]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/bnx2.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51
52 #include "bnx2.h"
53 #include "bnx2_fw.h"
54
55 #define DRV_MODULE_NAME "bnx2"
56 #define PFX DRV_MODULE_NAME ": "
57 #define DRV_MODULE_VERSION "2.0.0"
58 #define DRV_MODULE_RELDATE "April 2, 2009"
59 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
60 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
61 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
62 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
63
64 #define RUN_AT(x) (jiffies + (x))
65
66 /* Time in jiffies before concluding the transmitter is hung. */
67 #define TX_TIMEOUT (5*HZ)
68
69 static char version[] __devinitdata =
70 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
71
72 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
73 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_MODULE_VERSION);
76 MODULE_FIRMWARE(FW_MIPS_FILE_06);
77 MODULE_FIRMWARE(FW_RV2P_FILE_06);
78 MODULE_FIRMWARE(FW_MIPS_FILE_09);
79 MODULE_FIRMWARE(FW_RV2P_FILE_09);
80
81 static int disable_msi = 0;
82
83 module_param(disable_msi, int, 0);
84 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
85
86 typedef enum {
87 BCM5706 = 0,
88 NC370T,
89 NC370I,
90 BCM5706S,
91 NC370F,
92 BCM5708,
93 BCM5708S,
94 BCM5709,
95 BCM5709S,
96 BCM5716,
97 BCM5716S,
98 } board_t;
99
100 /* indexed by board_t, above */
101 static struct {
102 char *name;
103 } board_info[] __devinitdata = {
104 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
105 { "HP NC370T Multifunction Gigabit Server Adapter" },
106 { "HP NC370i Multifunction Gigabit Server Adapter" },
107 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
108 { "HP NC370F Multifunction Gigabit Server Adapter" },
109 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
110 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
111 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
112 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
113 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
115 };
116
117 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
118 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
119 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
120 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
121 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
127 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
136 { PCI_VENDOR_ID_BROADCOM, 0x163b,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
138 { PCI_VENDOR_ID_BROADCOM, 0x163c,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
140 { 0, }
141 };
142
143 static struct flash_spec flash_table[] =
144 {
145 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
146 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
147 /* Slow EEPROM */
148 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
149 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
150 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
151 "EEPROM - slow"},
152 /* Expansion entry 0001 */
153 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
154 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
155 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
156 "Entry 0001"},
157 /* Saifun SA25F010 (non-buffered flash) */
158 /* strap, cfg1, & write1 need updates */
159 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
161 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
162 "Non-buffered flash (128kB)"},
163 /* Saifun SA25F020 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
167 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
168 "Non-buffered flash (256kB)"},
169 /* Expansion entry 0100 */
170 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
172 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
173 "Entry 0100"},
174 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
175 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
177 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
178 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
179 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
180 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
183 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
184 /* Saifun SA25F005 (non-buffered flash) */
185 /* strap, cfg1, & write1 need updates */
186 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
188 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
189 "Non-buffered flash (64kB)"},
190 /* Fast EEPROM */
191 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
192 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
193 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
194 "EEPROM - fast"},
195 /* Expansion entry 1001 */
196 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
198 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
199 "Entry 1001"},
200 /* Expansion entry 1010 */
201 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
203 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
204 "Entry 1010"},
205 /* ATMEL AT45DB011B (buffered flash) */
206 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
207 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
208 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
209 "Buffered flash (128kB)"},
210 /* Expansion entry 1100 */
211 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 1100"},
215 /* Expansion entry 1101 */
216 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
218 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1101"},
220 /* Ateml Expansion entry 1110 */
221 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
222 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
223 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
224 "Entry 1110 (Atmel)"},
225 /* ATMEL AT45DB021B (buffered flash) */
226 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
228 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
229 "Buffered flash (256kB)"},
230 };
231
232 static struct flash_spec flash_5709 = {
233 .flags = BNX2_NV_BUFFERED,
234 .page_bits = BCM5709_FLASH_PAGE_BITS,
235 .page_size = BCM5709_FLASH_PAGE_SIZE,
236 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
237 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
238 .name = "5709 Buffered flash (256kB)",
239 };
240
241 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
242
243 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
244 {
245 u32 diff;
246
247 smp_mb();
248
249 /* The ring uses 256 indices for 255 entries, one of them
250 * needs to be skipped.
251 */
252 diff = txr->tx_prod - txr->tx_cons;
253 if (unlikely(diff >= TX_DESC_CNT)) {
254 diff &= 0xffff;
255 if (diff == TX_DESC_CNT)
256 diff = MAX_TX_DESC_CNT;
257 }
258 return (bp->tx_ring_size - diff);
259 }
260
261 static u32
262 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
263 {
264 u32 val;
265
266 spin_lock_bh(&bp->indirect_lock);
267 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
268 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
269 spin_unlock_bh(&bp->indirect_lock);
270 return val;
271 }
272
273 static void
274 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
275 {
276 spin_lock_bh(&bp->indirect_lock);
277 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
278 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
279 spin_unlock_bh(&bp->indirect_lock);
280 }
281
282 static void
283 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
284 {
285 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
286 }
287
288 static u32
289 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
290 {
291 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
292 }
293
294 static void
295 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
296 {
297 offset += cid_addr;
298 spin_lock_bh(&bp->indirect_lock);
299 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
300 int i;
301
302 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
303 REG_WR(bp, BNX2_CTX_CTX_CTRL,
304 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
305 for (i = 0; i < 5; i++) {
306 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
307 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
308 break;
309 udelay(5);
310 }
311 } else {
312 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
313 REG_WR(bp, BNX2_CTX_DATA, val);
314 }
315 spin_unlock_bh(&bp->indirect_lock);
316 }
317
318 static int
319 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
320 {
321 u32 val1;
322 int i, ret;
323
324 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
325 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
326 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
327
328 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
329 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
330
331 udelay(40);
332 }
333
334 val1 = (bp->phy_addr << 21) | (reg << 16) |
335 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
336 BNX2_EMAC_MDIO_COMM_START_BUSY;
337 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
338
339 for (i = 0; i < 50; i++) {
340 udelay(10);
341
342 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
343 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
344 udelay(5);
345
346 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
347 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
348
349 break;
350 }
351 }
352
353 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
354 *val = 0x0;
355 ret = -EBUSY;
356 }
357 else {
358 *val = val1;
359 ret = 0;
360 }
361
362 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
363 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
364 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
365
366 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
367 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
368
369 udelay(40);
370 }
371
372 return ret;
373 }
374
375 static int
376 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
377 {
378 u32 val1;
379 int i, ret;
380
381 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
382 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
383 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
384
385 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
386 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
387
388 udelay(40);
389 }
390
391 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
392 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
393 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
394 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
395
396 for (i = 0; i < 50; i++) {
397 udelay(10);
398
399 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
400 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
401 udelay(5);
402 break;
403 }
404 }
405
406 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
407 ret = -EBUSY;
408 else
409 ret = 0;
410
411 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
412 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
413 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
414
415 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
416 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
417
418 udelay(40);
419 }
420
421 return ret;
422 }
423
424 static void
425 bnx2_disable_int(struct bnx2 *bp)
426 {
427 int i;
428 struct bnx2_napi *bnapi;
429
430 for (i = 0; i < bp->irq_nvecs; i++) {
431 bnapi = &bp->bnx2_napi[i];
432 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
433 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
434 }
435 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
436 }
437
438 static void
439 bnx2_enable_int(struct bnx2 *bp)
440 {
441 int i;
442 struct bnx2_napi *bnapi;
443
444 for (i = 0; i < bp->irq_nvecs; i++) {
445 bnapi = &bp->bnx2_napi[i];
446
447 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
448 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
449 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
450 bnapi->last_status_idx);
451
452 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
453 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
454 bnapi->last_status_idx);
455 }
456 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
457 }
458
459 static void
460 bnx2_disable_int_sync(struct bnx2 *bp)
461 {
462 int i;
463
464 atomic_inc(&bp->intr_sem);
465 bnx2_disable_int(bp);
466 for (i = 0; i < bp->irq_nvecs; i++)
467 synchronize_irq(bp->irq_tbl[i].vector);
468 }
469
470 static void
471 bnx2_napi_disable(struct bnx2 *bp)
472 {
473 int i;
474
475 for (i = 0; i < bp->irq_nvecs; i++)
476 napi_disable(&bp->bnx2_napi[i].napi);
477 }
478
479 static void
480 bnx2_napi_enable(struct bnx2 *bp)
481 {
482 int i;
483
484 for (i = 0; i < bp->irq_nvecs; i++)
485 napi_enable(&bp->bnx2_napi[i].napi);
486 }
487
488 static void
489 bnx2_netif_stop(struct bnx2 *bp)
490 {
491 bnx2_disable_int_sync(bp);
492 if (netif_running(bp->dev)) {
493 bnx2_napi_disable(bp);
494 netif_tx_disable(bp->dev);
495 bp->dev->trans_start = jiffies; /* prevent tx timeout */
496 }
497 }
498
499 static void
500 bnx2_netif_start(struct bnx2 *bp)
501 {
502 if (atomic_dec_and_test(&bp->intr_sem)) {
503 if (netif_running(bp->dev)) {
504 netif_tx_wake_all_queues(bp->dev);
505 bnx2_napi_enable(bp);
506 bnx2_enable_int(bp);
507 }
508 }
509 }
510
511 static void
512 bnx2_free_tx_mem(struct bnx2 *bp)
513 {
514 int i;
515
516 for (i = 0; i < bp->num_tx_rings; i++) {
517 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
518 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
519
520 if (txr->tx_desc_ring) {
521 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
522 txr->tx_desc_ring,
523 txr->tx_desc_mapping);
524 txr->tx_desc_ring = NULL;
525 }
526 kfree(txr->tx_buf_ring);
527 txr->tx_buf_ring = NULL;
528 }
529 }
530
531 static void
532 bnx2_free_rx_mem(struct bnx2 *bp)
533 {
534 int i;
535
536 for (i = 0; i < bp->num_rx_rings; i++) {
537 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
538 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
539 int j;
540
541 for (j = 0; j < bp->rx_max_ring; j++) {
542 if (rxr->rx_desc_ring[j])
543 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
544 rxr->rx_desc_ring[j],
545 rxr->rx_desc_mapping[j]);
546 rxr->rx_desc_ring[j] = NULL;
547 }
548 if (rxr->rx_buf_ring)
549 vfree(rxr->rx_buf_ring);
550 rxr->rx_buf_ring = NULL;
551
552 for (j = 0; j < bp->rx_max_pg_ring; j++) {
553 if (rxr->rx_pg_desc_ring[j])
554 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
555 rxr->rx_pg_desc_ring[j],
556 rxr->rx_pg_desc_mapping[j]);
557 rxr->rx_pg_desc_ring[j] = NULL;
558 }
559 if (rxr->rx_pg_ring)
560 vfree(rxr->rx_pg_ring);
561 rxr->rx_pg_ring = NULL;
562 }
563 }
564
565 static int
566 bnx2_alloc_tx_mem(struct bnx2 *bp)
567 {
568 int i;
569
570 for (i = 0; i < bp->num_tx_rings; i++) {
571 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
572 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
573
574 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
575 if (txr->tx_buf_ring == NULL)
576 return -ENOMEM;
577
578 txr->tx_desc_ring =
579 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
580 &txr->tx_desc_mapping);
581 if (txr->tx_desc_ring == NULL)
582 return -ENOMEM;
583 }
584 return 0;
585 }
586
587 static int
588 bnx2_alloc_rx_mem(struct bnx2 *bp)
589 {
590 int i;
591
592 for (i = 0; i < bp->num_rx_rings; i++) {
593 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
594 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
595 int j;
596
597 rxr->rx_buf_ring =
598 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
599 if (rxr->rx_buf_ring == NULL)
600 return -ENOMEM;
601
602 memset(rxr->rx_buf_ring, 0,
603 SW_RXBD_RING_SIZE * bp->rx_max_ring);
604
605 for (j = 0; j < bp->rx_max_ring; j++) {
606 rxr->rx_desc_ring[j] =
607 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
608 &rxr->rx_desc_mapping[j]);
609 if (rxr->rx_desc_ring[j] == NULL)
610 return -ENOMEM;
611
612 }
613
614 if (bp->rx_pg_ring_size) {
615 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
616 bp->rx_max_pg_ring);
617 if (rxr->rx_pg_ring == NULL)
618 return -ENOMEM;
619
620 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
621 bp->rx_max_pg_ring);
622 }
623
624 for (j = 0; j < bp->rx_max_pg_ring; j++) {
625 rxr->rx_pg_desc_ring[j] =
626 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
627 &rxr->rx_pg_desc_mapping[j]);
628 if (rxr->rx_pg_desc_ring[j] == NULL)
629 return -ENOMEM;
630
631 }
632 }
633 return 0;
634 }
635
636 static void
637 bnx2_free_mem(struct bnx2 *bp)
638 {
639 int i;
640 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
641
642 bnx2_free_tx_mem(bp);
643 bnx2_free_rx_mem(bp);
644
645 for (i = 0; i < bp->ctx_pages; i++) {
646 if (bp->ctx_blk[i]) {
647 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
648 bp->ctx_blk[i],
649 bp->ctx_blk_mapping[i]);
650 bp->ctx_blk[i] = NULL;
651 }
652 }
653 if (bnapi->status_blk.msi) {
654 pci_free_consistent(bp->pdev, bp->status_stats_size,
655 bnapi->status_blk.msi,
656 bp->status_blk_mapping);
657 bnapi->status_blk.msi = NULL;
658 bp->stats_blk = NULL;
659 }
660 }
661
662 static int
663 bnx2_alloc_mem(struct bnx2 *bp)
664 {
665 int i, status_blk_size, err;
666 struct bnx2_napi *bnapi;
667 void *status_blk;
668
669 /* Combine status and statistics blocks into one allocation. */
670 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
671 if (bp->flags & BNX2_FLAG_MSIX_CAP)
672 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
673 BNX2_SBLK_MSIX_ALIGN_SIZE);
674 bp->status_stats_size = status_blk_size +
675 sizeof(struct statistics_block);
676
677 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
678 &bp->status_blk_mapping);
679 if (status_blk == NULL)
680 goto alloc_mem_err;
681
682 memset(status_blk, 0, bp->status_stats_size);
683
684 bnapi = &bp->bnx2_napi[0];
685 bnapi->status_blk.msi = status_blk;
686 bnapi->hw_tx_cons_ptr =
687 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
688 bnapi->hw_rx_cons_ptr =
689 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
690 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
691 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
692 struct status_block_msix *sblk;
693
694 bnapi = &bp->bnx2_napi[i];
695
696 sblk = (void *) (status_blk +
697 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
698 bnapi->status_blk.msix = sblk;
699 bnapi->hw_tx_cons_ptr =
700 &sblk->status_tx_quick_consumer_index;
701 bnapi->hw_rx_cons_ptr =
702 &sblk->status_rx_quick_consumer_index;
703 bnapi->int_num = i << 24;
704 }
705 }
706
707 bp->stats_blk = status_blk + status_blk_size;
708
709 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
710
711 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
712 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
713 if (bp->ctx_pages == 0)
714 bp->ctx_pages = 1;
715 for (i = 0; i < bp->ctx_pages; i++) {
716 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
717 BCM_PAGE_SIZE,
718 &bp->ctx_blk_mapping[i]);
719 if (bp->ctx_blk[i] == NULL)
720 goto alloc_mem_err;
721 }
722 }
723
724 err = bnx2_alloc_rx_mem(bp);
725 if (err)
726 goto alloc_mem_err;
727
728 err = bnx2_alloc_tx_mem(bp);
729 if (err)
730 goto alloc_mem_err;
731
732 return 0;
733
734 alloc_mem_err:
735 bnx2_free_mem(bp);
736 return -ENOMEM;
737 }
738
739 static void
740 bnx2_report_fw_link(struct bnx2 *bp)
741 {
742 u32 fw_link_status = 0;
743
744 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
745 return;
746
747 if (bp->link_up) {
748 u32 bmsr;
749
750 switch (bp->line_speed) {
751 case SPEED_10:
752 if (bp->duplex == DUPLEX_HALF)
753 fw_link_status = BNX2_LINK_STATUS_10HALF;
754 else
755 fw_link_status = BNX2_LINK_STATUS_10FULL;
756 break;
757 case SPEED_100:
758 if (bp->duplex == DUPLEX_HALF)
759 fw_link_status = BNX2_LINK_STATUS_100HALF;
760 else
761 fw_link_status = BNX2_LINK_STATUS_100FULL;
762 break;
763 case SPEED_1000:
764 if (bp->duplex == DUPLEX_HALF)
765 fw_link_status = BNX2_LINK_STATUS_1000HALF;
766 else
767 fw_link_status = BNX2_LINK_STATUS_1000FULL;
768 break;
769 case SPEED_2500:
770 if (bp->duplex == DUPLEX_HALF)
771 fw_link_status = BNX2_LINK_STATUS_2500HALF;
772 else
773 fw_link_status = BNX2_LINK_STATUS_2500FULL;
774 break;
775 }
776
777 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
778
779 if (bp->autoneg) {
780 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
781
782 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
783 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
784
785 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
786 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
787 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
788 else
789 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
790 }
791 }
792 else
793 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
794
795 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
796 }
797
798 static char *
799 bnx2_xceiver_str(struct bnx2 *bp)
800 {
801 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
802 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
803 "Copper"));
804 }
805
806 static void
807 bnx2_report_link(struct bnx2 *bp)
808 {
809 if (bp->link_up) {
810 netif_carrier_on(bp->dev);
811 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
812 bnx2_xceiver_str(bp));
813
814 printk("%d Mbps ", bp->line_speed);
815
816 if (bp->duplex == DUPLEX_FULL)
817 printk("full duplex");
818 else
819 printk("half duplex");
820
821 if (bp->flow_ctrl) {
822 if (bp->flow_ctrl & FLOW_CTRL_RX) {
823 printk(", receive ");
824 if (bp->flow_ctrl & FLOW_CTRL_TX)
825 printk("& transmit ");
826 }
827 else {
828 printk(", transmit ");
829 }
830 printk("flow control ON");
831 }
832 printk("\n");
833 }
834 else {
835 netif_carrier_off(bp->dev);
836 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
837 bnx2_xceiver_str(bp));
838 }
839
840 bnx2_report_fw_link(bp);
841 }
842
843 static void
844 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
845 {
846 u32 local_adv, remote_adv;
847
848 bp->flow_ctrl = 0;
849 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
850 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
851
852 if (bp->duplex == DUPLEX_FULL) {
853 bp->flow_ctrl = bp->req_flow_ctrl;
854 }
855 return;
856 }
857
858 if (bp->duplex != DUPLEX_FULL) {
859 return;
860 }
861
862 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
863 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
864 u32 val;
865
866 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
867 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
868 bp->flow_ctrl |= FLOW_CTRL_TX;
869 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
870 bp->flow_ctrl |= FLOW_CTRL_RX;
871 return;
872 }
873
874 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
875 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
876
877 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
878 u32 new_local_adv = 0;
879 u32 new_remote_adv = 0;
880
881 if (local_adv & ADVERTISE_1000XPAUSE)
882 new_local_adv |= ADVERTISE_PAUSE_CAP;
883 if (local_adv & ADVERTISE_1000XPSE_ASYM)
884 new_local_adv |= ADVERTISE_PAUSE_ASYM;
885 if (remote_adv & ADVERTISE_1000XPAUSE)
886 new_remote_adv |= ADVERTISE_PAUSE_CAP;
887 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
888 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
889
890 local_adv = new_local_adv;
891 remote_adv = new_remote_adv;
892 }
893
894 /* See Table 28B-3 of 802.3ab-1999 spec. */
895 if (local_adv & ADVERTISE_PAUSE_CAP) {
896 if(local_adv & ADVERTISE_PAUSE_ASYM) {
897 if (remote_adv & ADVERTISE_PAUSE_CAP) {
898 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
899 }
900 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
901 bp->flow_ctrl = FLOW_CTRL_RX;
902 }
903 }
904 else {
905 if (remote_adv & ADVERTISE_PAUSE_CAP) {
906 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
907 }
908 }
909 }
910 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
911 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
912 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
913
914 bp->flow_ctrl = FLOW_CTRL_TX;
915 }
916 }
917 }
918
919 static int
920 bnx2_5709s_linkup(struct bnx2 *bp)
921 {
922 u32 val, speed;
923
924 bp->link_up = 1;
925
926 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
927 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
928 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
929
930 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
931 bp->line_speed = bp->req_line_speed;
932 bp->duplex = bp->req_duplex;
933 return 0;
934 }
935 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
936 switch (speed) {
937 case MII_BNX2_GP_TOP_AN_SPEED_10:
938 bp->line_speed = SPEED_10;
939 break;
940 case MII_BNX2_GP_TOP_AN_SPEED_100:
941 bp->line_speed = SPEED_100;
942 break;
943 case MII_BNX2_GP_TOP_AN_SPEED_1G:
944 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
945 bp->line_speed = SPEED_1000;
946 break;
947 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
948 bp->line_speed = SPEED_2500;
949 break;
950 }
951 if (val & MII_BNX2_GP_TOP_AN_FD)
952 bp->duplex = DUPLEX_FULL;
953 else
954 bp->duplex = DUPLEX_HALF;
955 return 0;
956 }
957
958 static int
959 bnx2_5708s_linkup(struct bnx2 *bp)
960 {
961 u32 val;
962
963 bp->link_up = 1;
964 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
965 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
966 case BCM5708S_1000X_STAT1_SPEED_10:
967 bp->line_speed = SPEED_10;
968 break;
969 case BCM5708S_1000X_STAT1_SPEED_100:
970 bp->line_speed = SPEED_100;
971 break;
972 case BCM5708S_1000X_STAT1_SPEED_1G:
973 bp->line_speed = SPEED_1000;
974 break;
975 case BCM5708S_1000X_STAT1_SPEED_2G5:
976 bp->line_speed = SPEED_2500;
977 break;
978 }
979 if (val & BCM5708S_1000X_STAT1_FD)
980 bp->duplex = DUPLEX_FULL;
981 else
982 bp->duplex = DUPLEX_HALF;
983
984 return 0;
985 }
986
987 static int
988 bnx2_5706s_linkup(struct bnx2 *bp)
989 {
990 u32 bmcr, local_adv, remote_adv, common;
991
992 bp->link_up = 1;
993 bp->line_speed = SPEED_1000;
994
995 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
996 if (bmcr & BMCR_FULLDPLX) {
997 bp->duplex = DUPLEX_FULL;
998 }
999 else {
1000 bp->duplex = DUPLEX_HALF;
1001 }
1002
1003 if (!(bmcr & BMCR_ANENABLE)) {
1004 return 0;
1005 }
1006
1007 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1008 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1009
1010 common = local_adv & remote_adv;
1011 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1012
1013 if (common & ADVERTISE_1000XFULL) {
1014 bp->duplex = DUPLEX_FULL;
1015 }
1016 else {
1017 bp->duplex = DUPLEX_HALF;
1018 }
1019 }
1020
1021 return 0;
1022 }
1023
1024 static int
1025 bnx2_copper_linkup(struct bnx2 *bp)
1026 {
1027 u32 bmcr;
1028
1029 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1030 if (bmcr & BMCR_ANENABLE) {
1031 u32 local_adv, remote_adv, common;
1032
1033 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1034 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1035
1036 common = local_adv & (remote_adv >> 2);
1037 if (common & ADVERTISE_1000FULL) {
1038 bp->line_speed = SPEED_1000;
1039 bp->duplex = DUPLEX_FULL;
1040 }
1041 else if (common & ADVERTISE_1000HALF) {
1042 bp->line_speed = SPEED_1000;
1043 bp->duplex = DUPLEX_HALF;
1044 }
1045 else {
1046 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1047 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1048
1049 common = local_adv & remote_adv;
1050 if (common & ADVERTISE_100FULL) {
1051 bp->line_speed = SPEED_100;
1052 bp->duplex = DUPLEX_FULL;
1053 }
1054 else if (common & ADVERTISE_100HALF) {
1055 bp->line_speed = SPEED_100;
1056 bp->duplex = DUPLEX_HALF;
1057 }
1058 else if (common & ADVERTISE_10FULL) {
1059 bp->line_speed = SPEED_10;
1060 bp->duplex = DUPLEX_FULL;
1061 }
1062 else if (common & ADVERTISE_10HALF) {
1063 bp->line_speed = SPEED_10;
1064 bp->duplex = DUPLEX_HALF;
1065 }
1066 else {
1067 bp->line_speed = 0;
1068 bp->link_up = 0;
1069 }
1070 }
1071 }
1072 else {
1073 if (bmcr & BMCR_SPEED100) {
1074 bp->line_speed = SPEED_100;
1075 }
1076 else {
1077 bp->line_speed = SPEED_10;
1078 }
1079 if (bmcr & BMCR_FULLDPLX) {
1080 bp->duplex = DUPLEX_FULL;
1081 }
1082 else {
1083 bp->duplex = DUPLEX_HALF;
1084 }
1085 }
1086
1087 return 0;
1088 }
1089
1090 static void
1091 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1092 {
1093 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1094
1095 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1096 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1097 val |= 0x02 << 8;
1098
1099 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1100 u32 lo_water, hi_water;
1101
1102 if (bp->flow_ctrl & FLOW_CTRL_TX)
1103 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1104 else
1105 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1106 if (lo_water >= bp->rx_ring_size)
1107 lo_water = 0;
1108
1109 hi_water = bp->rx_ring_size / 4;
1110
1111 if (hi_water <= lo_water)
1112 lo_water = 0;
1113
1114 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1115 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1116
1117 if (hi_water > 0xf)
1118 hi_water = 0xf;
1119 else if (hi_water == 0)
1120 lo_water = 0;
1121 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1122 }
1123 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1124 }
1125
1126 static void
1127 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1128 {
1129 int i;
1130 u32 cid;
1131
1132 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1133 if (i == 1)
1134 cid = RX_RSS_CID;
1135 bnx2_init_rx_context(bp, cid);
1136 }
1137 }
1138
1139 static void
1140 bnx2_set_mac_link(struct bnx2 *bp)
1141 {
1142 u32 val;
1143
1144 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1145 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1146 (bp->duplex == DUPLEX_HALF)) {
1147 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1148 }
1149
1150 /* Configure the EMAC mode register. */
1151 val = REG_RD(bp, BNX2_EMAC_MODE);
1152
1153 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1154 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1155 BNX2_EMAC_MODE_25G_MODE);
1156
1157 if (bp->link_up) {
1158 switch (bp->line_speed) {
1159 case SPEED_10:
1160 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1161 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1162 break;
1163 }
1164 /* fall through */
1165 case SPEED_100:
1166 val |= BNX2_EMAC_MODE_PORT_MII;
1167 break;
1168 case SPEED_2500:
1169 val |= BNX2_EMAC_MODE_25G_MODE;
1170 /* fall through */
1171 case SPEED_1000:
1172 val |= BNX2_EMAC_MODE_PORT_GMII;
1173 break;
1174 }
1175 }
1176 else {
1177 val |= BNX2_EMAC_MODE_PORT_GMII;
1178 }
1179
1180 /* Set the MAC to operate in the appropriate duplex mode. */
1181 if (bp->duplex == DUPLEX_HALF)
1182 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1183 REG_WR(bp, BNX2_EMAC_MODE, val);
1184
1185 /* Enable/disable rx PAUSE. */
1186 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1187
1188 if (bp->flow_ctrl & FLOW_CTRL_RX)
1189 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1190 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1191
1192 /* Enable/disable tx PAUSE. */
1193 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1194 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1195
1196 if (bp->flow_ctrl & FLOW_CTRL_TX)
1197 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1198 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1199
1200 /* Acknowledge the interrupt. */
1201 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1202
1203 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1204 bnx2_init_all_rx_contexts(bp);
1205 }
1206
1207 static void
1208 bnx2_enable_bmsr1(struct bnx2 *bp)
1209 {
1210 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1211 (CHIP_NUM(bp) == CHIP_NUM_5709))
1212 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1213 MII_BNX2_BLK_ADDR_GP_STATUS);
1214 }
1215
1216 static void
1217 bnx2_disable_bmsr1(struct bnx2 *bp)
1218 {
1219 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1220 (CHIP_NUM(bp) == CHIP_NUM_5709))
1221 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1222 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1223 }
1224
1225 static int
1226 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1227 {
1228 u32 up1;
1229 int ret = 1;
1230
1231 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1232 return 0;
1233
1234 if (bp->autoneg & AUTONEG_SPEED)
1235 bp->advertising |= ADVERTISED_2500baseX_Full;
1236
1237 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1238 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1239
1240 bnx2_read_phy(bp, bp->mii_up1, &up1);
1241 if (!(up1 & BCM5708S_UP1_2G5)) {
1242 up1 |= BCM5708S_UP1_2G5;
1243 bnx2_write_phy(bp, bp->mii_up1, up1);
1244 ret = 0;
1245 }
1246
1247 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1248 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1249 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1250
1251 return ret;
1252 }
1253
1254 static int
1255 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1256 {
1257 u32 up1;
1258 int ret = 0;
1259
1260 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1261 return 0;
1262
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1264 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1265
1266 bnx2_read_phy(bp, bp->mii_up1, &up1);
1267 if (up1 & BCM5708S_UP1_2G5) {
1268 up1 &= ~BCM5708S_UP1_2G5;
1269 bnx2_write_phy(bp, bp->mii_up1, up1);
1270 ret = 1;
1271 }
1272
1273 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1274 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1275 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1276
1277 return ret;
1278 }
1279
1280 static void
1281 bnx2_enable_forced_2g5(struct bnx2 *bp)
1282 {
1283 u32 bmcr;
1284
1285 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1286 return;
1287
1288 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1289 u32 val;
1290
1291 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1292 MII_BNX2_BLK_ADDR_SERDES_DIG);
1293 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1294 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1295 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1296 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1297
1298 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1299 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1300 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1301
1302 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1303 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1304 bmcr |= BCM5708S_BMCR_FORCE_2500;
1305 }
1306
1307 if (bp->autoneg & AUTONEG_SPEED) {
1308 bmcr &= ~BMCR_ANENABLE;
1309 if (bp->req_duplex == DUPLEX_FULL)
1310 bmcr |= BMCR_FULLDPLX;
1311 }
1312 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1313 }
1314
1315 static void
1316 bnx2_disable_forced_2g5(struct bnx2 *bp)
1317 {
1318 u32 bmcr;
1319
1320 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1321 return;
1322
1323 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1324 u32 val;
1325
1326 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1327 MII_BNX2_BLK_ADDR_SERDES_DIG);
1328 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1329 val &= ~MII_BNX2_SD_MISC1_FORCE;
1330 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1331
1332 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1333 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1334 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1335
1336 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1337 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1338 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1339 }
1340
1341 if (bp->autoneg & AUTONEG_SPEED)
1342 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1343 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1344 }
1345
1346 static void
1347 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1348 {
1349 u32 val;
1350
1351 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1352 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1353 if (start)
1354 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1355 else
1356 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1357 }
1358
1359 static int
1360 bnx2_set_link(struct bnx2 *bp)
1361 {
1362 u32 bmsr;
1363 u8 link_up;
1364
1365 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1366 bp->link_up = 1;
1367 return 0;
1368 }
1369
1370 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1371 return 0;
1372
1373 link_up = bp->link_up;
1374
1375 bnx2_enable_bmsr1(bp);
1376 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1377 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1378 bnx2_disable_bmsr1(bp);
1379
1380 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1381 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1382 u32 val, an_dbg;
1383
1384 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1385 bnx2_5706s_force_link_dn(bp, 0);
1386 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1387 }
1388 val = REG_RD(bp, BNX2_EMAC_STATUS);
1389
1390 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1391 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1392 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1393
1394 if ((val & BNX2_EMAC_STATUS_LINK) &&
1395 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1396 bmsr |= BMSR_LSTATUS;
1397 else
1398 bmsr &= ~BMSR_LSTATUS;
1399 }
1400
1401 if (bmsr & BMSR_LSTATUS) {
1402 bp->link_up = 1;
1403
1404 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1405 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1406 bnx2_5706s_linkup(bp);
1407 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1408 bnx2_5708s_linkup(bp);
1409 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1410 bnx2_5709s_linkup(bp);
1411 }
1412 else {
1413 bnx2_copper_linkup(bp);
1414 }
1415 bnx2_resolve_flow_ctrl(bp);
1416 }
1417 else {
1418 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1419 (bp->autoneg & AUTONEG_SPEED))
1420 bnx2_disable_forced_2g5(bp);
1421
1422 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1423 u32 bmcr;
1424
1425 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1426 bmcr |= BMCR_ANENABLE;
1427 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1428
1429 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1430 }
1431 bp->link_up = 0;
1432 }
1433
1434 if (bp->link_up != link_up) {
1435 bnx2_report_link(bp);
1436 }
1437
1438 bnx2_set_mac_link(bp);
1439
1440 return 0;
1441 }
1442
1443 static int
1444 bnx2_reset_phy(struct bnx2 *bp)
1445 {
1446 int i;
1447 u32 reg;
1448
1449 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1450
1451 #define PHY_RESET_MAX_WAIT 100
1452 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1453 udelay(10);
1454
1455 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1456 if (!(reg & BMCR_RESET)) {
1457 udelay(20);
1458 break;
1459 }
1460 }
1461 if (i == PHY_RESET_MAX_WAIT) {
1462 return -EBUSY;
1463 }
1464 return 0;
1465 }
1466
1467 static u32
1468 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1469 {
1470 u32 adv = 0;
1471
1472 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1473 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1474
1475 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1476 adv = ADVERTISE_1000XPAUSE;
1477 }
1478 else {
1479 adv = ADVERTISE_PAUSE_CAP;
1480 }
1481 }
1482 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1483 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1484 adv = ADVERTISE_1000XPSE_ASYM;
1485 }
1486 else {
1487 adv = ADVERTISE_PAUSE_ASYM;
1488 }
1489 }
1490 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1491 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1492 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1493 }
1494 else {
1495 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496 }
1497 }
1498 return adv;
1499 }
1500
1501 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1502
1503 static int
1504 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1505 __releases(&bp->phy_lock)
1506 __acquires(&bp->phy_lock)
1507 {
1508 u32 speed_arg = 0, pause_adv;
1509
1510 pause_adv = bnx2_phy_get_pause_adv(bp);
1511
1512 if (bp->autoneg & AUTONEG_SPEED) {
1513 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1514 if (bp->advertising & ADVERTISED_10baseT_Half)
1515 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1516 if (bp->advertising & ADVERTISED_10baseT_Full)
1517 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1518 if (bp->advertising & ADVERTISED_100baseT_Half)
1519 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1520 if (bp->advertising & ADVERTISED_100baseT_Full)
1521 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1522 if (bp->advertising & ADVERTISED_1000baseT_Full)
1523 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1524 if (bp->advertising & ADVERTISED_2500baseX_Full)
1525 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1526 } else {
1527 if (bp->req_line_speed == SPEED_2500)
1528 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1529 else if (bp->req_line_speed == SPEED_1000)
1530 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1531 else if (bp->req_line_speed == SPEED_100) {
1532 if (bp->req_duplex == DUPLEX_FULL)
1533 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1534 else
1535 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1536 } else if (bp->req_line_speed == SPEED_10) {
1537 if (bp->req_duplex == DUPLEX_FULL)
1538 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1539 else
1540 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1541 }
1542 }
1543
1544 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1545 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1546 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1547 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1548
1549 if (port == PORT_TP)
1550 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1551 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1552
1553 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1554
1555 spin_unlock_bh(&bp->phy_lock);
1556 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1557 spin_lock_bh(&bp->phy_lock);
1558
1559 return 0;
1560 }
1561
1562 static int
1563 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1564 __releases(&bp->phy_lock)
1565 __acquires(&bp->phy_lock)
1566 {
1567 u32 adv, bmcr;
1568 u32 new_adv = 0;
1569
1570 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1571 return (bnx2_setup_remote_phy(bp, port));
1572
1573 if (!(bp->autoneg & AUTONEG_SPEED)) {
1574 u32 new_bmcr;
1575 int force_link_down = 0;
1576
1577 if (bp->req_line_speed == SPEED_2500) {
1578 if (!bnx2_test_and_enable_2g5(bp))
1579 force_link_down = 1;
1580 } else if (bp->req_line_speed == SPEED_1000) {
1581 if (bnx2_test_and_disable_2g5(bp))
1582 force_link_down = 1;
1583 }
1584 bnx2_read_phy(bp, bp->mii_adv, &adv);
1585 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1586
1587 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1588 new_bmcr = bmcr & ~BMCR_ANENABLE;
1589 new_bmcr |= BMCR_SPEED1000;
1590
1591 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1592 if (bp->req_line_speed == SPEED_2500)
1593 bnx2_enable_forced_2g5(bp);
1594 else if (bp->req_line_speed == SPEED_1000) {
1595 bnx2_disable_forced_2g5(bp);
1596 new_bmcr &= ~0x2000;
1597 }
1598
1599 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1600 if (bp->req_line_speed == SPEED_2500)
1601 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1602 else
1603 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1604 }
1605
1606 if (bp->req_duplex == DUPLEX_FULL) {
1607 adv |= ADVERTISE_1000XFULL;
1608 new_bmcr |= BMCR_FULLDPLX;
1609 }
1610 else {
1611 adv |= ADVERTISE_1000XHALF;
1612 new_bmcr &= ~BMCR_FULLDPLX;
1613 }
1614 if ((new_bmcr != bmcr) || (force_link_down)) {
1615 /* Force a link down visible on the other side */
1616 if (bp->link_up) {
1617 bnx2_write_phy(bp, bp->mii_adv, adv &
1618 ~(ADVERTISE_1000XFULL |
1619 ADVERTISE_1000XHALF));
1620 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1621 BMCR_ANRESTART | BMCR_ANENABLE);
1622
1623 bp->link_up = 0;
1624 netif_carrier_off(bp->dev);
1625 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1626 bnx2_report_link(bp);
1627 }
1628 bnx2_write_phy(bp, bp->mii_adv, adv);
1629 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1630 } else {
1631 bnx2_resolve_flow_ctrl(bp);
1632 bnx2_set_mac_link(bp);
1633 }
1634 return 0;
1635 }
1636
1637 bnx2_test_and_enable_2g5(bp);
1638
1639 if (bp->advertising & ADVERTISED_1000baseT_Full)
1640 new_adv |= ADVERTISE_1000XFULL;
1641
1642 new_adv |= bnx2_phy_get_pause_adv(bp);
1643
1644 bnx2_read_phy(bp, bp->mii_adv, &adv);
1645 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1646
1647 bp->serdes_an_pending = 0;
1648 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1649 /* Force a link down visible on the other side */
1650 if (bp->link_up) {
1651 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1652 spin_unlock_bh(&bp->phy_lock);
1653 msleep(20);
1654 spin_lock_bh(&bp->phy_lock);
1655 }
1656
1657 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1658 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1659 BMCR_ANENABLE);
1660 /* Speed up link-up time when the link partner
1661 * does not autonegotiate which is very common
1662 * in blade servers. Some blade servers use
1663 * IPMI for kerboard input and it's important
1664 * to minimize link disruptions. Autoneg. involves
1665 * exchanging base pages plus 3 next pages and
1666 * normally completes in about 120 msec.
1667 */
1668 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1669 bp->serdes_an_pending = 1;
1670 mod_timer(&bp->timer, jiffies + bp->current_interval);
1671 } else {
1672 bnx2_resolve_flow_ctrl(bp);
1673 bnx2_set_mac_link(bp);
1674 }
1675
1676 return 0;
1677 }
1678
1679 #define ETHTOOL_ALL_FIBRE_SPEED \
1680 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1681 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1682 (ADVERTISED_1000baseT_Full)
1683
1684 #define ETHTOOL_ALL_COPPER_SPEED \
1685 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1686 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1687 ADVERTISED_1000baseT_Full)
1688
1689 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1690 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1691
1692 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1693
1694 static void
1695 bnx2_set_default_remote_link(struct bnx2 *bp)
1696 {
1697 u32 link;
1698
1699 if (bp->phy_port == PORT_TP)
1700 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1701 else
1702 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1703
1704 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1705 bp->req_line_speed = 0;
1706 bp->autoneg |= AUTONEG_SPEED;
1707 bp->advertising = ADVERTISED_Autoneg;
1708 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1709 bp->advertising |= ADVERTISED_10baseT_Half;
1710 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1711 bp->advertising |= ADVERTISED_10baseT_Full;
1712 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1713 bp->advertising |= ADVERTISED_100baseT_Half;
1714 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1715 bp->advertising |= ADVERTISED_100baseT_Full;
1716 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1717 bp->advertising |= ADVERTISED_1000baseT_Full;
1718 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1719 bp->advertising |= ADVERTISED_2500baseX_Full;
1720 } else {
1721 bp->autoneg = 0;
1722 bp->advertising = 0;
1723 bp->req_duplex = DUPLEX_FULL;
1724 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1725 bp->req_line_speed = SPEED_10;
1726 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1727 bp->req_duplex = DUPLEX_HALF;
1728 }
1729 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1730 bp->req_line_speed = SPEED_100;
1731 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1732 bp->req_duplex = DUPLEX_HALF;
1733 }
1734 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1735 bp->req_line_speed = SPEED_1000;
1736 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1737 bp->req_line_speed = SPEED_2500;
1738 }
1739 }
1740
1741 static void
1742 bnx2_set_default_link(struct bnx2 *bp)
1743 {
1744 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1745 bnx2_set_default_remote_link(bp);
1746 return;
1747 }
1748
1749 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1750 bp->req_line_speed = 0;
1751 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1752 u32 reg;
1753
1754 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1755
1756 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1757 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1758 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1759 bp->autoneg = 0;
1760 bp->req_line_speed = bp->line_speed = SPEED_1000;
1761 bp->req_duplex = DUPLEX_FULL;
1762 }
1763 } else
1764 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1765 }
1766
1767 static void
1768 bnx2_send_heart_beat(struct bnx2 *bp)
1769 {
1770 u32 msg;
1771 u32 addr;
1772
1773 spin_lock(&bp->indirect_lock);
1774 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1775 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1776 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1777 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1778 spin_unlock(&bp->indirect_lock);
1779 }
1780
1781 static void
1782 bnx2_remote_phy_event(struct bnx2 *bp)
1783 {
1784 u32 msg;
1785 u8 link_up = bp->link_up;
1786 u8 old_port;
1787
1788 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1789
1790 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1791 bnx2_send_heart_beat(bp);
1792
1793 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1794
1795 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1796 bp->link_up = 0;
1797 else {
1798 u32 speed;
1799
1800 bp->link_up = 1;
1801 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1802 bp->duplex = DUPLEX_FULL;
1803 switch (speed) {
1804 case BNX2_LINK_STATUS_10HALF:
1805 bp->duplex = DUPLEX_HALF;
1806 case BNX2_LINK_STATUS_10FULL:
1807 bp->line_speed = SPEED_10;
1808 break;
1809 case BNX2_LINK_STATUS_100HALF:
1810 bp->duplex = DUPLEX_HALF;
1811 case BNX2_LINK_STATUS_100BASE_T4:
1812 case BNX2_LINK_STATUS_100FULL:
1813 bp->line_speed = SPEED_100;
1814 break;
1815 case BNX2_LINK_STATUS_1000HALF:
1816 bp->duplex = DUPLEX_HALF;
1817 case BNX2_LINK_STATUS_1000FULL:
1818 bp->line_speed = SPEED_1000;
1819 break;
1820 case BNX2_LINK_STATUS_2500HALF:
1821 bp->duplex = DUPLEX_HALF;
1822 case BNX2_LINK_STATUS_2500FULL:
1823 bp->line_speed = SPEED_2500;
1824 break;
1825 default:
1826 bp->line_speed = 0;
1827 break;
1828 }
1829
1830 bp->flow_ctrl = 0;
1831 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1832 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1833 if (bp->duplex == DUPLEX_FULL)
1834 bp->flow_ctrl = bp->req_flow_ctrl;
1835 } else {
1836 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1837 bp->flow_ctrl |= FLOW_CTRL_TX;
1838 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1839 bp->flow_ctrl |= FLOW_CTRL_RX;
1840 }
1841
1842 old_port = bp->phy_port;
1843 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
1844 bp->phy_port = PORT_FIBRE;
1845 else
1846 bp->phy_port = PORT_TP;
1847
1848 if (old_port != bp->phy_port)
1849 bnx2_set_default_link(bp);
1850
1851 }
1852 if (bp->link_up != link_up)
1853 bnx2_report_link(bp);
1854
1855 bnx2_set_mac_link(bp);
1856 }
1857
1858 static int
1859 bnx2_set_remote_link(struct bnx2 *bp)
1860 {
1861 u32 evt_code;
1862
1863 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
1864 switch (evt_code) {
1865 case BNX2_FW_EVT_CODE_LINK_EVENT:
1866 bnx2_remote_phy_event(bp);
1867 break;
1868 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
1869 default:
1870 bnx2_send_heart_beat(bp);
1871 break;
1872 }
1873 return 0;
1874 }
1875
1876 static int
1877 bnx2_setup_copper_phy(struct bnx2 *bp)
1878 __releases(&bp->phy_lock)
1879 __acquires(&bp->phy_lock)
1880 {
1881 u32 bmcr;
1882 u32 new_bmcr;
1883
1884 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1885
1886 if (bp->autoneg & AUTONEG_SPEED) {
1887 u32 adv_reg, adv1000_reg;
1888 u32 new_adv_reg = 0;
1889 u32 new_adv1000_reg = 0;
1890
1891 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
1892 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1893 ADVERTISE_PAUSE_ASYM);
1894
1895 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1896 adv1000_reg &= PHY_ALL_1000_SPEED;
1897
1898 if (bp->advertising & ADVERTISED_10baseT_Half)
1899 new_adv_reg |= ADVERTISE_10HALF;
1900 if (bp->advertising & ADVERTISED_10baseT_Full)
1901 new_adv_reg |= ADVERTISE_10FULL;
1902 if (bp->advertising & ADVERTISED_100baseT_Half)
1903 new_adv_reg |= ADVERTISE_100HALF;
1904 if (bp->advertising & ADVERTISED_100baseT_Full)
1905 new_adv_reg |= ADVERTISE_100FULL;
1906 if (bp->advertising & ADVERTISED_1000baseT_Full)
1907 new_adv1000_reg |= ADVERTISE_1000FULL;
1908
1909 new_adv_reg |= ADVERTISE_CSMA;
1910
1911 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1912
1913 if ((adv1000_reg != new_adv1000_reg) ||
1914 (adv_reg != new_adv_reg) ||
1915 ((bmcr & BMCR_ANENABLE) == 0)) {
1916
1917 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
1918 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1919 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
1920 BMCR_ANENABLE);
1921 }
1922 else if (bp->link_up) {
1923 /* Flow ctrl may have changed from auto to forced */
1924 /* or vice-versa. */
1925
1926 bnx2_resolve_flow_ctrl(bp);
1927 bnx2_set_mac_link(bp);
1928 }
1929 return 0;
1930 }
1931
1932 new_bmcr = 0;
1933 if (bp->req_line_speed == SPEED_100) {
1934 new_bmcr |= BMCR_SPEED100;
1935 }
1936 if (bp->req_duplex == DUPLEX_FULL) {
1937 new_bmcr |= BMCR_FULLDPLX;
1938 }
1939 if (new_bmcr != bmcr) {
1940 u32 bmsr;
1941
1942 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1943 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1944
1945 if (bmsr & BMSR_LSTATUS) {
1946 /* Force link down */
1947 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1948 spin_unlock_bh(&bp->phy_lock);
1949 msleep(50);
1950 spin_lock_bh(&bp->phy_lock);
1951
1952 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1953 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1954 }
1955
1956 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1957
1958 /* Normally, the new speed is setup after the link has
1959 * gone down and up again. In some cases, link will not go
1960 * down so we need to set up the new speed here.
1961 */
1962 if (bmsr & BMSR_LSTATUS) {
1963 bp->line_speed = bp->req_line_speed;
1964 bp->duplex = bp->req_duplex;
1965 bnx2_resolve_flow_ctrl(bp);
1966 bnx2_set_mac_link(bp);
1967 }
1968 } else {
1969 bnx2_resolve_flow_ctrl(bp);
1970 bnx2_set_mac_link(bp);
1971 }
1972 return 0;
1973 }
1974
1975 static int
1976 bnx2_setup_phy(struct bnx2 *bp, u8 port)
1977 __releases(&bp->phy_lock)
1978 __acquires(&bp->phy_lock)
1979 {
1980 if (bp->loopback == MAC_LOOPBACK)
1981 return 0;
1982
1983 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1984 return (bnx2_setup_serdes_phy(bp, port));
1985 }
1986 else {
1987 return (bnx2_setup_copper_phy(bp));
1988 }
1989 }
1990
1991 static int
1992 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
1993 {
1994 u32 val;
1995
1996 bp->mii_bmcr = MII_BMCR + 0x10;
1997 bp->mii_bmsr = MII_BMSR + 0x10;
1998 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
1999 bp->mii_adv = MII_ADVERTISE + 0x10;
2000 bp->mii_lpa = MII_LPA + 0x10;
2001 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2002
2003 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2004 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2005
2006 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2007 if (reset_phy)
2008 bnx2_reset_phy(bp);
2009
2010 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2011
2012 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2013 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2014 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2015 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2016
2017 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2018 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2019 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2020 val |= BCM5708S_UP1_2G5;
2021 else
2022 val &= ~BCM5708S_UP1_2G5;
2023 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2024
2025 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2026 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2027 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2028 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2029
2030 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2031
2032 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2033 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2034 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2035
2036 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2037
2038 return 0;
2039 }
2040
2041 static int
2042 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2043 {
2044 u32 val;
2045
2046 if (reset_phy)
2047 bnx2_reset_phy(bp);
2048
2049 bp->mii_up1 = BCM5708S_UP1;
2050
2051 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2052 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2053 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2054
2055 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2056 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2057 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2058
2059 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2060 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2061 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2062
2063 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2064 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2065 val |= BCM5708S_UP1_2G5;
2066 bnx2_write_phy(bp, BCM5708S_UP1, val);
2067 }
2068
2069 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2070 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2071 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2072 /* increase tx signal amplitude */
2073 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2074 BCM5708S_BLK_ADDR_TX_MISC);
2075 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2076 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2077 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2078 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2079 }
2080
2081 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2082 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2083
2084 if (val) {
2085 u32 is_backplane;
2086
2087 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2088 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2089 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2090 BCM5708S_BLK_ADDR_TX_MISC);
2091 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2092 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2093 BCM5708S_BLK_ADDR_DIG);
2094 }
2095 }
2096 return 0;
2097 }
2098
2099 static int
2100 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2101 {
2102 if (reset_phy)
2103 bnx2_reset_phy(bp);
2104
2105 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2106
2107 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2108 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2109
2110 if (bp->dev->mtu > 1500) {
2111 u32 val;
2112
2113 /* Set extended packet length bit */
2114 bnx2_write_phy(bp, 0x18, 0x7);
2115 bnx2_read_phy(bp, 0x18, &val);
2116 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2117
2118 bnx2_write_phy(bp, 0x1c, 0x6c00);
2119 bnx2_read_phy(bp, 0x1c, &val);
2120 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2121 }
2122 else {
2123 u32 val;
2124
2125 bnx2_write_phy(bp, 0x18, 0x7);
2126 bnx2_read_phy(bp, 0x18, &val);
2127 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2128
2129 bnx2_write_phy(bp, 0x1c, 0x6c00);
2130 bnx2_read_phy(bp, 0x1c, &val);
2131 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2132 }
2133
2134 return 0;
2135 }
2136
2137 static int
2138 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2139 {
2140 u32 val;
2141
2142 if (reset_phy)
2143 bnx2_reset_phy(bp);
2144
2145 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2146 bnx2_write_phy(bp, 0x18, 0x0c00);
2147 bnx2_write_phy(bp, 0x17, 0x000a);
2148 bnx2_write_phy(bp, 0x15, 0x310b);
2149 bnx2_write_phy(bp, 0x17, 0x201f);
2150 bnx2_write_phy(bp, 0x15, 0x9506);
2151 bnx2_write_phy(bp, 0x17, 0x401f);
2152 bnx2_write_phy(bp, 0x15, 0x14e2);
2153 bnx2_write_phy(bp, 0x18, 0x0400);
2154 }
2155
2156 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2157 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2158 MII_BNX2_DSP_EXPAND_REG | 0x8);
2159 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2160 val &= ~(1 << 8);
2161 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2162 }
2163
2164 if (bp->dev->mtu > 1500) {
2165 /* Set extended packet length bit */
2166 bnx2_write_phy(bp, 0x18, 0x7);
2167 bnx2_read_phy(bp, 0x18, &val);
2168 bnx2_write_phy(bp, 0x18, val | 0x4000);
2169
2170 bnx2_read_phy(bp, 0x10, &val);
2171 bnx2_write_phy(bp, 0x10, val | 0x1);
2172 }
2173 else {
2174 bnx2_write_phy(bp, 0x18, 0x7);
2175 bnx2_read_phy(bp, 0x18, &val);
2176 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2177
2178 bnx2_read_phy(bp, 0x10, &val);
2179 bnx2_write_phy(bp, 0x10, val & ~0x1);
2180 }
2181
2182 /* ethernet@wirespeed */
2183 bnx2_write_phy(bp, 0x18, 0x7007);
2184 bnx2_read_phy(bp, 0x18, &val);
2185 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2186 return 0;
2187 }
2188
2189
2190 static int
2191 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2192 __releases(&bp->phy_lock)
2193 __acquires(&bp->phy_lock)
2194 {
2195 u32 val;
2196 int rc = 0;
2197
2198 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2199 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2200
2201 bp->mii_bmcr = MII_BMCR;
2202 bp->mii_bmsr = MII_BMSR;
2203 bp->mii_bmsr1 = MII_BMSR;
2204 bp->mii_adv = MII_ADVERTISE;
2205 bp->mii_lpa = MII_LPA;
2206
2207 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2208
2209 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2210 goto setup_phy;
2211
2212 bnx2_read_phy(bp, MII_PHYSID1, &val);
2213 bp->phy_id = val << 16;
2214 bnx2_read_phy(bp, MII_PHYSID2, &val);
2215 bp->phy_id |= val & 0xffff;
2216
2217 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2218 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2219 rc = bnx2_init_5706s_phy(bp, reset_phy);
2220 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2221 rc = bnx2_init_5708s_phy(bp, reset_phy);
2222 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2223 rc = bnx2_init_5709s_phy(bp, reset_phy);
2224 }
2225 else {
2226 rc = bnx2_init_copper_phy(bp, reset_phy);
2227 }
2228
2229 setup_phy:
2230 if (!rc)
2231 rc = bnx2_setup_phy(bp, bp->phy_port);
2232
2233 return rc;
2234 }
2235
2236 static int
2237 bnx2_set_mac_loopback(struct bnx2 *bp)
2238 {
2239 u32 mac_mode;
2240
2241 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2242 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2243 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2244 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2245 bp->link_up = 1;
2246 return 0;
2247 }
2248
2249 static int bnx2_test_link(struct bnx2 *);
2250
2251 static int
2252 bnx2_set_phy_loopback(struct bnx2 *bp)
2253 {
2254 u32 mac_mode;
2255 int rc, i;
2256
2257 spin_lock_bh(&bp->phy_lock);
2258 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2259 BMCR_SPEED1000);
2260 spin_unlock_bh(&bp->phy_lock);
2261 if (rc)
2262 return rc;
2263
2264 for (i = 0; i < 10; i++) {
2265 if (bnx2_test_link(bp) == 0)
2266 break;
2267 msleep(100);
2268 }
2269
2270 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2271 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2272 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2273 BNX2_EMAC_MODE_25G_MODE);
2274
2275 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2276 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2277 bp->link_up = 1;
2278 return 0;
2279 }
2280
2281 static int
2282 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2283 {
2284 int i;
2285 u32 val;
2286
2287 bp->fw_wr_seq++;
2288 msg_data |= bp->fw_wr_seq;
2289
2290 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2291
2292 if (!ack)
2293 return 0;
2294
2295 /* wait for an acknowledgement. */
2296 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2297 msleep(10);
2298
2299 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2300
2301 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2302 break;
2303 }
2304 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2305 return 0;
2306
2307 /* If we timed out, inform the firmware that this is the case. */
2308 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2309 if (!silent)
2310 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2311 "%x\n", msg_data);
2312
2313 msg_data &= ~BNX2_DRV_MSG_CODE;
2314 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2315
2316 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2317
2318 return -EBUSY;
2319 }
2320
2321 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2322 return -EIO;
2323
2324 return 0;
2325 }
2326
2327 static int
2328 bnx2_init_5709_context(struct bnx2 *bp)
2329 {
2330 int i, ret = 0;
2331 u32 val;
2332
2333 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2334 val |= (BCM_PAGE_BITS - 8) << 16;
2335 REG_WR(bp, BNX2_CTX_COMMAND, val);
2336 for (i = 0; i < 10; i++) {
2337 val = REG_RD(bp, BNX2_CTX_COMMAND);
2338 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2339 break;
2340 udelay(2);
2341 }
2342 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2343 return -EBUSY;
2344
2345 for (i = 0; i < bp->ctx_pages; i++) {
2346 int j;
2347
2348 if (bp->ctx_blk[i])
2349 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2350 else
2351 return -ENOMEM;
2352
2353 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2354 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2355 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2356 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2357 (u64) bp->ctx_blk_mapping[i] >> 32);
2358 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2359 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2360 for (j = 0; j < 10; j++) {
2361
2362 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2363 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2364 break;
2365 udelay(5);
2366 }
2367 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2368 ret = -EBUSY;
2369 break;
2370 }
2371 }
2372 return ret;
2373 }
2374
2375 static void
2376 bnx2_init_context(struct bnx2 *bp)
2377 {
2378 u32 vcid;
2379
2380 vcid = 96;
2381 while (vcid) {
2382 u32 vcid_addr, pcid_addr, offset;
2383 int i;
2384
2385 vcid--;
2386
2387 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2388 u32 new_vcid;
2389
2390 vcid_addr = GET_PCID_ADDR(vcid);
2391 if (vcid & 0x8) {
2392 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2393 }
2394 else {
2395 new_vcid = vcid;
2396 }
2397 pcid_addr = GET_PCID_ADDR(new_vcid);
2398 }
2399 else {
2400 vcid_addr = GET_CID_ADDR(vcid);
2401 pcid_addr = vcid_addr;
2402 }
2403
2404 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2405 vcid_addr += (i << PHY_CTX_SHIFT);
2406 pcid_addr += (i << PHY_CTX_SHIFT);
2407
2408 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2409 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2410
2411 /* Zero out the context. */
2412 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2413 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2414 }
2415 }
2416 }
2417
2418 static int
2419 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2420 {
2421 u16 *good_mbuf;
2422 u32 good_mbuf_cnt;
2423 u32 val;
2424
2425 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2426 if (good_mbuf == NULL) {
2427 printk(KERN_ERR PFX "Failed to allocate memory in "
2428 "bnx2_alloc_bad_rbuf\n");
2429 return -ENOMEM;
2430 }
2431
2432 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2433 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2434
2435 good_mbuf_cnt = 0;
2436
2437 /* Allocate a bunch of mbufs and save the good ones in an array. */
2438 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2439 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2440 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2441 BNX2_RBUF_COMMAND_ALLOC_REQ);
2442
2443 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2444
2445 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2446
2447 /* The addresses with Bit 9 set are bad memory blocks. */
2448 if (!(val & (1 << 9))) {
2449 good_mbuf[good_mbuf_cnt] = (u16) val;
2450 good_mbuf_cnt++;
2451 }
2452
2453 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2454 }
2455
2456 /* Free the good ones back to the mbuf pool thus discarding
2457 * all the bad ones. */
2458 while (good_mbuf_cnt) {
2459 good_mbuf_cnt--;
2460
2461 val = good_mbuf[good_mbuf_cnt];
2462 val = (val << 9) | val | 1;
2463
2464 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2465 }
2466 kfree(good_mbuf);
2467 return 0;
2468 }
2469
2470 static void
2471 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2472 {
2473 u32 val;
2474
2475 val = (mac_addr[0] << 8) | mac_addr[1];
2476
2477 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2478
2479 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2480 (mac_addr[4] << 8) | mac_addr[5];
2481
2482 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2483 }
2484
2485 static inline int
2486 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2487 {
2488 dma_addr_t mapping;
2489 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2490 struct rx_bd *rxbd =
2491 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2492 struct page *page = alloc_page(GFP_ATOMIC);
2493
2494 if (!page)
2495 return -ENOMEM;
2496 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2497 PCI_DMA_FROMDEVICE);
2498 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2499 __free_page(page);
2500 return -EIO;
2501 }
2502
2503 rx_pg->page = page;
2504 pci_unmap_addr_set(rx_pg, mapping, mapping);
2505 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2506 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2507 return 0;
2508 }
2509
2510 static void
2511 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2512 {
2513 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2514 struct page *page = rx_pg->page;
2515
2516 if (!page)
2517 return;
2518
2519 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2520 PCI_DMA_FROMDEVICE);
2521
2522 __free_page(page);
2523 rx_pg->page = NULL;
2524 }
2525
2526 static inline int
2527 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2528 {
2529 struct sk_buff *skb;
2530 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2531 dma_addr_t mapping;
2532 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2533 unsigned long align;
2534
2535 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2536 if (skb == NULL) {
2537 return -ENOMEM;
2538 }
2539
2540 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2541 skb_reserve(skb, BNX2_RX_ALIGN - align);
2542
2543 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2544 PCI_DMA_FROMDEVICE);
2545 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2546 dev_kfree_skb(skb);
2547 return -EIO;
2548 }
2549
2550 rx_buf->skb = skb;
2551 pci_unmap_addr_set(rx_buf, mapping, mapping);
2552
2553 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2554 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2555
2556 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2557
2558 return 0;
2559 }
2560
2561 static int
2562 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2563 {
2564 struct status_block *sblk = bnapi->status_blk.msi;
2565 u32 new_link_state, old_link_state;
2566 int is_set = 1;
2567
2568 new_link_state = sblk->status_attn_bits & event;
2569 old_link_state = sblk->status_attn_bits_ack & event;
2570 if (new_link_state != old_link_state) {
2571 if (new_link_state)
2572 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2573 else
2574 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2575 } else
2576 is_set = 0;
2577
2578 return is_set;
2579 }
2580
2581 static void
2582 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2583 {
2584 spin_lock(&bp->phy_lock);
2585
2586 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2587 bnx2_set_link(bp);
2588 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2589 bnx2_set_remote_link(bp);
2590
2591 spin_unlock(&bp->phy_lock);
2592
2593 }
2594
2595 static inline u16
2596 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2597 {
2598 u16 cons;
2599
2600 /* Tell compiler that status block fields can change. */
2601 barrier();
2602 cons = *bnapi->hw_tx_cons_ptr;
2603 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2604 cons++;
2605 return cons;
2606 }
2607
2608 static int
2609 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2610 {
2611 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2612 u16 hw_cons, sw_cons, sw_ring_cons;
2613 int tx_pkt = 0, index;
2614 struct netdev_queue *txq;
2615
2616 index = (bnapi - bp->bnx2_napi);
2617 txq = netdev_get_tx_queue(bp->dev, index);
2618
2619 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2620 sw_cons = txr->tx_cons;
2621
2622 while (sw_cons != hw_cons) {
2623 struct sw_tx_bd *tx_buf;
2624 struct sk_buff *skb;
2625 int i, last;
2626
2627 sw_ring_cons = TX_RING_IDX(sw_cons);
2628
2629 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2630 skb = tx_buf->skb;
2631
2632 /* partial BD completions possible with TSO packets */
2633 if (skb_is_gso(skb)) {
2634 u16 last_idx, last_ring_idx;
2635
2636 last_idx = sw_cons +
2637 skb_shinfo(skb)->nr_frags + 1;
2638 last_ring_idx = sw_ring_cons +
2639 skb_shinfo(skb)->nr_frags + 1;
2640 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2641 last_idx++;
2642 }
2643 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2644 break;
2645 }
2646 }
2647
2648 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2649
2650 tx_buf->skb = NULL;
2651 last = skb_shinfo(skb)->nr_frags;
2652
2653 for (i = 0; i < last; i++) {
2654 sw_cons = NEXT_TX_BD(sw_cons);
2655 }
2656
2657 sw_cons = NEXT_TX_BD(sw_cons);
2658
2659 dev_kfree_skb(skb);
2660 tx_pkt++;
2661 if (tx_pkt == budget)
2662 break;
2663
2664 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2665 }
2666
2667 txr->hw_tx_cons = hw_cons;
2668 txr->tx_cons = sw_cons;
2669
2670 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2671 * before checking for netif_tx_queue_stopped(). Without the
2672 * memory barrier, there is a small possibility that bnx2_start_xmit()
2673 * will miss it and cause the queue to be stopped forever.
2674 */
2675 smp_mb();
2676
2677 if (unlikely(netif_tx_queue_stopped(txq)) &&
2678 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2679 __netif_tx_lock(txq, smp_processor_id());
2680 if ((netif_tx_queue_stopped(txq)) &&
2681 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2682 netif_tx_wake_queue(txq);
2683 __netif_tx_unlock(txq);
2684 }
2685
2686 return tx_pkt;
2687 }
2688
2689 static void
2690 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2691 struct sk_buff *skb, int count)
2692 {
2693 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2694 struct rx_bd *cons_bd, *prod_bd;
2695 int i;
2696 u16 hw_prod, prod;
2697 u16 cons = rxr->rx_pg_cons;
2698
2699 cons_rx_pg = &rxr->rx_pg_ring[cons];
2700
2701 /* The caller was unable to allocate a new page to replace the
2702 * last one in the frags array, so we need to recycle that page
2703 * and then free the skb.
2704 */
2705 if (skb) {
2706 struct page *page;
2707 struct skb_shared_info *shinfo;
2708
2709 shinfo = skb_shinfo(skb);
2710 shinfo->nr_frags--;
2711 page = shinfo->frags[shinfo->nr_frags].page;
2712 shinfo->frags[shinfo->nr_frags].page = NULL;
2713
2714 cons_rx_pg->page = page;
2715 dev_kfree_skb(skb);
2716 }
2717
2718 hw_prod = rxr->rx_pg_prod;
2719
2720 for (i = 0; i < count; i++) {
2721 prod = RX_PG_RING_IDX(hw_prod);
2722
2723 prod_rx_pg = &rxr->rx_pg_ring[prod];
2724 cons_rx_pg = &rxr->rx_pg_ring[cons];
2725 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2726 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2727
2728 if (prod != cons) {
2729 prod_rx_pg->page = cons_rx_pg->page;
2730 cons_rx_pg->page = NULL;
2731 pci_unmap_addr_set(prod_rx_pg, mapping,
2732 pci_unmap_addr(cons_rx_pg, mapping));
2733
2734 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2735 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2736
2737 }
2738 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2739 hw_prod = NEXT_RX_BD(hw_prod);
2740 }
2741 rxr->rx_pg_prod = hw_prod;
2742 rxr->rx_pg_cons = cons;
2743 }
2744
2745 static inline void
2746 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2747 struct sk_buff *skb, u16 cons, u16 prod)
2748 {
2749 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2750 struct rx_bd *cons_bd, *prod_bd;
2751
2752 cons_rx_buf = &rxr->rx_buf_ring[cons];
2753 prod_rx_buf = &rxr->rx_buf_ring[prod];
2754
2755 pci_dma_sync_single_for_device(bp->pdev,
2756 pci_unmap_addr(cons_rx_buf, mapping),
2757 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2758
2759 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2760
2761 prod_rx_buf->skb = skb;
2762
2763 if (cons == prod)
2764 return;
2765
2766 pci_unmap_addr_set(prod_rx_buf, mapping,
2767 pci_unmap_addr(cons_rx_buf, mapping));
2768
2769 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2770 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2771 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2772 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2773 }
2774
2775 static int
2776 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2777 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2778 u32 ring_idx)
2779 {
2780 int err;
2781 u16 prod = ring_idx & 0xffff;
2782
2783 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2784 if (unlikely(err)) {
2785 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2786 if (hdr_len) {
2787 unsigned int raw_len = len + 4;
2788 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2789
2790 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2791 }
2792 return err;
2793 }
2794
2795 skb_reserve(skb, BNX2_RX_OFFSET);
2796 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2797 PCI_DMA_FROMDEVICE);
2798
2799 if (hdr_len == 0) {
2800 skb_put(skb, len);
2801 return 0;
2802 } else {
2803 unsigned int i, frag_len, frag_size, pages;
2804 struct sw_pg *rx_pg;
2805 u16 pg_cons = rxr->rx_pg_cons;
2806 u16 pg_prod = rxr->rx_pg_prod;
2807
2808 frag_size = len + 4 - hdr_len;
2809 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2810 skb_put(skb, hdr_len);
2811
2812 for (i = 0; i < pages; i++) {
2813 dma_addr_t mapping_old;
2814
2815 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2816 if (unlikely(frag_len <= 4)) {
2817 unsigned int tail = 4 - frag_len;
2818
2819 rxr->rx_pg_cons = pg_cons;
2820 rxr->rx_pg_prod = pg_prod;
2821 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2822 pages - i);
2823 skb->len -= tail;
2824 if (i == 0) {
2825 skb->tail -= tail;
2826 } else {
2827 skb_frag_t *frag =
2828 &skb_shinfo(skb)->frags[i - 1];
2829 frag->size -= tail;
2830 skb->data_len -= tail;
2831 skb->truesize -= tail;
2832 }
2833 return 0;
2834 }
2835 rx_pg = &rxr->rx_pg_ring[pg_cons];
2836
2837 /* Don't unmap yet. If we're unable to allocate a new
2838 * page, we need to recycle the page and the DMA addr.
2839 */
2840 mapping_old = pci_unmap_addr(rx_pg, mapping);
2841 if (i == pages - 1)
2842 frag_len -= 4;
2843
2844 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
2845 rx_pg->page = NULL;
2846
2847 err = bnx2_alloc_rx_page(bp, rxr,
2848 RX_PG_RING_IDX(pg_prod));
2849 if (unlikely(err)) {
2850 rxr->rx_pg_cons = pg_cons;
2851 rxr->rx_pg_prod = pg_prod;
2852 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
2853 pages - i);
2854 return err;
2855 }
2856
2857 pci_unmap_page(bp->pdev, mapping_old,
2858 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2859
2860 frag_size -= frag_len;
2861 skb->data_len += frag_len;
2862 skb->truesize += frag_len;
2863 skb->len += frag_len;
2864
2865 pg_prod = NEXT_RX_BD(pg_prod);
2866 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
2867 }
2868 rxr->rx_pg_prod = pg_prod;
2869 rxr->rx_pg_cons = pg_cons;
2870 }
2871 return 0;
2872 }
2873
2874 static inline u16
2875 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
2876 {
2877 u16 cons;
2878
2879 /* Tell compiler that status block fields can change. */
2880 barrier();
2881 cons = *bnapi->hw_rx_cons_ptr;
2882 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
2883 cons++;
2884 return cons;
2885 }
2886
2887 static int
2888 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2889 {
2890 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
2891 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2892 struct l2_fhdr *rx_hdr;
2893 int rx_pkt = 0, pg_ring_used = 0;
2894
2895 hw_cons = bnx2_get_hw_rx_cons(bnapi);
2896 sw_cons = rxr->rx_cons;
2897 sw_prod = rxr->rx_prod;
2898
2899 /* Memory barrier necessary as speculative reads of the rx
2900 * buffer can be ahead of the index in the status block
2901 */
2902 rmb();
2903 while (sw_cons != hw_cons) {
2904 unsigned int len, hdr_len;
2905 u32 status;
2906 struct sw_bd *rx_buf;
2907 struct sk_buff *skb;
2908 dma_addr_t dma_addr;
2909 u16 vtag = 0;
2910 int hw_vlan __maybe_unused = 0;
2911
2912 sw_ring_cons = RX_RING_IDX(sw_cons);
2913 sw_ring_prod = RX_RING_IDX(sw_prod);
2914
2915 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
2916 skb = rx_buf->skb;
2917
2918 rx_buf->skb = NULL;
2919
2920 dma_addr = pci_unmap_addr(rx_buf, mapping);
2921
2922 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
2923 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
2924 PCI_DMA_FROMDEVICE);
2925
2926 rx_hdr = (struct l2_fhdr *) skb->data;
2927 len = rx_hdr->l2_fhdr_pkt_len;
2928 status = rx_hdr->l2_fhdr_status;
2929
2930 hdr_len = 0;
2931 if (status & L2_FHDR_STATUS_SPLIT) {
2932 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
2933 pg_ring_used = 1;
2934 } else if (len > bp->rx_jumbo_thresh) {
2935 hdr_len = bp->rx_jumbo_thresh;
2936 pg_ring_used = 1;
2937 }
2938
2939 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
2940 L2_FHDR_ERRORS_PHY_DECODE |
2941 L2_FHDR_ERRORS_ALIGNMENT |
2942 L2_FHDR_ERRORS_TOO_SHORT |
2943 L2_FHDR_ERRORS_GIANT_FRAME))) {
2944
2945 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2946 sw_ring_prod);
2947 if (pg_ring_used) {
2948 int pages;
2949
2950 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
2951
2952 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2953 }
2954 goto next_rx;
2955 }
2956
2957 len -= 4;
2958
2959 if (len <= bp->rx_copy_thresh) {
2960 struct sk_buff *new_skb;
2961
2962 new_skb = netdev_alloc_skb(bp->dev, len + 6);
2963 if (new_skb == NULL) {
2964 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2965 sw_ring_prod);
2966 goto next_rx;
2967 }
2968
2969 /* aligned copy */
2970 skb_copy_from_linear_data_offset(skb,
2971 BNX2_RX_OFFSET - 6,
2972 new_skb->data, len + 6);
2973 skb_reserve(new_skb, 6);
2974 skb_put(new_skb, len);
2975
2976 bnx2_reuse_rx_skb(bp, rxr, skb,
2977 sw_ring_cons, sw_ring_prod);
2978
2979 skb = new_skb;
2980 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
2981 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
2982 goto next_rx;
2983
2984 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
2985 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
2986 vtag = rx_hdr->l2_fhdr_vlan_tag;
2987 #ifdef BCM_VLAN
2988 if (bp->vlgrp)
2989 hw_vlan = 1;
2990 else
2991 #endif
2992 {
2993 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
2994 __skb_push(skb, 4);
2995
2996 memmove(ve, skb->data + 4, ETH_ALEN * 2);
2997 ve->h_vlan_proto = htons(ETH_P_8021Q);
2998 ve->h_vlan_TCI = htons(vtag);
2999 len += 4;
3000 }
3001 }
3002
3003 skb->protocol = eth_type_trans(skb, bp->dev);
3004
3005 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3006 (ntohs(skb->protocol) != 0x8100)) {
3007
3008 dev_kfree_skb(skb);
3009 goto next_rx;
3010
3011 }
3012
3013 skb->ip_summed = CHECKSUM_NONE;
3014 if (bp->rx_csum &&
3015 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3016 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3017
3018 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3019 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3020 skb->ip_summed = CHECKSUM_UNNECESSARY;
3021 }
3022
3023 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3024
3025 #ifdef BCM_VLAN
3026 if (hw_vlan)
3027 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3028 else
3029 #endif
3030 netif_receive_skb(skb);
3031
3032 rx_pkt++;
3033
3034 next_rx:
3035 sw_cons = NEXT_RX_BD(sw_cons);
3036 sw_prod = NEXT_RX_BD(sw_prod);
3037
3038 if ((rx_pkt == budget))
3039 break;
3040
3041 /* Refresh hw_cons to see if there is new work */
3042 if (sw_cons == hw_cons) {
3043 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3044 rmb();
3045 }
3046 }
3047 rxr->rx_cons = sw_cons;
3048 rxr->rx_prod = sw_prod;
3049
3050 if (pg_ring_used)
3051 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3052
3053 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3054
3055 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3056
3057 mmiowb();
3058
3059 return rx_pkt;
3060
3061 }
3062
3063 /* MSI ISR - The only difference between this and the INTx ISR
3064 * is that the MSI interrupt is always serviced.
3065 */
3066 static irqreturn_t
3067 bnx2_msi(int irq, void *dev_instance)
3068 {
3069 struct bnx2_napi *bnapi = dev_instance;
3070 struct bnx2 *bp = bnapi->bp;
3071
3072 prefetch(bnapi->status_blk.msi);
3073 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3074 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3075 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3076
3077 /* Return here if interrupt is disabled. */
3078 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3079 return IRQ_HANDLED;
3080
3081 napi_schedule(&bnapi->napi);
3082
3083 return IRQ_HANDLED;
3084 }
3085
3086 static irqreturn_t
3087 bnx2_msi_1shot(int irq, void *dev_instance)
3088 {
3089 struct bnx2_napi *bnapi = dev_instance;
3090 struct bnx2 *bp = bnapi->bp;
3091
3092 prefetch(bnapi->status_blk.msi);
3093
3094 /* Return here if interrupt is disabled. */
3095 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3096 return IRQ_HANDLED;
3097
3098 napi_schedule(&bnapi->napi);
3099
3100 return IRQ_HANDLED;
3101 }
3102
3103 static irqreturn_t
3104 bnx2_interrupt(int irq, void *dev_instance)
3105 {
3106 struct bnx2_napi *bnapi = dev_instance;
3107 struct bnx2 *bp = bnapi->bp;
3108 struct status_block *sblk = bnapi->status_blk.msi;
3109
3110 /* When using INTx, it is possible for the interrupt to arrive
3111 * at the CPU before the status block posted prior to the
3112 * interrupt. Reading a register will flush the status block.
3113 * When using MSI, the MSI message will always complete after
3114 * the status block write.
3115 */
3116 if ((sblk->status_idx == bnapi->last_status_idx) &&
3117 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3118 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3119 return IRQ_NONE;
3120
3121 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3122 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3123 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3124
3125 /* Read back to deassert IRQ immediately to avoid too many
3126 * spurious interrupts.
3127 */
3128 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3129
3130 /* Return here if interrupt is shared and is disabled. */
3131 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3132 return IRQ_HANDLED;
3133
3134 if (napi_schedule_prep(&bnapi->napi)) {
3135 bnapi->last_status_idx = sblk->status_idx;
3136 __napi_schedule(&bnapi->napi);
3137 }
3138
3139 return IRQ_HANDLED;
3140 }
3141
3142 static inline int
3143 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3144 {
3145 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3146 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3147
3148 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3149 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3150 return 1;
3151 return 0;
3152 }
3153
3154 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3155 STATUS_ATTN_BITS_TIMER_ABORT)
3156
3157 static inline int
3158 bnx2_has_work(struct bnx2_napi *bnapi)
3159 {
3160 struct status_block *sblk = bnapi->status_blk.msi;
3161
3162 if (bnx2_has_fast_work(bnapi))
3163 return 1;
3164
3165 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3166 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3167 return 1;
3168
3169 return 0;
3170 }
3171
3172 static void
3173 bnx2_chk_missed_msi(struct bnx2 *bp)
3174 {
3175 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3176 u32 msi_ctrl;
3177
3178 if (bnx2_has_work(bnapi)) {
3179 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3180 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3181 return;
3182
3183 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3184 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3185 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3186 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3187 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3188 }
3189 }
3190
3191 bp->idle_chk_status_idx = bnapi->last_status_idx;
3192 }
3193
3194 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3195 {
3196 struct status_block *sblk = bnapi->status_blk.msi;
3197 u32 status_attn_bits = sblk->status_attn_bits;
3198 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3199
3200 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3201 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3202
3203 bnx2_phy_int(bp, bnapi);
3204
3205 /* This is needed to take care of transient status
3206 * during link changes.
3207 */
3208 REG_WR(bp, BNX2_HC_COMMAND,
3209 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3210 REG_RD(bp, BNX2_HC_COMMAND);
3211 }
3212 }
3213
3214 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3215 int work_done, int budget)
3216 {
3217 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3218 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3219
3220 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3221 bnx2_tx_int(bp, bnapi, 0);
3222
3223 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3224 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3225
3226 return work_done;
3227 }
3228
3229 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3230 {
3231 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3232 struct bnx2 *bp = bnapi->bp;
3233 int work_done = 0;
3234 struct status_block_msix *sblk = bnapi->status_blk.msix;
3235
3236 while (1) {
3237 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3238 if (unlikely(work_done >= budget))
3239 break;
3240
3241 bnapi->last_status_idx = sblk->status_idx;
3242 /* status idx must be read before checking for more work. */
3243 rmb();
3244 if (likely(!bnx2_has_fast_work(bnapi))) {
3245
3246 napi_complete(napi);
3247 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3248 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3249 bnapi->last_status_idx);
3250 break;
3251 }
3252 }
3253 return work_done;
3254 }
3255
3256 static int bnx2_poll(struct napi_struct *napi, int budget)
3257 {
3258 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3259 struct bnx2 *bp = bnapi->bp;
3260 int work_done = 0;
3261 struct status_block *sblk = bnapi->status_blk.msi;
3262
3263 while (1) {
3264 bnx2_poll_link(bp, bnapi);
3265
3266 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3267
3268 /* bnapi->last_status_idx is used below to tell the hw how
3269 * much work has been processed, so we must read it before
3270 * checking for more work.
3271 */
3272 bnapi->last_status_idx = sblk->status_idx;
3273
3274 if (unlikely(work_done >= budget))
3275 break;
3276
3277 rmb();
3278 if (likely(!bnx2_has_work(bnapi))) {
3279 napi_complete(napi);
3280 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3281 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3282 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3283 bnapi->last_status_idx);
3284 break;
3285 }
3286 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3287 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3288 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3289 bnapi->last_status_idx);
3290
3291 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3292 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3293 bnapi->last_status_idx);
3294 break;
3295 }
3296 }
3297
3298 return work_done;
3299 }
3300
3301 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3302 * from set_multicast.
3303 */
3304 static void
3305 bnx2_set_rx_mode(struct net_device *dev)
3306 {
3307 struct bnx2 *bp = netdev_priv(dev);
3308 u32 rx_mode, sort_mode;
3309 struct dev_addr_list *uc_ptr;
3310 int i;
3311
3312 if (!netif_running(dev))
3313 return;
3314
3315 spin_lock_bh(&bp->phy_lock);
3316
3317 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3318 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3319 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3320 #ifdef BCM_VLAN
3321 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3322 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3323 #else
3324 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3325 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3326 #endif
3327 if (dev->flags & IFF_PROMISC) {
3328 /* Promiscuous mode. */
3329 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3330 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3331 BNX2_RPM_SORT_USER0_PROM_VLAN;
3332 }
3333 else if (dev->flags & IFF_ALLMULTI) {
3334 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3335 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3336 0xffffffff);
3337 }
3338 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3339 }
3340 else {
3341 /* Accept one or more multicast(s). */
3342 struct dev_mc_list *mclist;
3343 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3344 u32 regidx;
3345 u32 bit;
3346 u32 crc;
3347
3348 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3349
3350 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3351 i++, mclist = mclist->next) {
3352
3353 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3354 bit = crc & 0xff;
3355 regidx = (bit & 0xe0) >> 5;
3356 bit &= 0x1f;
3357 mc_filter[regidx] |= (1 << bit);
3358 }
3359
3360 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3361 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3362 mc_filter[i]);
3363 }
3364
3365 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3366 }
3367
3368 uc_ptr = NULL;
3369 if (dev->uc_count > BNX2_MAX_UNICAST_ADDRESSES) {
3370 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3371 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3372 BNX2_RPM_SORT_USER0_PROM_VLAN;
3373 } else if (!(dev->flags & IFF_PROMISC)) {
3374 uc_ptr = dev->uc_list;
3375
3376 /* Add all entries into to the match filter list */
3377 for (i = 0; i < dev->uc_count; i++) {
3378 bnx2_set_mac_addr(bp, uc_ptr->da_addr,
3379 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3380 sort_mode |= (1 <<
3381 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3382 uc_ptr = uc_ptr->next;
3383 }
3384
3385 }
3386
3387 if (rx_mode != bp->rx_mode) {
3388 bp->rx_mode = rx_mode;
3389 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3390 }
3391
3392 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3393 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3394 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3395
3396 spin_unlock_bh(&bp->phy_lock);
3397 }
3398
3399 static int __devinit
3400 check_fw_section(const struct firmware *fw,
3401 const struct bnx2_fw_file_section *section,
3402 u32 alignment, bool non_empty)
3403 {
3404 u32 offset = be32_to_cpu(section->offset);
3405 u32 len = be32_to_cpu(section->len);
3406
3407 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3408 return -EINVAL;
3409 if ((non_empty && len == 0) || len > fw->size - offset ||
3410 len & (alignment - 1))
3411 return -EINVAL;
3412 return 0;
3413 }
3414
3415 static int __devinit
3416 check_mips_fw_entry(const struct firmware *fw,
3417 const struct bnx2_mips_fw_file_entry *entry)
3418 {
3419 if (check_fw_section(fw, &entry->text, 4, true) ||
3420 check_fw_section(fw, &entry->data, 4, false) ||
3421 check_fw_section(fw, &entry->rodata, 4, false))
3422 return -EINVAL;
3423 return 0;
3424 }
3425
3426 static int __devinit
3427 bnx2_request_firmware(struct bnx2 *bp)
3428 {
3429 const char *mips_fw_file, *rv2p_fw_file;
3430 const struct bnx2_mips_fw_file *mips_fw;
3431 const struct bnx2_rv2p_fw_file *rv2p_fw;
3432 int rc;
3433
3434 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3435 mips_fw_file = FW_MIPS_FILE_09;
3436 rv2p_fw_file = FW_RV2P_FILE_09;
3437 } else {
3438 mips_fw_file = FW_MIPS_FILE_06;
3439 rv2p_fw_file = FW_RV2P_FILE_06;
3440 }
3441
3442 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3443 if (rc) {
3444 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3445 mips_fw_file);
3446 return rc;
3447 }
3448
3449 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3450 if (rc) {
3451 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3452 rv2p_fw_file);
3453 return rc;
3454 }
3455 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3456 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3457 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3458 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3459 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3460 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3461 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3462 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3463 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3464 mips_fw_file);
3465 return -EINVAL;
3466 }
3467 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3468 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3469 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3470 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3471 rv2p_fw_file);
3472 return -EINVAL;
3473 }
3474
3475 return 0;
3476 }
3477
3478 static u32
3479 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3480 {
3481 switch (idx) {
3482 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3483 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3484 rv2p_code |= RV2P_BD_PAGE_SIZE;
3485 break;
3486 }
3487 return rv2p_code;
3488 }
3489
3490 static int
3491 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3492 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3493 {
3494 u32 rv2p_code_len, file_offset;
3495 __be32 *rv2p_code;
3496 int i;
3497 u32 val, cmd, addr;
3498
3499 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3500 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3501
3502 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3503
3504 if (rv2p_proc == RV2P_PROC1) {
3505 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3506 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3507 } else {
3508 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3509 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3510 }
3511
3512 for (i = 0; i < rv2p_code_len; i += 8) {
3513 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3514 rv2p_code++;
3515 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3516 rv2p_code++;
3517
3518 val = (i / 8) | cmd;
3519 REG_WR(bp, addr, val);
3520 }
3521
3522 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3523 for (i = 0; i < 8; i++) {
3524 u32 loc, code;
3525
3526 loc = be32_to_cpu(fw_entry->fixup[i]);
3527 if (loc && ((loc * 4) < rv2p_code_len)) {
3528 code = be32_to_cpu(*(rv2p_code + loc - 1));
3529 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3530 code = be32_to_cpu(*(rv2p_code + loc));
3531 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3532 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3533
3534 val = (loc / 2) | cmd;
3535 REG_WR(bp, addr, val);
3536 }
3537 }
3538
3539 /* Reset the processor, un-stall is done later. */
3540 if (rv2p_proc == RV2P_PROC1) {
3541 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3542 }
3543 else {
3544 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3545 }
3546
3547 return 0;
3548 }
3549
3550 static int
3551 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3552 const struct bnx2_mips_fw_file_entry *fw_entry)
3553 {
3554 u32 addr, len, file_offset;
3555 __be32 *data;
3556 u32 offset;
3557 u32 val;
3558
3559 /* Halt the CPU. */
3560 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3561 val |= cpu_reg->mode_value_halt;
3562 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3563 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3564
3565 /* Load the Text area. */
3566 addr = be32_to_cpu(fw_entry->text.addr);
3567 len = be32_to_cpu(fw_entry->text.len);
3568 file_offset = be32_to_cpu(fw_entry->text.offset);
3569 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3570
3571 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3572 if (len) {
3573 int j;
3574
3575 for (j = 0; j < (len / 4); j++, offset += 4)
3576 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3577 }
3578
3579 /* Load the Data area. */
3580 addr = be32_to_cpu(fw_entry->data.addr);
3581 len = be32_to_cpu(fw_entry->data.len);
3582 file_offset = be32_to_cpu(fw_entry->data.offset);
3583 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3584
3585 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3586 if (len) {
3587 int j;
3588
3589 for (j = 0; j < (len / 4); j++, offset += 4)
3590 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3591 }
3592
3593 /* Load the Read-Only area. */
3594 addr = be32_to_cpu(fw_entry->rodata.addr);
3595 len = be32_to_cpu(fw_entry->rodata.len);
3596 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3597 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3598
3599 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3600 if (len) {
3601 int j;
3602
3603 for (j = 0; j < (len / 4); j++, offset += 4)
3604 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3605 }
3606
3607 /* Clear the pre-fetch instruction. */
3608 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3609
3610 val = be32_to_cpu(fw_entry->start_addr);
3611 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3612
3613 /* Start the CPU. */
3614 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3615 val &= ~cpu_reg->mode_value_halt;
3616 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3617 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3618
3619 return 0;
3620 }
3621
3622 static int
3623 bnx2_init_cpus(struct bnx2 *bp)
3624 {
3625 const struct bnx2_mips_fw_file *mips_fw =
3626 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3627 const struct bnx2_rv2p_fw_file *rv2p_fw =
3628 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3629 int rc;
3630
3631 /* Initialize the RV2P processor. */
3632 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3633 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3634
3635 /* Initialize the RX Processor. */
3636 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3637 if (rc)
3638 goto init_cpu_err;
3639
3640 /* Initialize the TX Processor. */
3641 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3642 if (rc)
3643 goto init_cpu_err;
3644
3645 /* Initialize the TX Patch-up Processor. */
3646 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3647 if (rc)
3648 goto init_cpu_err;
3649
3650 /* Initialize the Completion Processor. */
3651 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3652 if (rc)
3653 goto init_cpu_err;
3654
3655 /* Initialize the Command Processor. */
3656 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3657
3658 init_cpu_err:
3659 return rc;
3660 }
3661
3662 static int
3663 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3664 {
3665 u16 pmcsr;
3666
3667 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3668
3669 switch (state) {
3670 case PCI_D0: {
3671 u32 val;
3672
3673 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3674 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3675 PCI_PM_CTRL_PME_STATUS);
3676
3677 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3678 /* delay required during transition out of D3hot */
3679 msleep(20);
3680
3681 val = REG_RD(bp, BNX2_EMAC_MODE);
3682 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3683 val &= ~BNX2_EMAC_MODE_MPKT;
3684 REG_WR(bp, BNX2_EMAC_MODE, val);
3685
3686 val = REG_RD(bp, BNX2_RPM_CONFIG);
3687 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3688 REG_WR(bp, BNX2_RPM_CONFIG, val);
3689 break;
3690 }
3691 case PCI_D3hot: {
3692 int i;
3693 u32 val, wol_msg;
3694
3695 if (bp->wol) {
3696 u32 advertising;
3697 u8 autoneg;
3698
3699 autoneg = bp->autoneg;
3700 advertising = bp->advertising;
3701
3702 if (bp->phy_port == PORT_TP) {
3703 bp->autoneg = AUTONEG_SPEED;
3704 bp->advertising = ADVERTISED_10baseT_Half |
3705 ADVERTISED_10baseT_Full |
3706 ADVERTISED_100baseT_Half |
3707 ADVERTISED_100baseT_Full |
3708 ADVERTISED_Autoneg;
3709 }
3710
3711 spin_lock_bh(&bp->phy_lock);
3712 bnx2_setup_phy(bp, bp->phy_port);
3713 spin_unlock_bh(&bp->phy_lock);
3714
3715 bp->autoneg = autoneg;
3716 bp->advertising = advertising;
3717
3718 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3719
3720 val = REG_RD(bp, BNX2_EMAC_MODE);
3721
3722 /* Enable port mode. */
3723 val &= ~BNX2_EMAC_MODE_PORT;
3724 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3725 BNX2_EMAC_MODE_ACPI_RCVD |
3726 BNX2_EMAC_MODE_MPKT;
3727 if (bp->phy_port == PORT_TP)
3728 val |= BNX2_EMAC_MODE_PORT_MII;
3729 else {
3730 val |= BNX2_EMAC_MODE_PORT_GMII;
3731 if (bp->line_speed == SPEED_2500)
3732 val |= BNX2_EMAC_MODE_25G_MODE;
3733 }
3734
3735 REG_WR(bp, BNX2_EMAC_MODE, val);
3736
3737 /* receive all multicast */
3738 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3739 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3740 0xffffffff);
3741 }
3742 REG_WR(bp, BNX2_EMAC_RX_MODE,
3743 BNX2_EMAC_RX_MODE_SORT_MODE);
3744
3745 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3746 BNX2_RPM_SORT_USER0_MC_EN;
3747 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3748 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3749 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3750 BNX2_RPM_SORT_USER0_ENA);
3751
3752 /* Need to enable EMAC and RPM for WOL. */
3753 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3754 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3755 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3756 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3757
3758 val = REG_RD(bp, BNX2_RPM_CONFIG);
3759 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3760 REG_WR(bp, BNX2_RPM_CONFIG, val);
3761
3762 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3763 }
3764 else {
3765 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3766 }
3767
3768 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3769 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3770 1, 0);
3771
3772 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3773 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3774 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3775
3776 if (bp->wol)
3777 pmcsr |= 3;
3778 }
3779 else {
3780 pmcsr |= 3;
3781 }
3782 if (bp->wol) {
3783 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3784 }
3785 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3786 pmcsr);
3787
3788 /* No more memory access after this point until
3789 * device is brought back to D0.
3790 */
3791 udelay(50);
3792 break;
3793 }
3794 default:
3795 return -EINVAL;
3796 }
3797 return 0;
3798 }
3799
3800 static int
3801 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3802 {
3803 u32 val;
3804 int j;
3805
3806 /* Request access to the flash interface. */
3807 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3808 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3809 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3810 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3811 break;
3812
3813 udelay(5);
3814 }
3815
3816 if (j >= NVRAM_TIMEOUT_COUNT)
3817 return -EBUSY;
3818
3819 return 0;
3820 }
3821
3822 static int
3823 bnx2_release_nvram_lock(struct bnx2 *bp)
3824 {
3825 int j;
3826 u32 val;
3827
3828 /* Relinquish nvram interface. */
3829 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
3830
3831 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3832 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3833 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
3834 break;
3835
3836 udelay(5);
3837 }
3838
3839 if (j >= NVRAM_TIMEOUT_COUNT)
3840 return -EBUSY;
3841
3842 return 0;
3843 }
3844
3845
3846 static int
3847 bnx2_enable_nvram_write(struct bnx2 *bp)
3848 {
3849 u32 val;
3850
3851 val = REG_RD(bp, BNX2_MISC_CFG);
3852 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
3853
3854 if (bp->flash_info->flags & BNX2_NV_WREN) {
3855 int j;
3856
3857 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3858 REG_WR(bp, BNX2_NVM_COMMAND,
3859 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
3860
3861 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3862 udelay(5);
3863
3864 val = REG_RD(bp, BNX2_NVM_COMMAND);
3865 if (val & BNX2_NVM_COMMAND_DONE)
3866 break;
3867 }
3868
3869 if (j >= NVRAM_TIMEOUT_COUNT)
3870 return -EBUSY;
3871 }
3872 return 0;
3873 }
3874
3875 static void
3876 bnx2_disable_nvram_write(struct bnx2 *bp)
3877 {
3878 u32 val;
3879
3880 val = REG_RD(bp, BNX2_MISC_CFG);
3881 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
3882 }
3883
3884
3885 static void
3886 bnx2_enable_nvram_access(struct bnx2 *bp)
3887 {
3888 u32 val;
3889
3890 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3891 /* Enable both bits, even on read. */
3892 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3893 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
3894 }
3895
3896 static void
3897 bnx2_disable_nvram_access(struct bnx2 *bp)
3898 {
3899 u32 val;
3900
3901 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3902 /* Disable both bits, even after read. */
3903 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3904 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
3905 BNX2_NVM_ACCESS_ENABLE_WR_EN));
3906 }
3907
3908 static int
3909 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
3910 {
3911 u32 cmd;
3912 int j;
3913
3914 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
3915 /* Buffered flash, no erase needed */
3916 return 0;
3917
3918 /* Build an erase command */
3919 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
3920 BNX2_NVM_COMMAND_DOIT;
3921
3922 /* Need to clear DONE bit separately. */
3923 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3924
3925 /* Address of the NVRAM to read from. */
3926 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3927
3928 /* Issue an erase command. */
3929 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3930
3931 /* Wait for completion. */
3932 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3933 u32 val;
3934
3935 udelay(5);
3936
3937 val = REG_RD(bp, BNX2_NVM_COMMAND);
3938 if (val & BNX2_NVM_COMMAND_DONE)
3939 break;
3940 }
3941
3942 if (j >= NVRAM_TIMEOUT_COUNT)
3943 return -EBUSY;
3944
3945 return 0;
3946 }
3947
3948 static int
3949 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
3950 {
3951 u32 cmd;
3952 int j;
3953
3954 /* Build the command word. */
3955 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
3956
3957 /* Calculate an offset of a buffered flash, not needed for 5709. */
3958 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3959 offset = ((offset / bp->flash_info->page_size) <<
3960 bp->flash_info->page_bits) +
3961 (offset % bp->flash_info->page_size);
3962 }
3963
3964 /* Need to clear DONE bit separately. */
3965 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3966
3967 /* Address of the NVRAM to read from. */
3968 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3969
3970 /* Issue a read command. */
3971 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3972
3973 /* Wait for completion. */
3974 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3975 u32 val;
3976
3977 udelay(5);
3978
3979 val = REG_RD(bp, BNX2_NVM_COMMAND);
3980 if (val & BNX2_NVM_COMMAND_DONE) {
3981 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
3982 memcpy(ret_val, &v, 4);
3983 break;
3984 }
3985 }
3986 if (j >= NVRAM_TIMEOUT_COUNT)
3987 return -EBUSY;
3988
3989 return 0;
3990 }
3991
3992
3993 static int
3994 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
3995 {
3996 u32 cmd;
3997 __be32 val32;
3998 int j;
3999
4000 /* Build the command word. */
4001 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4002
4003 /* Calculate an offset of a buffered flash, not needed for 5709. */
4004 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4005 offset = ((offset / bp->flash_info->page_size) <<
4006 bp->flash_info->page_bits) +
4007 (offset % bp->flash_info->page_size);
4008 }
4009
4010 /* Need to clear DONE bit separately. */
4011 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4012
4013 memcpy(&val32, val, 4);
4014
4015 /* Write the data. */
4016 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4017
4018 /* Address of the NVRAM to write to. */
4019 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4020
4021 /* Issue the write command. */
4022 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4023
4024 /* Wait for completion. */
4025 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4026 udelay(5);
4027
4028 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4029 break;
4030 }
4031 if (j >= NVRAM_TIMEOUT_COUNT)
4032 return -EBUSY;
4033
4034 return 0;
4035 }
4036
4037 static int
4038 bnx2_init_nvram(struct bnx2 *bp)
4039 {
4040 u32 val;
4041 int j, entry_count, rc = 0;
4042 struct flash_spec *flash;
4043
4044 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4045 bp->flash_info = &flash_5709;
4046 goto get_flash_size;
4047 }
4048
4049 /* Determine the selected interface. */
4050 val = REG_RD(bp, BNX2_NVM_CFG1);
4051
4052 entry_count = ARRAY_SIZE(flash_table);
4053
4054 if (val & 0x40000000) {
4055
4056 /* Flash interface has been reconfigured */
4057 for (j = 0, flash = &flash_table[0]; j < entry_count;
4058 j++, flash++) {
4059 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4060 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4061 bp->flash_info = flash;
4062 break;
4063 }
4064 }
4065 }
4066 else {
4067 u32 mask;
4068 /* Not yet been reconfigured */
4069
4070 if (val & (1 << 23))
4071 mask = FLASH_BACKUP_STRAP_MASK;
4072 else
4073 mask = FLASH_STRAP_MASK;
4074
4075 for (j = 0, flash = &flash_table[0]; j < entry_count;
4076 j++, flash++) {
4077
4078 if ((val & mask) == (flash->strapping & mask)) {
4079 bp->flash_info = flash;
4080
4081 /* Request access to the flash interface. */
4082 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4083 return rc;
4084
4085 /* Enable access to flash interface */
4086 bnx2_enable_nvram_access(bp);
4087
4088 /* Reconfigure the flash interface */
4089 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4090 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4091 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4092 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4093
4094 /* Disable access to flash interface */
4095 bnx2_disable_nvram_access(bp);
4096 bnx2_release_nvram_lock(bp);
4097
4098 break;
4099 }
4100 }
4101 } /* if (val & 0x40000000) */
4102
4103 if (j == entry_count) {
4104 bp->flash_info = NULL;
4105 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4106 return -ENODEV;
4107 }
4108
4109 get_flash_size:
4110 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4111 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4112 if (val)
4113 bp->flash_size = val;
4114 else
4115 bp->flash_size = bp->flash_info->total_size;
4116
4117 return rc;
4118 }
4119
4120 static int
4121 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4122 int buf_size)
4123 {
4124 int rc = 0;
4125 u32 cmd_flags, offset32, len32, extra;
4126
4127 if (buf_size == 0)
4128 return 0;
4129
4130 /* Request access to the flash interface. */
4131 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4132 return rc;
4133
4134 /* Enable access to flash interface */
4135 bnx2_enable_nvram_access(bp);
4136
4137 len32 = buf_size;
4138 offset32 = offset;
4139 extra = 0;
4140
4141 cmd_flags = 0;
4142
4143 if (offset32 & 3) {
4144 u8 buf[4];
4145 u32 pre_len;
4146
4147 offset32 &= ~3;
4148 pre_len = 4 - (offset & 3);
4149
4150 if (pre_len >= len32) {
4151 pre_len = len32;
4152 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4153 BNX2_NVM_COMMAND_LAST;
4154 }
4155 else {
4156 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4157 }
4158
4159 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4160
4161 if (rc)
4162 return rc;
4163
4164 memcpy(ret_buf, buf + (offset & 3), pre_len);
4165
4166 offset32 += 4;
4167 ret_buf += pre_len;
4168 len32 -= pre_len;
4169 }
4170 if (len32 & 3) {
4171 extra = 4 - (len32 & 3);
4172 len32 = (len32 + 4) & ~3;
4173 }
4174
4175 if (len32 == 4) {
4176 u8 buf[4];
4177
4178 if (cmd_flags)
4179 cmd_flags = BNX2_NVM_COMMAND_LAST;
4180 else
4181 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4182 BNX2_NVM_COMMAND_LAST;
4183
4184 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4185
4186 memcpy(ret_buf, buf, 4 - extra);
4187 }
4188 else if (len32 > 0) {
4189 u8 buf[4];
4190
4191 /* Read the first word. */
4192 if (cmd_flags)
4193 cmd_flags = 0;
4194 else
4195 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4196
4197 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4198
4199 /* Advance to the next dword. */
4200 offset32 += 4;
4201 ret_buf += 4;
4202 len32 -= 4;
4203
4204 while (len32 > 4 && rc == 0) {
4205 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4206
4207 /* Advance to the next dword. */
4208 offset32 += 4;
4209 ret_buf += 4;
4210 len32 -= 4;
4211 }
4212
4213 if (rc)
4214 return rc;
4215
4216 cmd_flags = BNX2_NVM_COMMAND_LAST;
4217 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4218
4219 memcpy(ret_buf, buf, 4 - extra);
4220 }
4221
4222 /* Disable access to flash interface */
4223 bnx2_disable_nvram_access(bp);
4224
4225 bnx2_release_nvram_lock(bp);
4226
4227 return rc;
4228 }
4229
4230 static int
4231 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4232 int buf_size)
4233 {
4234 u32 written, offset32, len32;
4235 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4236 int rc = 0;
4237 int align_start, align_end;
4238
4239 buf = data_buf;
4240 offset32 = offset;
4241 len32 = buf_size;
4242 align_start = align_end = 0;
4243
4244 if ((align_start = (offset32 & 3))) {
4245 offset32 &= ~3;
4246 len32 += align_start;
4247 if (len32 < 4)
4248 len32 = 4;
4249 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4250 return rc;
4251 }
4252
4253 if (len32 & 3) {
4254 align_end = 4 - (len32 & 3);
4255 len32 += align_end;
4256 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4257 return rc;
4258 }
4259
4260 if (align_start || align_end) {
4261 align_buf = kmalloc(len32, GFP_KERNEL);
4262 if (align_buf == NULL)
4263 return -ENOMEM;
4264 if (align_start) {
4265 memcpy(align_buf, start, 4);
4266 }
4267 if (align_end) {
4268 memcpy(align_buf + len32 - 4, end, 4);
4269 }
4270 memcpy(align_buf + align_start, data_buf, buf_size);
4271 buf = align_buf;
4272 }
4273
4274 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4275 flash_buffer = kmalloc(264, GFP_KERNEL);
4276 if (flash_buffer == NULL) {
4277 rc = -ENOMEM;
4278 goto nvram_write_end;
4279 }
4280 }
4281
4282 written = 0;
4283 while ((written < len32) && (rc == 0)) {
4284 u32 page_start, page_end, data_start, data_end;
4285 u32 addr, cmd_flags;
4286 int i;
4287
4288 /* Find the page_start addr */
4289 page_start = offset32 + written;
4290 page_start -= (page_start % bp->flash_info->page_size);
4291 /* Find the page_end addr */
4292 page_end = page_start + bp->flash_info->page_size;
4293 /* Find the data_start addr */
4294 data_start = (written == 0) ? offset32 : page_start;
4295 /* Find the data_end addr */
4296 data_end = (page_end > offset32 + len32) ?
4297 (offset32 + len32) : page_end;
4298
4299 /* Request access to the flash interface. */
4300 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4301 goto nvram_write_end;
4302
4303 /* Enable access to flash interface */
4304 bnx2_enable_nvram_access(bp);
4305
4306 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4307 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4308 int j;
4309
4310 /* Read the whole page into the buffer
4311 * (non-buffer flash only) */
4312 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4313 if (j == (bp->flash_info->page_size - 4)) {
4314 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4315 }
4316 rc = bnx2_nvram_read_dword(bp,
4317 page_start + j,
4318 &flash_buffer[j],
4319 cmd_flags);
4320
4321 if (rc)
4322 goto nvram_write_end;
4323
4324 cmd_flags = 0;
4325 }
4326 }
4327
4328 /* Enable writes to flash interface (unlock write-protect) */
4329 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4330 goto nvram_write_end;
4331
4332 /* Loop to write back the buffer data from page_start to
4333 * data_start */
4334 i = 0;
4335 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4336 /* Erase the page */
4337 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4338 goto nvram_write_end;
4339
4340 /* Re-enable the write again for the actual write */
4341 bnx2_enable_nvram_write(bp);
4342
4343 for (addr = page_start; addr < data_start;
4344 addr += 4, i += 4) {
4345
4346 rc = bnx2_nvram_write_dword(bp, addr,
4347 &flash_buffer[i], cmd_flags);
4348
4349 if (rc != 0)
4350 goto nvram_write_end;
4351
4352 cmd_flags = 0;
4353 }
4354 }
4355
4356 /* Loop to write the new data from data_start to data_end */
4357 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4358 if ((addr == page_end - 4) ||
4359 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4360 (addr == data_end - 4))) {
4361
4362 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4363 }
4364 rc = bnx2_nvram_write_dword(bp, addr, buf,
4365 cmd_flags);
4366
4367 if (rc != 0)
4368 goto nvram_write_end;
4369
4370 cmd_flags = 0;
4371 buf += 4;
4372 }
4373
4374 /* Loop to write back the buffer data from data_end
4375 * to page_end */
4376 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4377 for (addr = data_end; addr < page_end;
4378 addr += 4, i += 4) {
4379
4380 if (addr == page_end-4) {
4381 cmd_flags = BNX2_NVM_COMMAND_LAST;
4382 }
4383 rc = bnx2_nvram_write_dword(bp, addr,
4384 &flash_buffer[i], cmd_flags);
4385
4386 if (rc != 0)
4387 goto nvram_write_end;
4388
4389 cmd_flags = 0;
4390 }
4391 }
4392
4393 /* Disable writes to flash interface (lock write-protect) */
4394 bnx2_disable_nvram_write(bp);
4395
4396 /* Disable access to flash interface */
4397 bnx2_disable_nvram_access(bp);
4398 bnx2_release_nvram_lock(bp);
4399
4400 /* Increment written */
4401 written += data_end - data_start;
4402 }
4403
4404 nvram_write_end:
4405 kfree(flash_buffer);
4406 kfree(align_buf);
4407 return rc;
4408 }
4409
4410 static void
4411 bnx2_init_fw_cap(struct bnx2 *bp)
4412 {
4413 u32 val, sig = 0;
4414
4415 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4416 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4417
4418 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4419 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4420
4421 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4422 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4423 return;
4424
4425 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4426 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4427 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4428 }
4429
4430 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4431 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4432 u32 link;
4433
4434 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4435
4436 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4437 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4438 bp->phy_port = PORT_FIBRE;
4439 else
4440 bp->phy_port = PORT_TP;
4441
4442 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4443 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4444 }
4445
4446 if (netif_running(bp->dev) && sig)
4447 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4448 }
4449
4450 static void
4451 bnx2_setup_msix_tbl(struct bnx2 *bp)
4452 {
4453 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4454
4455 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4456 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4457 }
4458
4459 static int
4460 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4461 {
4462 u32 val;
4463 int i, rc = 0;
4464 u8 old_port;
4465
4466 /* Wait for the current PCI transaction to complete before
4467 * issuing a reset. */
4468 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4469 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4470 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4471 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4472 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4473 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4474 udelay(5);
4475
4476 /* Wait for the firmware to tell us it is ok to issue a reset. */
4477 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4478
4479 /* Deposit a driver reset signature so the firmware knows that
4480 * this is a soft reset. */
4481 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4482 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4483
4484 /* Do a dummy read to force the chip to complete all current transaction
4485 * before we issue a reset. */
4486 val = REG_RD(bp, BNX2_MISC_ID);
4487
4488 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4489 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4490 REG_RD(bp, BNX2_MISC_COMMAND);
4491 udelay(5);
4492
4493 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4494 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4495
4496 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4497
4498 } else {
4499 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4500 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4501 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4502
4503 /* Chip reset. */
4504 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4505
4506 /* Reading back any register after chip reset will hang the
4507 * bus on 5706 A0 and A1. The msleep below provides plenty
4508 * of margin for write posting.
4509 */
4510 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4511 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4512 msleep(20);
4513
4514 /* Reset takes approximate 30 usec */
4515 for (i = 0; i < 10; i++) {
4516 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4517 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4518 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4519 break;
4520 udelay(10);
4521 }
4522
4523 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4524 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4525 printk(KERN_ERR PFX "Chip reset did not complete\n");
4526 return -EBUSY;
4527 }
4528 }
4529
4530 /* Make sure byte swapping is properly configured. */
4531 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4532 if (val != 0x01020304) {
4533 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4534 return -ENODEV;
4535 }
4536
4537 /* Wait for the firmware to finish its initialization. */
4538 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4539 if (rc)
4540 return rc;
4541
4542 spin_lock_bh(&bp->phy_lock);
4543 old_port = bp->phy_port;
4544 bnx2_init_fw_cap(bp);
4545 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4546 old_port != bp->phy_port)
4547 bnx2_set_default_remote_link(bp);
4548 spin_unlock_bh(&bp->phy_lock);
4549
4550 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4551 /* Adjust the voltage regular to two steps lower. The default
4552 * of this register is 0x0000000e. */
4553 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4554
4555 /* Remove bad rbuf memory from the free pool. */
4556 rc = bnx2_alloc_bad_rbuf(bp);
4557 }
4558
4559 if (bp->flags & BNX2_FLAG_USING_MSIX)
4560 bnx2_setup_msix_tbl(bp);
4561
4562 return rc;
4563 }
4564
4565 static int
4566 bnx2_init_chip(struct bnx2 *bp)
4567 {
4568 u32 val, mtu;
4569 int rc, i;
4570
4571 /* Make sure the interrupt is not active. */
4572 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4573
4574 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4575 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4576 #ifdef __BIG_ENDIAN
4577 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4578 #endif
4579 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4580 DMA_READ_CHANS << 12 |
4581 DMA_WRITE_CHANS << 16;
4582
4583 val |= (0x2 << 20) | (1 << 11);
4584
4585 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4586 val |= (1 << 23);
4587
4588 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4589 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4590 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4591
4592 REG_WR(bp, BNX2_DMA_CONFIG, val);
4593
4594 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4595 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4596 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4597 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4598 }
4599
4600 if (bp->flags & BNX2_FLAG_PCIX) {
4601 u16 val16;
4602
4603 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4604 &val16);
4605 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4606 val16 & ~PCI_X_CMD_ERO);
4607 }
4608
4609 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4610 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4611 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4612 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4613
4614 /* Initialize context mapping and zero out the quick contexts. The
4615 * context block must have already been enabled. */
4616 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4617 rc = bnx2_init_5709_context(bp);
4618 if (rc)
4619 return rc;
4620 } else
4621 bnx2_init_context(bp);
4622
4623 if ((rc = bnx2_init_cpus(bp)) != 0)
4624 return rc;
4625
4626 bnx2_init_nvram(bp);
4627
4628 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4629
4630 val = REG_RD(bp, BNX2_MQ_CONFIG);
4631 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4632 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4633 if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
4634 val |= BNX2_MQ_CONFIG_HALT_DIS;
4635
4636 REG_WR(bp, BNX2_MQ_CONFIG, val);
4637
4638 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4639 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4640 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4641
4642 val = (BCM_PAGE_BITS - 8) << 24;
4643 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4644
4645 /* Configure page size. */
4646 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4647 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4648 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4649 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4650
4651 val = bp->mac_addr[0] +
4652 (bp->mac_addr[1] << 8) +
4653 (bp->mac_addr[2] << 16) +
4654 bp->mac_addr[3] +
4655 (bp->mac_addr[4] << 8) +
4656 (bp->mac_addr[5] << 16);
4657 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4658
4659 /* Program the MTU. Also include 4 bytes for CRC32. */
4660 mtu = bp->dev->mtu;
4661 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4662 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4663 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4664 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4665
4666 if (mtu < 1500)
4667 mtu = 1500;
4668
4669 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4670 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4671 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4672
4673 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4674 bp->bnx2_napi[i].last_status_idx = 0;
4675
4676 bp->idle_chk_status_idx = 0xffff;
4677
4678 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4679
4680 /* Set up how to generate a link change interrupt. */
4681 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4682
4683 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4684 (u64) bp->status_blk_mapping & 0xffffffff);
4685 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4686
4687 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4688 (u64) bp->stats_blk_mapping & 0xffffffff);
4689 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4690 (u64) bp->stats_blk_mapping >> 32);
4691
4692 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4693 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4694
4695 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4696 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4697
4698 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4699 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4700
4701 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4702
4703 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4704
4705 REG_WR(bp, BNX2_HC_COM_TICKS,
4706 (bp->com_ticks_int << 16) | bp->com_ticks);
4707
4708 REG_WR(bp, BNX2_HC_CMD_TICKS,
4709 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4710
4711 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4712 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4713 else
4714 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4715 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4716
4717 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4718 val = BNX2_HC_CONFIG_COLLECT_STATS;
4719 else {
4720 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4721 BNX2_HC_CONFIG_COLLECT_STATS;
4722 }
4723
4724 if (bp->irq_nvecs > 1) {
4725 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4726 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4727
4728 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4729 }
4730
4731 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4732 val |= BNX2_HC_CONFIG_ONE_SHOT;
4733
4734 REG_WR(bp, BNX2_HC_CONFIG, val);
4735
4736 for (i = 1; i < bp->irq_nvecs; i++) {
4737 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4738 BNX2_HC_SB_CONFIG_1;
4739
4740 REG_WR(bp, base,
4741 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4742 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4743 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4744
4745 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4746 (bp->tx_quick_cons_trip_int << 16) |
4747 bp->tx_quick_cons_trip);
4748
4749 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4750 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4751
4752 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4753 (bp->rx_quick_cons_trip_int << 16) |
4754 bp->rx_quick_cons_trip);
4755
4756 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4757 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4758 }
4759
4760 /* Clear internal stats counters. */
4761 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4762
4763 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4764
4765 /* Initialize the receive filter. */
4766 bnx2_set_rx_mode(bp->dev);
4767
4768 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4769 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4770 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4771 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4772 }
4773 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4774 1, 0);
4775
4776 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4777 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4778
4779 udelay(20);
4780
4781 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4782
4783 return rc;
4784 }
4785
4786 static void
4787 bnx2_clear_ring_states(struct bnx2 *bp)
4788 {
4789 struct bnx2_napi *bnapi;
4790 struct bnx2_tx_ring_info *txr;
4791 struct bnx2_rx_ring_info *rxr;
4792 int i;
4793
4794 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4795 bnapi = &bp->bnx2_napi[i];
4796 txr = &bnapi->tx_ring;
4797 rxr = &bnapi->rx_ring;
4798
4799 txr->tx_cons = 0;
4800 txr->hw_tx_cons = 0;
4801 rxr->rx_prod_bseq = 0;
4802 rxr->rx_prod = 0;
4803 rxr->rx_cons = 0;
4804 rxr->rx_pg_prod = 0;
4805 rxr->rx_pg_cons = 0;
4806 }
4807 }
4808
4809 static void
4810 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
4811 {
4812 u32 val, offset0, offset1, offset2, offset3;
4813 u32 cid_addr = GET_CID_ADDR(cid);
4814
4815 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4816 offset0 = BNX2_L2CTX_TYPE_XI;
4817 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
4818 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
4819 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
4820 } else {
4821 offset0 = BNX2_L2CTX_TYPE;
4822 offset1 = BNX2_L2CTX_CMD_TYPE;
4823 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
4824 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
4825 }
4826 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
4827 bnx2_ctx_wr(bp, cid_addr, offset0, val);
4828
4829 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4830 bnx2_ctx_wr(bp, cid_addr, offset1, val);
4831
4832 val = (u64) txr->tx_desc_mapping >> 32;
4833 bnx2_ctx_wr(bp, cid_addr, offset2, val);
4834
4835 val = (u64) txr->tx_desc_mapping & 0xffffffff;
4836 bnx2_ctx_wr(bp, cid_addr, offset3, val);
4837 }
4838
4839 static void
4840 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
4841 {
4842 struct tx_bd *txbd;
4843 u32 cid = TX_CID;
4844 struct bnx2_napi *bnapi;
4845 struct bnx2_tx_ring_info *txr;
4846
4847 bnapi = &bp->bnx2_napi[ring_num];
4848 txr = &bnapi->tx_ring;
4849
4850 if (ring_num == 0)
4851 cid = TX_CID;
4852 else
4853 cid = TX_TSS_CID + ring_num - 1;
4854
4855 bp->tx_wake_thresh = bp->tx_ring_size / 2;
4856
4857 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
4858
4859 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
4860 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
4861
4862 txr->tx_prod = 0;
4863 txr->tx_prod_bseq = 0;
4864
4865 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
4866 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
4867
4868 bnx2_init_tx_context(bp, cid, txr);
4869 }
4870
4871 static void
4872 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
4873 int num_rings)
4874 {
4875 int i;
4876 struct rx_bd *rxbd;
4877
4878 for (i = 0; i < num_rings; i++) {
4879 int j;
4880
4881 rxbd = &rx_ring[i][0];
4882 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
4883 rxbd->rx_bd_len = buf_size;
4884 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
4885 }
4886 if (i == (num_rings - 1))
4887 j = 0;
4888 else
4889 j = i + 1;
4890 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
4891 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
4892 }
4893 }
4894
4895 static void
4896 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
4897 {
4898 int i;
4899 u16 prod, ring_prod;
4900 u32 cid, rx_cid_addr, val;
4901 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
4902 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
4903
4904 if (ring_num == 0)
4905 cid = RX_CID;
4906 else
4907 cid = RX_RSS_CID + ring_num - 1;
4908
4909 rx_cid_addr = GET_CID_ADDR(cid);
4910
4911 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
4912 bp->rx_buf_use_size, bp->rx_max_ring);
4913
4914 bnx2_init_rx_context(bp, cid);
4915
4916 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4917 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
4918 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
4919 }
4920
4921 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
4922 if (bp->rx_pg_ring_size) {
4923 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
4924 rxr->rx_pg_desc_mapping,
4925 PAGE_SIZE, bp->rx_max_pg_ring);
4926 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
4927 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
4928 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
4929 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
4930
4931 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
4932 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
4933
4934 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
4935 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
4936
4937 if (CHIP_NUM(bp) == CHIP_NUM_5709)
4938 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
4939 }
4940
4941 val = (u64) rxr->rx_desc_mapping[0] >> 32;
4942 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
4943
4944 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
4945 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
4946
4947 ring_prod = prod = rxr->rx_pg_prod;
4948 for (i = 0; i < bp->rx_pg_ring_size; i++) {
4949 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
4950 break;
4951 prod = NEXT_RX_BD(prod);
4952 ring_prod = RX_PG_RING_IDX(prod);
4953 }
4954 rxr->rx_pg_prod = prod;
4955
4956 ring_prod = prod = rxr->rx_prod;
4957 for (i = 0; i < bp->rx_ring_size; i++) {
4958 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
4959 break;
4960 prod = NEXT_RX_BD(prod);
4961 ring_prod = RX_RING_IDX(prod);
4962 }
4963 rxr->rx_prod = prod;
4964
4965 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
4966 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
4967 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
4968
4969 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
4970 REG_WR16(bp, rxr->rx_bidx_addr, prod);
4971
4972 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
4973 }
4974
4975 static void
4976 bnx2_init_all_rings(struct bnx2 *bp)
4977 {
4978 int i;
4979 u32 val;
4980
4981 bnx2_clear_ring_states(bp);
4982
4983 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
4984 for (i = 0; i < bp->num_tx_rings; i++)
4985 bnx2_init_tx_ring(bp, i);
4986
4987 if (bp->num_tx_rings > 1)
4988 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
4989 (TX_TSS_CID << 7));
4990
4991 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
4992 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
4993
4994 for (i = 0; i < bp->num_rx_rings; i++)
4995 bnx2_init_rx_ring(bp, i);
4996
4997 if (bp->num_rx_rings > 1) {
4998 u32 tbl_32;
4999 u8 *tbl = (u8 *) &tbl_32;
5000
5001 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5002 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5003
5004 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5005 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5006 if ((i % 4) == 3)
5007 bnx2_reg_wr_ind(bp,
5008 BNX2_RXP_SCRATCH_RSS_TBL + i,
5009 cpu_to_be32(tbl_32));
5010 }
5011
5012 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5013 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5014
5015 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5016
5017 }
5018 }
5019
5020 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5021 {
5022 u32 max, num_rings = 1;
5023
5024 while (ring_size > MAX_RX_DESC_CNT) {
5025 ring_size -= MAX_RX_DESC_CNT;
5026 num_rings++;
5027 }
5028 /* round to next power of 2 */
5029 max = max_size;
5030 while ((max & num_rings) == 0)
5031 max >>= 1;
5032
5033 if (num_rings != max)
5034 max <<= 1;
5035
5036 return max;
5037 }
5038
5039 static void
5040 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5041 {
5042 u32 rx_size, rx_space, jumbo_size;
5043
5044 /* 8 for CRC and VLAN */
5045 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5046
5047 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5048 sizeof(struct skb_shared_info);
5049
5050 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5051 bp->rx_pg_ring_size = 0;
5052 bp->rx_max_pg_ring = 0;
5053 bp->rx_max_pg_ring_idx = 0;
5054 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5055 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5056
5057 jumbo_size = size * pages;
5058 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5059 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5060
5061 bp->rx_pg_ring_size = jumbo_size;
5062 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5063 MAX_RX_PG_RINGS);
5064 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5065 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5066 bp->rx_copy_thresh = 0;
5067 }
5068
5069 bp->rx_buf_use_size = rx_size;
5070 /* hw alignment */
5071 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5072 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5073 bp->rx_ring_size = size;
5074 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5075 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5076 }
5077
5078 static void
5079 bnx2_free_tx_skbs(struct bnx2 *bp)
5080 {
5081 int i;
5082
5083 for (i = 0; i < bp->num_tx_rings; i++) {
5084 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5085 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5086 int j;
5087
5088 if (txr->tx_buf_ring == NULL)
5089 continue;
5090
5091 for (j = 0; j < TX_DESC_CNT; ) {
5092 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5093 struct sk_buff *skb = tx_buf->skb;
5094
5095 if (skb == NULL) {
5096 j++;
5097 continue;
5098 }
5099
5100 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5101
5102 tx_buf->skb = NULL;
5103
5104 j += skb_shinfo(skb)->nr_frags + 1;
5105 dev_kfree_skb(skb);
5106 }
5107 }
5108 }
5109
5110 static void
5111 bnx2_free_rx_skbs(struct bnx2 *bp)
5112 {
5113 int i;
5114
5115 for (i = 0; i < bp->num_rx_rings; i++) {
5116 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5117 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5118 int j;
5119
5120 if (rxr->rx_buf_ring == NULL)
5121 return;
5122
5123 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5124 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5125 struct sk_buff *skb = rx_buf->skb;
5126
5127 if (skb == NULL)
5128 continue;
5129
5130 pci_unmap_single(bp->pdev,
5131 pci_unmap_addr(rx_buf, mapping),
5132 bp->rx_buf_use_size,
5133 PCI_DMA_FROMDEVICE);
5134
5135 rx_buf->skb = NULL;
5136
5137 dev_kfree_skb(skb);
5138 }
5139 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5140 bnx2_free_rx_page(bp, rxr, j);
5141 }
5142 }
5143
5144 static void
5145 bnx2_free_skbs(struct bnx2 *bp)
5146 {
5147 bnx2_free_tx_skbs(bp);
5148 bnx2_free_rx_skbs(bp);
5149 }
5150
5151 static int
5152 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5153 {
5154 int rc;
5155
5156 rc = bnx2_reset_chip(bp, reset_code);
5157 bnx2_free_skbs(bp);
5158 if (rc)
5159 return rc;
5160
5161 if ((rc = bnx2_init_chip(bp)) != 0)
5162 return rc;
5163
5164 bnx2_init_all_rings(bp);
5165 return 0;
5166 }
5167
5168 static int
5169 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5170 {
5171 int rc;
5172
5173 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5174 return rc;
5175
5176 spin_lock_bh(&bp->phy_lock);
5177 bnx2_init_phy(bp, reset_phy);
5178 bnx2_set_link(bp);
5179 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5180 bnx2_remote_phy_event(bp);
5181 spin_unlock_bh(&bp->phy_lock);
5182 return 0;
5183 }
5184
5185 static int
5186 bnx2_shutdown_chip(struct bnx2 *bp)
5187 {
5188 u32 reset_code;
5189
5190 if (bp->flags & BNX2_FLAG_NO_WOL)
5191 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5192 else if (bp->wol)
5193 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5194 else
5195 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5196
5197 return bnx2_reset_chip(bp, reset_code);
5198 }
5199
5200 static int
5201 bnx2_test_registers(struct bnx2 *bp)
5202 {
5203 int ret;
5204 int i, is_5709;
5205 static const struct {
5206 u16 offset;
5207 u16 flags;
5208 #define BNX2_FL_NOT_5709 1
5209 u32 rw_mask;
5210 u32 ro_mask;
5211 } reg_tbl[] = {
5212 { 0x006c, 0, 0x00000000, 0x0000003f },
5213 { 0x0090, 0, 0xffffffff, 0x00000000 },
5214 { 0x0094, 0, 0x00000000, 0x00000000 },
5215
5216 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5217 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5218 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5219 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5220 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5221 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5222 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5223 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5224 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5225
5226 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5227 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5228 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5229 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5230 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5231 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5232
5233 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5234 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5235 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5236
5237 { 0x1000, 0, 0x00000000, 0x00000001 },
5238 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5239
5240 { 0x1408, 0, 0x01c00800, 0x00000000 },
5241 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5242 { 0x14a8, 0, 0x00000000, 0x000001ff },
5243 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5244 { 0x14b0, 0, 0x00000002, 0x00000001 },
5245 { 0x14b8, 0, 0x00000000, 0x00000000 },
5246 { 0x14c0, 0, 0x00000000, 0x00000009 },
5247 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5248 { 0x14cc, 0, 0x00000000, 0x00000001 },
5249 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5250
5251 { 0x1800, 0, 0x00000000, 0x00000001 },
5252 { 0x1804, 0, 0x00000000, 0x00000003 },
5253
5254 { 0x2800, 0, 0x00000000, 0x00000001 },
5255 { 0x2804, 0, 0x00000000, 0x00003f01 },
5256 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5257 { 0x2810, 0, 0xffff0000, 0x00000000 },
5258 { 0x2814, 0, 0xffff0000, 0x00000000 },
5259 { 0x2818, 0, 0xffff0000, 0x00000000 },
5260 { 0x281c, 0, 0xffff0000, 0x00000000 },
5261 { 0x2834, 0, 0xffffffff, 0x00000000 },
5262 { 0x2840, 0, 0x00000000, 0xffffffff },
5263 { 0x2844, 0, 0x00000000, 0xffffffff },
5264 { 0x2848, 0, 0xffffffff, 0x00000000 },
5265 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5266
5267 { 0x2c00, 0, 0x00000000, 0x00000011 },
5268 { 0x2c04, 0, 0x00000000, 0x00030007 },
5269
5270 { 0x3c00, 0, 0x00000000, 0x00000001 },
5271 { 0x3c04, 0, 0x00000000, 0x00070000 },
5272 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5273 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5274 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5275 { 0x3c14, 0, 0x00000000, 0xffffffff },
5276 { 0x3c18, 0, 0x00000000, 0xffffffff },
5277 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5278 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5279
5280 { 0x5004, 0, 0x00000000, 0x0000007f },
5281 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5282
5283 { 0x5c00, 0, 0x00000000, 0x00000001 },
5284 { 0x5c04, 0, 0x00000000, 0x0003000f },
5285 { 0x5c08, 0, 0x00000003, 0x00000000 },
5286 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5287 { 0x5c10, 0, 0x00000000, 0xffffffff },
5288 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5289 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5290 { 0x5c88, 0, 0x00000000, 0x00077373 },
5291 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5292
5293 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5294 { 0x680c, 0, 0xffffffff, 0x00000000 },
5295 { 0x6810, 0, 0xffffffff, 0x00000000 },
5296 { 0x6814, 0, 0xffffffff, 0x00000000 },
5297 { 0x6818, 0, 0xffffffff, 0x00000000 },
5298 { 0x681c, 0, 0xffffffff, 0x00000000 },
5299 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5300 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5301 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5302 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5303 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5304 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5305 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5306 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5307 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5308 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5309 { 0x684c, 0, 0xffffffff, 0x00000000 },
5310 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5311 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5312 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5313 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5314 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5315 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5316
5317 { 0xffff, 0, 0x00000000, 0x00000000 },
5318 };
5319
5320 ret = 0;
5321 is_5709 = 0;
5322 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5323 is_5709 = 1;
5324
5325 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5326 u32 offset, rw_mask, ro_mask, save_val, val;
5327 u16 flags = reg_tbl[i].flags;
5328
5329 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5330 continue;
5331
5332 offset = (u32) reg_tbl[i].offset;
5333 rw_mask = reg_tbl[i].rw_mask;
5334 ro_mask = reg_tbl[i].ro_mask;
5335
5336 save_val = readl(bp->regview + offset);
5337
5338 writel(0, bp->regview + offset);
5339
5340 val = readl(bp->regview + offset);
5341 if ((val & rw_mask) != 0) {
5342 goto reg_test_err;
5343 }
5344
5345 if ((val & ro_mask) != (save_val & ro_mask)) {
5346 goto reg_test_err;
5347 }
5348
5349 writel(0xffffffff, bp->regview + offset);
5350
5351 val = readl(bp->regview + offset);
5352 if ((val & rw_mask) != rw_mask) {
5353 goto reg_test_err;
5354 }
5355
5356 if ((val & ro_mask) != (save_val & ro_mask)) {
5357 goto reg_test_err;
5358 }
5359
5360 writel(save_val, bp->regview + offset);
5361 continue;
5362
5363 reg_test_err:
5364 writel(save_val, bp->regview + offset);
5365 ret = -ENODEV;
5366 break;
5367 }
5368 return ret;
5369 }
5370
5371 static int
5372 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5373 {
5374 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5375 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5376 int i;
5377
5378 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5379 u32 offset;
5380
5381 for (offset = 0; offset < size; offset += 4) {
5382
5383 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5384
5385 if (bnx2_reg_rd_ind(bp, start + offset) !=
5386 test_pattern[i]) {
5387 return -ENODEV;
5388 }
5389 }
5390 }
5391 return 0;
5392 }
5393
5394 static int
5395 bnx2_test_memory(struct bnx2 *bp)
5396 {
5397 int ret = 0;
5398 int i;
5399 static struct mem_entry {
5400 u32 offset;
5401 u32 len;
5402 } mem_tbl_5706[] = {
5403 { 0x60000, 0x4000 },
5404 { 0xa0000, 0x3000 },
5405 { 0xe0000, 0x4000 },
5406 { 0x120000, 0x4000 },
5407 { 0x1a0000, 0x4000 },
5408 { 0x160000, 0x4000 },
5409 { 0xffffffff, 0 },
5410 },
5411 mem_tbl_5709[] = {
5412 { 0x60000, 0x4000 },
5413 { 0xa0000, 0x3000 },
5414 { 0xe0000, 0x4000 },
5415 { 0x120000, 0x4000 },
5416 { 0x1a0000, 0x4000 },
5417 { 0xffffffff, 0 },
5418 };
5419 struct mem_entry *mem_tbl;
5420
5421 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5422 mem_tbl = mem_tbl_5709;
5423 else
5424 mem_tbl = mem_tbl_5706;
5425
5426 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5427 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5428 mem_tbl[i].len)) != 0) {
5429 return ret;
5430 }
5431 }
5432
5433 return ret;
5434 }
5435
5436 #define BNX2_MAC_LOOPBACK 0
5437 #define BNX2_PHY_LOOPBACK 1
5438
5439 static int
5440 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5441 {
5442 unsigned int pkt_size, num_pkts, i;
5443 struct sk_buff *skb, *rx_skb;
5444 unsigned char *packet;
5445 u16 rx_start_idx, rx_idx;
5446 dma_addr_t map;
5447 struct tx_bd *txbd;
5448 struct sw_bd *rx_buf;
5449 struct l2_fhdr *rx_hdr;
5450 int ret = -ENODEV;
5451 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5452 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5453 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5454
5455 tx_napi = bnapi;
5456
5457 txr = &tx_napi->tx_ring;
5458 rxr = &bnapi->rx_ring;
5459 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5460 bp->loopback = MAC_LOOPBACK;
5461 bnx2_set_mac_loopback(bp);
5462 }
5463 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5464 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5465 return 0;
5466
5467 bp->loopback = PHY_LOOPBACK;
5468 bnx2_set_phy_loopback(bp);
5469 }
5470 else
5471 return -EINVAL;
5472
5473 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5474 skb = netdev_alloc_skb(bp->dev, pkt_size);
5475 if (!skb)
5476 return -ENOMEM;
5477 packet = skb_put(skb, pkt_size);
5478 memcpy(packet, bp->dev->dev_addr, 6);
5479 memset(packet + 6, 0x0, 8);
5480 for (i = 14; i < pkt_size; i++)
5481 packet[i] = (unsigned char) (i & 0xff);
5482
5483 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5484 dev_kfree_skb(skb);
5485 return -EIO;
5486 }
5487 map = skb_shinfo(skb)->dma_maps[0];
5488
5489 REG_WR(bp, BNX2_HC_COMMAND,
5490 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5491
5492 REG_RD(bp, BNX2_HC_COMMAND);
5493
5494 udelay(5);
5495 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5496
5497 num_pkts = 0;
5498
5499 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5500
5501 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5502 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5503 txbd->tx_bd_mss_nbytes = pkt_size;
5504 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5505
5506 num_pkts++;
5507 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5508 txr->tx_prod_bseq += pkt_size;
5509
5510 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5511 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5512
5513 udelay(100);
5514
5515 REG_WR(bp, BNX2_HC_COMMAND,
5516 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5517
5518 REG_RD(bp, BNX2_HC_COMMAND);
5519
5520 udelay(5);
5521
5522 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5523 dev_kfree_skb(skb);
5524
5525 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5526 goto loopback_test_done;
5527
5528 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5529 if (rx_idx != rx_start_idx + num_pkts) {
5530 goto loopback_test_done;
5531 }
5532
5533 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5534 rx_skb = rx_buf->skb;
5535
5536 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5537 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5538
5539 pci_dma_sync_single_for_cpu(bp->pdev,
5540 pci_unmap_addr(rx_buf, mapping),
5541 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5542
5543 if (rx_hdr->l2_fhdr_status &
5544 (L2_FHDR_ERRORS_BAD_CRC |
5545 L2_FHDR_ERRORS_PHY_DECODE |
5546 L2_FHDR_ERRORS_ALIGNMENT |
5547 L2_FHDR_ERRORS_TOO_SHORT |
5548 L2_FHDR_ERRORS_GIANT_FRAME)) {
5549
5550 goto loopback_test_done;
5551 }
5552
5553 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5554 goto loopback_test_done;
5555 }
5556
5557 for (i = 14; i < pkt_size; i++) {
5558 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5559 goto loopback_test_done;
5560 }
5561 }
5562
5563 ret = 0;
5564
5565 loopback_test_done:
5566 bp->loopback = 0;
5567 return ret;
5568 }
5569
5570 #define BNX2_MAC_LOOPBACK_FAILED 1
5571 #define BNX2_PHY_LOOPBACK_FAILED 2
5572 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5573 BNX2_PHY_LOOPBACK_FAILED)
5574
5575 static int
5576 bnx2_test_loopback(struct bnx2 *bp)
5577 {
5578 int rc = 0;
5579
5580 if (!netif_running(bp->dev))
5581 return BNX2_LOOPBACK_FAILED;
5582
5583 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5584 spin_lock_bh(&bp->phy_lock);
5585 bnx2_init_phy(bp, 1);
5586 spin_unlock_bh(&bp->phy_lock);
5587 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5588 rc |= BNX2_MAC_LOOPBACK_FAILED;
5589 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5590 rc |= BNX2_PHY_LOOPBACK_FAILED;
5591 return rc;
5592 }
5593
5594 #define NVRAM_SIZE 0x200
5595 #define CRC32_RESIDUAL 0xdebb20e3
5596
5597 static int
5598 bnx2_test_nvram(struct bnx2 *bp)
5599 {
5600 __be32 buf[NVRAM_SIZE / 4];
5601 u8 *data = (u8 *) buf;
5602 int rc = 0;
5603 u32 magic, csum;
5604
5605 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5606 goto test_nvram_done;
5607
5608 magic = be32_to_cpu(buf[0]);
5609 if (magic != 0x669955aa) {
5610 rc = -ENODEV;
5611 goto test_nvram_done;
5612 }
5613
5614 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5615 goto test_nvram_done;
5616
5617 csum = ether_crc_le(0x100, data);
5618 if (csum != CRC32_RESIDUAL) {
5619 rc = -ENODEV;
5620 goto test_nvram_done;
5621 }
5622
5623 csum = ether_crc_le(0x100, data + 0x100);
5624 if (csum != CRC32_RESIDUAL) {
5625 rc = -ENODEV;
5626 }
5627
5628 test_nvram_done:
5629 return rc;
5630 }
5631
5632 static int
5633 bnx2_test_link(struct bnx2 *bp)
5634 {
5635 u32 bmsr;
5636
5637 if (!netif_running(bp->dev))
5638 return -ENODEV;
5639
5640 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5641 if (bp->link_up)
5642 return 0;
5643 return -ENODEV;
5644 }
5645 spin_lock_bh(&bp->phy_lock);
5646 bnx2_enable_bmsr1(bp);
5647 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5648 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5649 bnx2_disable_bmsr1(bp);
5650 spin_unlock_bh(&bp->phy_lock);
5651
5652 if (bmsr & BMSR_LSTATUS) {
5653 return 0;
5654 }
5655 return -ENODEV;
5656 }
5657
5658 static int
5659 bnx2_test_intr(struct bnx2 *bp)
5660 {
5661 int i;
5662 u16 status_idx;
5663
5664 if (!netif_running(bp->dev))
5665 return -ENODEV;
5666
5667 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5668
5669 /* This register is not touched during run-time. */
5670 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5671 REG_RD(bp, BNX2_HC_COMMAND);
5672
5673 for (i = 0; i < 10; i++) {
5674 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5675 status_idx) {
5676
5677 break;
5678 }
5679
5680 msleep_interruptible(10);
5681 }
5682 if (i < 10)
5683 return 0;
5684
5685 return -ENODEV;
5686 }
5687
5688 /* Determining link for parallel detection. */
5689 static int
5690 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5691 {
5692 u32 mode_ctl, an_dbg, exp;
5693
5694 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5695 return 0;
5696
5697 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5698 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5699
5700 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5701 return 0;
5702
5703 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5704 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5705 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5706
5707 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5708 return 0;
5709
5710 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5711 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5712 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5713
5714 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5715 return 0;
5716
5717 return 1;
5718 }
5719
5720 static void
5721 bnx2_5706_serdes_timer(struct bnx2 *bp)
5722 {
5723 int check_link = 1;
5724
5725 spin_lock(&bp->phy_lock);
5726 if (bp->serdes_an_pending) {
5727 bp->serdes_an_pending--;
5728 check_link = 0;
5729 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5730 u32 bmcr;
5731
5732 bp->current_interval = BNX2_TIMER_INTERVAL;
5733
5734 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5735
5736 if (bmcr & BMCR_ANENABLE) {
5737 if (bnx2_5706_serdes_has_link(bp)) {
5738 bmcr &= ~BMCR_ANENABLE;
5739 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5740 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5741 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5742 }
5743 }
5744 }
5745 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5746 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5747 u32 phy2;
5748
5749 bnx2_write_phy(bp, 0x17, 0x0f01);
5750 bnx2_read_phy(bp, 0x15, &phy2);
5751 if (phy2 & 0x20) {
5752 u32 bmcr;
5753
5754 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5755 bmcr |= BMCR_ANENABLE;
5756 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5757
5758 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5759 }
5760 } else
5761 bp->current_interval = BNX2_TIMER_INTERVAL;
5762
5763 if (check_link) {
5764 u32 val;
5765
5766 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5767 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5768 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5769
5770 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5771 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5772 bnx2_5706s_force_link_dn(bp, 1);
5773 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5774 } else
5775 bnx2_set_link(bp);
5776 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5777 bnx2_set_link(bp);
5778 }
5779 spin_unlock(&bp->phy_lock);
5780 }
5781
5782 static void
5783 bnx2_5708_serdes_timer(struct bnx2 *bp)
5784 {
5785 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5786 return;
5787
5788 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5789 bp->serdes_an_pending = 0;
5790 return;
5791 }
5792
5793 spin_lock(&bp->phy_lock);
5794 if (bp->serdes_an_pending)
5795 bp->serdes_an_pending--;
5796 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5797 u32 bmcr;
5798
5799 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5800 if (bmcr & BMCR_ANENABLE) {
5801 bnx2_enable_forced_2g5(bp);
5802 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5803 } else {
5804 bnx2_disable_forced_2g5(bp);
5805 bp->serdes_an_pending = 2;
5806 bp->current_interval = BNX2_TIMER_INTERVAL;
5807 }
5808
5809 } else
5810 bp->current_interval = BNX2_TIMER_INTERVAL;
5811
5812 spin_unlock(&bp->phy_lock);
5813 }
5814
5815 static void
5816 bnx2_timer(unsigned long data)
5817 {
5818 struct bnx2 *bp = (struct bnx2 *) data;
5819
5820 if (!netif_running(bp->dev))
5821 return;
5822
5823 if (atomic_read(&bp->intr_sem) != 0)
5824 goto bnx2_restart_timer;
5825
5826 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
5827 BNX2_FLAG_USING_MSI)
5828 bnx2_chk_missed_msi(bp);
5829
5830 bnx2_send_heart_beat(bp);
5831
5832 bp->stats_blk->stat_FwRxDrop =
5833 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
5834
5835 /* workaround occasional corrupted counters */
5836 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
5837 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
5838 BNX2_HC_COMMAND_STATS_NOW);
5839
5840 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
5841 if (CHIP_NUM(bp) == CHIP_NUM_5706)
5842 bnx2_5706_serdes_timer(bp);
5843 else
5844 bnx2_5708_serdes_timer(bp);
5845 }
5846
5847 bnx2_restart_timer:
5848 mod_timer(&bp->timer, jiffies + bp->current_interval);
5849 }
5850
5851 static int
5852 bnx2_request_irq(struct bnx2 *bp)
5853 {
5854 unsigned long flags;
5855 struct bnx2_irq *irq;
5856 int rc = 0, i;
5857
5858 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
5859 flags = 0;
5860 else
5861 flags = IRQF_SHARED;
5862
5863 for (i = 0; i < bp->irq_nvecs; i++) {
5864 irq = &bp->irq_tbl[i];
5865 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5866 &bp->bnx2_napi[i]);
5867 if (rc)
5868 break;
5869 irq->requested = 1;
5870 }
5871 return rc;
5872 }
5873
5874 static void
5875 bnx2_free_irq(struct bnx2 *bp)
5876 {
5877 struct bnx2_irq *irq;
5878 int i;
5879
5880 for (i = 0; i < bp->irq_nvecs; i++) {
5881 irq = &bp->irq_tbl[i];
5882 if (irq->requested)
5883 free_irq(irq->vector, &bp->bnx2_napi[i]);
5884 irq->requested = 0;
5885 }
5886 if (bp->flags & BNX2_FLAG_USING_MSI)
5887 pci_disable_msi(bp->pdev);
5888 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5889 pci_disable_msix(bp->pdev);
5890
5891 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
5892 }
5893
5894 static void
5895 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
5896 {
5897 int i, rc;
5898 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
5899 struct net_device *dev = bp->dev;
5900 const int len = sizeof(bp->irq_tbl[0].name);
5901
5902 bnx2_setup_msix_tbl(bp);
5903 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
5904 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
5905 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
5906
5907 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5908 msix_ent[i].entry = i;
5909 msix_ent[i].vector = 0;
5910 }
5911
5912 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
5913 if (rc != 0)
5914 return;
5915
5916 bp->irq_nvecs = msix_vecs;
5917 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
5918 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5919 bp->irq_tbl[i].vector = msix_ent[i].vector;
5920 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
5921 bp->irq_tbl[i].handler = bnx2_msi_1shot;
5922 }
5923 }
5924
5925 static void
5926 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
5927 {
5928 int cpus = num_online_cpus();
5929 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
5930
5931 bp->irq_tbl[0].handler = bnx2_interrupt;
5932 strcpy(bp->irq_tbl[0].name, bp->dev->name);
5933 bp->irq_nvecs = 1;
5934 bp->irq_tbl[0].vector = bp->pdev->irq;
5935
5936 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
5937 bnx2_enable_msix(bp, msix_vecs);
5938
5939 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
5940 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
5941 if (pci_enable_msi(bp->pdev) == 0) {
5942 bp->flags |= BNX2_FLAG_USING_MSI;
5943 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5944 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
5945 bp->irq_tbl[0].handler = bnx2_msi_1shot;
5946 } else
5947 bp->irq_tbl[0].handler = bnx2_msi;
5948
5949 bp->irq_tbl[0].vector = bp->pdev->irq;
5950 }
5951 }
5952
5953 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
5954 bp->dev->real_num_tx_queues = bp->num_tx_rings;
5955
5956 bp->num_rx_rings = bp->irq_nvecs;
5957 }
5958
5959 /* Called with rtnl_lock */
5960 static int
5961 bnx2_open(struct net_device *dev)
5962 {
5963 struct bnx2 *bp = netdev_priv(dev);
5964 int rc;
5965
5966 netif_carrier_off(dev);
5967
5968 bnx2_set_power_state(bp, PCI_D0);
5969 bnx2_disable_int(bp);
5970
5971 bnx2_setup_int_mode(bp, disable_msi);
5972 bnx2_napi_enable(bp);
5973 rc = bnx2_alloc_mem(bp);
5974 if (rc)
5975 goto open_err;
5976
5977 rc = bnx2_request_irq(bp);
5978 if (rc)
5979 goto open_err;
5980
5981 rc = bnx2_init_nic(bp, 1);
5982 if (rc)
5983 goto open_err;
5984
5985 mod_timer(&bp->timer, jiffies + bp->current_interval);
5986
5987 atomic_set(&bp->intr_sem, 0);
5988
5989 bnx2_enable_int(bp);
5990
5991 if (bp->flags & BNX2_FLAG_USING_MSI) {
5992 /* Test MSI to make sure it is working
5993 * If MSI test fails, go back to INTx mode
5994 */
5995 if (bnx2_test_intr(bp) != 0) {
5996 printk(KERN_WARNING PFX "%s: No interrupt was generated"
5997 " using MSI, switching to INTx mode. Please"
5998 " report this failure to the PCI maintainer"
5999 " and include system chipset information.\n",
6000 bp->dev->name);
6001
6002 bnx2_disable_int(bp);
6003 bnx2_free_irq(bp);
6004
6005 bnx2_setup_int_mode(bp, 1);
6006
6007 rc = bnx2_init_nic(bp, 0);
6008
6009 if (!rc)
6010 rc = bnx2_request_irq(bp);
6011
6012 if (rc) {
6013 del_timer_sync(&bp->timer);
6014 goto open_err;
6015 }
6016 bnx2_enable_int(bp);
6017 }
6018 }
6019 if (bp->flags & BNX2_FLAG_USING_MSI)
6020 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6021 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6022 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6023
6024 netif_tx_start_all_queues(dev);
6025
6026 return 0;
6027
6028 open_err:
6029 bnx2_napi_disable(bp);
6030 bnx2_free_skbs(bp);
6031 bnx2_free_irq(bp);
6032 bnx2_free_mem(bp);
6033 return rc;
6034 }
6035
6036 static void
6037 bnx2_reset_task(struct work_struct *work)
6038 {
6039 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6040
6041 if (!netif_running(bp->dev))
6042 return;
6043
6044 bnx2_netif_stop(bp);
6045
6046 bnx2_init_nic(bp, 1);
6047
6048 atomic_set(&bp->intr_sem, 1);
6049 bnx2_netif_start(bp);
6050 }
6051
6052 static void
6053 bnx2_tx_timeout(struct net_device *dev)
6054 {
6055 struct bnx2 *bp = netdev_priv(dev);
6056
6057 /* This allows the netif to be shutdown gracefully before resetting */
6058 schedule_work(&bp->reset_task);
6059 }
6060
6061 #ifdef BCM_VLAN
6062 /* Called with rtnl_lock */
6063 static void
6064 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6065 {
6066 struct bnx2 *bp = netdev_priv(dev);
6067
6068 bnx2_netif_stop(bp);
6069
6070 bp->vlgrp = vlgrp;
6071 bnx2_set_rx_mode(dev);
6072 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6073 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6074
6075 bnx2_netif_start(bp);
6076 }
6077 #endif
6078
6079 /* Called with netif_tx_lock.
6080 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6081 * netif_wake_queue().
6082 */
6083 static int
6084 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6085 {
6086 struct bnx2 *bp = netdev_priv(dev);
6087 dma_addr_t mapping;
6088 struct tx_bd *txbd;
6089 struct sw_tx_bd *tx_buf;
6090 u32 len, vlan_tag_flags, last_frag, mss;
6091 u16 prod, ring_prod;
6092 int i;
6093 struct bnx2_napi *bnapi;
6094 struct bnx2_tx_ring_info *txr;
6095 struct netdev_queue *txq;
6096 struct skb_shared_info *sp;
6097
6098 /* Determine which tx ring we will be placed on */
6099 i = skb_get_queue_mapping(skb);
6100 bnapi = &bp->bnx2_napi[i];
6101 txr = &bnapi->tx_ring;
6102 txq = netdev_get_tx_queue(dev, i);
6103
6104 if (unlikely(bnx2_tx_avail(bp, txr) <
6105 (skb_shinfo(skb)->nr_frags + 1))) {
6106 netif_tx_stop_queue(txq);
6107 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6108 dev->name);
6109
6110 return NETDEV_TX_BUSY;
6111 }
6112 len = skb_headlen(skb);
6113 prod = txr->tx_prod;
6114 ring_prod = TX_RING_IDX(prod);
6115
6116 vlan_tag_flags = 0;
6117 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6118 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6119 }
6120
6121 #ifdef BCM_VLAN
6122 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6123 vlan_tag_flags |=
6124 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6125 }
6126 #endif
6127 if ((mss = skb_shinfo(skb)->gso_size)) {
6128 u32 tcp_opt_len;
6129 struct iphdr *iph;
6130
6131 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6132
6133 tcp_opt_len = tcp_optlen(skb);
6134
6135 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6136 u32 tcp_off = skb_transport_offset(skb) -
6137 sizeof(struct ipv6hdr) - ETH_HLEN;
6138
6139 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6140 TX_BD_FLAGS_SW_FLAGS;
6141 if (likely(tcp_off == 0))
6142 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6143 else {
6144 tcp_off >>= 3;
6145 vlan_tag_flags |= ((tcp_off & 0x3) <<
6146 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6147 ((tcp_off & 0x10) <<
6148 TX_BD_FLAGS_TCP6_OFF4_SHL);
6149 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6150 }
6151 } else {
6152 iph = ip_hdr(skb);
6153 if (tcp_opt_len || (iph->ihl > 5)) {
6154 vlan_tag_flags |= ((iph->ihl - 5) +
6155 (tcp_opt_len >> 2)) << 8;
6156 }
6157 }
6158 } else
6159 mss = 0;
6160
6161 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6162 dev_kfree_skb(skb);
6163 return NETDEV_TX_OK;
6164 }
6165
6166 sp = skb_shinfo(skb);
6167 mapping = sp->dma_maps[0];
6168
6169 tx_buf = &txr->tx_buf_ring[ring_prod];
6170 tx_buf->skb = skb;
6171
6172 txbd = &txr->tx_desc_ring[ring_prod];
6173
6174 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6175 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6176 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6177 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6178
6179 last_frag = skb_shinfo(skb)->nr_frags;
6180
6181 for (i = 0; i < last_frag; i++) {
6182 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6183
6184 prod = NEXT_TX_BD(prod);
6185 ring_prod = TX_RING_IDX(prod);
6186 txbd = &txr->tx_desc_ring[ring_prod];
6187
6188 len = frag->size;
6189 mapping = sp->dma_maps[i + 1];
6190
6191 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6192 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6193 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6194 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6195
6196 }
6197 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6198
6199 prod = NEXT_TX_BD(prod);
6200 txr->tx_prod_bseq += skb->len;
6201
6202 REG_WR16(bp, txr->tx_bidx_addr, prod);
6203 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6204
6205 mmiowb();
6206
6207 txr->tx_prod = prod;
6208 dev->trans_start = jiffies;
6209
6210 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6211 netif_tx_stop_queue(txq);
6212 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6213 netif_tx_wake_queue(txq);
6214 }
6215
6216 return NETDEV_TX_OK;
6217 }
6218
6219 /* Called with rtnl_lock */
6220 static int
6221 bnx2_close(struct net_device *dev)
6222 {
6223 struct bnx2 *bp = netdev_priv(dev);
6224
6225 cancel_work_sync(&bp->reset_task);
6226
6227 bnx2_disable_int_sync(bp);
6228 bnx2_napi_disable(bp);
6229 del_timer_sync(&bp->timer);
6230 bnx2_shutdown_chip(bp);
6231 bnx2_free_irq(bp);
6232 bnx2_free_skbs(bp);
6233 bnx2_free_mem(bp);
6234 bp->link_up = 0;
6235 netif_carrier_off(bp->dev);
6236 bnx2_set_power_state(bp, PCI_D3hot);
6237 return 0;
6238 }
6239
6240 #define GET_NET_STATS64(ctr) \
6241 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6242 (unsigned long) (ctr##_lo)
6243
6244 #define GET_NET_STATS32(ctr) \
6245 (ctr##_lo)
6246
6247 #if (BITS_PER_LONG == 64)
6248 #define GET_NET_STATS GET_NET_STATS64
6249 #else
6250 #define GET_NET_STATS GET_NET_STATS32
6251 #endif
6252
6253 static struct net_device_stats *
6254 bnx2_get_stats(struct net_device *dev)
6255 {
6256 struct bnx2 *bp = netdev_priv(dev);
6257 struct statistics_block *stats_blk = bp->stats_blk;
6258 struct net_device_stats *net_stats = &dev->stats;
6259
6260 if (bp->stats_blk == NULL) {
6261 return net_stats;
6262 }
6263 net_stats->rx_packets =
6264 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6265 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6266 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6267
6268 net_stats->tx_packets =
6269 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6270 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6271 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6272
6273 net_stats->rx_bytes =
6274 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6275
6276 net_stats->tx_bytes =
6277 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6278
6279 net_stats->multicast =
6280 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6281
6282 net_stats->collisions =
6283 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6284
6285 net_stats->rx_length_errors =
6286 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6287 stats_blk->stat_EtherStatsOverrsizePkts);
6288
6289 net_stats->rx_over_errors =
6290 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6291
6292 net_stats->rx_frame_errors =
6293 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6294
6295 net_stats->rx_crc_errors =
6296 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6297
6298 net_stats->rx_errors = net_stats->rx_length_errors +
6299 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6300 net_stats->rx_crc_errors;
6301
6302 net_stats->tx_aborted_errors =
6303 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6304 stats_blk->stat_Dot3StatsLateCollisions);
6305
6306 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6307 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6308 net_stats->tx_carrier_errors = 0;
6309 else {
6310 net_stats->tx_carrier_errors =
6311 (unsigned long)
6312 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6313 }
6314
6315 net_stats->tx_errors =
6316 (unsigned long)
6317 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6318 +
6319 net_stats->tx_aborted_errors +
6320 net_stats->tx_carrier_errors;
6321
6322 net_stats->rx_missed_errors =
6323 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6324 stats_blk->stat_FwRxDrop);
6325
6326 return net_stats;
6327 }
6328
6329 /* All ethtool functions called with rtnl_lock */
6330
6331 static int
6332 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6333 {
6334 struct bnx2 *bp = netdev_priv(dev);
6335 int support_serdes = 0, support_copper = 0;
6336
6337 cmd->supported = SUPPORTED_Autoneg;
6338 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6339 support_serdes = 1;
6340 support_copper = 1;
6341 } else if (bp->phy_port == PORT_FIBRE)
6342 support_serdes = 1;
6343 else
6344 support_copper = 1;
6345
6346 if (support_serdes) {
6347 cmd->supported |= SUPPORTED_1000baseT_Full |
6348 SUPPORTED_FIBRE;
6349 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6350 cmd->supported |= SUPPORTED_2500baseX_Full;
6351
6352 }
6353 if (support_copper) {
6354 cmd->supported |= SUPPORTED_10baseT_Half |
6355 SUPPORTED_10baseT_Full |
6356 SUPPORTED_100baseT_Half |
6357 SUPPORTED_100baseT_Full |
6358 SUPPORTED_1000baseT_Full |
6359 SUPPORTED_TP;
6360
6361 }
6362
6363 spin_lock_bh(&bp->phy_lock);
6364 cmd->port = bp->phy_port;
6365 cmd->advertising = bp->advertising;
6366
6367 if (bp->autoneg & AUTONEG_SPEED) {
6368 cmd->autoneg = AUTONEG_ENABLE;
6369 }
6370 else {
6371 cmd->autoneg = AUTONEG_DISABLE;
6372 }
6373
6374 if (netif_carrier_ok(dev)) {
6375 cmd->speed = bp->line_speed;
6376 cmd->duplex = bp->duplex;
6377 }
6378 else {
6379 cmd->speed = -1;
6380 cmd->duplex = -1;
6381 }
6382 spin_unlock_bh(&bp->phy_lock);
6383
6384 cmd->transceiver = XCVR_INTERNAL;
6385 cmd->phy_address = bp->phy_addr;
6386
6387 return 0;
6388 }
6389
6390 static int
6391 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6392 {
6393 struct bnx2 *bp = netdev_priv(dev);
6394 u8 autoneg = bp->autoneg;
6395 u8 req_duplex = bp->req_duplex;
6396 u16 req_line_speed = bp->req_line_speed;
6397 u32 advertising = bp->advertising;
6398 int err = -EINVAL;
6399
6400 spin_lock_bh(&bp->phy_lock);
6401
6402 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6403 goto err_out_unlock;
6404
6405 if (cmd->port != bp->phy_port &&
6406 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6407 goto err_out_unlock;
6408
6409 /* If device is down, we can store the settings only if the user
6410 * is setting the currently active port.
6411 */
6412 if (!netif_running(dev) && cmd->port != bp->phy_port)
6413 goto err_out_unlock;
6414
6415 if (cmd->autoneg == AUTONEG_ENABLE) {
6416 autoneg |= AUTONEG_SPEED;
6417
6418 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6419
6420 /* allow advertising 1 speed */
6421 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6422 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6423 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6424 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6425
6426 if (cmd->port == PORT_FIBRE)
6427 goto err_out_unlock;
6428
6429 advertising = cmd->advertising;
6430
6431 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6432 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6433 (cmd->port == PORT_TP))
6434 goto err_out_unlock;
6435 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6436 advertising = cmd->advertising;
6437 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6438 goto err_out_unlock;
6439 else {
6440 if (cmd->port == PORT_FIBRE)
6441 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6442 else
6443 advertising = ETHTOOL_ALL_COPPER_SPEED;
6444 }
6445 advertising |= ADVERTISED_Autoneg;
6446 }
6447 else {
6448 if (cmd->port == PORT_FIBRE) {
6449 if ((cmd->speed != SPEED_1000 &&
6450 cmd->speed != SPEED_2500) ||
6451 (cmd->duplex != DUPLEX_FULL))
6452 goto err_out_unlock;
6453
6454 if (cmd->speed == SPEED_2500 &&
6455 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6456 goto err_out_unlock;
6457 }
6458 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6459 goto err_out_unlock;
6460
6461 autoneg &= ~AUTONEG_SPEED;
6462 req_line_speed = cmd->speed;
6463 req_duplex = cmd->duplex;
6464 advertising = 0;
6465 }
6466
6467 bp->autoneg = autoneg;
6468 bp->advertising = advertising;
6469 bp->req_line_speed = req_line_speed;
6470 bp->req_duplex = req_duplex;
6471
6472 err = 0;
6473 /* If device is down, the new settings will be picked up when it is
6474 * brought up.
6475 */
6476 if (netif_running(dev))
6477 err = bnx2_setup_phy(bp, cmd->port);
6478
6479 err_out_unlock:
6480 spin_unlock_bh(&bp->phy_lock);
6481
6482 return err;
6483 }
6484
6485 static void
6486 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6487 {
6488 struct bnx2 *bp = netdev_priv(dev);
6489
6490 strcpy(info->driver, DRV_MODULE_NAME);
6491 strcpy(info->version, DRV_MODULE_VERSION);
6492 strcpy(info->bus_info, pci_name(bp->pdev));
6493 strcpy(info->fw_version, bp->fw_version);
6494 }
6495
6496 #define BNX2_REGDUMP_LEN (32 * 1024)
6497
6498 static int
6499 bnx2_get_regs_len(struct net_device *dev)
6500 {
6501 return BNX2_REGDUMP_LEN;
6502 }
6503
6504 static void
6505 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6506 {
6507 u32 *p = _p, i, offset;
6508 u8 *orig_p = _p;
6509 struct bnx2 *bp = netdev_priv(dev);
6510 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6511 0x0800, 0x0880, 0x0c00, 0x0c10,
6512 0x0c30, 0x0d08, 0x1000, 0x101c,
6513 0x1040, 0x1048, 0x1080, 0x10a4,
6514 0x1400, 0x1490, 0x1498, 0x14f0,
6515 0x1500, 0x155c, 0x1580, 0x15dc,
6516 0x1600, 0x1658, 0x1680, 0x16d8,
6517 0x1800, 0x1820, 0x1840, 0x1854,
6518 0x1880, 0x1894, 0x1900, 0x1984,
6519 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6520 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6521 0x2000, 0x2030, 0x23c0, 0x2400,
6522 0x2800, 0x2820, 0x2830, 0x2850,
6523 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6524 0x3c00, 0x3c94, 0x4000, 0x4010,
6525 0x4080, 0x4090, 0x43c0, 0x4458,
6526 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6527 0x4fc0, 0x5010, 0x53c0, 0x5444,
6528 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6529 0x5fc0, 0x6000, 0x6400, 0x6428,
6530 0x6800, 0x6848, 0x684c, 0x6860,
6531 0x6888, 0x6910, 0x8000 };
6532
6533 regs->version = 0;
6534
6535 memset(p, 0, BNX2_REGDUMP_LEN);
6536
6537 if (!netif_running(bp->dev))
6538 return;
6539
6540 i = 0;
6541 offset = reg_boundaries[0];
6542 p += offset;
6543 while (offset < BNX2_REGDUMP_LEN) {
6544 *p++ = REG_RD(bp, offset);
6545 offset += 4;
6546 if (offset == reg_boundaries[i + 1]) {
6547 offset = reg_boundaries[i + 2];
6548 p = (u32 *) (orig_p + offset);
6549 i += 2;
6550 }
6551 }
6552 }
6553
6554 static void
6555 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6556 {
6557 struct bnx2 *bp = netdev_priv(dev);
6558
6559 if (bp->flags & BNX2_FLAG_NO_WOL) {
6560 wol->supported = 0;
6561 wol->wolopts = 0;
6562 }
6563 else {
6564 wol->supported = WAKE_MAGIC;
6565 if (bp->wol)
6566 wol->wolopts = WAKE_MAGIC;
6567 else
6568 wol->wolopts = 0;
6569 }
6570 memset(&wol->sopass, 0, sizeof(wol->sopass));
6571 }
6572
6573 static int
6574 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6575 {
6576 struct bnx2 *bp = netdev_priv(dev);
6577
6578 if (wol->wolopts & ~WAKE_MAGIC)
6579 return -EINVAL;
6580
6581 if (wol->wolopts & WAKE_MAGIC) {
6582 if (bp->flags & BNX2_FLAG_NO_WOL)
6583 return -EINVAL;
6584
6585 bp->wol = 1;
6586 }
6587 else {
6588 bp->wol = 0;
6589 }
6590 return 0;
6591 }
6592
6593 static int
6594 bnx2_nway_reset(struct net_device *dev)
6595 {
6596 struct bnx2 *bp = netdev_priv(dev);
6597 u32 bmcr;
6598
6599 if (!netif_running(dev))
6600 return -EAGAIN;
6601
6602 if (!(bp->autoneg & AUTONEG_SPEED)) {
6603 return -EINVAL;
6604 }
6605
6606 spin_lock_bh(&bp->phy_lock);
6607
6608 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6609 int rc;
6610
6611 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6612 spin_unlock_bh(&bp->phy_lock);
6613 return rc;
6614 }
6615
6616 /* Force a link down visible on the other side */
6617 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6618 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6619 spin_unlock_bh(&bp->phy_lock);
6620
6621 msleep(20);
6622
6623 spin_lock_bh(&bp->phy_lock);
6624
6625 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6626 bp->serdes_an_pending = 1;
6627 mod_timer(&bp->timer, jiffies + bp->current_interval);
6628 }
6629
6630 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6631 bmcr &= ~BMCR_LOOPBACK;
6632 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6633
6634 spin_unlock_bh(&bp->phy_lock);
6635
6636 return 0;
6637 }
6638
6639 static int
6640 bnx2_get_eeprom_len(struct net_device *dev)
6641 {
6642 struct bnx2 *bp = netdev_priv(dev);
6643
6644 if (bp->flash_info == NULL)
6645 return 0;
6646
6647 return (int) bp->flash_size;
6648 }
6649
6650 static int
6651 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6652 u8 *eebuf)
6653 {
6654 struct bnx2 *bp = netdev_priv(dev);
6655 int rc;
6656
6657 if (!netif_running(dev))
6658 return -EAGAIN;
6659
6660 /* parameters already validated in ethtool_get_eeprom */
6661
6662 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6663
6664 return rc;
6665 }
6666
6667 static int
6668 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6669 u8 *eebuf)
6670 {
6671 struct bnx2 *bp = netdev_priv(dev);
6672 int rc;
6673
6674 if (!netif_running(dev))
6675 return -EAGAIN;
6676
6677 /* parameters already validated in ethtool_set_eeprom */
6678
6679 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6680
6681 return rc;
6682 }
6683
6684 static int
6685 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6686 {
6687 struct bnx2 *bp = netdev_priv(dev);
6688
6689 memset(coal, 0, sizeof(struct ethtool_coalesce));
6690
6691 coal->rx_coalesce_usecs = bp->rx_ticks;
6692 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6693 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6694 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6695
6696 coal->tx_coalesce_usecs = bp->tx_ticks;
6697 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6698 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6699 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6700
6701 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6702
6703 return 0;
6704 }
6705
6706 static int
6707 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6708 {
6709 struct bnx2 *bp = netdev_priv(dev);
6710
6711 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6712 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6713
6714 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6715 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6716
6717 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6718 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6719
6720 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6721 if (bp->rx_quick_cons_trip_int > 0xff)
6722 bp->rx_quick_cons_trip_int = 0xff;
6723
6724 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6725 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6726
6727 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6728 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6729
6730 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6731 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6732
6733 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6734 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6735 0xff;
6736
6737 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6738 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6739 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6740 bp->stats_ticks = USEC_PER_SEC;
6741 }
6742 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6743 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6744 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6745
6746 if (netif_running(bp->dev)) {
6747 bnx2_netif_stop(bp);
6748 bnx2_init_nic(bp, 0);
6749 bnx2_netif_start(bp);
6750 }
6751
6752 return 0;
6753 }
6754
6755 static void
6756 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6757 {
6758 struct bnx2 *bp = netdev_priv(dev);
6759
6760 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6761 ering->rx_mini_max_pending = 0;
6762 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6763
6764 ering->rx_pending = bp->rx_ring_size;
6765 ering->rx_mini_pending = 0;
6766 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6767
6768 ering->tx_max_pending = MAX_TX_DESC_CNT;
6769 ering->tx_pending = bp->tx_ring_size;
6770 }
6771
6772 static int
6773 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6774 {
6775 if (netif_running(bp->dev)) {
6776 bnx2_netif_stop(bp);
6777 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6778 bnx2_free_skbs(bp);
6779 bnx2_free_mem(bp);
6780 }
6781
6782 bnx2_set_rx_ring_size(bp, rx);
6783 bp->tx_ring_size = tx;
6784
6785 if (netif_running(bp->dev)) {
6786 int rc;
6787
6788 rc = bnx2_alloc_mem(bp);
6789 if (rc)
6790 return rc;
6791 bnx2_init_nic(bp, 0);
6792 bnx2_netif_start(bp);
6793 }
6794 return 0;
6795 }
6796
6797 static int
6798 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6799 {
6800 struct bnx2 *bp = netdev_priv(dev);
6801 int rc;
6802
6803 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
6804 (ering->tx_pending > MAX_TX_DESC_CNT) ||
6805 (ering->tx_pending <= MAX_SKB_FRAGS)) {
6806
6807 return -EINVAL;
6808 }
6809 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
6810 return rc;
6811 }
6812
6813 static void
6814 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6815 {
6816 struct bnx2 *bp = netdev_priv(dev);
6817
6818 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
6819 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
6820 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
6821 }
6822
6823 static int
6824 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6825 {
6826 struct bnx2 *bp = netdev_priv(dev);
6827
6828 bp->req_flow_ctrl = 0;
6829 if (epause->rx_pause)
6830 bp->req_flow_ctrl |= FLOW_CTRL_RX;
6831 if (epause->tx_pause)
6832 bp->req_flow_ctrl |= FLOW_CTRL_TX;
6833
6834 if (epause->autoneg) {
6835 bp->autoneg |= AUTONEG_FLOW_CTRL;
6836 }
6837 else {
6838 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
6839 }
6840
6841 if (netif_running(dev)) {
6842 spin_lock_bh(&bp->phy_lock);
6843 bnx2_setup_phy(bp, bp->phy_port);
6844 spin_unlock_bh(&bp->phy_lock);
6845 }
6846
6847 return 0;
6848 }
6849
6850 static u32
6851 bnx2_get_rx_csum(struct net_device *dev)
6852 {
6853 struct bnx2 *bp = netdev_priv(dev);
6854
6855 return bp->rx_csum;
6856 }
6857
6858 static int
6859 bnx2_set_rx_csum(struct net_device *dev, u32 data)
6860 {
6861 struct bnx2 *bp = netdev_priv(dev);
6862
6863 bp->rx_csum = data;
6864 return 0;
6865 }
6866
6867 static int
6868 bnx2_set_tso(struct net_device *dev, u32 data)
6869 {
6870 struct bnx2 *bp = netdev_priv(dev);
6871
6872 if (data) {
6873 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6874 if (CHIP_NUM(bp) == CHIP_NUM_5709)
6875 dev->features |= NETIF_F_TSO6;
6876 } else
6877 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
6878 NETIF_F_TSO_ECN);
6879 return 0;
6880 }
6881
6882 #define BNX2_NUM_STATS 46
6883
6884 static struct {
6885 char string[ETH_GSTRING_LEN];
6886 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
6887 { "rx_bytes" },
6888 { "rx_error_bytes" },
6889 { "tx_bytes" },
6890 { "tx_error_bytes" },
6891 { "rx_ucast_packets" },
6892 { "rx_mcast_packets" },
6893 { "rx_bcast_packets" },
6894 { "tx_ucast_packets" },
6895 { "tx_mcast_packets" },
6896 { "tx_bcast_packets" },
6897 { "tx_mac_errors" },
6898 { "tx_carrier_errors" },
6899 { "rx_crc_errors" },
6900 { "rx_align_errors" },
6901 { "tx_single_collisions" },
6902 { "tx_multi_collisions" },
6903 { "tx_deferred" },
6904 { "tx_excess_collisions" },
6905 { "tx_late_collisions" },
6906 { "tx_total_collisions" },
6907 { "rx_fragments" },
6908 { "rx_jabbers" },
6909 { "rx_undersize_packets" },
6910 { "rx_oversize_packets" },
6911 { "rx_64_byte_packets" },
6912 { "rx_65_to_127_byte_packets" },
6913 { "rx_128_to_255_byte_packets" },
6914 { "rx_256_to_511_byte_packets" },
6915 { "rx_512_to_1023_byte_packets" },
6916 { "rx_1024_to_1522_byte_packets" },
6917 { "rx_1523_to_9022_byte_packets" },
6918 { "tx_64_byte_packets" },
6919 { "tx_65_to_127_byte_packets" },
6920 { "tx_128_to_255_byte_packets" },
6921 { "tx_256_to_511_byte_packets" },
6922 { "tx_512_to_1023_byte_packets" },
6923 { "tx_1024_to_1522_byte_packets" },
6924 { "tx_1523_to_9022_byte_packets" },
6925 { "rx_xon_frames" },
6926 { "rx_xoff_frames" },
6927 { "tx_xon_frames" },
6928 { "tx_xoff_frames" },
6929 { "rx_mac_ctrl_frames" },
6930 { "rx_filtered_packets" },
6931 { "rx_discards" },
6932 { "rx_fw_discards" },
6933 };
6934
6935 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6936
6937 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
6938 STATS_OFFSET32(stat_IfHCInOctets_hi),
6939 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
6940 STATS_OFFSET32(stat_IfHCOutOctets_hi),
6941 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
6942 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
6943 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
6944 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
6945 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
6946 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
6947 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
6948 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
6949 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
6950 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
6951 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
6952 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
6953 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
6954 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
6955 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
6956 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
6957 STATS_OFFSET32(stat_EtherStatsCollisions),
6958 STATS_OFFSET32(stat_EtherStatsFragments),
6959 STATS_OFFSET32(stat_EtherStatsJabbers),
6960 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
6961 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
6962 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
6963 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
6964 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
6965 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
6966 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
6967 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
6968 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
6969 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
6970 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
6971 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
6972 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
6973 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
6974 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
6975 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
6976 STATS_OFFSET32(stat_XonPauseFramesReceived),
6977 STATS_OFFSET32(stat_XoffPauseFramesReceived),
6978 STATS_OFFSET32(stat_OutXonSent),
6979 STATS_OFFSET32(stat_OutXoffSent),
6980 STATS_OFFSET32(stat_MacControlFramesReceived),
6981 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
6982 STATS_OFFSET32(stat_IfInMBUFDiscards),
6983 STATS_OFFSET32(stat_FwRxDrop),
6984 };
6985
6986 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6987 * skipped because of errata.
6988 */
6989 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
6990 8,0,8,8,8,8,8,8,8,8,
6991 4,0,4,4,4,4,4,4,4,4,
6992 4,4,4,4,4,4,4,4,4,4,
6993 4,4,4,4,4,4,4,4,4,4,
6994 4,4,4,4,4,4,
6995 };
6996
6997 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
6998 8,0,8,8,8,8,8,8,8,8,
6999 4,4,4,4,4,4,4,4,4,4,
7000 4,4,4,4,4,4,4,4,4,4,
7001 4,4,4,4,4,4,4,4,4,4,
7002 4,4,4,4,4,4,
7003 };
7004
7005 #define BNX2_NUM_TESTS 6
7006
7007 static struct {
7008 char string[ETH_GSTRING_LEN];
7009 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7010 { "register_test (offline)" },
7011 { "memory_test (offline)" },
7012 { "loopback_test (offline)" },
7013 { "nvram_test (online)" },
7014 { "interrupt_test (online)" },
7015 { "link_test (online)" },
7016 };
7017
7018 static int
7019 bnx2_get_sset_count(struct net_device *dev, int sset)
7020 {
7021 switch (sset) {
7022 case ETH_SS_TEST:
7023 return BNX2_NUM_TESTS;
7024 case ETH_SS_STATS:
7025 return BNX2_NUM_STATS;
7026 default:
7027 return -EOPNOTSUPP;
7028 }
7029 }
7030
7031 static void
7032 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7033 {
7034 struct bnx2 *bp = netdev_priv(dev);
7035
7036 bnx2_set_power_state(bp, PCI_D0);
7037
7038 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7039 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7040 int i;
7041
7042 bnx2_netif_stop(bp);
7043 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7044 bnx2_free_skbs(bp);
7045
7046 if (bnx2_test_registers(bp) != 0) {
7047 buf[0] = 1;
7048 etest->flags |= ETH_TEST_FL_FAILED;
7049 }
7050 if (bnx2_test_memory(bp) != 0) {
7051 buf[1] = 1;
7052 etest->flags |= ETH_TEST_FL_FAILED;
7053 }
7054 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7055 etest->flags |= ETH_TEST_FL_FAILED;
7056
7057 if (!netif_running(bp->dev))
7058 bnx2_shutdown_chip(bp);
7059 else {
7060 bnx2_init_nic(bp, 1);
7061 bnx2_netif_start(bp);
7062 }
7063
7064 /* wait for link up */
7065 for (i = 0; i < 7; i++) {
7066 if (bp->link_up)
7067 break;
7068 msleep_interruptible(1000);
7069 }
7070 }
7071
7072 if (bnx2_test_nvram(bp) != 0) {
7073 buf[3] = 1;
7074 etest->flags |= ETH_TEST_FL_FAILED;
7075 }
7076 if (bnx2_test_intr(bp) != 0) {
7077 buf[4] = 1;
7078 etest->flags |= ETH_TEST_FL_FAILED;
7079 }
7080
7081 if (bnx2_test_link(bp) != 0) {
7082 buf[5] = 1;
7083 etest->flags |= ETH_TEST_FL_FAILED;
7084
7085 }
7086 if (!netif_running(bp->dev))
7087 bnx2_set_power_state(bp, PCI_D3hot);
7088 }
7089
7090 static void
7091 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7092 {
7093 switch (stringset) {
7094 case ETH_SS_STATS:
7095 memcpy(buf, bnx2_stats_str_arr,
7096 sizeof(bnx2_stats_str_arr));
7097 break;
7098 case ETH_SS_TEST:
7099 memcpy(buf, bnx2_tests_str_arr,
7100 sizeof(bnx2_tests_str_arr));
7101 break;
7102 }
7103 }
7104
7105 static void
7106 bnx2_get_ethtool_stats(struct net_device *dev,
7107 struct ethtool_stats *stats, u64 *buf)
7108 {
7109 struct bnx2 *bp = netdev_priv(dev);
7110 int i;
7111 u32 *hw_stats = (u32 *) bp->stats_blk;
7112 u8 *stats_len_arr = NULL;
7113
7114 if (hw_stats == NULL) {
7115 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7116 return;
7117 }
7118
7119 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7120 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7121 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7122 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7123 stats_len_arr = bnx2_5706_stats_len_arr;
7124 else
7125 stats_len_arr = bnx2_5708_stats_len_arr;
7126
7127 for (i = 0; i < BNX2_NUM_STATS; i++) {
7128 if (stats_len_arr[i] == 0) {
7129 /* skip this counter */
7130 buf[i] = 0;
7131 continue;
7132 }
7133 if (stats_len_arr[i] == 4) {
7134 /* 4-byte counter */
7135 buf[i] = (u64)
7136 *(hw_stats + bnx2_stats_offset_arr[i]);
7137 continue;
7138 }
7139 /* 8-byte counter */
7140 buf[i] = (((u64) *(hw_stats +
7141 bnx2_stats_offset_arr[i])) << 32) +
7142 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7143 }
7144 }
7145
7146 static int
7147 bnx2_phys_id(struct net_device *dev, u32 data)
7148 {
7149 struct bnx2 *bp = netdev_priv(dev);
7150 int i;
7151 u32 save;
7152
7153 bnx2_set_power_state(bp, PCI_D0);
7154
7155 if (data == 0)
7156 data = 2;
7157
7158 save = REG_RD(bp, BNX2_MISC_CFG);
7159 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7160
7161 for (i = 0; i < (data * 2); i++) {
7162 if ((i % 2) == 0) {
7163 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7164 }
7165 else {
7166 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7167 BNX2_EMAC_LED_1000MB_OVERRIDE |
7168 BNX2_EMAC_LED_100MB_OVERRIDE |
7169 BNX2_EMAC_LED_10MB_OVERRIDE |
7170 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7171 BNX2_EMAC_LED_TRAFFIC);
7172 }
7173 msleep_interruptible(500);
7174 if (signal_pending(current))
7175 break;
7176 }
7177 REG_WR(bp, BNX2_EMAC_LED, 0);
7178 REG_WR(bp, BNX2_MISC_CFG, save);
7179
7180 if (!netif_running(dev))
7181 bnx2_set_power_state(bp, PCI_D3hot);
7182
7183 return 0;
7184 }
7185
7186 static int
7187 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7188 {
7189 struct bnx2 *bp = netdev_priv(dev);
7190
7191 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7192 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7193 else
7194 return (ethtool_op_set_tx_csum(dev, data));
7195 }
7196
7197 static const struct ethtool_ops bnx2_ethtool_ops = {
7198 .get_settings = bnx2_get_settings,
7199 .set_settings = bnx2_set_settings,
7200 .get_drvinfo = bnx2_get_drvinfo,
7201 .get_regs_len = bnx2_get_regs_len,
7202 .get_regs = bnx2_get_regs,
7203 .get_wol = bnx2_get_wol,
7204 .set_wol = bnx2_set_wol,
7205 .nway_reset = bnx2_nway_reset,
7206 .get_link = ethtool_op_get_link,
7207 .get_eeprom_len = bnx2_get_eeprom_len,
7208 .get_eeprom = bnx2_get_eeprom,
7209 .set_eeprom = bnx2_set_eeprom,
7210 .get_coalesce = bnx2_get_coalesce,
7211 .set_coalesce = bnx2_set_coalesce,
7212 .get_ringparam = bnx2_get_ringparam,
7213 .set_ringparam = bnx2_set_ringparam,
7214 .get_pauseparam = bnx2_get_pauseparam,
7215 .set_pauseparam = bnx2_set_pauseparam,
7216 .get_rx_csum = bnx2_get_rx_csum,
7217 .set_rx_csum = bnx2_set_rx_csum,
7218 .set_tx_csum = bnx2_set_tx_csum,
7219 .set_sg = ethtool_op_set_sg,
7220 .set_tso = bnx2_set_tso,
7221 .self_test = bnx2_self_test,
7222 .get_strings = bnx2_get_strings,
7223 .phys_id = bnx2_phys_id,
7224 .get_ethtool_stats = bnx2_get_ethtool_stats,
7225 .get_sset_count = bnx2_get_sset_count,
7226 };
7227
7228 /* Called with rtnl_lock */
7229 static int
7230 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7231 {
7232 struct mii_ioctl_data *data = if_mii(ifr);
7233 struct bnx2 *bp = netdev_priv(dev);
7234 int err;
7235
7236 switch(cmd) {
7237 case SIOCGMIIPHY:
7238 data->phy_id = bp->phy_addr;
7239
7240 /* fallthru */
7241 case SIOCGMIIREG: {
7242 u32 mii_regval;
7243
7244 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7245 return -EOPNOTSUPP;
7246
7247 if (!netif_running(dev))
7248 return -EAGAIN;
7249
7250 spin_lock_bh(&bp->phy_lock);
7251 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7252 spin_unlock_bh(&bp->phy_lock);
7253
7254 data->val_out = mii_regval;
7255
7256 return err;
7257 }
7258
7259 case SIOCSMIIREG:
7260 if (!capable(CAP_NET_ADMIN))
7261 return -EPERM;
7262
7263 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7264 return -EOPNOTSUPP;
7265
7266 if (!netif_running(dev))
7267 return -EAGAIN;
7268
7269 spin_lock_bh(&bp->phy_lock);
7270 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7271 spin_unlock_bh(&bp->phy_lock);
7272
7273 return err;
7274
7275 default:
7276 /* do nothing */
7277 break;
7278 }
7279 return -EOPNOTSUPP;
7280 }
7281
7282 /* Called with rtnl_lock */
7283 static int
7284 bnx2_change_mac_addr(struct net_device *dev, void *p)
7285 {
7286 struct sockaddr *addr = p;
7287 struct bnx2 *bp = netdev_priv(dev);
7288
7289 if (!is_valid_ether_addr(addr->sa_data))
7290 return -EINVAL;
7291
7292 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7293 if (netif_running(dev))
7294 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7295
7296 return 0;
7297 }
7298
7299 /* Called with rtnl_lock */
7300 static int
7301 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7302 {
7303 struct bnx2 *bp = netdev_priv(dev);
7304
7305 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7306 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7307 return -EINVAL;
7308
7309 dev->mtu = new_mtu;
7310 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7311 }
7312
7313 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7314 static void
7315 poll_bnx2(struct net_device *dev)
7316 {
7317 struct bnx2 *bp = netdev_priv(dev);
7318 int i;
7319
7320 for (i = 0; i < bp->irq_nvecs; i++) {
7321 disable_irq(bp->irq_tbl[i].vector);
7322 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7323 enable_irq(bp->irq_tbl[i].vector);
7324 }
7325 }
7326 #endif
7327
7328 static void __devinit
7329 bnx2_get_5709_media(struct bnx2 *bp)
7330 {
7331 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7332 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7333 u32 strap;
7334
7335 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7336 return;
7337 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7338 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7339 return;
7340 }
7341
7342 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7343 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7344 else
7345 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7346
7347 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7348 switch (strap) {
7349 case 0x4:
7350 case 0x5:
7351 case 0x6:
7352 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7353 return;
7354 }
7355 } else {
7356 switch (strap) {
7357 case 0x1:
7358 case 0x2:
7359 case 0x4:
7360 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7361 return;
7362 }
7363 }
7364 }
7365
7366 static void __devinit
7367 bnx2_get_pci_speed(struct bnx2 *bp)
7368 {
7369 u32 reg;
7370
7371 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7372 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7373 u32 clkreg;
7374
7375 bp->flags |= BNX2_FLAG_PCIX;
7376
7377 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7378
7379 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7380 switch (clkreg) {
7381 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7382 bp->bus_speed_mhz = 133;
7383 break;
7384
7385 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7386 bp->bus_speed_mhz = 100;
7387 break;
7388
7389 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7390 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7391 bp->bus_speed_mhz = 66;
7392 break;
7393
7394 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7395 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7396 bp->bus_speed_mhz = 50;
7397 break;
7398
7399 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7400 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7401 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7402 bp->bus_speed_mhz = 33;
7403 break;
7404 }
7405 }
7406 else {
7407 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7408 bp->bus_speed_mhz = 66;
7409 else
7410 bp->bus_speed_mhz = 33;
7411 }
7412
7413 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7414 bp->flags |= BNX2_FLAG_PCI_32BIT;
7415
7416 }
7417
7418 static int __devinit
7419 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7420 {
7421 struct bnx2 *bp;
7422 unsigned long mem_len;
7423 int rc, i, j;
7424 u32 reg;
7425 u64 dma_mask, persist_dma_mask;
7426
7427 SET_NETDEV_DEV(dev, &pdev->dev);
7428 bp = netdev_priv(dev);
7429
7430 bp->flags = 0;
7431 bp->phy_flags = 0;
7432
7433 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7434 rc = pci_enable_device(pdev);
7435 if (rc) {
7436 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7437 goto err_out;
7438 }
7439
7440 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7441 dev_err(&pdev->dev,
7442 "Cannot find PCI device base address, aborting.\n");
7443 rc = -ENODEV;
7444 goto err_out_disable;
7445 }
7446
7447 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7448 if (rc) {
7449 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7450 goto err_out_disable;
7451 }
7452
7453 pci_set_master(pdev);
7454 pci_save_state(pdev);
7455
7456 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7457 if (bp->pm_cap == 0) {
7458 dev_err(&pdev->dev,
7459 "Cannot find power management capability, aborting.\n");
7460 rc = -EIO;
7461 goto err_out_release;
7462 }
7463
7464 bp->dev = dev;
7465 bp->pdev = pdev;
7466
7467 spin_lock_init(&bp->phy_lock);
7468 spin_lock_init(&bp->indirect_lock);
7469 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7470
7471 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7472 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS);
7473 dev->mem_end = dev->mem_start + mem_len;
7474 dev->irq = pdev->irq;
7475
7476 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7477
7478 if (!bp->regview) {
7479 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7480 rc = -ENOMEM;
7481 goto err_out_release;
7482 }
7483
7484 /* Configure byte swap and enable write to the reg_window registers.
7485 * Rely on CPU to do target byte swapping on big endian systems
7486 * The chip's target access swapping will not swap all accesses
7487 */
7488 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7489 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7490 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7491
7492 bnx2_set_power_state(bp, PCI_D0);
7493
7494 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7495
7496 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7497 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7498 dev_err(&pdev->dev,
7499 "Cannot find PCIE capability, aborting.\n");
7500 rc = -EIO;
7501 goto err_out_unmap;
7502 }
7503 bp->flags |= BNX2_FLAG_PCIE;
7504 if (CHIP_REV(bp) == CHIP_REV_Ax)
7505 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7506 } else {
7507 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7508 if (bp->pcix_cap == 0) {
7509 dev_err(&pdev->dev,
7510 "Cannot find PCIX capability, aborting.\n");
7511 rc = -EIO;
7512 goto err_out_unmap;
7513 }
7514 }
7515
7516 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7517 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7518 bp->flags |= BNX2_FLAG_MSIX_CAP;
7519 }
7520
7521 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7522 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7523 bp->flags |= BNX2_FLAG_MSI_CAP;
7524 }
7525
7526 /* 5708 cannot support DMA addresses > 40-bit. */
7527 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7528 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7529 else
7530 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7531
7532 /* Configure DMA attributes. */
7533 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7534 dev->features |= NETIF_F_HIGHDMA;
7535 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7536 if (rc) {
7537 dev_err(&pdev->dev,
7538 "pci_set_consistent_dma_mask failed, aborting.\n");
7539 goto err_out_unmap;
7540 }
7541 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7542 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7543 goto err_out_unmap;
7544 }
7545
7546 if (!(bp->flags & BNX2_FLAG_PCIE))
7547 bnx2_get_pci_speed(bp);
7548
7549 /* 5706A0 may falsely detect SERR and PERR. */
7550 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7551 reg = REG_RD(bp, PCI_COMMAND);
7552 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7553 REG_WR(bp, PCI_COMMAND, reg);
7554 }
7555 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7556 !(bp->flags & BNX2_FLAG_PCIX)) {
7557
7558 dev_err(&pdev->dev,
7559 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7560 goto err_out_unmap;
7561 }
7562
7563 bnx2_init_nvram(bp);
7564
7565 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7566
7567 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7568 BNX2_SHM_HDR_SIGNATURE_SIG) {
7569 u32 off = PCI_FUNC(pdev->devfn) << 2;
7570
7571 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7572 } else
7573 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7574
7575 /* Get the permanent MAC address. First we need to make sure the
7576 * firmware is actually running.
7577 */
7578 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7579
7580 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7581 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7582 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7583 rc = -ENODEV;
7584 goto err_out_unmap;
7585 }
7586
7587 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7588 for (i = 0, j = 0; i < 3; i++) {
7589 u8 num, k, skip0;
7590
7591 num = (u8) (reg >> (24 - (i * 8)));
7592 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7593 if (num >= k || !skip0 || k == 1) {
7594 bp->fw_version[j++] = (num / k) + '0';
7595 skip0 = 0;
7596 }
7597 }
7598 if (i != 2)
7599 bp->fw_version[j++] = '.';
7600 }
7601 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7602 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7603 bp->wol = 1;
7604
7605 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7606 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7607
7608 for (i = 0; i < 30; i++) {
7609 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7610 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7611 break;
7612 msleep(10);
7613 }
7614 }
7615 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7616 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7617 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7618 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7619 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7620
7621 bp->fw_version[j++] = ' ';
7622 for (i = 0; i < 3; i++) {
7623 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7624 reg = swab32(reg);
7625 memcpy(&bp->fw_version[j], &reg, 4);
7626 j += 4;
7627 }
7628 }
7629
7630 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7631 bp->mac_addr[0] = (u8) (reg >> 8);
7632 bp->mac_addr[1] = (u8) reg;
7633
7634 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7635 bp->mac_addr[2] = (u8) (reg >> 24);
7636 bp->mac_addr[3] = (u8) (reg >> 16);
7637 bp->mac_addr[4] = (u8) (reg >> 8);
7638 bp->mac_addr[5] = (u8) reg;
7639
7640 bp->tx_ring_size = MAX_TX_DESC_CNT;
7641 bnx2_set_rx_ring_size(bp, 255);
7642
7643 bp->rx_csum = 1;
7644
7645 bp->tx_quick_cons_trip_int = 20;
7646 bp->tx_quick_cons_trip = 20;
7647 bp->tx_ticks_int = 80;
7648 bp->tx_ticks = 80;
7649
7650 bp->rx_quick_cons_trip_int = 6;
7651 bp->rx_quick_cons_trip = 6;
7652 bp->rx_ticks_int = 18;
7653 bp->rx_ticks = 18;
7654
7655 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7656
7657 bp->current_interval = BNX2_TIMER_INTERVAL;
7658
7659 bp->phy_addr = 1;
7660
7661 /* Disable WOL support if we are running on a SERDES chip. */
7662 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7663 bnx2_get_5709_media(bp);
7664 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7665 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7666
7667 bp->phy_port = PORT_TP;
7668 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7669 bp->phy_port = PORT_FIBRE;
7670 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7671 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7672 bp->flags |= BNX2_FLAG_NO_WOL;
7673 bp->wol = 0;
7674 }
7675 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7676 /* Don't do parallel detect on this board because of
7677 * some board problems. The link will not go down
7678 * if we do parallel detect.
7679 */
7680 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7681 pdev->subsystem_device == 0x310c)
7682 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7683 } else {
7684 bp->phy_addr = 2;
7685 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7686 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7687 }
7688 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7689 CHIP_NUM(bp) == CHIP_NUM_5708)
7690 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7691 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7692 (CHIP_REV(bp) == CHIP_REV_Ax ||
7693 CHIP_REV(bp) == CHIP_REV_Bx))
7694 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7695
7696 bnx2_init_fw_cap(bp);
7697
7698 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7699 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7700 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7701 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7702 bp->flags |= BNX2_FLAG_NO_WOL;
7703 bp->wol = 0;
7704 }
7705
7706 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7707 bp->tx_quick_cons_trip_int =
7708 bp->tx_quick_cons_trip;
7709 bp->tx_ticks_int = bp->tx_ticks;
7710 bp->rx_quick_cons_trip_int =
7711 bp->rx_quick_cons_trip;
7712 bp->rx_ticks_int = bp->rx_ticks;
7713 bp->comp_prod_trip_int = bp->comp_prod_trip;
7714 bp->com_ticks_int = bp->com_ticks;
7715 bp->cmd_ticks_int = bp->cmd_ticks;
7716 }
7717
7718 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7719 *
7720 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7721 * with byte enables disabled on the unused 32-bit word. This is legal
7722 * but causes problems on the AMD 8132 which will eventually stop
7723 * responding after a while.
7724 *
7725 * AMD believes this incompatibility is unique to the 5706, and
7726 * prefers to locally disable MSI rather than globally disabling it.
7727 */
7728 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7729 struct pci_dev *amd_8132 = NULL;
7730
7731 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7732 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7733 amd_8132))) {
7734
7735 if (amd_8132->revision >= 0x10 &&
7736 amd_8132->revision <= 0x13) {
7737 disable_msi = 1;
7738 pci_dev_put(amd_8132);
7739 break;
7740 }
7741 }
7742 }
7743
7744 bnx2_set_default_link(bp);
7745 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7746
7747 init_timer(&bp->timer);
7748 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7749 bp->timer.data = (unsigned long) bp;
7750 bp->timer.function = bnx2_timer;
7751
7752 return 0;
7753
7754 err_out_unmap:
7755 if (bp->regview) {
7756 iounmap(bp->regview);
7757 bp->regview = NULL;
7758 }
7759
7760 err_out_release:
7761 pci_release_regions(pdev);
7762
7763 err_out_disable:
7764 pci_disable_device(pdev);
7765 pci_set_drvdata(pdev, NULL);
7766
7767 err_out:
7768 return rc;
7769 }
7770
7771 static char * __devinit
7772 bnx2_bus_string(struct bnx2 *bp, char *str)
7773 {
7774 char *s = str;
7775
7776 if (bp->flags & BNX2_FLAG_PCIE) {
7777 s += sprintf(s, "PCI Express");
7778 } else {
7779 s += sprintf(s, "PCI");
7780 if (bp->flags & BNX2_FLAG_PCIX)
7781 s += sprintf(s, "-X");
7782 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7783 s += sprintf(s, " 32-bit");
7784 else
7785 s += sprintf(s, " 64-bit");
7786 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7787 }
7788 return str;
7789 }
7790
7791 static void __devinit
7792 bnx2_init_napi(struct bnx2 *bp)
7793 {
7794 int i;
7795
7796 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7797 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7798 int (*poll)(struct napi_struct *, int);
7799
7800 if (i == 0)
7801 poll = bnx2_poll;
7802 else
7803 poll = bnx2_poll_msix;
7804
7805 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
7806 bnapi->bp = bp;
7807 }
7808 }
7809
7810 static const struct net_device_ops bnx2_netdev_ops = {
7811 .ndo_open = bnx2_open,
7812 .ndo_start_xmit = bnx2_start_xmit,
7813 .ndo_stop = bnx2_close,
7814 .ndo_get_stats = bnx2_get_stats,
7815 .ndo_set_rx_mode = bnx2_set_rx_mode,
7816 .ndo_do_ioctl = bnx2_ioctl,
7817 .ndo_validate_addr = eth_validate_addr,
7818 .ndo_set_mac_address = bnx2_change_mac_addr,
7819 .ndo_change_mtu = bnx2_change_mtu,
7820 .ndo_tx_timeout = bnx2_tx_timeout,
7821 #ifdef BCM_VLAN
7822 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
7823 #endif
7824 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7825 .ndo_poll_controller = poll_bnx2,
7826 #endif
7827 };
7828
7829 static int __devinit
7830 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7831 {
7832 static int version_printed = 0;
7833 struct net_device *dev = NULL;
7834 struct bnx2 *bp;
7835 int rc;
7836 char str[40];
7837
7838 if (version_printed++ == 0)
7839 printk(KERN_INFO "%s", version);
7840
7841 /* dev zeroed in init_etherdev */
7842 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
7843
7844 if (!dev)
7845 return -ENOMEM;
7846
7847 rc = bnx2_init_board(pdev, dev);
7848 if (rc < 0) {
7849 free_netdev(dev);
7850 return rc;
7851 }
7852
7853 dev->netdev_ops = &bnx2_netdev_ops;
7854 dev->watchdog_timeo = TX_TIMEOUT;
7855 dev->ethtool_ops = &bnx2_ethtool_ops;
7856
7857 bp = netdev_priv(dev);
7858 bnx2_init_napi(bp);
7859
7860 pci_set_drvdata(pdev, dev);
7861
7862 rc = bnx2_request_firmware(bp);
7863 if (rc)
7864 goto error;
7865
7866 memcpy(dev->dev_addr, bp->mac_addr, 6);
7867 memcpy(dev->perm_addr, bp->mac_addr, 6);
7868
7869 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
7870 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7871 dev->features |= NETIF_F_IPV6_CSUM;
7872
7873 #ifdef BCM_VLAN
7874 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7875 #endif
7876 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7877 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7878 dev->features |= NETIF_F_TSO6;
7879
7880 if ((rc = register_netdev(dev))) {
7881 dev_err(&pdev->dev, "Cannot register net device\n");
7882 goto error;
7883 }
7884
7885 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
7886 "IRQ %d, node addr %pM\n",
7887 dev->name,
7888 board_info[ent->driver_data].name,
7889 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
7890 ((CHIP_ID(bp) & 0x0ff0) >> 4),
7891 bnx2_bus_string(bp, str),
7892 dev->base_addr,
7893 bp->pdev->irq, dev->dev_addr);
7894
7895 return 0;
7896
7897 error:
7898 if (bp->mips_firmware)
7899 release_firmware(bp->mips_firmware);
7900 if (bp->rv2p_firmware)
7901 release_firmware(bp->rv2p_firmware);
7902
7903 if (bp->regview)
7904 iounmap(bp->regview);
7905 pci_release_regions(pdev);
7906 pci_disable_device(pdev);
7907 pci_set_drvdata(pdev, NULL);
7908 free_netdev(dev);
7909 return rc;
7910 }
7911
7912 static void __devexit
7913 bnx2_remove_one(struct pci_dev *pdev)
7914 {
7915 struct net_device *dev = pci_get_drvdata(pdev);
7916 struct bnx2 *bp = netdev_priv(dev);
7917
7918 flush_scheduled_work();
7919
7920 unregister_netdev(dev);
7921
7922 if (bp->mips_firmware)
7923 release_firmware(bp->mips_firmware);
7924 if (bp->rv2p_firmware)
7925 release_firmware(bp->rv2p_firmware);
7926
7927 if (bp->regview)
7928 iounmap(bp->regview);
7929
7930 free_netdev(dev);
7931 pci_release_regions(pdev);
7932 pci_disable_device(pdev);
7933 pci_set_drvdata(pdev, NULL);
7934 }
7935
7936 static int
7937 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
7938 {
7939 struct net_device *dev = pci_get_drvdata(pdev);
7940 struct bnx2 *bp = netdev_priv(dev);
7941
7942 /* PCI register 4 needs to be saved whether netif_running() or not.
7943 * MSI address and data need to be saved if using MSI and
7944 * netif_running().
7945 */
7946 pci_save_state(pdev);
7947 if (!netif_running(dev))
7948 return 0;
7949
7950 flush_scheduled_work();
7951 bnx2_netif_stop(bp);
7952 netif_device_detach(dev);
7953 del_timer_sync(&bp->timer);
7954 bnx2_shutdown_chip(bp);
7955 bnx2_free_skbs(bp);
7956 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
7957 return 0;
7958 }
7959
7960 static int
7961 bnx2_resume(struct pci_dev *pdev)
7962 {
7963 struct net_device *dev = pci_get_drvdata(pdev);
7964 struct bnx2 *bp = netdev_priv(dev);
7965
7966 pci_restore_state(pdev);
7967 if (!netif_running(dev))
7968 return 0;
7969
7970 bnx2_set_power_state(bp, PCI_D0);
7971 netif_device_attach(dev);
7972 bnx2_init_nic(bp, 1);
7973 bnx2_netif_start(bp);
7974 return 0;
7975 }
7976
7977 /**
7978 * bnx2_io_error_detected - called when PCI error is detected
7979 * @pdev: Pointer to PCI device
7980 * @state: The current pci connection state
7981 *
7982 * This function is called after a PCI bus error affecting
7983 * this device has been detected.
7984 */
7985 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
7986 pci_channel_state_t state)
7987 {
7988 struct net_device *dev = pci_get_drvdata(pdev);
7989 struct bnx2 *bp = netdev_priv(dev);
7990
7991 rtnl_lock();
7992 netif_device_detach(dev);
7993
7994 if (netif_running(dev)) {
7995 bnx2_netif_stop(bp);
7996 del_timer_sync(&bp->timer);
7997 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
7998 }
7999
8000 pci_disable_device(pdev);
8001 rtnl_unlock();
8002
8003 /* Request a slot slot reset. */
8004 return PCI_ERS_RESULT_NEED_RESET;
8005 }
8006
8007 /**
8008 * bnx2_io_slot_reset - called after the pci bus has been reset.
8009 * @pdev: Pointer to PCI device
8010 *
8011 * Restart the card from scratch, as if from a cold-boot.
8012 */
8013 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8014 {
8015 struct net_device *dev = pci_get_drvdata(pdev);
8016 struct bnx2 *bp = netdev_priv(dev);
8017
8018 rtnl_lock();
8019 if (pci_enable_device(pdev)) {
8020 dev_err(&pdev->dev,
8021 "Cannot re-enable PCI device after reset.\n");
8022 rtnl_unlock();
8023 return PCI_ERS_RESULT_DISCONNECT;
8024 }
8025 pci_set_master(pdev);
8026 pci_restore_state(pdev);
8027
8028 if (netif_running(dev)) {
8029 bnx2_set_power_state(bp, PCI_D0);
8030 bnx2_init_nic(bp, 1);
8031 }
8032
8033 rtnl_unlock();
8034 return PCI_ERS_RESULT_RECOVERED;
8035 }
8036
8037 /**
8038 * bnx2_io_resume - called when traffic can start flowing again.
8039 * @pdev: Pointer to PCI device
8040 *
8041 * This callback is called when the error recovery driver tells us that
8042 * its OK to resume normal operation.
8043 */
8044 static void bnx2_io_resume(struct pci_dev *pdev)
8045 {
8046 struct net_device *dev = pci_get_drvdata(pdev);
8047 struct bnx2 *bp = netdev_priv(dev);
8048
8049 rtnl_lock();
8050 if (netif_running(dev))
8051 bnx2_netif_start(bp);
8052
8053 netif_device_attach(dev);
8054 rtnl_unlock();
8055 }
8056
8057 static struct pci_error_handlers bnx2_err_handler = {
8058 .error_detected = bnx2_io_error_detected,
8059 .slot_reset = bnx2_io_slot_reset,
8060 .resume = bnx2_io_resume,
8061 };
8062
8063 static struct pci_driver bnx2_pci_driver = {
8064 .name = DRV_MODULE_NAME,
8065 .id_table = bnx2_pci_tbl,
8066 .probe = bnx2_init_one,
8067 .remove = __devexit_p(bnx2_remove_one),
8068 .suspend = bnx2_suspend,
8069 .resume = bnx2_resume,
8070 .err_handler = &bnx2_err_handler,
8071 };
8072
8073 static int __init bnx2_init(void)
8074 {
8075 return pci_register_driver(&bnx2_pci_driver);
8076 }
8077
8078 static void __exit bnx2_cleanup(void)
8079 {
8080 pci_unregister_driver(&bnx2_pci_driver);
8081 }
8082
8083 module_init(bnx2_init);
8084 module_exit(bnx2_cleanup);
8085
8086
8087