
4411 }
4412
4413 if (rc)
4414 return rc;
4415
4416 cmd_flags = BNX2_NVM_COMMAND_LAST;
4417 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4418
4419 memcpy(ret_buf, buf, 4 - extra);
4420 }
4421
4422 /* Disable access to flash interface */
4423 bnx2_disable_nvram_access(bp);
4424
4425 bnx2_release_nvram_lock(bp);
4426
4427 return rc;
4428 }
4429
4430 static int
4431 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4432 int buf_size)
4433 {
4434 u32 written, offset32, len32;
4435 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4436 int rc = 0;
4437 int align_start, align_end;
4438
4439 buf = data_buf;
4440 offset32 = offset;
4441 len32 = buf_size;
4442 align_start = align_end = 0;
4443
4444 if ((align_start = (offset32 & 3))) {
4445 offset32 &= ~3;
4446 len32 += align_start;
4447 if (len32 < 4)
4448 len32 = 4;
4449 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4450 return rc;
4451 }
4452
4453 if (len32 & 3) {
4454 align_end = 4 - (len32 & 3);
4455 len32 += align_end;
4456 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4457 return rc;
4458 }
4459
4460 if (align_start || align_end) {
4461 align_buf = kmalloc(len32, GFP_KERNEL);
4462 if (align_buf == NULL)
4463 return -ENOMEM;
4464 if (align_start) {
4465 memcpy(align_buf, start, 4);
4466 }
4467 if (align_end) {
4468 memcpy(align_buf + len32 - 4, end, 4);
4469 }
4470 memcpy(align_buf + align_start, data_buf, buf_size);
4471 buf = align_buf;
4472 }
4473
4474 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4475 flash_buffer = kmalloc(264, GFP_KERNEL);
4476 if (flash_buffer == NULL) {
4477 rc = -ENOMEM;
4478 goto nvram_write_end;
4479 }
4480 }
4481
4482 written = 0;
4483 while ((written < len32) && (rc == 0)) {
4484 u32 page_start, page_end, data_start, data_end;
4485 u32 addr, cmd_flags;
4486 int i;
4487
4488 /* Find the page_start addr */
4489 page_start = offset32 + written;
4490 page_start -= (page_start % bp->flash_info->page_size);
4491 /* Find the page_end addr */
4492 page_end = page_start + bp->flash_info->page_size;
4493 /* Find the data_start addr */
4494 data_start = (written == 0) ? offset32 : page_start;
4495 /* Find the data_end addr */
4496 data_end = (page_end > offset32 + len32) ?
4497 (offset32 + len32) : page_end;
4498
4499 /* Request access to the flash interface. */
4500 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4501 goto nvram_write_end;
4502
4503 /* Enable access to flash interface */
4504 bnx2_enable_nvram_access(bp);
4505
4506 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4507 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4508 int j;
4509
4510 /* Read the whole page into the buffer
4511 * (non-buffer flash only) */
4512 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4513 if (j == (bp->flash_info->page_size - 4)) {
4514 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4515 }
4516 rc = bnx2_nvram_read_dword(bp,
4517 page_start + j,
4518 &flash_buffer[j],
4519 cmd_flags);
4520
4521 if (rc)
4522 goto nvram_write_end;
4523
4524 cmd_flags = 0;
4525 }
4526 }
4527
4528 /* Enable writes to flash interface (unlock write-protect) */
4529 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4530 goto nvram_write_end;
4531
4532 /* Loop to write back the buffer data from page_start to
4533 * data_start */
4534 i = 0;
4535 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4536 /* Erase the page */
4537 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4538 goto nvram_write_end;
4539
4540 /* Re-enable the write again for the actual write */
4541 bnx2_enable_nvram_write(bp);
4542
4543 for (addr = page_start; addr < data_start;
4544 addr += 4, i += 4) {
4545
4546 rc = bnx2_nvram_write_dword(bp, addr,
4547 &flash_buffer[i], cmd_flags);
4548
4549 if (rc != 0)
4550 goto nvram_write_end;
4551
4552 cmd_flags = 0;
4553 }
4554 }
4555
4556 /* Loop to write the new data from data_start to data_end */
4557 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4558 if ((addr == page_end - 4) ||
4559 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4560 (addr == data_end - 4))) {
4561
4562 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4563 }
4564 rc = bnx2_nvram_write_dword(bp, addr, buf,
4565 cmd_flags);
4566
4567 if (rc != 0)
4568 goto nvram_write_end;
4569
4570 cmd_flags = 0;
4571 buf += 4;
4572 }
4573
4574 /* Loop to write back the buffer data from data_end
4575 * to page_end */
4576 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4577 for (addr = data_end; addr < page_end;
4578 addr += 4, i += 4) {
4579
4580 if (addr == page_end-4) {
4581 cmd_flags = BNX2_NVM_COMMAND_LAST;
4582 }
4583 rc = bnx2_nvram_write_dword(bp, addr,
4584 &flash_buffer[i], cmd_flags);
4585
4586 if (rc != 0)
4587 goto nvram_write_end;
4588
4589 cmd_flags = 0;
4590 }
4591 }
4592
4593 /* Disable writes to flash interface (lock write-protect) */
4594 bnx2_disable_nvram_write(bp);
4595
4596 /* Disable access to flash interface */
4597 bnx2_disable_nvram_access(bp);
4598 bnx2_release_nvram_lock(bp);
4599
4600 /* Increment written */
4601 written += data_end - data_start;
4602 }
4603
4604 nvram_write_end:
4605 kfree(flash_buffer);
4606 kfree(align_buf);
4607 return rc;
4608 }
4609
4610 static void
4611 bnx2_init_fw_cap(struct bnx2 *bp)
4612 {
4613 u32 val, sig = 0;
4614
4615 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4616 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4617
4618 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4619 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4620
4621 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4622 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4623 return;
4624
4625 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4626 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4627 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4628 }
4629
4630 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4631 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4632 u32 link;
4633
4634 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4635
4636 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4637 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4638 bp->phy_port = PORT_FIBRE;
4639 else
4640 bp->phy_port = PORT_TP;
4641
4642 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4643 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4644 }
4645
4646 if (netif_running(bp->dev) && sig)
4647 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4648 }
4649
4650 static void
4651 bnx2_setup_msix_tbl(struct bnx2 *bp)
4652 {
4653 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4654
4655 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4656 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4657 }
4658
4659 static int
4660 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4661 {
4662 u32 val;
4663 int i, rc = 0;
4664 u8 old_port;
4665
4666 /* Wait for the current PCI transaction to complete before
4667 * issuing a reset. */
4668 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4669 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4670 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4671 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4672 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4673 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4674 udelay(5);
4675
4676 /* Wait for the firmware to tell us it is ok to issue a reset. */
4677 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4678
4679 /* Deposit a driver reset signature so the firmware knows that
4680 * this is a soft reset. */
4681 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4682 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4683
4684 /* Do a dummy read to force the chip to complete all current transaction
4685 * before we issue a reset. */
4686 val = REG_RD(bp, BNX2_MISC_ID);
4687
4688 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4689 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4690 REG_RD(bp, BNX2_MISC_COMMAND);
4691 udelay(5);
4692
4693 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4694 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4695
4696 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4697
4698 } else {
4699 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4700 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4701 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4702
4703 /* Chip reset. */
4704 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4705
4706 /* Reading back any register after chip reset will hang the
4707 * bus on 5706 A0 and A1. The msleep below provides plenty
4708 * of margin for write posting.
4709 */
4710 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4711 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4712 msleep(20);
4713
4714 /* Reset takes approximate 30 usec */
4715 for (i = 0; i < 10; i++) {
4716 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4717 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4718 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4719 break;
4720 udelay(10);
4721 }
4722
4723 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4724 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4725 printk(KERN_ERR PFX "Chip reset did not complete\n");
4726 return -EBUSY;
4727 }
4728 }
4729
4730 /* Make sure byte swapping is properly configured. */
4731 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4732 if (val != 0x01020304) {
4733 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4734 return -ENODEV;
4735 }
4736
4737 /* Wait for the firmware to finish its initialization. */
4738 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4739 if (rc)
4740 return rc;
4741
4742 spin_lock_bh(&bp->phy_lock);
4743 old_port = bp->phy_port;
4744 bnx2_init_fw_cap(bp);
4745 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4746 old_port != bp->phy_port)
4747 bnx2_set_default_remote_link(bp);
4748 spin_unlock_bh(&bp->phy_lock);
4749
4750 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4751 /* Adjust the voltage regular to two steps lower. The default
4752 * of this register is 0x0000000e. */
4753 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4754
4755 /* Remove bad rbuf memory from the free pool. */
4756 rc = bnx2_alloc_bad_rbuf(bp);
4757 }
4758
4759 if (bp->flags & BNX2_FLAG_USING_MSIX)
4760 bnx2_setup_msix_tbl(bp);
4761
4762 return rc;
4763 }
4764
4765 static int
4766 bnx2_init_chip(struct bnx2 *bp)
4767 {
4768 u32 val, mtu;
4769 int rc, i;
4770
4771 /* Make sure the interrupt is not active. */
4772 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4773
4774 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4775 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4776 #ifdef __BIG_ENDIAN
4777 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4778 #endif
4779 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4780 DMA_READ_CHANS << 12 |
4781 DMA_WRITE_CHANS << 16;
4782
4783 val |= (0x2 << 20) | (1 << 11);
4784
4785 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4786 val |= (1 << 23);
4787
4788 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4789 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4790 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4791
4792 REG_WR(bp, BNX2_DMA_CONFIG, val);
4793
4794 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4795 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4796 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4797 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4798 }
4799
4800 if (bp->flags & BNX2_FLAG_PCIX) {
4801 u16 val16;
4802
4803 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4804 &val16);
4805 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4806 val16 & ~PCI_X_CMD_ERO);
4807 }
4808
4809 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4810 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4811 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4812 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4813
4814 /* Initialize context mapping and zero out the quick contexts. The
4815 * context block must have already been enabled. */
4816 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4817 rc = bnx2_init_5709_context(bp);
4818 if (rc)
4819 return rc;
4820 } else
4821 bnx2_init_context(bp);
4822
4823 if ((rc = bnx2_init_cpus(bp)) != 0)
4824 return rc;
4825
4826 bnx2_init_nvram(bp);
4827
4828 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4829
4830 val = REG_RD(bp, BNX2_MQ_CONFIG);
4831 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4832 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4833 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4834 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4835 if (CHIP_REV(bp) == CHIP_REV_Ax)
4836 val |= BNX2_MQ_CONFIG_HALT_DIS;
4837 }
4838
4839 REG_WR(bp, BNX2_MQ_CONFIG, val);
4840
4841 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4842 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4843 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4844
4845 val = (BCM_PAGE_BITS - 8) << 24;
4846 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4847
4848 /* Configure page size. */
4849 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4850 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4851 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4852 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4853
4854 val = bp->mac_addr[0] +
4855 (bp->mac_addr[1] << 8) +
4856 (bp->mac_addr[2] << 16) +
4857 bp->mac_addr[3] +
4858 (bp->mac_addr[4] << 8) +
4859 (bp->mac_addr[5] << 16);
4860 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4861
4862 /* Program the MTU. Also include 4 bytes for CRC32. */
4863 mtu = bp->dev->mtu;
4864 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4865 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4866 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4867 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4868
4869 if (mtu < 1500)
4870 mtu = 1500;
4871
4872 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4873 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4874 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4875
4876 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4877 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4878 bp->bnx2_napi[i].last_status_idx = 0;
4879
4880 bp->idle_chk_status_idx = 0xffff;
4881
4882 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4883
4884 /* Set up how to generate a link change interrupt. */
4885 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4886
4887 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4888 (u64) bp->status_blk_mapping & 0xffffffff);
4889 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4890
4891 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4892 (u64) bp->stats_blk_mapping & 0xffffffff);
4893 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4894 (u64) bp->stats_blk_mapping >> 32);
4895
4896 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4897 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4898
4899 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4900 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4901
4902 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4903 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4904
4905 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4906
4907 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4908
4909 REG_WR(bp, BNX2_HC_COM_TICKS,
4910 (bp->com_ticks_int << 16) | bp->com_ticks);
4911
4912 REG_WR(bp, BNX2_HC_CMD_TICKS,
4913 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4914
4915 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4916 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4917 else
4918 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4919 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4920
4921 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4922 val = BNX2_HC_CONFIG_COLLECT_STATS;
4923 else {
4924 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4925 BNX2_HC_CONFIG_COLLECT_STATS;
4926 }
4927
4928 if (bp->irq_nvecs > 1) {
4929 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4930 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4931
4932 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4933 }
4934
4935 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4936 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4937
4938 REG_WR(bp, BNX2_HC_CONFIG, val);
4939
4940 for (i = 1; i < bp->irq_nvecs; i++) {
4941 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4942 BNX2_HC_SB_CONFIG_1;
4943
4944 REG_WR(bp, base,
4945 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4946 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4947 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4948
4949 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4950 (bp->tx_quick_cons_trip_int << 16) |
4951 bp->tx_quick_cons_trip);
4952
4953 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4954 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4955
4956 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4957 (bp->rx_quick_cons_trip_int << 16) |
4958 bp->rx_quick_cons_trip);
4959
4960 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4961 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4962 }
4963
4964 /* Clear internal stats counters. */
4965 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4966
4967 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4968
4969 /* Initialize the receive filter. */
4970 bnx2_set_rx_mode(bp->dev);
4971
4972 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4973 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4974 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4975 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4976 }
4977 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4978 1, 0);
4979
4980 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4981 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4982
4983 udelay(20);
4984
4985 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4986
4987 return rc;
4988 }
4989
4990 static void
4991 bnx2_clear_ring_states(struct bnx2 *bp)
4992 {
4993 struct bnx2_napi *bnapi;
4994 struct bnx2_tx_ring_info *txr;
4995 struct bnx2_rx_ring_info *rxr;
4996 int i;
4997
4998 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4999 bnapi = &bp->bnx2_napi[i];
5000 txr = &bnapi->tx_ring;
5001 rxr = &bnapi->rx_ring;
5002
5003 txr->tx_cons = 0;
5004 txr->hw_tx_cons = 0;
5005 rxr->rx_prod_bseq = 0;
5006 rxr->rx_prod = 0;
5007 rxr->rx_cons = 0;
5008 rxr->rx_pg_prod = 0;
5009 rxr->rx_pg_cons = 0;
5010 }
5011 }
5012
5013 static void
5014 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5015 {
5016 u32 val, offset0, offset1, offset2, offset3;
5017 u32 cid_addr = GET_CID_ADDR(cid);
5018
5019 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5020 offset0 = BNX2_L2CTX_TYPE_XI;
5021 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5022 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5023 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5024 } else {
5025 offset0 = BNX2_L2CTX_TYPE;
5026 offset1 = BNX2_L2CTX_CMD_TYPE;
5027 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5028 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5029 }
5030 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5031 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5032
5033 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5034 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5035
5036 val = (u64) txr->tx_desc_mapping >> 32;
5037 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5038
5039 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5040 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5041 }
5042
5043 static void
5044 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5045 {
5046 struct tx_bd *txbd;
5047 u32 cid = TX_CID;
5048 struct bnx2_napi *bnapi;
5049 struct bnx2_tx_ring_info *txr;
5050
5051 bnapi = &bp->bnx2_napi[ring_num];
5052 txr = &bnapi->tx_ring;
5053
5054 if (ring_num == 0)
5055 cid = TX_CID;
5056 else
5057 cid = TX_TSS_CID + ring_num - 1;
5058
5059 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5060
5061 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5062
5063 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5064 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5065
5066 txr->tx_prod = 0;
5067 txr->tx_prod_bseq = 0;
5068
5069 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5070 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5071
5072 bnx2_init_tx_context(bp, cid, txr);
5073 }
5074
5075 static void
5076 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5077 int num_rings)
5078 {
5079 int i;
5080 struct rx_bd *rxbd;
5081
5082 for (i = 0; i < num_rings; i++) {
5083 int j;
5084
5085 rxbd = &rx_ring[i][0];
5086 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5087 rxbd->rx_bd_len = buf_size;
5088 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5089 }
5090 if (i == (num_rings - 1))
5091 j = 0;
5092 else
5093 j = i + 1;
5094 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5095 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5096 }
5097 }
5098
5099 static void
5100 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5101 {
5102 int i;
5103 u16 prod, ring_prod;
5104 u32 cid, rx_cid_addr, val;
5105 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5106 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5107
5108 if (ring_num == 0)
5109 cid = RX_CID;
5110 else
5111 cid = RX_RSS_CID + ring_num - 1;
5112
5113 rx_cid_addr = GET_CID_ADDR(cid);
5114
5115 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5116 bp->rx_buf_use_size, bp->rx_max_ring);
5117
5118 bnx2_init_rx_context(bp, cid);
5119
5120 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5121 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5122 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5123 }
5124
5125 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5126 if (bp->rx_pg_ring_size) {
5127 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5128 rxr->rx_pg_desc_mapping,
5129 PAGE_SIZE, bp->rx_max_pg_ring);
5130 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5131 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5132 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5133 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5134
5135 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5136 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5137
5138 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5139 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5140
5141 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5142 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5143 }
5144
5145 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5146 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5147
5148 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5149 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5150
5151 ring_prod = prod = rxr->rx_pg_prod;
5152 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5153 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5154 break;
5155 prod = NEXT_RX_BD(prod);
5156 ring_prod = RX_PG_RING_IDX(prod);
5157 }
5158 rxr->rx_pg_prod = prod;
5159
5160 ring_prod = prod = rxr->rx_prod;
5161 for (i = 0; i < bp->rx_ring_size; i++) {
5162 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5163 break;
5164 prod = NEXT_RX_BD(prod);
5165 ring_prod = RX_RING_IDX(prod);
5166 }
5167 rxr->rx_prod = prod;
5168
5169 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5170 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5171 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5172
5173 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5174 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5175
5176 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5177 }
5178
5179 static void
5180 bnx2_init_all_rings(struct bnx2 *bp)
5181 {
5182 int i;
5183 u32 val;
5184
5185 bnx2_clear_ring_states(bp);
5186
5187 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5188 for (i = 0; i < bp->num_tx_rings; i++)
5189 bnx2_init_tx_ring(bp, i);
5190
5191 if (bp->num_tx_rings > 1)
5192 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5193 (TX_TSS_CID << 7));
5194
5195 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5196 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5197
5198 for (i = 0; i < bp->num_rx_rings; i++)
5199 bnx2_init_rx_ring(bp, i);
5200
5201 if (bp->num_rx_rings > 1) {
5202 u32 tbl_32;
5203 u8 *tbl = (u8 *) &tbl_32;
5204
5205 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5206 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5207
5208 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5209 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5210 if ((i % 4) == 3)
5211 bnx2_reg_wr_ind(bp,
5212 BNX2_RXP_SCRATCH_RSS_TBL + i,
5213 cpu_to_be32(tbl_32));
5214 }
5215
5216 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5217 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5218
5219 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5220
5221 }
5222 }
5223
5224 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5225 {
5226 u32 max, num_rings = 1;
5227
5228 while (ring_size > MAX_RX_DESC_CNT) {
5229 ring_size -= MAX_RX_DESC_CNT;
5230 num_rings++;
5231 }
5232 /* round to next power of 2 */
5233 max = max_size;
5234 while ((max & num_rings) == 0)
5235 max >>= 1;
5236
5237 if (num_rings != max)
5238 max <<= 1;
5239
5240 return max;
5241 }
5242
5243 static void
5244 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5245 {
5246 u32 rx_size, rx_space, jumbo_size;
5247
5248 /* 8 for CRC and VLAN */
5249 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5250
5251 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5252 sizeof(struct skb_shared_info);
5253
5254 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5255 bp->rx_pg_ring_size = 0;
5256 bp->rx_max_pg_ring = 0;
5257 bp->rx_max_pg_ring_idx = 0;
5258 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5259 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5260
5261 jumbo_size = size * pages;
5262 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5263 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5264
5265 bp->rx_pg_ring_size = jumbo_size;
5266 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5267 MAX_RX_PG_RINGS);
5268 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5269 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5270 bp->rx_copy_thresh = 0;
5271 }
5272
5273 bp->rx_buf_use_size = rx_size;
5274 /* hw alignment */
5275 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5276 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5277 bp->rx_ring_size = size;
5278 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5279 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5280 }
5281
5282 static void
5283 bnx2_free_tx_skbs(struct bnx2 *bp)
5284 {
5285 int i;
5286
5287 for (i = 0; i < bp->num_tx_rings; i++) {
5288 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5289 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5290 int j;
5291
5292 if (txr->tx_buf_ring == NULL)
5293 continue;
5294
5295 for (j = 0; j < TX_DESC_CNT; ) {
5296 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5297 struct sk_buff *skb = tx_buf->skb;
5298
5299 if (skb == NULL) {
5300 j++;
5301 continue;
5302 }
5303
5304 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5305
5306 tx_buf->skb = NULL;
5307
5308 j += skb_shinfo(skb)->nr_frags + 1;
5309 dev_kfree_skb(skb);
5310 }
5311 }
5312 }
5313
5314 static void
5315 bnx2_free_rx_skbs(struct bnx2 *bp)
5316 {
5317 int i;
5318
5319 for (i = 0; i < bp->num_rx_rings; i++) {
5320 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5321 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5322 int j;
5323
5324 if (rxr->rx_buf_ring == NULL)
5325 return;
5326
5327 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5328 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5329 struct sk_buff *skb = rx_buf->skb;
5330
5331 if (skb == NULL)
5332 continue;
5333
5334 pci_unmap_single(bp->pdev,
5335 pci_unmap_addr(rx_buf, mapping),
5336 bp->rx_buf_use_size,
5337 PCI_DMA_FROMDEVICE);
5338
5339 rx_buf->skb = NULL;
5340
5341 dev_kfree_skb(skb);
5342 }
5343 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5344 bnx2_free_rx_page(bp, rxr, j);
5345 }
5346 }
5347
5348 static void
5349 bnx2_free_skbs(struct bnx2 *bp)
5350 {
5351 bnx2_free_tx_skbs(bp);
5352 bnx2_free_rx_skbs(bp);
5353 }
5354
5355 static int
5356 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5357 {
5358 int rc;
5359
5360 rc = bnx2_reset_chip(bp, reset_code);
5361 bnx2_free_skbs(bp);
5362 if (rc)
5363 return rc;
5364
5365 if ((rc = bnx2_init_chip(bp)) != 0)
5366 return rc;
5367
5368 bnx2_init_all_rings(bp);
5369 return 0;
5370 }
5371
5372 static int
5373 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5374 {
5375 int rc;
5376
5377 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5378 return rc;
5379
5380 spin_lock_bh(&bp->phy_lock);
5381 bnx2_init_phy(bp, reset_phy);
5382 bnx2_set_link(bp);
5383 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5384 bnx2_remote_phy_event(bp);
5385 spin_unlock_bh(&bp->phy_lock);
5386 return 0;
5387 }
5388
5389 static int
5390 bnx2_shutdown_chip(struct bnx2 *bp)
5391 {
5392 u32 reset_code;
5393
5394 if (bp->flags & BNX2_FLAG_NO_WOL)
5395 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5396 else if (bp->wol)
5397 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5398 else
5399 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5400
5401 return bnx2_reset_chip(bp, reset_code);
5402 }
5403
5404 static int
5405 bnx2_test_registers(struct bnx2 *bp)
5406 {
5407 int ret;
5408 int i, is_5709;
5409 static const struct {
5410 u16 offset;
5411 u16 flags;
5412 #define BNX2_FL_NOT_5709 1
5413 u32 rw_mask;
5414 u32 ro_mask;
5415 } reg_tbl[] = {
5416 { 0x006c, 0, 0x00000000, 0x0000003f },
5417 { 0x0090, 0, 0xffffffff, 0x00000000 },
5418 { 0x0094, 0, 0x00000000, 0x00000000 },
5419
5420 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5421 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5422 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5423 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5424 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5425 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5426 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5427 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5428 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5429
5430 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5431 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5432 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5433 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5434 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5435 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5436
5437 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5438 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5439 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5440
5441 { 0x1000, 0, 0x00000000, 0x00000001 },
5442 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5443
5444 { 0x1408, 0, 0x01c00800, 0x00000000 },
5445 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5446 { 0x14a8, 0, 0x00000000, 0x000001ff },
5447 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5448 { 0x14b0, 0, 0x00000002, 0x00000001 },
5449 { 0x14b8, 0, 0x00000000, 0x00000000 },
5450 { 0x14c0, 0, 0x00000000, 0x00000009 },
5451 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5452 { 0x14cc, 0, 0x00000000, 0x00000001 },
5453 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5454
5455 { 0x1800, 0, 0x00000000, 0x00000001 },
5456 { 0x1804, 0, 0x00000000, 0x00000003 },
5457
5458 { 0x2800, 0, 0x00000000, 0x00000001 },
5459 { 0x2804, 0, 0x00000000, 0x00003f01 },
5460 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5461 { 0x2810, 0, 0xffff0000, 0x00000000 },
5462 { 0x2814, 0, 0xffff0000, 0x00000000 },
5463 { 0x2818, 0, 0xffff0000, 0x00000000 },
5464 { 0x281c, 0, 0xffff0000, 0x00000000 },
5465 { 0x2834, 0, 0xffffffff, 0x00000000 },
5466 { 0x2840, 0, 0x00000000, 0xffffffff },
5467 { 0x2844, 0, 0x00000000, 0xffffffff },
5468 { 0x2848, 0, 0xffffffff, 0x00000000 },
5469 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5470
5471 { 0x2c00, 0, 0x00000000, 0x00000011 },
5472 { 0x2c04, 0, 0x00000000, 0x00030007 },
5473
5474 { 0x3c00, 0, 0x00000000, 0x00000001 },
5475 { 0x3c04, 0, 0x00000000, 0x00070000 },
5476 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5477 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5478 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5479 { 0x3c14, 0, 0x00000000, 0xffffffff },
5480 { 0x3c18, 0, 0x00000000, 0xffffffff },
5481 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5482 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5483
5484 { 0x5004, 0, 0x00000000, 0x0000007f },
5485 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5486
5487 { 0x5c00, 0, 0x00000000, 0x00000001 },
5488 { 0x5c04, 0, 0x00000000, 0x0003000f },
5489 { 0x5c08, 0, 0x00000003, 0x00000000 },
5490 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5491 { 0x5c10, 0, 0x00000000, 0xffffffff },
5492 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5493 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5494 { 0x5c88, 0, 0x00000000, 0x00077373 },
5495 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5496
5497 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5498 { 0x680c, 0, 0xffffffff, 0x00000000 },
5499 { 0x6810, 0, 0xffffffff, 0x00000000 },
5500 { 0x6814, 0, 0xffffffff, 0x00000000 },
5501 { 0x6818, 0, 0xffffffff, 0x00000000 },
5502 { 0x681c, 0, 0xffffffff, 0x00000000 },
5503 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5504 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5505 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5506 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5507 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5508 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5509 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5510 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5511 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5512 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5513 { 0x684c, 0, 0xffffffff, 0x00000000 },
5514 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5515 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5516 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5517 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5518 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5519 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5520
5521 { 0xffff, 0, 0x00000000, 0x00000000 },
5522 };
5523
5524 ret = 0;
5525 is_5709 = 0;
5526 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5527 is_5709 = 1;
5528
5529 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5530 u32 offset, rw_mask, ro_mask, save_val, val;
5531 u16 flags = reg_tbl[i].flags;
5532
5533 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5534 continue;
5535
5536 offset = (u32) reg_tbl[i].offset;
5537 rw_mask = reg_tbl[i].rw_mask;
5538 ro_mask = reg_tbl[i].ro_mask;
5539
5540 save_val = readl(bp->regview + offset);
5541
5542 writel(0, bp->regview + offset);
5543
5544 val = readl(bp->regview + offset);
5545 if ((val & rw_mask) != 0) {
5546 goto reg_test_err;
5547 }
5548
5549 if ((val & ro_mask) != (save_val & ro_mask)) {
5550 goto reg_test_err;
5551 }
5552
5553 writel(0xffffffff, bp->regview + offset);
5554
5555 val = readl(bp->regview + offset);
5556 if ((val & rw_mask) != rw_mask) {
5557 goto reg_test_err;
5558 }
5559
5560 if ((val & ro_mask) != (save_val & ro_mask)) {
5561 goto reg_test_err;
5562 }
5563
5564 writel(save_val, bp->regview + offset);
5565 continue;
5566
5567 reg_test_err:
5568 writel(save_val, bp->regview + offset);
5569 ret = -ENODEV;
5570 break;
5571 }
5572 return ret;
5573 }
5574
5575 static int
5576 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5577 {
5578 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5579 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5580 int i;
5581
5582 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5583 u32 offset;
5584
5585 for (offset = 0; offset < size; offset += 4) {
5586
5587 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5588
5589 if (bnx2_reg_rd_ind(bp, start + offset) !=
5590 test_pattern[i]) {
5591 return -ENODEV;
5592 }
5593 }
5594 }
5595 return 0;
5596 }
5597
5598 static int
5599 bnx2_test_memory(struct bnx2 *bp)
5600 {
5601 int ret = 0;
5602 int i;
5603 static struct mem_entry {
5604 u32 offset;
5605 u32 len;
5606 } mem_tbl_5706[] = {
5607 { 0x60000, 0x4000 },
5608 { 0xa0000, 0x3000 },
5609 { 0xe0000, 0x4000 },
5610 { 0x120000, 0x4000 },
5611 { 0x1a0000, 0x4000 },
5612 { 0x160000, 0x4000 },
5613 { 0xffffffff, 0 },
5614 },
5615 mem_tbl_5709[] = {
5616 { 0x60000, 0x4000 },
5617 { 0xa0000, 0x3000 },
5618 { 0xe0000, 0x4000 },
5619 { 0x120000, 0x4000 },
5620 { 0x1a0000, 0x4000 },
5621 { 0xffffffff, 0 },
5622 };
5623 struct mem_entry *mem_tbl;
5624
5625 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5626 mem_tbl = mem_tbl_5709;
5627 else
5628 mem_tbl = mem_tbl_5706;
5629
5630 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5631 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5632 mem_tbl[i].len)) != 0) {
5633 return ret;
5634 }
5635 }
5636
5637 return ret;
5638 }
5639
5640 #define BNX2_MAC_LOOPBACK 0
5641 #define BNX2_PHY_LOOPBACK 1
5642
5643 static int
5644 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5645 {
5646 unsigned int pkt_size, num_pkts, i;
5647 struct sk_buff *skb, *rx_skb;
5648 unsigned char *packet;
5649 u16 rx_start_idx, rx_idx;
5650 dma_addr_t map;
5651 struct tx_bd *txbd;
5652 struct sw_bd *rx_buf;
5653 struct l2_fhdr *rx_hdr;
5654 int ret = -ENODEV;
5655 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5656 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5657 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5658
5659 tx_napi = bnapi;
5660
5661 txr = &tx_napi->tx_ring;
5662 rxr = &bnapi->rx_ring;
5663 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5664 bp->loopback = MAC_LOOPBACK;
5665 bnx2_set_mac_loopback(bp);
5666 }
5667 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5668 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5669 return 0;
5670
5671 bp->loopback = PHY_LOOPBACK;
5672 bnx2_set_phy_loopback(bp);
5673 }
5674 else
5675 return -EINVAL;
5676
5677 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5678 skb = netdev_alloc_skb(bp->dev, pkt_size);
5679 if (!skb)
5680 return -ENOMEM;
5681 packet = skb_put(skb, pkt_size);
5682 memcpy(packet, bp->dev->dev_addr, 6);
5683 memset(packet + 6, 0x0, 8);
5684 for (i = 14; i < pkt_size; i++)
5685 packet[i] = (unsigned char) (i & 0xff);
5686
5687 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5688 dev_kfree_skb(skb);
5689 return -EIO;
5690 }
5691 map = skb_shinfo(skb)->dma_head;
5692
5693 REG_WR(bp, BNX2_HC_COMMAND,
5694 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5695
5696 REG_RD(bp, BNX2_HC_COMMAND);
5697
5698 udelay(5);
5699 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5700
5701 num_pkts = 0;
5702
5703 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5704
5705 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5706 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5707 txbd->tx_bd_mss_nbytes = pkt_size;
5708 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5709
5710 num_pkts++;
5711 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5712 txr->tx_prod_bseq += pkt_size;
5713
5714 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5715 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5716
5717 udelay(100);
5718
5719 REG_WR(bp, BNX2_HC_COMMAND,
5720 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5721
5722 REG_RD(bp, BNX2_HC_COMMAND);
5723
5724 udelay(5);
5725
5726 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5727 dev_kfree_skb(skb);
5728
5729 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5730 goto loopback_test_done;
5731
5732 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5733 if (rx_idx != rx_start_idx + num_pkts) {
5734 goto loopback_test_done;
5735 }
5736
5737 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5738 rx_skb = rx_buf->skb;
5739
5740 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5741 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5742
5743 pci_dma_sync_single_for_cpu(bp->pdev,
5744 pci_unmap_addr(rx_buf, mapping),
5745 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5746
5747 if (rx_hdr->l2_fhdr_status &
5748 (L2_FHDR_ERRORS_BAD_CRC |
5749 L2_FHDR_ERRORS_PHY_DECODE |
5750 L2_FHDR_ERRORS_ALIGNMENT |
5751 L2_FHDR_ERRORS_TOO_SHORT |
5752 L2_FHDR_ERRORS_GIANT_FRAME)) {
5753
5754 goto loopback_test_done;
5755 }
5756
5757 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5758 goto loopback_test_done;
5759 }
5760
5761 for (i = 14; i < pkt_size; i++) {
5762 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5763 goto loopback_test_done;
5764 }
5765 }
5766
5767 ret = 0;
5768
5769 loopback_test_done:
5770 bp->loopback = 0;
5771 return ret;
5772 }
5773
5774 #define BNX2_MAC_LOOPBACK_FAILED 1
5775 #define BNX2_PHY_LOOPBACK_FAILED 2
5776 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5777 BNX2_PHY_LOOPBACK_FAILED)
5778
5779 static int
5780 bnx2_test_loopback(struct bnx2 *bp)
5781 {
5782 int rc = 0;
5783
5784 if (!netif_running(bp->dev))
5785 return BNX2_LOOPBACK_FAILED;
5786
5787 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5788 spin_lock_bh(&bp->phy_lock);
5789 bnx2_init_phy(bp, 1);
5790 spin_unlock_bh(&bp->phy_lock);
5791 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5792 rc |= BNX2_MAC_LOOPBACK_FAILED;
5793 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5794 rc |= BNX2_PHY_LOOPBACK_FAILED;
5795 return rc;
5796 }
5797
5798 #define NVRAM_SIZE 0x200
5799 #define CRC32_RESIDUAL 0xdebb20e3
5800
5801 static int
5802 bnx2_test_nvram(struct bnx2 *bp)
5803 {
5804 __be32 buf[NVRAM_SIZE / 4];
5805 u8 *data = (u8 *) buf;
5806 int rc = 0;
5807 u32 magic, csum;
5808
5809 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5810 goto test_nvram_done;
5811
5812 magic = be32_to_cpu(buf[0]);
5813 if (magic != 0x669955aa) {
5814 rc = -ENODEV;
5815 goto test_nvram_done;
5816 }
5817
5818 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5819 goto test_nvram_done;
5820
5821 csum = ether_crc_le(0x100, data);
5822 if (csum != CRC32_RESIDUAL) {
5823 rc = -ENODEV;
5824 goto test_nvram_done;
5825 }
5826
5827 csum = ether_crc_le(0x100, data + 0x100);
5828 if (csum != CRC32_RESIDUAL) {
5829 rc = -ENODEV;
5830 }
5831
5832 test_nvram_done:
5833 return rc;
5834 }
5835
5836 static int
5837 bnx2_test_link(struct bnx2 *bp)
5838 {
5839 u32 bmsr;
5840
5841 if (!netif_running(bp->dev))
5842 return -ENODEV;
5843
5844 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5845 if (bp->link_up)
5846 return 0;
5847 return -ENODEV;
5848 }
5849 spin_lock_bh(&bp->phy_lock);
5850 bnx2_enable_bmsr1(bp);
5851 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5852 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5853 bnx2_disable_bmsr1(bp);
5854 spin_unlock_bh(&bp->phy_lock);
5855
5856 if (bmsr & BMSR_LSTATUS) {
5857 return 0;
5858 }
5859 return -ENODEV;
5860 }
5861
5862 static int
5863 bnx2_test_intr(struct bnx2 *bp)
5864 {
5865 int i;
5866 u16 status_idx;
5867
5868 if (!netif_running(bp->dev))
5869 return -ENODEV;
5870
5871 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5872
5873 /* This register is not touched during run-time. */
5874 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5875 REG_RD(bp, BNX2_HC_COMMAND);
5876
5877 for (i = 0; i < 10; i++) {
5878 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5879 status_idx) {
5880
5881 break;
5882 }
5883
5884 msleep_interruptible(10);
5885 }
5886 if (i < 10)
5887 return 0;
5888
5889 return -ENODEV;
5890 }
5891
5892 /* Determining link for parallel detection. */
5893 static int
5894 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5895 {
5896 u32 mode_ctl, an_dbg, exp;
5897
5898 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5899 return 0;
5900
5901 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5902 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5903
5904 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5905 return 0;
5906
5907 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5908 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5909 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5910
5911 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5912 return 0;
5913
5914 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5915 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5916 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5917
5918 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5919 return 0;
5920
5921 return 1;
5922 }
5923
5924 static void
5925 bnx2_5706_serdes_timer(struct bnx2 *bp)
5926 {
5927 int check_link = 1;
5928
5929 spin_lock(&bp->phy_lock);
5930 if (bp->serdes_an_pending) {
5931 bp->serdes_an_pending--;
5932 check_link = 0;
5933 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5934 u32 bmcr;
5935
5936 bp->current_interval = BNX2_TIMER_INTERVAL;
5937
5938 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5939
5940 if (bmcr & BMCR_ANENABLE) {
5941 if (bnx2_5706_serdes_has_link(bp)) {
5942 bmcr &= ~BMCR_ANENABLE;
5943 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5944 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5945 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5946 }
5947 }
5948 }
5949 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5950 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5951 u32 phy2;
5952
5953 bnx2_write_phy(bp, 0x17, 0x0f01);
5954 bnx2_read_phy(bp, 0x15, &phy2);
5955 if (phy2 & 0x20) {
5956 u32 bmcr;
5957
5958 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5959 bmcr |= BMCR_ANENABLE;
5960 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5961
5962 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5963 }
5964 } else
5965 bp->current_interval = BNX2_TIMER_INTERVAL;
5966
5967 if (check_link) {
5968 u32 val;
5969
5970 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5971 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5972 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5973
5974 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5975 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5976 bnx2_5706s_force_link_dn(bp, 1);
5977 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5978 } else
5979 bnx2_set_link(bp);
5980 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5981 bnx2_set_link(bp);
5982 }
5983 spin_unlock(&bp->phy_lock);
5984 }
5985
5986 static void
5987 bnx2_5708_serdes_timer(struct bnx2 *bp)
5988 {
5989 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5990 return;
5991
5992 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5993 bp->serdes_an_pending = 0;
5994 return;
5995 }
5996
5997 spin_lock(&bp->phy_lock);
5998 if (bp->serdes_an_pending)
5999 bp->serdes_an_pending--;
6000 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6001 u32 bmcr;
6002
6003 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6004 if (bmcr & BMCR_ANENABLE) {
6005 bnx2_enable_forced_2g5(bp);
6006 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6007 } else {
6008 bnx2_disable_forced_2g5(bp);
6009 bp->serdes_an_pending = 2;
6010 bp->current_interval = BNX2_TIMER_INTERVAL;
6011 }
6012
6013 } else
6014 bp->current_interval = BNX2_TIMER_INTERVAL;
6015
6016 spin_unlock(&bp->phy_lock);
6017 }
6018
6019 static void
6020 bnx2_timer(unsigned long data)
6021 {
6022 struct bnx2 *bp = (struct bnx2 *) data;
6023
6024 if (!netif_running(bp->dev))
6025 return;
6026
6027 if (atomic_read(&bp->intr_sem) != 0)
6028 goto bnx2_restart_timer;
6029
6030 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6031 BNX2_FLAG_USING_MSI)
6032 bnx2_chk_missed_msi(bp);
6033
6034 bnx2_send_heart_beat(bp);
6035
6036 bp->stats_blk->stat_FwRxDrop =
6037 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6038
6039 /* workaround occasional corrupted counters */
6040 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6041 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6042 BNX2_HC_COMMAND_STATS_NOW);
6043
6044 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6045 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6046 bnx2_5706_serdes_timer(bp);
6047 else
6048 bnx2_5708_serdes_timer(bp);
6049 }
6050
6051 bnx2_restart_timer:
6052 mod_timer(&bp->timer, jiffies + bp->current_interval);
6053 }
6054
6055 static int
6056 bnx2_request_irq(struct bnx2 *bp)
6057 {
6058 unsigned long flags;
6059 struct bnx2_irq *irq;
6060 int rc = 0, i;
6061
6062 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6063 flags = 0;
6064 else
6065 flags = IRQF_SHARED;
6066
6067 for (i = 0; i < bp->irq_nvecs; i++) {
6068 irq = &bp->irq_tbl[i];
6069 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6070 &bp->bnx2_napi[i]);
6071 if (rc)
6072 break;
6073 irq->requested = 1;
6074 }
6075 return rc;
6076 }
6077
6078 static void
6079 bnx2_free_irq(struct bnx2 *bp)
6080 {
6081 struct bnx2_irq *irq;
6082 int i;
6083
6084 for (i = 0; i < bp->irq_nvecs; i++) {
6085 irq = &bp->irq_tbl[i];
6086 if (irq->requested)
6087 free_irq(irq->vector, &bp->bnx2_napi[i]);
6088 irq->requested = 0;
6089 }
6090 if (bp->flags & BNX2_FLAG_USING_MSI)
6091 pci_disable_msi(bp->pdev);
6092 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6093 pci_disable_msix(bp->pdev);
6094
6095 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6096 }
6097
6098 static void
6099 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6100 {
6101 int i, rc;
6102 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6103 struct net_device *dev = bp->dev;
6104 const int len = sizeof(bp->irq_tbl[0].name);
6105
6106 bnx2_setup_msix_tbl(bp);
6107 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6108 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6109 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6110
6111 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6112 msix_ent[i].entry = i;
6113 msix_ent[i].vector = 0;
6114 }
6115
6116 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6117 if (rc != 0)
6118 return;
6119
6120 bp->irq_nvecs = msix_vecs;
6121 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6122 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6123 bp->irq_tbl[i].vector = msix_ent[i].vector;
6124 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6125 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6126 }
6127 }
6128
6129 static void
6130 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6131 {
6132 int cpus = num_online_cpus();
6133 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6134
6135 bp->irq_tbl[0].handler = bnx2_interrupt;
6136 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6137 bp->irq_nvecs = 1;
6138 bp->irq_tbl[0].vector = bp->pdev->irq;
6139
6140 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6141 bnx2_enable_msix(bp, msix_vecs);
6142
6143 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6144 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6145 if (pci_enable_msi(bp->pdev) == 0) {
6146 bp->flags |= BNX2_FLAG_USING_MSI;
6147 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6148 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6149 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6150 } else
6151 bp->irq_tbl[0].handler = bnx2_msi;
6152
6153 bp->irq_tbl[0].vector = bp->pdev->irq;
6154 }
6155 }
6156
6157 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6158 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6159
6160 bp->num_rx_rings = bp->irq_nvecs;
6161 }
6162
6163 /* Called with rtnl_lock */
6164 static int
6165 bnx2_open(struct net_device *dev)
6166 {
6167 struct bnx2 *bp = netdev_priv(dev);
6168 int rc;
6169
6170 netif_carrier_off(dev);
6171
6172 bnx2_set_power_state(bp, PCI_D0);
6173 bnx2_disable_int(bp);
6174
6175 bnx2_setup_int_mode(bp, disable_msi);
6176 bnx2_napi_enable(bp);
6177 rc = bnx2_alloc_mem(bp);
6178 if (rc)
6179 goto open_err;
6180
6181 rc = bnx2_request_irq(bp);
6182 if (rc)
6183 goto open_err;
6184
6185 rc = bnx2_init_nic(bp, 1);
6186 if (rc)
6187 goto open_err;
6188
6189 mod_timer(&bp->timer, jiffies + bp->current_interval);
6190
6191 atomic_set(&bp->intr_sem, 0);
6192
6193 bnx2_enable_int(bp);
6194
6195 if (bp->flags & BNX2_FLAG_USING_MSI) {
6196 /* Test MSI to make sure it is working
6197 * If MSI test fails, go back to INTx mode
6198 */
6199 if (bnx2_test_intr(bp) != 0) {
6200 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6201 " using MSI, switching to INTx mode. Please"
6202 " report this failure to the PCI maintainer"
6203 " and include system chipset information.\n",
6204 bp->dev->name);
6205
6206 bnx2_disable_int(bp);
6207 bnx2_free_irq(bp);
6208
6209 bnx2_setup_int_mode(bp, 1);
6210
6211 rc = bnx2_init_nic(bp, 0);
6212
6213 if (!rc)
6214 rc = bnx2_request_irq(bp);
6215
6216 if (rc) {
6217 del_timer_sync(&bp->timer);
6218 goto open_err;
6219 }
6220 bnx2_enable_int(bp);
6221 }
6222 }
6223 if (bp->flags & BNX2_FLAG_USING_MSI)
6224 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6225 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6226 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6227
6228 netif_tx_start_all_queues(dev);
6229
6230 return 0;
6231
6232 open_err:
6233 bnx2_napi_disable(bp);
6234 bnx2_free_skbs(bp);
6235 bnx2_free_irq(bp);
6236 bnx2_free_mem(bp);
6237 return rc;
6238 }
6239
6240 static void
6241 bnx2_reset_task(struct work_struct *work)
6242 {
6243 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6244
6245 if (!netif_running(bp->dev))
6246 return;
6247
6248 bnx2_netif_stop(bp);
6249
6250 bnx2_init_nic(bp, 1);
6251
6252 atomic_set(&bp->intr_sem, 1);
6253 bnx2_netif_start(bp);
6254 }
6255
6256 static void
6257 bnx2_tx_timeout(struct net_device *dev)
6258 {
6259 struct bnx2 *bp = netdev_priv(dev);
6260
6261 /* This allows the netif to be shutdown gracefully before resetting */
6262 schedule_work(&bp->reset_task);
6263 }
6264
6265 #ifdef BCM_VLAN
6266 /* Called with rtnl_lock */
6267 static void
6268 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6269 {
6270 struct bnx2 *bp = netdev_priv(dev);
6271
6272 if (netif_running(dev))
6273 bnx2_netif_stop(bp);
6274
6275 bp->vlgrp = vlgrp;
6276
6277 if (!netif_running(dev))
6278 return;
6279
6280 bnx2_set_rx_mode(dev);
6281 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6282 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6283
6284 bnx2_netif_start(bp);
6285 }
6286 #endif
6287
6288 /* Called with netif_tx_lock.
6289 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6290 * netif_wake_queue().
6291 */
6292 static netdev_tx_t
6293 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6294 {
6295 struct bnx2 *bp = netdev_priv(dev);
6296 dma_addr_t mapping;
6297 struct tx_bd *txbd;
6298 struct sw_tx_bd *tx_buf;
6299 u32 len, vlan_tag_flags, last_frag, mss;
6300 u16 prod, ring_prod;
6301 int i;
6302 struct bnx2_napi *bnapi;
6303 struct bnx2_tx_ring_info *txr;
6304 struct netdev_queue *txq;
6305 struct skb_shared_info *sp;
6306
6307 /* Determine which tx ring we will be placed on */
6308 i = skb_get_queue_mapping(skb);
6309 bnapi = &bp->bnx2_napi[i];
6310 txr = &bnapi->tx_ring;
6311 txq = netdev_get_tx_queue(dev, i);
6312
6313 if (unlikely(bnx2_tx_avail(bp, txr) <
6314 (skb_shinfo(skb)->nr_frags + 1))) {
6315 netif_tx_stop_queue(txq);
6316 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6317 dev->name);
6318
6319 return NETDEV_TX_BUSY;
6320 }
6321 len = skb_headlen(skb);
6322 prod = txr->tx_prod;
6323 ring_prod = TX_RING_IDX(prod);
6324
6325 vlan_tag_flags = 0;
6326 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6327 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6328 }
6329
6330 #ifdef BCM_VLAN
6331 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6332 vlan_tag_flags |=
6333 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6334 }
6335 #endif
6336 if ((mss = skb_shinfo(skb)->gso_size)) {
6337 u32 tcp_opt_len;
6338 struct iphdr *iph;
6339
6340 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6341
6342 tcp_opt_len = tcp_optlen(skb);
6343
6344 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6345 u32 tcp_off = skb_transport_offset(skb) -
6346 sizeof(struct ipv6hdr) - ETH_HLEN;
6347
6348 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6349 TX_BD_FLAGS_SW_FLAGS;
6350 if (likely(tcp_off == 0))
6351 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6352 else {
6353 tcp_off >>= 3;
6354 vlan_tag_flags |= ((tcp_off & 0x3) <<
6355 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6356 ((tcp_off & 0x10) <<
6357 TX_BD_FLAGS_TCP6_OFF4_SHL);
6358 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6359 }
6360 } else {
6361 iph = ip_hdr(skb);
6362 if (tcp_opt_len || (iph->ihl > 5)) {
6363 vlan_tag_flags |= ((iph->ihl - 5) +
6364 (tcp_opt_len >> 2)) << 8;
6365 }
6366 }
6367 } else
6368 mss = 0;
6369
6370 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6371 dev_kfree_skb(skb);
6372 return NETDEV_TX_OK;
6373 }
6374
6375 sp = skb_shinfo(skb);
6376 mapping = sp->dma_head;
6377
6378 tx_buf = &txr->tx_buf_ring[ring_prod];
6379 tx_buf->skb = skb;
6380
6381 txbd = &txr->tx_desc_ring[ring_prod];
6382
6383 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6384 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6385 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6386 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6387
6388 last_frag = skb_shinfo(skb)->nr_frags;
6389 tx_buf->nr_frags = last_frag;
6390 tx_buf->is_gso = skb_is_gso(skb);
6391
6392 for (i = 0; i < last_frag; i++) {
6393 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6394
6395 prod = NEXT_TX_BD(prod);
6396 ring_prod = TX_RING_IDX(prod);
6397 txbd = &txr->tx_desc_ring[ring_prod];
6398
6399 len = frag->size;
6400 mapping = sp->dma_maps[i];
6401
6402 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6403 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6404 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6405 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6406
6407 }
6408 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6409
6410 prod = NEXT_TX_BD(prod);
6411 txr->tx_prod_bseq += skb->len;
6412
6413 REG_WR16(bp, txr->tx_bidx_addr, prod);
6414 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6415
6416 mmiowb();
6417
6418 txr->tx_prod = prod;
6419
6420 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6421 netif_tx_stop_queue(txq);
6422 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6423 netif_tx_wake_queue(txq);
6424 }
6425
6426 return NETDEV_TX_OK;
6427 }
6428
6429 /* Called with rtnl_lock */
6430 static int
6431 bnx2_close(struct net_device *dev)
6432 {
6433 struct bnx2 *bp = netdev_priv(dev);
6434
6435 cancel_work_sync(&bp->reset_task);
6436
6437 bnx2_disable_int_sync(bp);
6438 bnx2_napi_disable(bp);
6439 del_timer_sync(&bp->timer);
6440 bnx2_shutdown_chip(bp);
6441 bnx2_free_irq(bp);
6442 bnx2_free_skbs(bp);
6443 bnx2_free_mem(bp);
6444 bp->link_up = 0;
6445 netif_carrier_off(bp->dev);
6446 bnx2_set_power_state(bp, PCI_D3hot);
6447 return 0;
6448 }
6449
6450 #define GET_NET_STATS64(ctr) \
6451 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6452 (unsigned long) (ctr##_lo)
6453
6454 #define GET_NET_STATS32(ctr) \
6455 (ctr##_lo)
6456
6457 #if (BITS_PER_LONG == 64)
6458 #define GET_NET_STATS GET_NET_STATS64
6459 #else
6460 #define GET_NET_STATS GET_NET_STATS32
6461 #endif
6462
6463 static struct net_device_stats *
6464 bnx2_get_stats(struct net_device *dev)
6465 {
6466 struct bnx2 *bp = netdev_priv(dev);
6467 struct statistics_block *stats_blk = bp->stats_blk;
6468 struct net_device_stats *net_stats = &dev->stats;
6469
6470 if (bp->stats_blk == NULL) {
6471 return net_stats;
6472 }
6473 net_stats->rx_packets =
6474 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6475 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6476 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6477
6478 net_stats->tx_packets =
6479 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6480 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6481 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6482
6483 net_stats->rx_bytes =
6484 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6485
6486 net_stats->tx_bytes =
6487 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6488
6489 net_stats->multicast =
6490 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6491
6492 net_stats->collisions =
6493 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6494
6495 net_stats->rx_length_errors =
6496 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6497 stats_blk->stat_EtherStatsOverrsizePkts);
6498
6499 net_stats->rx_over_errors =
6500 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6501 stats_blk->stat_IfInMBUFDiscards);
6502
6503 net_stats->rx_frame_errors =
6504 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6505
6506 net_stats->rx_crc_errors =
6507 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6508
6509 net_stats->rx_errors = net_stats->rx_length_errors +
6510 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6511 net_stats->rx_crc_errors;
6512
6513 net_stats->tx_aborted_errors =
6514 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6515 stats_blk->stat_Dot3StatsLateCollisions);
6516
6517 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6518 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6519 net_stats->tx_carrier_errors = 0;
6520 else {
6521 net_stats->tx_carrier_errors =
6522 (unsigned long)
6523 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6524 }
6525
6526 net_stats->tx_errors =
6527 (unsigned long)
6528 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6529 +
6530 net_stats->tx_aborted_errors +
6531 net_stats->tx_carrier_errors;
6532
6533 net_stats->rx_missed_errors =
6534 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6535 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6536
6537 return net_stats;
6538 }
6539
6540 /* All ethtool functions called with rtnl_lock */
6541
6542 static int
6543 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6544 {
6545 struct bnx2 *bp = netdev_priv(dev);
6546 int support_serdes = 0, support_copper = 0;
6547
6548 cmd->supported = SUPPORTED_Autoneg;
6549 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6550 support_serdes = 1;
6551 support_copper = 1;
6552 } else if (bp->phy_port == PORT_FIBRE)
6553 support_serdes = 1;
6554 else
6555 support_copper = 1;
6556
6557 if (support_serdes) {
6558 cmd->supported |= SUPPORTED_1000baseT_Full |
6559 SUPPORTED_FIBRE;
6560 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6561 cmd->supported |= SUPPORTED_2500baseX_Full;
6562
6563 }
6564 if (support_copper) {
6565 cmd->supported |= SUPPORTED_10baseT_Half |
6566 SUPPORTED_10baseT_Full |
6567 SUPPORTED_100baseT_Half |
6568 SUPPORTED_100baseT_Full |
6569 SUPPORTED_1000baseT_Full |
6570 SUPPORTED_TP;
6571
6572 }
6573
6574 spin_lock_bh(&bp->phy_lock);
6575 cmd->port = bp->phy_port;
6576 cmd->advertising = bp->advertising;
6577
6578 if (bp->autoneg & AUTONEG_SPEED) {
6579 cmd->autoneg = AUTONEG_ENABLE;
6580 }
6581 else {
6582 cmd->autoneg = AUTONEG_DISABLE;
6583 }
6584
6585 if (netif_carrier_ok(dev)) {
6586 cmd->speed = bp->line_speed;
6587 cmd->duplex = bp->duplex;
6588 }
6589 else {
6590 cmd->speed = -1;
6591 cmd->duplex = -1;
6592 }
6593 spin_unlock_bh(&bp->phy_lock);
6594
6595 cmd->transceiver = XCVR_INTERNAL;
6596 cmd->phy_address = bp->phy_addr;
6597
6598 return 0;
6599 }
6600
6601 static int
6602 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6603 {
6604 struct bnx2 *bp = netdev_priv(dev);
6605 u8 autoneg = bp->autoneg;
6606 u8 req_duplex = bp->req_duplex;
6607 u16 req_line_speed = bp->req_line_speed;
6608 u32 advertising = bp->advertising;
6609 int err = -EINVAL;
6610
6611 spin_lock_bh(&bp->phy_lock);
6612
6613 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6614 goto err_out_unlock;
6615
6616 if (cmd->port != bp->phy_port &&
6617 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6618 goto err_out_unlock;
6619
6620 /* If device is down, we can store the settings only if the user
6621 * is setting the currently active port.
6622 */
6623 if (!netif_running(dev) && cmd->port != bp->phy_port)
6624 goto err_out_unlock;
6625
6626 if (cmd->autoneg == AUTONEG_ENABLE) {
6627 autoneg |= AUTONEG_SPEED;
6628
6629 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6630
6631 /* allow advertising 1 speed */
6632 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6633 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6634 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6635 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6636
6637 if (cmd->port == PORT_FIBRE)
6638 goto err_out_unlock;
6639
6640 advertising = cmd->advertising;
6641
6642 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6643 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6644 (cmd->port == PORT_TP))
6645 goto err_out_unlock;
6646 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6647 advertising = cmd->advertising;
6648 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6649 goto err_out_unlock;
6650 else {
6651 if (cmd->port == PORT_FIBRE)
6652 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6653 else
6654 advertising = ETHTOOL_ALL_COPPER_SPEED;
6655 }
6656 advertising |= ADVERTISED_Autoneg;
6657 }
6658 else {
6659 if (cmd->port == PORT_FIBRE) {
6660 if ((cmd->speed != SPEED_1000 &&
6661 cmd->speed != SPEED_2500) ||
6662 (cmd->duplex != DUPLEX_FULL))
6663 goto err_out_unlock;
6664
6665 if (cmd->speed == SPEED_2500 &&
6666 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6667 goto err_out_unlock;
6668 }
6669 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6670 goto err_out_unlock;
6671
6672 autoneg &= ~AUTONEG_SPEED;
6673 req_line_speed = cmd->speed;
6674 req_duplex = cmd->duplex;
6675 advertising = 0;
6676 }
6677
6678 bp->autoneg = autoneg;
6679 bp->advertising = advertising;
6680 bp->req_line_speed = req_line_speed;
6681 bp->req_duplex = req_duplex;
6682
6683 err = 0;
6684 /* If device is down, the new settings will be picked up when it is
6685 * brought up.
6686 */
6687 if (netif_running(dev))
6688 err = bnx2_setup_phy(bp, cmd->port);
6689
6690 err_out_unlock:
6691 spin_unlock_bh(&bp->phy_lock);
6692
6693 return err;
6694 }
6695
6696 static void
6697 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6698 {
6699 struct bnx2 *bp = netdev_priv(dev);
6700
6701 strcpy(info->driver, DRV_MODULE_NAME);
6702 strcpy(info->version, DRV_MODULE_VERSION);
6703 strcpy(info->bus_info, pci_name(bp->pdev));
6704 strcpy(info->fw_version, bp->fw_version);
6705 }
6706
6707 #define BNX2_REGDUMP_LEN (32 * 1024)
6708
6709 static int
6710 bnx2_get_regs_len(struct net_device *dev)
6711 {
6712 return BNX2_REGDUMP_LEN;
6713 }
6714
6715 static void
6716 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6717 {
6718 u32 *p = _p, i, offset;
6719 u8 *orig_p = _p;
6720 struct bnx2 *bp = netdev_priv(dev);
6721 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6722 0x0800, 0x0880, 0x0c00, 0x0c10,
6723 0x0c30, 0x0d08, 0x1000, 0x101c,
6724 0x1040, 0x1048, 0x1080, 0x10a4,
6725 0x1400, 0x1490, 0x1498, 0x14f0,
6726 0x1500, 0x155c, 0x1580, 0x15dc,
6727 0x1600, 0x1658, 0x1680, 0x16d8,
6728 0x1800, 0x1820, 0x1840, 0x1854,
6729 0x1880, 0x1894, 0x1900, 0x1984,
6730 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6731 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6732 0x2000, 0x2030, 0x23c0, 0x2400,
6733 0x2800, 0x2820, 0x2830, 0x2850,
6734 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6735 0x3c00, 0x3c94, 0x4000, 0x4010,
6736 0x4080, 0x4090, 0x43c0, 0x4458,
6737 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6738 0x4fc0, 0x5010, 0x53c0, 0x5444,
6739 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6740 0x5fc0, 0x6000, 0x6400, 0x6428,
6741 0x6800, 0x6848, 0x684c, 0x6860,
6742 0x6888, 0x6910, 0x8000 };
6743
6744 regs->version = 0;
6745
6746 memset(p, 0, BNX2_REGDUMP_LEN);
6747
6748 if (!netif_running(bp->dev))
6749 return;
6750
6751 i = 0;
6752 offset = reg_boundaries[0];
6753 p += offset;
6754 while (offset < BNX2_REGDUMP_LEN) {
6755 *p++ = REG_RD(bp, offset);
6756 offset += 4;
6757 if (offset == reg_boundaries[i + 1]) {
6758 offset = reg_boundaries[i + 2];
6759 p = (u32 *) (orig_p + offset);
6760 i += 2;
6761 }
6762 }
6763 }
6764
6765 static void
6766 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6767 {
6768 struct bnx2 *bp = netdev_priv(dev);
6769
6770 if (bp->flags & BNX2_FLAG_NO_WOL) {
6771 wol->supported = 0;
6772 wol->wolopts = 0;
6773 }
6774 else {
6775 wol->supported = WAKE_MAGIC;
6776 if (bp->wol)
6777 wol->wolopts = WAKE_MAGIC;
6778 else
6779 wol->wolopts = 0;
6780 }
6781 memset(&wol->sopass, 0, sizeof(wol->sopass));
6782 }
6783
6784 static int
6785 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6786 {
6787 struct bnx2 *bp = netdev_priv(dev);
6788
6789 if (wol->wolopts & ~WAKE_MAGIC)
6790 return -EINVAL;
6791
6792 if (wol->wolopts & WAKE_MAGIC) {
6793 if (bp->flags & BNX2_FLAG_NO_WOL)
6794 return -EINVAL;
6795
6796 bp->wol = 1;
6797 }
6798 else {
6799 bp->wol = 0;
6800 }
6801 return 0;
6802 }
6803
6804 static int
6805 bnx2_nway_reset(struct net_device *dev)
6806 {
6807 struct bnx2 *bp = netdev_priv(dev);
6808 u32 bmcr;
6809
6810 if (!netif_running(dev))
6811 return -EAGAIN;
6812
6813 if (!(bp->autoneg & AUTONEG_SPEED)) {
6814 return -EINVAL;
6815 }
6816
6817 spin_lock_bh(&bp->phy_lock);
6818
6819 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6820 int rc;
6821
6822 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6823 spin_unlock_bh(&bp->phy_lock);
6824 return rc;
6825 }
6826
6827 /* Force a link down visible on the other side */
6828 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6829 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6830 spin_unlock_bh(&bp->phy_lock);
6831
6832 msleep(20);
6833
6834 spin_lock_bh(&bp->phy_lock);
6835
6836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6837 bp->serdes_an_pending = 1;
6838 mod_timer(&bp->timer, jiffies + bp->current_interval);
6839 }
6840
6841 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6842 bmcr &= ~BMCR_LOOPBACK;
6843 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6844
6845 spin_unlock_bh(&bp->phy_lock);
6846
6847 return 0;
6848 }
6849
6850 static u32
6851 bnx2_get_link(struct net_device *dev)
6852 {
6853 struct bnx2 *bp = netdev_priv(dev);
6854
6855 return bp->link_up;
6856 }
6857
6858 static int
6859 bnx2_get_eeprom_len(struct net_device *dev)
6860 {
6861 struct bnx2 *bp = netdev_priv(dev);
6862
6863 if (bp->flash_info == NULL)
6864 return 0;
6865
6866 return (int) bp->flash_size;
6867 }
6868
6869 static int
6870 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6871 u8 *eebuf)
6872 {
6873 struct bnx2 *bp = netdev_priv(dev);
6874 int rc;
6875
6876 if (!netif_running(dev))
6877 return -EAGAIN;
6878
6879 /* parameters already validated in ethtool_get_eeprom */
6880
6881 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6882
6883 return rc;
6884 }
6885
6886 static int
6887 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6888 u8 *eebuf)
6889 {
6890 struct bnx2 *bp = netdev_priv(dev);
6891 int rc;
6892
6893 if (!netif_running(dev))
6894 return -EAGAIN;
6895
6896 /* parameters already validated in ethtool_set_eeprom */
6897
6898 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6899
6900 return rc;
6901 }
6902
6903 static int
6904 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6905 {
6906 struct bnx2 *bp = netdev_priv(dev);
6907
6908 memset(coal, 0, sizeof(struct ethtool_coalesce));
6909
6910 coal->rx_coalesce_usecs = bp->rx_ticks;
6911 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6912 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6913 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6914
6915 coal->tx_coalesce_usecs = bp->tx_ticks;
6916 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6917 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6918 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6919
6920 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6921
6922 return 0;
6923 }
6924
6925 static int
6926 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6927 {
6928 struct bnx2 *bp = netdev_priv(dev);
6929
6930 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6931 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6932
6933 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6934 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6935
6936 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6937 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6938
6939 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6940 if (bp->rx_quick_cons_trip_int > 0xff)
6941 bp->rx_quick_cons_trip_int = 0xff;
6942
6943 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6944 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6945
6946 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6947 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6948
6949 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6950 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6951
6952 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6953 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6954 0xff;
6955
6956 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6957 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
6958 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6959 bp->stats_ticks = USEC_PER_SEC;
6960 }
6961 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6962 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6963 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6964
6965 if (netif_running(bp->dev)) {
6966 bnx2_netif_stop(bp);
6967 bnx2_init_nic(bp, 0);
6968 bnx2_netif_start(bp);
6969 }
6970
6971 return 0;
6972 }
6973
6974 static void
6975 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6976 {
6977 struct bnx2 *bp = netdev_priv(dev);
6978
6979 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6980 ering->rx_mini_max_pending = 0;
6981 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6982
6983 ering->rx_pending = bp->rx_ring_size;
6984 ering->rx_mini_pending = 0;
6985 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6986
6987 ering->tx_max_pending = MAX_TX_DESC_CNT;
6988 ering->tx_pending = bp->tx_ring_size;
6989 }
6990
6991 static int
6992 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6993 {
6994 if (netif_running(bp->dev)) {
6995 bnx2_netif_stop(bp);
6996 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6997 bnx2_free_skbs(bp);
6998 bnx2_free_mem(bp);
6999 }
7000
7001 bnx2_set_rx_ring_size(bp, rx);
7002 bp->tx_ring_size = tx;
7003
7004 if (netif_running(bp->dev)) {
7005 int rc;
7006
7007 rc = bnx2_alloc_mem(bp);
7008 if (!rc)
7009 rc = bnx2_init_nic(bp, 0);
7010
7011 if (rc) {
7012 bnx2_napi_enable(bp);
7013 dev_close(bp->dev);
7014 return rc;
7015 }
7016 bnx2_netif_start(bp);
7017 }
7018 return 0;
7019 }
7020
7021 static int
7022 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7023 {
7024 struct bnx2 *bp = netdev_priv(dev);
7025 int rc;
7026
7027 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7028 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7029 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7030
7031 return -EINVAL;
7032 }
7033 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7034 return rc;
7035 }
7036
7037 static void
7038 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7039 {
7040 struct bnx2 *bp = netdev_priv(dev);
7041
7042 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7043 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7044 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7045 }
7046
7047 static int
7048 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7049 {
7050 struct bnx2 *bp = netdev_priv(dev);
7051
7052 bp->req_flow_ctrl = 0;
7053 if (epause->rx_pause)
7054 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7055 if (epause->tx_pause)
7056 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7057
7058 if (epause->autoneg) {
7059 bp->autoneg |= AUTONEG_FLOW_CTRL;
7060 }
7061 else {
7062 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7063 }
7064
7065 if (netif_running(dev)) {
7066 spin_lock_bh(&bp->phy_lock);
7067 bnx2_setup_phy(bp, bp->phy_port);
7068 spin_unlock_bh(&bp->phy_lock);
7069 }
7070
7071 return 0;
7072 }
7073
7074 static u32
7075 bnx2_get_rx_csum(struct net_device *dev)
7076 {
7077 struct bnx2 *bp = netdev_priv(dev);
7078
7079 return bp->rx_csum;
7080 }
7081
7082 static int
7083 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7084 {
7085 struct bnx2 *bp = netdev_priv(dev);
7086
7087 bp->rx_csum = data;
7088 return 0;
7089 }
7090
7091 static int
7092 bnx2_set_tso(struct net_device *dev, u32 data)
7093 {
7094 struct bnx2 *bp = netdev_priv(dev);
7095
7096 if (data) {
7097 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7098 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7099 dev->features |= NETIF_F_TSO6;
7100 } else
7101 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7102 NETIF_F_TSO_ECN);
7103 return 0;
7104 }
7105
7106 static struct {
7107 char string[ETH_GSTRING_LEN];
7108 } bnx2_stats_str_arr[] = {
7109 { "rx_bytes" },
7110 { "rx_error_bytes" },
7111 { "tx_bytes" },
7112 { "tx_error_bytes" },
7113 { "rx_ucast_packets" },
7114 { "rx_mcast_packets" },
7115 { "rx_bcast_packets" },
7116 { "tx_ucast_packets" },
7117 { "tx_mcast_packets" },
7118 { "tx_bcast_packets" },
7119 { "tx_mac_errors" },
7120 { "tx_carrier_errors" },
7121 { "rx_crc_errors" },
7122 { "rx_align_errors" },
7123 { "tx_single_collisions" },
7124 { "tx_multi_collisions" },
7125 { "tx_deferred" },
7126 { "tx_excess_collisions" },
7127 { "tx_late_collisions" },
7128 { "tx_total_collisions" },
7129 { "rx_fragments" },
7130 { "rx_jabbers" },
7131 { "rx_undersize_packets" },
7132 { "rx_oversize_packets" },
7133 { "rx_64_byte_packets" },
7134 { "rx_65_to_127_byte_packets" },
7135 { "rx_128_to_255_byte_packets" },
7136 { "rx_256_to_511_byte_packets" },
7137 { "rx_512_to_1023_byte_packets" },
7138 { "rx_1024_to_1522_byte_packets" },
7139 { "rx_1523_to_9022_byte_packets" },
7140 { "tx_64_byte_packets" },
7141 { "tx_65_to_127_byte_packets" },
7142 { "tx_128_to_255_byte_packets" },
7143 { "tx_256_to_511_byte_packets" },
7144 { "tx_512_to_1023_byte_packets" },
7145 { "tx_1024_to_1522_byte_packets" },
7146 { "tx_1523_to_9022_byte_packets" },
7147 { "rx_xon_frames" },
7148 { "rx_xoff_frames" },
7149 { "tx_xon_frames" },
7150 { "tx_xoff_frames" },
7151 { "rx_mac_ctrl_frames" },
7152 { "rx_filtered_packets" },
7153 { "rx_ftq_discards" },
7154 { "rx_discards" },
7155 { "rx_fw_discards" },
7156 };
7157
7158 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7159 sizeof(bnx2_stats_str_arr[0]))
7160
7161 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7162
7163 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7164 STATS_OFFSET32(stat_IfHCInOctets_hi),
7165 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7166 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7167 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7168 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7169 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7170 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7171 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7172 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7173 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7174 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7175 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7176 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7177 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7178 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7179 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7180 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7181 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7182 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7183 STATS_OFFSET32(stat_EtherStatsCollisions),
7184 STATS_OFFSET32(stat_EtherStatsFragments),
7185 STATS_OFFSET32(stat_EtherStatsJabbers),
7186 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7187 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7188 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7189 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7190 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7191 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7192 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7193 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7194 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7195 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7196 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7197 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7198 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7199 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7200 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7201 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7202 STATS_OFFSET32(stat_XonPauseFramesReceived),
7203 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7204 STATS_OFFSET32(stat_OutXonSent),
7205 STATS_OFFSET32(stat_OutXoffSent),
7206 STATS_OFFSET32(stat_MacControlFramesReceived),
7207 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7208 STATS_OFFSET32(stat_IfInFTQDiscards),
7209 STATS_OFFSET32(stat_IfInMBUFDiscards),
7210 STATS_OFFSET32(stat_FwRxDrop),
7211 };
7212
7213 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7214 * skipped because of errata.
7215 */
7216 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7217 8,0,8,8,8,8,8,8,8,8,
7218 4,0,4,4,4,4,4,4,4,4,
7219 4,4,4,4,4,4,4,4,4,4,
7220 4,4,4,4,4,4,4,4,4,4,
7221 4,4,4,4,4,4,4,
7222 };
7223
7224 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7225 8,0,8,8,8,8,8,8,8,8,
7226 4,4,4,4,4,4,4,4,4,4,
7227 4,4,4,4,4,4,4,4,4,4,
7228 4,4,4,4,4,4,4,4,4,4,
7229 4,4,4,4,4,4,4,
7230 };
7231
7232 #define BNX2_NUM_TESTS 6
7233
7234 static struct {
7235 char string[ETH_GSTRING_LEN];
7236 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7237 { "register_test (offline)" },
7238 { "memory_test (offline)" },
7239 { "loopback_test (offline)" },
7240 { "nvram_test (online)" },
7241 { "interrupt_test (online)" },
7242 { "link_test (online)" },
7243 };
7244
7245 static int
7246 bnx2_get_sset_count(struct net_device *dev, int sset)
7247 {
7248 switch (sset) {
7249 case ETH_SS_TEST:
7250 return BNX2_NUM_TESTS;
7251 case ETH_SS_STATS:
7252 return BNX2_NUM_STATS;
7253 default:
7254 return -EOPNOTSUPP;
7255 }
7256 }
7257
7258 static void
7259 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7260 {
7261 struct bnx2 *bp = netdev_priv(dev);
7262
7263 bnx2_set_power_state(bp, PCI_D0);
7264
7265 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7266 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7267 int i;
7268
7269 bnx2_netif_stop(bp);
7270 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7271 bnx2_free_skbs(bp);
7272
7273 if (bnx2_test_registers(bp) != 0) {
7274 buf[0] = 1;
7275 etest->flags |= ETH_TEST_FL_FAILED;
7276 }
7277 if (bnx2_test_memory(bp) != 0) {
7278 buf[1] = 1;
7279 etest->flags |= ETH_TEST_FL_FAILED;
7280 }
7281 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7282 etest->flags |= ETH_TEST_FL_FAILED;
7283
7284 if (!netif_running(bp->dev))
7285 bnx2_shutdown_chip(bp);
7286 else {
7287 bnx2_init_nic(bp, 1);
7288 bnx2_netif_start(bp);
7289 }
7290
7291 /* wait for link up */
7292 for (i = 0; i < 7; i++) {
7293 if (bp->link_up)
7294 break;
7295 msleep_interruptible(1000);
7296 }
7297 }
7298
7299 if (bnx2_test_nvram(bp) != 0) {
7300 buf[3] = 1;
7301 etest->flags |= ETH_TEST_FL_FAILED;
7302 }
7303 if (bnx2_test_intr(bp) != 0) {
7304 buf[4] = 1;
7305 etest->flags |= ETH_TEST_FL_FAILED;
7306 }
7307
7308 if (bnx2_test_link(bp) != 0) {
7309 buf[5] = 1;
7310 etest->flags |= ETH_TEST_FL_FAILED;
7311
7312 }
7313 if (!netif_running(bp->dev))
7314 bnx2_set_power_state(bp, PCI_D3hot);
7315 }
7316
7317 static void
7318 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7319 {
7320 switch (stringset) {
7321 case ETH_SS_STATS:
7322 memcpy(buf, bnx2_stats_str_arr,
7323 sizeof(bnx2_stats_str_arr));
7324 break;
7325 case ETH_SS_TEST:
7326 memcpy(buf, bnx2_tests_str_arr,
7327 sizeof(bnx2_tests_str_arr));
7328 break;
7329 }
7330 }
7331
7332 static void
7333 bnx2_get_ethtool_stats(struct net_device *dev,
7334 struct ethtool_stats *stats, u64 *buf)
7335 {
7336 struct bnx2 *bp = netdev_priv(dev);
7337 int i;
7338 u32 *hw_stats = (u32 *) bp->stats_blk;
7339 u8 *stats_len_arr = NULL;
7340
7341 if (hw_stats == NULL) {
7342 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7343 return;
7344 }
7345
7346 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7347 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7348 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7349 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7350 stats_len_arr = bnx2_5706_stats_len_arr;
7351 else
7352 stats_len_arr = bnx2_5708_stats_len_arr;
7353
7354 for (i = 0; i < BNX2_NUM_STATS; i++) {
7355 if (stats_len_arr[i] == 0) {
7356 /* skip this counter */
7357 buf[i] = 0;
7358 continue;
7359 }
7360 if (stats_len_arr[i] == 4) {
7361 /* 4-byte counter */
7362 buf[i] = (u64)
7363 *(hw_stats + bnx2_stats_offset_arr[i]);
7364 continue;
7365 }
7366 /* 8-byte counter */
7367 buf[i] = (((u64) *(hw_stats +
7368 bnx2_stats_offset_arr[i])) << 32) +
7369 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7370 }
7371 }
7372
7373 static int
7374 bnx2_phys_id(struct net_device *dev, u32 data)
7375 {
7376 struct bnx2 *bp = netdev_priv(dev);
7377 int i;
7378 u32 save;
7379
7380 bnx2_set_power_state(bp, PCI_D0);
7381
7382 if (data == 0)
7383 data = 2;
7384
7385 save = REG_RD(bp, BNX2_MISC_CFG);
7386 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7387
7388 for (i = 0; i < (data * 2); i++) {
7389 if ((i % 2) == 0) {
7390 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7391 }
7392 else {
7393 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7394 BNX2_EMAC_LED_1000MB_OVERRIDE |
7395 BNX2_EMAC_LED_100MB_OVERRIDE |
7396 BNX2_EMAC_LED_10MB_OVERRIDE |
7397 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7398 BNX2_EMAC_LED_TRAFFIC);
7399 }
7400 msleep_interruptible(500);
7401 if (signal_pending(current))
7402 break;
7403 }
7404 REG_WR(bp, BNX2_EMAC_LED, 0);
7405 REG_WR(bp, BNX2_MISC_CFG, save);
7406
7407 if (!netif_running(dev))
7408 bnx2_set_power_state(bp, PCI_D3hot);
7409
7410 return 0;
7411 }
7412
7413 static int
7414 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7415 {
7416 struct bnx2 *bp = netdev_priv(dev);
7417
7418 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7419 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7420 else
7421 return (ethtool_op_set_tx_csum(dev, data));
7422 }
7423
7424 static const struct ethtool_ops bnx2_ethtool_ops = {
7425 .get_settings = bnx2_get_settings,
7426 .set_settings = bnx2_set_settings,
7427 .get_drvinfo = bnx2_get_drvinfo,
7428 .get_regs_len = bnx2_get_regs_len,
7429 .get_regs = bnx2_get_regs,
7430 .get_wol = bnx2_get_wol,
7431 .set_wol = bnx2_set_wol,
7432 .nway_reset = bnx2_nway_reset,
7433 .get_link = bnx2_get_link,
7434 .get_eeprom_len = bnx2_get_eeprom_len,
7435 .get_eeprom = bnx2_get_eeprom,
7436 .set_eeprom = bnx2_set_eeprom,
7437 .get_coalesce = bnx2_get_coalesce,
7438 .set_coalesce = bnx2_set_coalesce,
7439 .get_ringparam = bnx2_get_ringparam,
7440 .set_ringparam = bnx2_set_ringparam,
7441 .get_pauseparam = bnx2_get_pauseparam,
7442 .set_pauseparam = bnx2_set_pauseparam,
7443 .get_rx_csum = bnx2_get_rx_csum,
7444 .set_rx_csum = bnx2_set_rx_csum,
7445 .set_tx_csum = bnx2_set_tx_csum,
7446 .set_sg = ethtool_op_set_sg,
7447 .set_tso = bnx2_set_tso,
7448 .self_test = bnx2_self_test,
7449 .get_strings = bnx2_get_strings,
7450 .phys_id = bnx2_phys_id,
7451 .get_ethtool_stats = bnx2_get_ethtool_stats,
7452 .get_sset_count = bnx2_get_sset_count,
7453 };
7454
7455 /* Called with rtnl_lock */
7456 static int
7457 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7458 {
7459 struct mii_ioctl_data *data = if_mii(ifr);
7460 struct bnx2 *bp = netdev_priv(dev);
7461 int err;
7462
7463 switch(cmd) {
7464 case SIOCGMIIPHY:
7465 data->phy_id = bp->phy_addr;
7466
7467 /* fallthru */
7468 case SIOCGMIIREG: {
7469 u32 mii_regval;
7470
7471 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7472 return -EOPNOTSUPP;
7473
7474 if (!netif_running(dev))
7475 return -EAGAIN;
7476
7477 spin_lock_bh(&bp->phy_lock);
7478 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7479 spin_unlock_bh(&bp->phy_lock);
7480
7481 data->val_out = mii_regval;
7482
7483 return err;
7484 }
7485
7486 case SIOCSMIIREG:
7487 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7488 return -EOPNOTSUPP;
7489
7490 if (!netif_running(dev))
7491 return -EAGAIN;
7492
7493 spin_lock_bh(&bp->phy_lock);
7494 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7495 spin_unlock_bh(&bp->phy_lock);
7496
7497 return err;
7498
7499 default:
7500 /* do nothing */
7501 break;
7502 }
7503 return -EOPNOTSUPP;
7504 }
7505
7506 /* Called with rtnl_lock */
7507 static int
7508 bnx2_change_mac_addr(struct net_device *dev, void *p)
7509 {
7510 struct sockaddr *addr = p;
7511 struct bnx2 *bp = netdev_priv(dev);
7512
7513 if (!is_valid_ether_addr(addr->sa_data))
7514 return -EINVAL;
7515
7516 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7517 if (netif_running(dev))
7518 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7519
7520 return 0;
7521 }
7522
7523 /* Called with rtnl_lock */
7524 static int
7525 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7526 {
7527 struct bnx2 *bp = netdev_priv(dev);
7528
7529 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7530 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7531 return -EINVAL;
7532
7533 dev->mtu = new_mtu;
7534 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7535 }
7536
7537 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7538 static void
7539 poll_bnx2(struct net_device *dev)
7540 {
7541 struct bnx2 *bp = netdev_priv(dev);
7542 int i;
7543
7544 for (i = 0; i < bp->irq_nvecs; i++) {
7545 disable_irq(bp->irq_tbl[i].vector);
7546 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7547 enable_irq(bp->irq_tbl[i].vector);
7548 }
7549 }
7550 #endif
7551
7552 static void __devinit
7553 bnx2_get_5709_media(struct bnx2 *bp)
7554 {
7555 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7556 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7557 u32 strap;
7558
7559 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7560 return;
7561 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7562 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7563 return;
7564 }
7565
7566 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7567 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7568 else
7569 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7570
7571 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7572 switch (strap) {
7573 case 0x4:
7574 case 0x5:
7575 case 0x6:
7576 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7577 return;
7578 }
7579 } else {
7580 switch (strap) {
7581 case 0x1:
7582 case 0x2:
7583 case 0x4:
7584 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7585 return;
7586 }
7587 }
7588 }
7589
7590 static void __devinit
7591 bnx2_get_pci_speed(struct bnx2 *bp)
7592 {
7593 u32 reg;
7594
7595 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7596 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7597 u32 clkreg;
7598
7599 bp->flags |= BNX2_FLAG_PCIX;
7600
7601 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7602
7603 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7604 switch (clkreg) {
7605 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7606 bp->bus_speed_mhz = 133;
7607 break;
7608
7609 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7610 bp->bus_speed_mhz = 100;
7611 break;
7612
7613 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7614 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7615 bp->bus_speed_mhz = 66;
7616 break;
7617
7618 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7619 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7620 bp->bus_speed_mhz = 50;
7621 break;
7622
7623 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7624 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7625 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7626 bp->bus_speed_mhz = 33;
7627 break;
7628 }
7629 }
7630 else {
7631 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7632 bp->bus_speed_mhz = 66;
7633 else
7634 bp->bus_speed_mhz = 33;
7635 }
7636
7637 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7638 bp->flags |= BNX2_FLAG_PCI_32BIT;
7639
7640 }
7641
7642 static int __devinit
7643 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7644 {
7645 struct bnx2 *bp;
7646 unsigned long mem_len;
7647 int rc, i, j;
7648 u32 reg;
7649 u64 dma_mask, persist_dma_mask;
7650
7651 SET_NETDEV_DEV(dev, &pdev->dev);
7652 bp = netdev_priv(dev);
7653
7654 bp->flags = 0;
7655 bp->phy_flags = 0;
7656
7657 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7658 rc = pci_enable_device(pdev);
7659 if (rc) {
7660 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7661 goto err_out;
7662 }
7663
7664 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7665 dev_err(&pdev->dev,
7666 "Cannot find PCI device base address, aborting.\n");
7667 rc = -ENODEV;
7668 goto err_out_disable;
7669 }
7670
7671 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7672 if (rc) {
7673 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7674 goto err_out_disable;
7675 }
7676
7677 pci_set_master(pdev);
7678 pci_save_state(pdev);
7679
7680 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7681 if (bp->pm_cap == 0) {
7682 dev_err(&pdev->dev,
7683 "Cannot find power management capability, aborting.\n");
7684 rc = -EIO;
7685 goto err_out_release;
7686 }
7687
7688 bp->dev = dev;
7689 bp->pdev = pdev;
7690
7691 spin_lock_init(&bp->phy_lock);
7692 spin_lock_init(&bp->indirect_lock);
7693 #ifdef BCM_CNIC
7694 mutex_init(&bp->cnic_lock);
7695 #endif
7696 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7697
7698 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7699 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7700 dev->mem_end = dev->mem_start + mem_len;
7701 dev->irq = pdev->irq;
7702
7703 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7704
7705 if (!bp->regview) {
7706 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7707 rc = -ENOMEM;
7708 goto err_out_release;
7709 }
7710
7711 /* Configure byte swap and enable write to the reg_window registers.
7712 * Rely on CPU to do target byte swapping on big endian systems
7713 * The chip's target access swapping will not swap all accesses
7714 */
7715 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7716 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7717 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7718
7719 bnx2_set_power_state(bp, PCI_D0);
7720
7721 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7722
7723 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7724 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7725 dev_err(&pdev->dev,
7726 "Cannot find PCIE capability, aborting.\n");
7727 rc = -EIO;
7728 goto err_out_unmap;
7729 }
7730 bp->flags |= BNX2_FLAG_PCIE;
7731 if (CHIP_REV(bp) == CHIP_REV_Ax)
7732 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7733 } else {
7734 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7735 if (bp->pcix_cap == 0) {
7736 dev_err(&pdev->dev,
7737 "Cannot find PCIX capability, aborting.\n");
7738 rc = -EIO;
7739 goto err_out_unmap;
7740 }
7741 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7742 }
7743
7744 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7745 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7746 bp->flags |= BNX2_FLAG_MSIX_CAP;
7747 }
7748
7749 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7750 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7751 bp->flags |= BNX2_FLAG_MSI_CAP;
7752 }
7753
7754 /* 5708 cannot support DMA addresses > 40-bit. */
7755 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7756 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7757 else
7758 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7759
7760 /* Configure DMA attributes. */
7761 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7762 dev->features |= NETIF_F_HIGHDMA;
7763 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7764 if (rc) {
7765 dev_err(&pdev->dev,
7766 "pci_set_consistent_dma_mask failed, aborting.\n");
7767 goto err_out_unmap;
7768 }
7769 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7770 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7771 goto err_out_unmap;
7772 }
7773
7774 if (!(bp->flags & BNX2_FLAG_PCIE))
7775 bnx2_get_pci_speed(bp);
7776
7777 /* 5706A0 may falsely detect SERR and PERR. */
7778 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7779 reg = REG_RD(bp, PCI_COMMAND);
7780 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7781 REG_WR(bp, PCI_COMMAND, reg);
7782 }
7783 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7784 !(bp->flags & BNX2_FLAG_PCIX)) {
7785
7786 dev_err(&pdev->dev,
7787 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7788 goto err_out_unmap;
7789 }
7790
7791 bnx2_init_nvram(bp);
7792
7793 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7794
7795 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7796 BNX2_SHM_HDR_SIGNATURE_SIG) {
7797 u32 off = PCI_FUNC(pdev->devfn) << 2;
7798
7799 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7800 } else
7801 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7802
7803 /* Get the permanent MAC address. First we need to make sure the
7804 * firmware is actually running.
7805 */
7806 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7807
7808 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7809 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7810 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7811 rc = -ENODEV;
7812 goto err_out_unmap;
7813 }
7814
7815 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7816 for (i = 0, j = 0; i < 3; i++) {
7817 u8 num, k, skip0;
7818
7819 num = (u8) (reg >> (24 - (i * 8)));
7820 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7821 if (num >= k || !skip0 || k == 1) {
7822 bp->fw_version[j++] = (num / k) + '0';
7823 skip0 = 0;
7824 }
7825 }
7826 if (i != 2)
7827 bp->fw_version[j++] = '.';
7828 }
7829 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7830 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7831 bp->wol = 1;
7832
7833 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7834 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7835
7836 for (i = 0; i < 30; i++) {
7837 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7838 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7839 break;
7840 msleep(10);
7841 }
7842 }
7843 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7844 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7845 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7846 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7847 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7848
7849 bp->fw_version[j++] = ' ';
7850 for (i = 0; i < 3; i++) {
7851 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7852 reg = swab32(reg);
7853 memcpy(&bp->fw_version[j], &reg, 4);
7854 j += 4;
7855 }
7856 }
7857
7858 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7859 bp->mac_addr[0] = (u8) (reg >> 8);
7860 bp->mac_addr[1] = (u8) reg;
7861
7862 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7863 bp->mac_addr[2] = (u8) (reg >> 24);
7864 bp->mac_addr[3] = (u8) (reg >> 16);
7865 bp->mac_addr[4] = (u8) (reg >> 8);
7866 bp->mac_addr[5] = (u8) reg;
7867
7868 bp->tx_ring_size = MAX_TX_DESC_CNT;
7869 bnx2_set_rx_ring_size(bp, 255);
7870
7871 bp->rx_csum = 1;
7872
7873 bp->tx_quick_cons_trip_int = 2;
7874 bp->tx_quick_cons_trip = 20;
7875 bp->tx_ticks_int = 18;
7876 bp->tx_ticks = 80;
7877
7878 bp->rx_quick_cons_trip_int = 2;
7879 bp->rx_quick_cons_trip = 12;
7880 bp->rx_ticks_int = 18;
7881 bp->rx_ticks = 18;
7882
7883 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7884
7885 bp->current_interval = BNX2_TIMER_INTERVAL;
7886
7887 bp->phy_addr = 1;
7888
7889 /* Disable WOL support if we are running on a SERDES chip. */
7890 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7891 bnx2_get_5709_media(bp);
7892 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7893 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7894
7895 bp->phy_port = PORT_TP;
7896 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7897 bp->phy_port = PORT_FIBRE;
7898 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7899 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7900 bp->flags |= BNX2_FLAG_NO_WOL;
7901 bp->wol = 0;
7902 }
7903 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7904 /* Don't do parallel detect on this board because of
7905 * some board problems. The link will not go down
7906 * if we do parallel detect.
7907 */
7908 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7909 pdev->subsystem_device == 0x310c)
7910 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7911 } else {
7912 bp->phy_addr = 2;
7913 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7914 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7915 }
7916 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7917 CHIP_NUM(bp) == CHIP_NUM_5708)
7918 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7919 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7920 (CHIP_REV(bp) == CHIP_REV_Ax ||
7921 CHIP_REV(bp) == CHIP_REV_Bx))
7922 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7923
7924 bnx2_init_fw_cap(bp);
7925
7926 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7927 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7928 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7929 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7930 bp->flags |= BNX2_FLAG_NO_WOL;
7931 bp->wol = 0;
7932 }
7933
7934 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7935 bp->tx_quick_cons_trip_int =
7936 bp->tx_quick_cons_trip;
7937 bp->tx_ticks_int = bp->tx_ticks;
7938 bp->rx_quick_cons_trip_int =
7939 bp->rx_quick_cons_trip;
7940 bp->rx_ticks_int = bp->rx_ticks;
7941 bp->comp_prod_trip_int = bp->comp_prod_trip;
7942 bp->com_ticks_int = bp->com_ticks;
7943 bp->cmd_ticks_int = bp->cmd_ticks;
7944 }
7945
7946 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7947 *
7948 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7949 * with byte enables disabled on the unused 32-bit word. This is legal
7950 * but causes problems on the AMD 8132 which will eventually stop
7951 * responding after a while.
7952 *
7953 * AMD believes this incompatibility is unique to the 5706, and
7954 * prefers to locally disable MSI rather than globally disabling it.
7955 */
7956 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7957 struct pci_dev *amd_8132 = NULL;
7958
7959 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7960 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7961 amd_8132))) {
7962
7963 if (amd_8132->revision >= 0x10 &&
7964 amd_8132->revision <= 0x13) {
7965 disable_msi = 1;
7966 pci_dev_put(amd_8132);
7967 break;
7968 }
7969 }
7970 }
7971
7972 bnx2_set_default_link(bp);
7973 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7974
7975 init_timer(&bp->timer);
7976 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7977 bp->timer.data = (unsigned long) bp;
7978 bp->timer.function = bnx2_timer;
7979
7980 return 0;
7981
7982 err_out_unmap:
7983 if (bp->regview) {
7984 iounmap(bp->regview);
7985 bp->regview = NULL;
7986 }
7987
7988 err_out_release:
7989 pci_release_regions(pdev);
7990
7991 err_out_disable:
7992 pci_disable_device(pdev);
7993 pci_set_drvdata(pdev, NULL);
7994
7995 err_out:
7996 return rc;
7997 }
7998
7999 static char * __devinit
8000 bnx2_bus_string(struct bnx2 *bp, char *str)
8001 {
8002 char *s = str;
8003
8004 if (bp->flags & BNX2_FLAG_PCIE) {
8005 s += sprintf(s, "PCI Express");
8006 } else {
8007 s += sprintf(s, "PCI");
8008 if (bp->flags & BNX2_FLAG_PCIX)
8009 s += sprintf(s, "-X");
8010 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8011 s += sprintf(s, " 32-bit");
8012 else
8013 s += sprintf(s, " 64-bit");
8014 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8015 }
8016 return str;
8017 }
8018
8019 static void __devinit
8020 bnx2_init_napi(struct bnx2 *bp)
8021 {
8022 int i;
8023
8024 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8025 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8026 int (*poll)(struct napi_struct *, int);
8027
8028 if (i == 0)
8029 poll = bnx2_poll;
8030 else
8031 poll = bnx2_poll_msix;
8032
8033 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8034 bnapi->bp = bp;
8035 }
8036 }
8037
8038 static const struct net_device_ops bnx2_netdev_ops = {
8039 .ndo_open = bnx2_open,
8040 .ndo_start_xmit = bnx2_start_xmit,
8041 .ndo_stop = bnx2_close,
8042 .ndo_get_stats = bnx2_get_stats,
8043 .ndo_set_rx_mode = bnx2_set_rx_mode,
8044 .ndo_do_ioctl = bnx2_ioctl,
8045 .ndo_validate_addr = eth_validate_addr,
8046 .ndo_set_mac_address = bnx2_change_mac_addr,
8047 .ndo_change_mtu = bnx2_change_mtu,
8048 .ndo_tx_timeout = bnx2_tx_timeout,
8049 #ifdef BCM_VLAN
8050 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8051 #endif
8052 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8053 .ndo_poll_controller = poll_bnx2,
8054 #endif
8055 };
8056
8057 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8058 {
8059 #ifdef BCM_VLAN
8060 dev->vlan_features |= flags;
8061 #endif
8062 }
8063
8064 static int __devinit
8065 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8066 {
8067 static int version_printed = 0;
8068 struct net_device *dev = NULL;
8069 struct bnx2 *bp;
8070 int rc;
8071 char str[40];
8072
8073 if (version_printed++ == 0)
8074 printk(KERN_INFO "%s", version);
8075
8076 /* dev zeroed in init_etherdev */
8077 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8078
8079 if (!dev)
8080 return -ENOMEM;
8081
8082 rc = bnx2_init_board(pdev, dev);
8083 if (rc < 0) {
8084 free_netdev(dev);
8085 return rc;
8086 }
8087
8088 dev->netdev_ops = &bnx2_netdev_ops;
8089 dev->watchdog_timeo = TX_TIMEOUT;
8090 dev->ethtool_ops = &bnx2_ethtool_ops;
8091
8092 bp = netdev_priv(dev);
8093 bnx2_init_napi(bp);
8094
8095 pci_set_drvdata(pdev, dev);
8096
8097 rc = bnx2_request_firmware(bp);
8098 if (rc)
8099 goto error;
8100
8101 memcpy(dev->dev_addr, bp->mac_addr, 6);
8102 memcpy(dev->perm_addr, bp->mac_addr, 6);
8103
8104 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8105 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8106 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8107 dev->features |= NETIF_F_IPV6_CSUM;
8108 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8109 }
8110 #ifdef BCM_VLAN
8111 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8112 #endif
8113 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8114 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8115 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8116 dev->features |= NETIF_F_TSO6;
8117 vlan_features_add(dev, NETIF_F_TSO6);
8118 }
8119 if ((rc = register_netdev(dev))) {
8120 dev_err(&pdev->dev, "Cannot register net device\n");
8121 goto error;
8122 }
8123
8124 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8125 "IRQ %d, node addr %pM\n",
8126 dev->name,
8127 board_info[ent->driver_data].name,
8128 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8129 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8130 bnx2_bus_string(bp, str),
8131 dev->base_addr,
8132 bp->pdev->irq, dev->dev_addr);
8133
8134 return 0;
8135
8136 error:
8137 if (bp->mips_firmware)
8138 release_firmware(bp->mips_firmware);
8139 if (bp->rv2p_firmware)
8140 release_firmware(bp->rv2p_firmware);
8141
8142 if (bp->regview)
8143 iounmap(bp->regview);
8144 pci_release_regions(pdev);
8145 pci_disable_device(pdev);
8146 pci_set_drvdata(pdev, NULL);
8147 free_netdev(dev);
8148 return rc;
8149 }
8150
8151 static void __devexit
8152 bnx2_remove_one(struct pci_dev *pdev)
8153 {
8154 struct net_device *dev = pci_get_drvdata(pdev);
8155 struct bnx2 *bp = netdev_priv(dev);
8156
8157 flush_scheduled_work();
8158
8159 unregister_netdev(dev);
8160
8161 if (bp->mips_firmware)
8162 release_firmware(bp->mips_firmware);
8163 if (bp->rv2p_firmware)
8164 release_firmware(bp->rv2p_firmware);
8165
8166 if (bp->regview)
8167 iounmap(bp->regview);
8168
8169 free_netdev(dev);
8170 pci_release_regions(pdev);
8171 pci_disable_device(pdev);
8172 pci_set_drvdata(pdev, NULL);
8173 }
8174
8175 static int
8176 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8177 {
8178 struct net_device *dev = pci_get_drvdata(pdev);
8179 struct bnx2 *bp = netdev_priv(dev);
8180
8181 /* PCI register 4 needs to be saved whether netif_running() or not.
8182 * MSI address and data need to be saved if using MSI and
8183 * netif_running().
8184 */
8185 pci_save_state(pdev);
8186 if (!netif_running(dev))
8187 return 0;
8188
8189 flush_scheduled_work();
8190 bnx2_netif_stop(bp);
8191 netif_device_detach(dev);
8192 del_timer_sync(&bp->timer);
8193 bnx2_shutdown_chip(bp);
8194 bnx2_free_skbs(bp);
8195 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8196 return 0;
8197 }
8198
8199 static int
8200 bnx2_resume(struct pci_dev *pdev)
8201 {
8202 struct net_device *dev = pci_get_drvdata(pdev);
8203 struct bnx2 *bp = netdev_priv(dev);
8204
8205 pci_restore_state(pdev);
8206 if (!netif_running(dev))
8207 return 0;
8208
8209 bnx2_set_power_state(bp, PCI_D0);
8210 netif_device_attach(dev);
8211 bnx2_init_nic(bp, 1);
8212 bnx2_netif_start(bp);
8213 return 0;
8214 }
8215
8216 /**
8217 * bnx2_io_error_detected - called when PCI error is detected
8218 * @pdev: Pointer to PCI device
8219 * @state: The current pci connection state
8220 *
8221 * This function is called after a PCI bus error affecting
8222 * this device has been detected.
8223 */
8224 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8225 pci_channel_state_t state)
8226 {
8227 struct net_device *dev = pci_get_drvdata(pdev);
8228 struct bnx2 *bp = netdev_priv(dev);
8229
8230 rtnl_lock();
8231 netif_device_detach(dev);
8232
8233 if (state == pci_channel_io_perm_failure) {
8234 rtnl_unlock();
8235 return PCI_ERS_RESULT_DISCONNECT;
8236 }
8237
8238 if (netif_running(dev)) {
8239 bnx2_netif_stop(bp);
8240 del_timer_sync(&bp->timer);
8241 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8242 }
8243
8244 pci_disable_device(pdev);
8245 rtnl_unlock();
8246
8247 /* Request a slot slot reset. */
8248 return PCI_ERS_RESULT_NEED_RESET;
8249 }
8250
8251 /**
8252 * bnx2_io_slot_reset - called after the pci bus has been reset.
8253 * @pdev: Pointer to PCI device
8254 *
8255 * Restart the card from scratch, as if from a cold-boot.
8256 */
8257 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8258 {
8259 struct net_device *dev = pci_get_drvdata(pdev);
8260 struct bnx2 *bp = netdev_priv(dev);
8261
8262 rtnl_lock();
8263 if (pci_enable_device(pdev)) {
8264 dev_err(&pdev->dev,
8265 "Cannot re-enable PCI device after reset.\n");
8266 rtnl_unlock();
8267 return PCI_ERS_RESULT_DISCONNECT;
8268 }
8269 pci_set_master(pdev);
8270 pci_restore_state(pdev);
8271
8272 if (netif_running(dev)) {
8273 bnx2_set_power_state(bp, PCI_D0);
8274 bnx2_init_nic(bp, 1);
8275 }
8276
8277 rtnl_unlock();
8278 return PCI_ERS_RESULT_RECOVERED;
8279 }
8280
8281 /**
8282 * bnx2_io_resume - called when traffic can start flowing again.
8283 * @pdev: Pointer to PCI device
8284 *
8285 * This callback is called when the error recovery driver tells us that
8286 * its OK to resume normal operation.
8287 */
8288 static void bnx2_io_resume(struct pci_dev *pdev)
8289 {
8290 struct net_device *dev = pci_get_drvdata(pdev);
8291 struct bnx2 *bp = netdev_priv(dev);
8292
8293 rtnl_lock();
8294 if (netif_running(dev))
8295 bnx2_netif_start(bp);
8296
8297 netif_device_attach(dev);
8298 rtnl_unlock();
8299 }
8300
8301 static struct pci_error_handlers bnx2_err_handler = {
8302 .error_detected = bnx2_io_error_detected,
8303 .slot_reset = bnx2_io_slot_reset,
8304 .resume = bnx2_io_resume,
8305 };
8306
8307 static struct pci_driver bnx2_pci_driver = {
8308 .name = DRV_MODULE_NAME,
8309 .id_table = bnx2_pci_tbl,
8310 .probe = bnx2_init_one,
8311 .remove = __devexit_p(bnx2_remove_one),
8312 .suspend = bnx2_suspend,
8313 .resume = bnx2_resume,
8314 .err_handler = &bnx2_err_handler,
8315 };
8316
8317 static int __init bnx2_init(void)
8318 {
8319 return pci_register_driver(&bnx2_pci_driver);
8320 }
8321
8322 static void __exit bnx2_cleanup(void)
8323 {
8324 pci_unregister_driver(&bnx2_pci_driver);
8325 }
8326
8327 module_init(bnx2_init);
8328 module_exit(bnx2_cleanup);
8329
8330
8331