]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/bnx2.c
cxgb4vf: fix SGE resource resource deallocation bug
[mirror_ubuntu-eoan-kernel.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2010 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
41 #define BCM_VLAN 1
42 #endif
43 #include <net/ip.h>
44 #include <net/tcp.h>
45 #include <net/checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/firmware.h>
51 #include <linux/log2.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.0.16"
62 #define DRV_MODULE_RELDATE "July 2, 2010"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
73
74 static char version[] __devinitdata =
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
86
87 static int disable_msi = 0;
88
89 module_param(disable_msi, int, 0);
90 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
91
92 typedef enum {
93 BCM5706 = 0,
94 NC370T,
95 NC370I,
96 BCM5706S,
97 NC370F,
98 BCM5708,
99 BCM5708S,
100 BCM5709,
101 BCM5709S,
102 BCM5716,
103 BCM5716S,
104 } board_t;
105
106 /* indexed by board_t, above */
107 static struct {
108 char *name;
109 } board_info[] __devinitdata = {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121 };
122
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
140 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
142 { PCI_VENDOR_ID_BROADCOM, 0x163b,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
144 { PCI_VENDOR_ID_BROADCOM, 0x163c,
145 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
146 { 0, }
147 };
148
149 static const struct flash_spec flash_table[] =
150 {
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 /* Slow EEPROM */
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
156 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
157 "EEPROM - slow"},
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
161 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
162 "Entry 0001"},
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
167 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
178 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
179 "Entry 0100"},
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
195 "Non-buffered flash (64kB)"},
196 /* Fast EEPROM */
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
199 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
200 "EEPROM - fast"},
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205 "Entry 1001"},
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
209 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
210 "Entry 1010"},
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
214 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 "Entry 1100"},
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
225 "Entry 1101"},
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
229 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
235 "Buffered flash (256kB)"},
236 };
237
238 static const struct flash_spec flash_5709 = {
239 .flags = BNX2_NV_BUFFERED,
240 .page_bits = BCM5709_FLASH_PAGE_BITS,
241 .page_size = BCM5709_FLASH_PAGE_SIZE,
242 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
243 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
244 .name = "5709 Buffered flash (256kB)",
245 };
246
247 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
248
249 static void bnx2_init_napi(struct bnx2 *bp);
250 static void bnx2_del_napi(struct bnx2 *bp);
251
252 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
253 {
254 u32 diff;
255
256 smp_mb();
257
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
260 */
261 diff = txr->tx_prod - txr->tx_cons;
262 if (unlikely(diff >= TX_DESC_CNT)) {
263 diff &= 0xffff;
264 if (diff == TX_DESC_CNT)
265 diff = MAX_TX_DESC_CNT;
266 }
267 return (bp->tx_ring_size - diff);
268 }
269
270 static u32
271 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
272 {
273 u32 val;
274
275 spin_lock_bh(&bp->indirect_lock);
276 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
277 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
278 spin_unlock_bh(&bp->indirect_lock);
279 return val;
280 }
281
282 static void
283 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
284 {
285 spin_lock_bh(&bp->indirect_lock);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
287 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
288 spin_unlock_bh(&bp->indirect_lock);
289 }
290
291 static void
292 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
293 {
294 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
295 }
296
297 static u32
298 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
299 {
300 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
301 }
302
303 static void
304 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
305 {
306 offset += cid_addr;
307 spin_lock_bh(&bp->indirect_lock);
308 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
309 int i;
310
311 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
312 REG_WR(bp, BNX2_CTX_CTX_CTRL,
313 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
314 for (i = 0; i < 5; i++) {
315 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
316 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
317 break;
318 udelay(5);
319 }
320 } else {
321 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
322 REG_WR(bp, BNX2_CTX_DATA, val);
323 }
324 spin_unlock_bh(&bp->indirect_lock);
325 }
326
327 #ifdef BCM_CNIC
328 static int
329 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
330 {
331 struct bnx2 *bp = netdev_priv(dev);
332 struct drv_ctl_io *io = &info->data.io;
333
334 switch (info->cmd) {
335 case DRV_CTL_IO_WR_CMD:
336 bnx2_reg_wr_ind(bp, io->offset, io->data);
337 break;
338 case DRV_CTL_IO_RD_CMD:
339 io->data = bnx2_reg_rd_ind(bp, io->offset);
340 break;
341 case DRV_CTL_CTX_WR_CMD:
342 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
343 break;
344 default:
345 return -EINVAL;
346 }
347 return 0;
348 }
349
350 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
351 {
352 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
353 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
354 int sb_id;
355
356 if (bp->flags & BNX2_FLAG_USING_MSIX) {
357 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
358 bnapi->cnic_present = 0;
359 sb_id = bp->irq_nvecs;
360 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
361 } else {
362 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
363 bnapi->cnic_tag = bnapi->last_status_idx;
364 bnapi->cnic_present = 1;
365 sb_id = 0;
366 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
367 }
368
369 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
370 cp->irq_arr[0].status_blk = (void *)
371 ((unsigned long) bnapi->status_blk.msi +
372 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
373 cp->irq_arr[0].status_blk_num = sb_id;
374 cp->num_irq = 1;
375 }
376
377 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
378 void *data)
379 {
380 struct bnx2 *bp = netdev_priv(dev);
381 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
382
383 if (ops == NULL)
384 return -EINVAL;
385
386 if (cp->drv_state & CNIC_DRV_STATE_REGD)
387 return -EBUSY;
388
389 bp->cnic_data = data;
390 rcu_assign_pointer(bp->cnic_ops, ops);
391
392 cp->num_irq = 0;
393 cp->drv_state = CNIC_DRV_STATE_REGD;
394
395 bnx2_setup_cnic_irq_info(bp);
396
397 return 0;
398 }
399
400 static int bnx2_unregister_cnic(struct net_device *dev)
401 {
402 struct bnx2 *bp = netdev_priv(dev);
403 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
404 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
405
406 mutex_lock(&bp->cnic_lock);
407 cp->drv_state = 0;
408 bnapi->cnic_present = 0;
409 rcu_assign_pointer(bp->cnic_ops, NULL);
410 mutex_unlock(&bp->cnic_lock);
411 synchronize_rcu();
412 return 0;
413 }
414
415 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
416 {
417 struct bnx2 *bp = netdev_priv(dev);
418 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
419
420 cp->drv_owner = THIS_MODULE;
421 cp->chip_id = bp->chip_id;
422 cp->pdev = bp->pdev;
423 cp->io_base = bp->regview;
424 cp->drv_ctl = bnx2_drv_ctl;
425 cp->drv_register_cnic = bnx2_register_cnic;
426 cp->drv_unregister_cnic = bnx2_unregister_cnic;
427
428 return cp;
429 }
430 EXPORT_SYMBOL(bnx2_cnic_probe);
431
432 static void
433 bnx2_cnic_stop(struct bnx2 *bp)
434 {
435 struct cnic_ops *c_ops;
436 struct cnic_ctl_info info;
437
438 mutex_lock(&bp->cnic_lock);
439 c_ops = bp->cnic_ops;
440 if (c_ops) {
441 info.cmd = CNIC_CTL_STOP_CMD;
442 c_ops->cnic_ctl(bp->cnic_data, &info);
443 }
444 mutex_unlock(&bp->cnic_lock);
445 }
446
447 static void
448 bnx2_cnic_start(struct bnx2 *bp)
449 {
450 struct cnic_ops *c_ops;
451 struct cnic_ctl_info info;
452
453 mutex_lock(&bp->cnic_lock);
454 c_ops = bp->cnic_ops;
455 if (c_ops) {
456 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
457 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
458
459 bnapi->cnic_tag = bnapi->last_status_idx;
460 }
461 info.cmd = CNIC_CTL_START_CMD;
462 c_ops->cnic_ctl(bp->cnic_data, &info);
463 }
464 mutex_unlock(&bp->cnic_lock);
465 }
466
467 #else
468
469 static void
470 bnx2_cnic_stop(struct bnx2 *bp)
471 {
472 }
473
474 static void
475 bnx2_cnic_start(struct bnx2 *bp)
476 {
477 }
478
479 #endif
480
481 static int
482 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
483 {
484 u32 val1;
485 int i, ret;
486
487 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
488 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
489 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
490
491 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
492 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
493
494 udelay(40);
495 }
496
497 val1 = (bp->phy_addr << 21) | (reg << 16) |
498 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
499 BNX2_EMAC_MDIO_COMM_START_BUSY;
500 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
501
502 for (i = 0; i < 50; i++) {
503 udelay(10);
504
505 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
506 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
507 udelay(5);
508
509 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
510 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
511
512 break;
513 }
514 }
515
516 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
517 *val = 0x0;
518 ret = -EBUSY;
519 }
520 else {
521 *val = val1;
522 ret = 0;
523 }
524
525 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
526 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
527 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
528
529 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
530 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
531
532 udelay(40);
533 }
534
535 return ret;
536 }
537
538 static int
539 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
540 {
541 u32 val1;
542 int i, ret;
543
544 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
545 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
546 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
547
548 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
549 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
550
551 udelay(40);
552 }
553
554 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
555 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
556 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
557 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
558
559 for (i = 0; i < 50; i++) {
560 udelay(10);
561
562 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
563 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
564 udelay(5);
565 break;
566 }
567 }
568
569 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
570 ret = -EBUSY;
571 else
572 ret = 0;
573
574 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
575 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
576 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
577
578 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
579 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
580
581 udelay(40);
582 }
583
584 return ret;
585 }
586
587 static void
588 bnx2_disable_int(struct bnx2 *bp)
589 {
590 int i;
591 struct bnx2_napi *bnapi;
592
593 for (i = 0; i < bp->irq_nvecs; i++) {
594 bnapi = &bp->bnx2_napi[i];
595 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
596 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
597 }
598 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
599 }
600
601 static void
602 bnx2_enable_int(struct bnx2 *bp)
603 {
604 int i;
605 struct bnx2_napi *bnapi;
606
607 for (i = 0; i < bp->irq_nvecs; i++) {
608 bnapi = &bp->bnx2_napi[i];
609
610 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
611 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
612 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
613 bnapi->last_status_idx);
614
615 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
616 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
617 bnapi->last_status_idx);
618 }
619 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
620 }
621
622 static void
623 bnx2_disable_int_sync(struct bnx2 *bp)
624 {
625 int i;
626
627 atomic_inc(&bp->intr_sem);
628 if (!netif_running(bp->dev))
629 return;
630
631 bnx2_disable_int(bp);
632 for (i = 0; i < bp->irq_nvecs; i++)
633 synchronize_irq(bp->irq_tbl[i].vector);
634 }
635
636 static void
637 bnx2_napi_disable(struct bnx2 *bp)
638 {
639 int i;
640
641 for (i = 0; i < bp->irq_nvecs; i++)
642 napi_disable(&bp->bnx2_napi[i].napi);
643 }
644
645 static void
646 bnx2_napi_enable(struct bnx2 *bp)
647 {
648 int i;
649
650 for (i = 0; i < bp->irq_nvecs; i++)
651 napi_enable(&bp->bnx2_napi[i].napi);
652 }
653
654 static void
655 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
656 {
657 if (stop_cnic)
658 bnx2_cnic_stop(bp);
659 if (netif_running(bp->dev)) {
660 bnx2_napi_disable(bp);
661 netif_tx_disable(bp->dev);
662 }
663 bnx2_disable_int_sync(bp);
664 netif_carrier_off(bp->dev); /* prevent tx timeout */
665 }
666
667 static void
668 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
669 {
670 if (atomic_dec_and_test(&bp->intr_sem)) {
671 if (netif_running(bp->dev)) {
672 netif_tx_wake_all_queues(bp->dev);
673 spin_lock_bh(&bp->phy_lock);
674 if (bp->link_up)
675 netif_carrier_on(bp->dev);
676 spin_unlock_bh(&bp->phy_lock);
677 bnx2_napi_enable(bp);
678 bnx2_enable_int(bp);
679 if (start_cnic)
680 bnx2_cnic_start(bp);
681 }
682 }
683 }
684
685 static void
686 bnx2_free_tx_mem(struct bnx2 *bp)
687 {
688 int i;
689
690 for (i = 0; i < bp->num_tx_rings; i++) {
691 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
692 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
693
694 if (txr->tx_desc_ring) {
695 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
696 txr->tx_desc_ring,
697 txr->tx_desc_mapping);
698 txr->tx_desc_ring = NULL;
699 }
700 kfree(txr->tx_buf_ring);
701 txr->tx_buf_ring = NULL;
702 }
703 }
704
705 static void
706 bnx2_free_rx_mem(struct bnx2 *bp)
707 {
708 int i;
709
710 for (i = 0; i < bp->num_rx_rings; i++) {
711 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
712 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
713 int j;
714
715 for (j = 0; j < bp->rx_max_ring; j++) {
716 if (rxr->rx_desc_ring[j])
717 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
718 rxr->rx_desc_ring[j],
719 rxr->rx_desc_mapping[j]);
720 rxr->rx_desc_ring[j] = NULL;
721 }
722 vfree(rxr->rx_buf_ring);
723 rxr->rx_buf_ring = NULL;
724
725 for (j = 0; j < bp->rx_max_pg_ring; j++) {
726 if (rxr->rx_pg_desc_ring[j])
727 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
728 rxr->rx_pg_desc_ring[j],
729 rxr->rx_pg_desc_mapping[j]);
730 rxr->rx_pg_desc_ring[j] = NULL;
731 }
732 vfree(rxr->rx_pg_ring);
733 rxr->rx_pg_ring = NULL;
734 }
735 }
736
737 static int
738 bnx2_alloc_tx_mem(struct bnx2 *bp)
739 {
740 int i;
741
742 for (i = 0; i < bp->num_tx_rings; i++) {
743 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
744 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
745
746 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
747 if (txr->tx_buf_ring == NULL)
748 return -ENOMEM;
749
750 txr->tx_desc_ring =
751 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
752 &txr->tx_desc_mapping);
753 if (txr->tx_desc_ring == NULL)
754 return -ENOMEM;
755 }
756 return 0;
757 }
758
759 static int
760 bnx2_alloc_rx_mem(struct bnx2 *bp)
761 {
762 int i;
763
764 for (i = 0; i < bp->num_rx_rings; i++) {
765 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
766 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
767 int j;
768
769 rxr->rx_buf_ring =
770 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
771 if (rxr->rx_buf_ring == NULL)
772 return -ENOMEM;
773
774 memset(rxr->rx_buf_ring, 0,
775 SW_RXBD_RING_SIZE * bp->rx_max_ring);
776
777 for (j = 0; j < bp->rx_max_ring; j++) {
778 rxr->rx_desc_ring[j] =
779 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
780 &rxr->rx_desc_mapping[j]);
781 if (rxr->rx_desc_ring[j] == NULL)
782 return -ENOMEM;
783
784 }
785
786 if (bp->rx_pg_ring_size) {
787 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
788 bp->rx_max_pg_ring);
789 if (rxr->rx_pg_ring == NULL)
790 return -ENOMEM;
791
792 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
793 bp->rx_max_pg_ring);
794 }
795
796 for (j = 0; j < bp->rx_max_pg_ring; j++) {
797 rxr->rx_pg_desc_ring[j] =
798 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
799 &rxr->rx_pg_desc_mapping[j]);
800 if (rxr->rx_pg_desc_ring[j] == NULL)
801 return -ENOMEM;
802
803 }
804 }
805 return 0;
806 }
807
808 static void
809 bnx2_free_mem(struct bnx2 *bp)
810 {
811 int i;
812 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
813
814 bnx2_free_tx_mem(bp);
815 bnx2_free_rx_mem(bp);
816
817 for (i = 0; i < bp->ctx_pages; i++) {
818 if (bp->ctx_blk[i]) {
819 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
820 bp->ctx_blk[i],
821 bp->ctx_blk_mapping[i]);
822 bp->ctx_blk[i] = NULL;
823 }
824 }
825 if (bnapi->status_blk.msi) {
826 pci_free_consistent(bp->pdev, bp->status_stats_size,
827 bnapi->status_blk.msi,
828 bp->status_blk_mapping);
829 bnapi->status_blk.msi = NULL;
830 bp->stats_blk = NULL;
831 }
832 }
833
834 static int
835 bnx2_alloc_mem(struct bnx2 *bp)
836 {
837 int i, status_blk_size, err;
838 struct bnx2_napi *bnapi;
839 void *status_blk;
840
841 /* Combine status and statistics blocks into one allocation. */
842 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
843 if (bp->flags & BNX2_FLAG_MSIX_CAP)
844 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
845 BNX2_SBLK_MSIX_ALIGN_SIZE);
846 bp->status_stats_size = status_blk_size +
847 sizeof(struct statistics_block);
848
849 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
850 &bp->status_blk_mapping);
851 if (status_blk == NULL)
852 goto alloc_mem_err;
853
854 memset(status_blk, 0, bp->status_stats_size);
855
856 bnapi = &bp->bnx2_napi[0];
857 bnapi->status_blk.msi = status_blk;
858 bnapi->hw_tx_cons_ptr =
859 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
860 bnapi->hw_rx_cons_ptr =
861 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
862 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
863 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
864 struct status_block_msix *sblk;
865
866 bnapi = &bp->bnx2_napi[i];
867
868 sblk = (void *) (status_blk +
869 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
870 bnapi->status_blk.msix = sblk;
871 bnapi->hw_tx_cons_ptr =
872 &sblk->status_tx_quick_consumer_index;
873 bnapi->hw_rx_cons_ptr =
874 &sblk->status_rx_quick_consumer_index;
875 bnapi->int_num = i << 24;
876 }
877 }
878
879 bp->stats_blk = status_blk + status_blk_size;
880
881 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
882
883 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
884 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
885 if (bp->ctx_pages == 0)
886 bp->ctx_pages = 1;
887 for (i = 0; i < bp->ctx_pages; i++) {
888 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
889 BCM_PAGE_SIZE,
890 &bp->ctx_blk_mapping[i]);
891 if (bp->ctx_blk[i] == NULL)
892 goto alloc_mem_err;
893 }
894 }
895
896 err = bnx2_alloc_rx_mem(bp);
897 if (err)
898 goto alloc_mem_err;
899
900 err = bnx2_alloc_tx_mem(bp);
901 if (err)
902 goto alloc_mem_err;
903
904 return 0;
905
906 alloc_mem_err:
907 bnx2_free_mem(bp);
908 return -ENOMEM;
909 }
910
911 static void
912 bnx2_report_fw_link(struct bnx2 *bp)
913 {
914 u32 fw_link_status = 0;
915
916 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
917 return;
918
919 if (bp->link_up) {
920 u32 bmsr;
921
922 switch (bp->line_speed) {
923 case SPEED_10:
924 if (bp->duplex == DUPLEX_HALF)
925 fw_link_status = BNX2_LINK_STATUS_10HALF;
926 else
927 fw_link_status = BNX2_LINK_STATUS_10FULL;
928 break;
929 case SPEED_100:
930 if (bp->duplex == DUPLEX_HALF)
931 fw_link_status = BNX2_LINK_STATUS_100HALF;
932 else
933 fw_link_status = BNX2_LINK_STATUS_100FULL;
934 break;
935 case SPEED_1000:
936 if (bp->duplex == DUPLEX_HALF)
937 fw_link_status = BNX2_LINK_STATUS_1000HALF;
938 else
939 fw_link_status = BNX2_LINK_STATUS_1000FULL;
940 break;
941 case SPEED_2500:
942 if (bp->duplex == DUPLEX_HALF)
943 fw_link_status = BNX2_LINK_STATUS_2500HALF;
944 else
945 fw_link_status = BNX2_LINK_STATUS_2500FULL;
946 break;
947 }
948
949 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
950
951 if (bp->autoneg) {
952 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
953
954 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
955 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
956
957 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
958 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
959 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
960 else
961 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
962 }
963 }
964 else
965 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
966
967 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
968 }
969
970 static char *
971 bnx2_xceiver_str(struct bnx2 *bp)
972 {
973 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
974 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
975 "Copper"));
976 }
977
978 static void
979 bnx2_report_link(struct bnx2 *bp)
980 {
981 if (bp->link_up) {
982 netif_carrier_on(bp->dev);
983 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
984 bnx2_xceiver_str(bp),
985 bp->line_speed,
986 bp->duplex == DUPLEX_FULL ? "full" : "half");
987
988 if (bp->flow_ctrl) {
989 if (bp->flow_ctrl & FLOW_CTRL_RX) {
990 pr_cont(", receive ");
991 if (bp->flow_ctrl & FLOW_CTRL_TX)
992 pr_cont("& transmit ");
993 }
994 else {
995 pr_cont(", transmit ");
996 }
997 pr_cont("flow control ON");
998 }
999 pr_cont("\n");
1000 } else {
1001 netif_carrier_off(bp->dev);
1002 netdev_err(bp->dev, "NIC %s Link is Down\n",
1003 bnx2_xceiver_str(bp));
1004 }
1005
1006 bnx2_report_fw_link(bp);
1007 }
1008
1009 static void
1010 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1011 {
1012 u32 local_adv, remote_adv;
1013
1014 bp->flow_ctrl = 0;
1015 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1016 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1017
1018 if (bp->duplex == DUPLEX_FULL) {
1019 bp->flow_ctrl = bp->req_flow_ctrl;
1020 }
1021 return;
1022 }
1023
1024 if (bp->duplex != DUPLEX_FULL) {
1025 return;
1026 }
1027
1028 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1029 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1030 u32 val;
1031
1032 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1033 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_TX;
1035 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1036 bp->flow_ctrl |= FLOW_CTRL_RX;
1037 return;
1038 }
1039
1040 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1041 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1042
1043 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1044 u32 new_local_adv = 0;
1045 u32 new_remote_adv = 0;
1046
1047 if (local_adv & ADVERTISE_1000XPAUSE)
1048 new_local_adv |= ADVERTISE_PAUSE_CAP;
1049 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1050 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1051 if (remote_adv & ADVERTISE_1000XPAUSE)
1052 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1053 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1054 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1055
1056 local_adv = new_local_adv;
1057 remote_adv = new_remote_adv;
1058 }
1059
1060 /* See Table 28B-3 of 802.3ab-1999 spec. */
1061 if (local_adv & ADVERTISE_PAUSE_CAP) {
1062 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1063 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1064 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1065 }
1066 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1067 bp->flow_ctrl = FLOW_CTRL_RX;
1068 }
1069 }
1070 else {
1071 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1072 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1073 }
1074 }
1075 }
1076 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1077 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1078 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1079
1080 bp->flow_ctrl = FLOW_CTRL_TX;
1081 }
1082 }
1083 }
1084
1085 static int
1086 bnx2_5709s_linkup(struct bnx2 *bp)
1087 {
1088 u32 val, speed;
1089
1090 bp->link_up = 1;
1091
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1093 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1094 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1095
1096 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1097 bp->line_speed = bp->req_line_speed;
1098 bp->duplex = bp->req_duplex;
1099 return 0;
1100 }
1101 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1102 switch (speed) {
1103 case MII_BNX2_GP_TOP_AN_SPEED_10:
1104 bp->line_speed = SPEED_10;
1105 break;
1106 case MII_BNX2_GP_TOP_AN_SPEED_100:
1107 bp->line_speed = SPEED_100;
1108 break;
1109 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1110 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1111 bp->line_speed = SPEED_1000;
1112 break;
1113 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1114 bp->line_speed = SPEED_2500;
1115 break;
1116 }
1117 if (val & MII_BNX2_GP_TOP_AN_FD)
1118 bp->duplex = DUPLEX_FULL;
1119 else
1120 bp->duplex = DUPLEX_HALF;
1121 return 0;
1122 }
1123
1124 static int
1125 bnx2_5708s_linkup(struct bnx2 *bp)
1126 {
1127 u32 val;
1128
1129 bp->link_up = 1;
1130 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1131 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1132 case BCM5708S_1000X_STAT1_SPEED_10:
1133 bp->line_speed = SPEED_10;
1134 break;
1135 case BCM5708S_1000X_STAT1_SPEED_100:
1136 bp->line_speed = SPEED_100;
1137 break;
1138 case BCM5708S_1000X_STAT1_SPEED_1G:
1139 bp->line_speed = SPEED_1000;
1140 break;
1141 case BCM5708S_1000X_STAT1_SPEED_2G5:
1142 bp->line_speed = SPEED_2500;
1143 break;
1144 }
1145 if (val & BCM5708S_1000X_STAT1_FD)
1146 bp->duplex = DUPLEX_FULL;
1147 else
1148 bp->duplex = DUPLEX_HALF;
1149
1150 return 0;
1151 }
1152
1153 static int
1154 bnx2_5706s_linkup(struct bnx2 *bp)
1155 {
1156 u32 bmcr, local_adv, remote_adv, common;
1157
1158 bp->link_up = 1;
1159 bp->line_speed = SPEED_1000;
1160
1161 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1162 if (bmcr & BMCR_FULLDPLX) {
1163 bp->duplex = DUPLEX_FULL;
1164 }
1165 else {
1166 bp->duplex = DUPLEX_HALF;
1167 }
1168
1169 if (!(bmcr & BMCR_ANENABLE)) {
1170 return 0;
1171 }
1172
1173 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1174 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1175
1176 common = local_adv & remote_adv;
1177 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1178
1179 if (common & ADVERTISE_1000XFULL) {
1180 bp->duplex = DUPLEX_FULL;
1181 }
1182 else {
1183 bp->duplex = DUPLEX_HALF;
1184 }
1185 }
1186
1187 return 0;
1188 }
1189
1190 static int
1191 bnx2_copper_linkup(struct bnx2 *bp)
1192 {
1193 u32 bmcr;
1194
1195 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1196 if (bmcr & BMCR_ANENABLE) {
1197 u32 local_adv, remote_adv, common;
1198
1199 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1200 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1201
1202 common = local_adv & (remote_adv >> 2);
1203 if (common & ADVERTISE_1000FULL) {
1204 bp->line_speed = SPEED_1000;
1205 bp->duplex = DUPLEX_FULL;
1206 }
1207 else if (common & ADVERTISE_1000HALF) {
1208 bp->line_speed = SPEED_1000;
1209 bp->duplex = DUPLEX_HALF;
1210 }
1211 else {
1212 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1213 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1214
1215 common = local_adv & remote_adv;
1216 if (common & ADVERTISE_100FULL) {
1217 bp->line_speed = SPEED_100;
1218 bp->duplex = DUPLEX_FULL;
1219 }
1220 else if (common & ADVERTISE_100HALF) {
1221 bp->line_speed = SPEED_100;
1222 bp->duplex = DUPLEX_HALF;
1223 }
1224 else if (common & ADVERTISE_10FULL) {
1225 bp->line_speed = SPEED_10;
1226 bp->duplex = DUPLEX_FULL;
1227 }
1228 else if (common & ADVERTISE_10HALF) {
1229 bp->line_speed = SPEED_10;
1230 bp->duplex = DUPLEX_HALF;
1231 }
1232 else {
1233 bp->line_speed = 0;
1234 bp->link_up = 0;
1235 }
1236 }
1237 }
1238 else {
1239 if (bmcr & BMCR_SPEED100) {
1240 bp->line_speed = SPEED_100;
1241 }
1242 else {
1243 bp->line_speed = SPEED_10;
1244 }
1245 if (bmcr & BMCR_FULLDPLX) {
1246 bp->duplex = DUPLEX_FULL;
1247 }
1248 else {
1249 bp->duplex = DUPLEX_HALF;
1250 }
1251 }
1252
1253 return 0;
1254 }
1255
1256 static void
1257 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1258 {
1259 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1260
1261 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1262 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1263 val |= 0x02 << 8;
1264
1265 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1266 u32 lo_water, hi_water;
1267
1268 if (bp->flow_ctrl & FLOW_CTRL_TX)
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1270 else
1271 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1272 if (lo_water >= bp->rx_ring_size)
1273 lo_water = 0;
1274
1275 hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
1276
1277 if (hi_water <= lo_water)
1278 lo_water = 0;
1279
1280 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1281 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1282
1283 if (hi_water > 0xf)
1284 hi_water = 0xf;
1285 else if (hi_water == 0)
1286 lo_water = 0;
1287 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1288 }
1289 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1290 }
1291
1292 static void
1293 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1294 {
1295 int i;
1296 u32 cid;
1297
1298 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1299 if (i == 1)
1300 cid = RX_RSS_CID;
1301 bnx2_init_rx_context(bp, cid);
1302 }
1303 }
1304
1305 static void
1306 bnx2_set_mac_link(struct bnx2 *bp)
1307 {
1308 u32 val;
1309
1310 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1311 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1312 (bp->duplex == DUPLEX_HALF)) {
1313 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1314 }
1315
1316 /* Configure the EMAC mode register. */
1317 val = REG_RD(bp, BNX2_EMAC_MODE);
1318
1319 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1320 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1321 BNX2_EMAC_MODE_25G_MODE);
1322
1323 if (bp->link_up) {
1324 switch (bp->line_speed) {
1325 case SPEED_10:
1326 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1327 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1328 break;
1329 }
1330 /* fall through */
1331 case SPEED_100:
1332 val |= BNX2_EMAC_MODE_PORT_MII;
1333 break;
1334 case SPEED_2500:
1335 val |= BNX2_EMAC_MODE_25G_MODE;
1336 /* fall through */
1337 case SPEED_1000:
1338 val |= BNX2_EMAC_MODE_PORT_GMII;
1339 break;
1340 }
1341 }
1342 else {
1343 val |= BNX2_EMAC_MODE_PORT_GMII;
1344 }
1345
1346 /* Set the MAC to operate in the appropriate duplex mode. */
1347 if (bp->duplex == DUPLEX_HALF)
1348 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1349 REG_WR(bp, BNX2_EMAC_MODE, val);
1350
1351 /* Enable/disable rx PAUSE. */
1352 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1353
1354 if (bp->flow_ctrl & FLOW_CTRL_RX)
1355 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1356 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1357
1358 /* Enable/disable tx PAUSE. */
1359 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1360 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1361
1362 if (bp->flow_ctrl & FLOW_CTRL_TX)
1363 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1364 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1365
1366 /* Acknowledge the interrupt. */
1367 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1368
1369 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1370 bnx2_init_all_rx_contexts(bp);
1371 }
1372
1373 static void
1374 bnx2_enable_bmsr1(struct bnx2 *bp)
1375 {
1376 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1377 (CHIP_NUM(bp) == CHIP_NUM_5709))
1378 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1379 MII_BNX2_BLK_ADDR_GP_STATUS);
1380 }
1381
1382 static void
1383 bnx2_disable_bmsr1(struct bnx2 *bp)
1384 {
1385 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1386 (CHIP_NUM(bp) == CHIP_NUM_5709))
1387 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1388 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1389 }
1390
1391 static int
1392 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1393 {
1394 u32 up1;
1395 int ret = 1;
1396
1397 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1398 return 0;
1399
1400 if (bp->autoneg & AUTONEG_SPEED)
1401 bp->advertising |= ADVERTISED_2500baseX_Full;
1402
1403 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1404 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1405
1406 bnx2_read_phy(bp, bp->mii_up1, &up1);
1407 if (!(up1 & BCM5708S_UP1_2G5)) {
1408 up1 |= BCM5708S_UP1_2G5;
1409 bnx2_write_phy(bp, bp->mii_up1, up1);
1410 ret = 0;
1411 }
1412
1413 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1414 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1415 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1416
1417 return ret;
1418 }
1419
1420 static int
1421 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1422 {
1423 u32 up1;
1424 int ret = 0;
1425
1426 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1427 return 0;
1428
1429 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1430 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1431
1432 bnx2_read_phy(bp, bp->mii_up1, &up1);
1433 if (up1 & BCM5708S_UP1_2G5) {
1434 up1 &= ~BCM5708S_UP1_2G5;
1435 bnx2_write_phy(bp, bp->mii_up1, up1);
1436 ret = 1;
1437 }
1438
1439 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1440 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1441 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1442
1443 return ret;
1444 }
1445
1446 static void
1447 bnx2_enable_forced_2g5(struct bnx2 *bp)
1448 {
1449 u32 uninitialized_var(bmcr);
1450 int err;
1451
1452 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1453 return;
1454
1455 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1456 u32 val;
1457
1458 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1459 MII_BNX2_BLK_ADDR_SERDES_DIG);
1460 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1461 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1462 val |= MII_BNX2_SD_MISC1_FORCE |
1463 MII_BNX2_SD_MISC1_FORCE_2_5G;
1464 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1465 }
1466
1467 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1468 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1469 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1470
1471 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1472 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1473 if (!err)
1474 bmcr |= BCM5708S_BMCR_FORCE_2500;
1475 } else {
1476 return;
1477 }
1478
1479 if (err)
1480 return;
1481
1482 if (bp->autoneg & AUTONEG_SPEED) {
1483 bmcr &= ~BMCR_ANENABLE;
1484 if (bp->req_duplex == DUPLEX_FULL)
1485 bmcr |= BMCR_FULLDPLX;
1486 }
1487 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1488 }
1489
1490 static void
1491 bnx2_disable_forced_2g5(struct bnx2 *bp)
1492 {
1493 u32 uninitialized_var(bmcr);
1494 int err;
1495
1496 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1497 return;
1498
1499 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1500 u32 val;
1501
1502 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1503 MII_BNX2_BLK_ADDR_SERDES_DIG);
1504 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1505 val &= ~MII_BNX2_SD_MISC1_FORCE;
1506 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1507 }
1508
1509 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1510 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1511 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1512
1513 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1514 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1515 if (!err)
1516 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1517 } else {
1518 return;
1519 }
1520
1521 if (err)
1522 return;
1523
1524 if (bp->autoneg & AUTONEG_SPEED)
1525 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1526 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1527 }
1528
1529 static void
1530 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1531 {
1532 u32 val;
1533
1534 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1535 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1536 if (start)
1537 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1538 else
1539 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1540 }
1541
1542 static int
1543 bnx2_set_link(struct bnx2 *bp)
1544 {
1545 u32 bmsr;
1546 u8 link_up;
1547
1548 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1549 bp->link_up = 1;
1550 return 0;
1551 }
1552
1553 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1554 return 0;
1555
1556 link_up = bp->link_up;
1557
1558 bnx2_enable_bmsr1(bp);
1559 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1560 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1561 bnx2_disable_bmsr1(bp);
1562
1563 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1564 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1565 u32 val, an_dbg;
1566
1567 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1568 bnx2_5706s_force_link_dn(bp, 0);
1569 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1570 }
1571 val = REG_RD(bp, BNX2_EMAC_STATUS);
1572
1573 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1574 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1575 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1576
1577 if ((val & BNX2_EMAC_STATUS_LINK) &&
1578 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1579 bmsr |= BMSR_LSTATUS;
1580 else
1581 bmsr &= ~BMSR_LSTATUS;
1582 }
1583
1584 if (bmsr & BMSR_LSTATUS) {
1585 bp->link_up = 1;
1586
1587 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1588 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1589 bnx2_5706s_linkup(bp);
1590 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1591 bnx2_5708s_linkup(bp);
1592 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1593 bnx2_5709s_linkup(bp);
1594 }
1595 else {
1596 bnx2_copper_linkup(bp);
1597 }
1598 bnx2_resolve_flow_ctrl(bp);
1599 }
1600 else {
1601 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1602 (bp->autoneg & AUTONEG_SPEED))
1603 bnx2_disable_forced_2g5(bp);
1604
1605 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1606 u32 bmcr;
1607
1608 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1609 bmcr |= BMCR_ANENABLE;
1610 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1611
1612 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1613 }
1614 bp->link_up = 0;
1615 }
1616
1617 if (bp->link_up != link_up) {
1618 bnx2_report_link(bp);
1619 }
1620
1621 bnx2_set_mac_link(bp);
1622
1623 return 0;
1624 }
1625
1626 static int
1627 bnx2_reset_phy(struct bnx2 *bp)
1628 {
1629 int i;
1630 u32 reg;
1631
1632 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1633
1634 #define PHY_RESET_MAX_WAIT 100
1635 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1636 udelay(10);
1637
1638 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1639 if (!(reg & BMCR_RESET)) {
1640 udelay(20);
1641 break;
1642 }
1643 }
1644 if (i == PHY_RESET_MAX_WAIT) {
1645 return -EBUSY;
1646 }
1647 return 0;
1648 }
1649
1650 static u32
1651 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1652 {
1653 u32 adv = 0;
1654
1655 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1656 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1657
1658 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1659 adv = ADVERTISE_1000XPAUSE;
1660 }
1661 else {
1662 adv = ADVERTISE_PAUSE_CAP;
1663 }
1664 }
1665 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1666 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1667 adv = ADVERTISE_1000XPSE_ASYM;
1668 }
1669 else {
1670 adv = ADVERTISE_PAUSE_ASYM;
1671 }
1672 }
1673 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1674 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1675 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1676 }
1677 else {
1678 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1679 }
1680 }
1681 return adv;
1682 }
1683
1684 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1685
1686 static int
1687 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1688 __releases(&bp->phy_lock)
1689 __acquires(&bp->phy_lock)
1690 {
1691 u32 speed_arg = 0, pause_adv;
1692
1693 pause_adv = bnx2_phy_get_pause_adv(bp);
1694
1695 if (bp->autoneg & AUTONEG_SPEED) {
1696 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1697 if (bp->advertising & ADVERTISED_10baseT_Half)
1698 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1699 if (bp->advertising & ADVERTISED_10baseT_Full)
1700 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1701 if (bp->advertising & ADVERTISED_100baseT_Half)
1702 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1703 if (bp->advertising & ADVERTISED_100baseT_Full)
1704 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1705 if (bp->advertising & ADVERTISED_1000baseT_Full)
1706 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1707 if (bp->advertising & ADVERTISED_2500baseX_Full)
1708 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1709 } else {
1710 if (bp->req_line_speed == SPEED_2500)
1711 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1712 else if (bp->req_line_speed == SPEED_1000)
1713 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1714 else if (bp->req_line_speed == SPEED_100) {
1715 if (bp->req_duplex == DUPLEX_FULL)
1716 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1717 else
1718 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1719 } else if (bp->req_line_speed == SPEED_10) {
1720 if (bp->req_duplex == DUPLEX_FULL)
1721 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1722 else
1723 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1724 }
1725 }
1726
1727 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1728 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1729 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1730 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1731
1732 if (port == PORT_TP)
1733 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1734 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1735
1736 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1737
1738 spin_unlock_bh(&bp->phy_lock);
1739 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1740 spin_lock_bh(&bp->phy_lock);
1741
1742 return 0;
1743 }
1744
1745 static int
1746 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1747 __releases(&bp->phy_lock)
1748 __acquires(&bp->phy_lock)
1749 {
1750 u32 adv, bmcr;
1751 u32 new_adv = 0;
1752
1753 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1754 return (bnx2_setup_remote_phy(bp, port));
1755
1756 if (!(bp->autoneg & AUTONEG_SPEED)) {
1757 u32 new_bmcr;
1758 int force_link_down = 0;
1759
1760 if (bp->req_line_speed == SPEED_2500) {
1761 if (!bnx2_test_and_enable_2g5(bp))
1762 force_link_down = 1;
1763 } else if (bp->req_line_speed == SPEED_1000) {
1764 if (bnx2_test_and_disable_2g5(bp))
1765 force_link_down = 1;
1766 }
1767 bnx2_read_phy(bp, bp->mii_adv, &adv);
1768 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1769
1770 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1771 new_bmcr = bmcr & ~BMCR_ANENABLE;
1772 new_bmcr |= BMCR_SPEED1000;
1773
1774 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1775 if (bp->req_line_speed == SPEED_2500)
1776 bnx2_enable_forced_2g5(bp);
1777 else if (bp->req_line_speed == SPEED_1000) {
1778 bnx2_disable_forced_2g5(bp);
1779 new_bmcr &= ~0x2000;
1780 }
1781
1782 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1783 if (bp->req_line_speed == SPEED_2500)
1784 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1785 else
1786 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1787 }
1788
1789 if (bp->req_duplex == DUPLEX_FULL) {
1790 adv |= ADVERTISE_1000XFULL;
1791 new_bmcr |= BMCR_FULLDPLX;
1792 }
1793 else {
1794 adv |= ADVERTISE_1000XHALF;
1795 new_bmcr &= ~BMCR_FULLDPLX;
1796 }
1797 if ((new_bmcr != bmcr) || (force_link_down)) {
1798 /* Force a link down visible on the other side */
1799 if (bp->link_up) {
1800 bnx2_write_phy(bp, bp->mii_adv, adv &
1801 ~(ADVERTISE_1000XFULL |
1802 ADVERTISE_1000XHALF));
1803 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1804 BMCR_ANRESTART | BMCR_ANENABLE);
1805
1806 bp->link_up = 0;
1807 netif_carrier_off(bp->dev);
1808 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1809 bnx2_report_link(bp);
1810 }
1811 bnx2_write_phy(bp, bp->mii_adv, adv);
1812 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1813 } else {
1814 bnx2_resolve_flow_ctrl(bp);
1815 bnx2_set_mac_link(bp);
1816 }
1817 return 0;
1818 }
1819
1820 bnx2_test_and_enable_2g5(bp);
1821
1822 if (bp->advertising & ADVERTISED_1000baseT_Full)
1823 new_adv |= ADVERTISE_1000XFULL;
1824
1825 new_adv |= bnx2_phy_get_pause_adv(bp);
1826
1827 bnx2_read_phy(bp, bp->mii_adv, &adv);
1828 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1829
1830 bp->serdes_an_pending = 0;
1831 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1832 /* Force a link down visible on the other side */
1833 if (bp->link_up) {
1834 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1835 spin_unlock_bh(&bp->phy_lock);
1836 msleep(20);
1837 spin_lock_bh(&bp->phy_lock);
1838 }
1839
1840 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1841 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1842 BMCR_ANENABLE);
1843 /* Speed up link-up time when the link partner
1844 * does not autonegotiate which is very common
1845 * in blade servers. Some blade servers use
1846 * IPMI for kerboard input and it's important
1847 * to minimize link disruptions. Autoneg. involves
1848 * exchanging base pages plus 3 next pages and
1849 * normally completes in about 120 msec.
1850 */
1851 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1852 bp->serdes_an_pending = 1;
1853 mod_timer(&bp->timer, jiffies + bp->current_interval);
1854 } else {
1855 bnx2_resolve_flow_ctrl(bp);
1856 bnx2_set_mac_link(bp);
1857 }
1858
1859 return 0;
1860 }
1861
1862 #define ETHTOOL_ALL_FIBRE_SPEED \
1863 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1864 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1865 (ADVERTISED_1000baseT_Full)
1866
1867 #define ETHTOOL_ALL_COPPER_SPEED \
1868 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1869 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1870 ADVERTISED_1000baseT_Full)
1871
1872 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1873 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1874
1875 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1876
1877 static void
1878 bnx2_set_default_remote_link(struct bnx2 *bp)
1879 {
1880 u32 link;
1881
1882 if (bp->phy_port == PORT_TP)
1883 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1884 else
1885 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1886
1887 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1888 bp->req_line_speed = 0;
1889 bp->autoneg |= AUTONEG_SPEED;
1890 bp->advertising = ADVERTISED_Autoneg;
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1892 bp->advertising |= ADVERTISED_10baseT_Half;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1894 bp->advertising |= ADVERTISED_10baseT_Full;
1895 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1896 bp->advertising |= ADVERTISED_100baseT_Half;
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1898 bp->advertising |= ADVERTISED_100baseT_Full;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1900 bp->advertising |= ADVERTISED_1000baseT_Full;
1901 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1902 bp->advertising |= ADVERTISED_2500baseX_Full;
1903 } else {
1904 bp->autoneg = 0;
1905 bp->advertising = 0;
1906 bp->req_duplex = DUPLEX_FULL;
1907 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1908 bp->req_line_speed = SPEED_10;
1909 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1910 bp->req_duplex = DUPLEX_HALF;
1911 }
1912 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1913 bp->req_line_speed = SPEED_100;
1914 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1915 bp->req_duplex = DUPLEX_HALF;
1916 }
1917 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1918 bp->req_line_speed = SPEED_1000;
1919 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1920 bp->req_line_speed = SPEED_2500;
1921 }
1922 }
1923
1924 static void
1925 bnx2_set_default_link(struct bnx2 *bp)
1926 {
1927 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1928 bnx2_set_default_remote_link(bp);
1929 return;
1930 }
1931
1932 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1933 bp->req_line_speed = 0;
1934 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1935 u32 reg;
1936
1937 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1938
1939 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1940 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1941 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1942 bp->autoneg = 0;
1943 bp->req_line_speed = bp->line_speed = SPEED_1000;
1944 bp->req_duplex = DUPLEX_FULL;
1945 }
1946 } else
1947 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1948 }
1949
1950 static void
1951 bnx2_send_heart_beat(struct bnx2 *bp)
1952 {
1953 u32 msg;
1954 u32 addr;
1955
1956 spin_lock(&bp->indirect_lock);
1957 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1958 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1959 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1960 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1961 spin_unlock(&bp->indirect_lock);
1962 }
1963
1964 static void
1965 bnx2_remote_phy_event(struct bnx2 *bp)
1966 {
1967 u32 msg;
1968 u8 link_up = bp->link_up;
1969 u8 old_port;
1970
1971 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1972
1973 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1974 bnx2_send_heart_beat(bp);
1975
1976 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1977
1978 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1979 bp->link_up = 0;
1980 else {
1981 u32 speed;
1982
1983 bp->link_up = 1;
1984 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1985 bp->duplex = DUPLEX_FULL;
1986 switch (speed) {
1987 case BNX2_LINK_STATUS_10HALF:
1988 bp->duplex = DUPLEX_HALF;
1989 case BNX2_LINK_STATUS_10FULL:
1990 bp->line_speed = SPEED_10;
1991 break;
1992 case BNX2_LINK_STATUS_100HALF:
1993 bp->duplex = DUPLEX_HALF;
1994 case BNX2_LINK_STATUS_100BASE_T4:
1995 case BNX2_LINK_STATUS_100FULL:
1996 bp->line_speed = SPEED_100;
1997 break;
1998 case BNX2_LINK_STATUS_1000HALF:
1999 bp->duplex = DUPLEX_HALF;
2000 case BNX2_LINK_STATUS_1000FULL:
2001 bp->line_speed = SPEED_1000;
2002 break;
2003 case BNX2_LINK_STATUS_2500HALF:
2004 bp->duplex = DUPLEX_HALF;
2005 case BNX2_LINK_STATUS_2500FULL:
2006 bp->line_speed = SPEED_2500;
2007 break;
2008 default:
2009 bp->line_speed = 0;
2010 break;
2011 }
2012
2013 bp->flow_ctrl = 0;
2014 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2015 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2016 if (bp->duplex == DUPLEX_FULL)
2017 bp->flow_ctrl = bp->req_flow_ctrl;
2018 } else {
2019 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2020 bp->flow_ctrl |= FLOW_CTRL_TX;
2021 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2022 bp->flow_ctrl |= FLOW_CTRL_RX;
2023 }
2024
2025 old_port = bp->phy_port;
2026 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2027 bp->phy_port = PORT_FIBRE;
2028 else
2029 bp->phy_port = PORT_TP;
2030
2031 if (old_port != bp->phy_port)
2032 bnx2_set_default_link(bp);
2033
2034 }
2035 if (bp->link_up != link_up)
2036 bnx2_report_link(bp);
2037
2038 bnx2_set_mac_link(bp);
2039 }
2040
2041 static int
2042 bnx2_set_remote_link(struct bnx2 *bp)
2043 {
2044 u32 evt_code;
2045
2046 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2047 switch (evt_code) {
2048 case BNX2_FW_EVT_CODE_LINK_EVENT:
2049 bnx2_remote_phy_event(bp);
2050 break;
2051 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2052 default:
2053 bnx2_send_heart_beat(bp);
2054 break;
2055 }
2056 return 0;
2057 }
2058
2059 static int
2060 bnx2_setup_copper_phy(struct bnx2 *bp)
2061 __releases(&bp->phy_lock)
2062 __acquires(&bp->phy_lock)
2063 {
2064 u32 bmcr;
2065 u32 new_bmcr;
2066
2067 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2068
2069 if (bp->autoneg & AUTONEG_SPEED) {
2070 u32 adv_reg, adv1000_reg;
2071 u32 new_adv_reg = 0;
2072 u32 new_adv1000_reg = 0;
2073
2074 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2075 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2076 ADVERTISE_PAUSE_ASYM);
2077
2078 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2079 adv1000_reg &= PHY_ALL_1000_SPEED;
2080
2081 if (bp->advertising & ADVERTISED_10baseT_Half)
2082 new_adv_reg |= ADVERTISE_10HALF;
2083 if (bp->advertising & ADVERTISED_10baseT_Full)
2084 new_adv_reg |= ADVERTISE_10FULL;
2085 if (bp->advertising & ADVERTISED_100baseT_Half)
2086 new_adv_reg |= ADVERTISE_100HALF;
2087 if (bp->advertising & ADVERTISED_100baseT_Full)
2088 new_adv_reg |= ADVERTISE_100FULL;
2089 if (bp->advertising & ADVERTISED_1000baseT_Full)
2090 new_adv1000_reg |= ADVERTISE_1000FULL;
2091
2092 new_adv_reg |= ADVERTISE_CSMA;
2093
2094 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2095
2096 if ((adv1000_reg != new_adv1000_reg) ||
2097 (adv_reg != new_adv_reg) ||
2098 ((bmcr & BMCR_ANENABLE) == 0)) {
2099
2100 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2101 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2102 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2103 BMCR_ANENABLE);
2104 }
2105 else if (bp->link_up) {
2106 /* Flow ctrl may have changed from auto to forced */
2107 /* or vice-versa. */
2108
2109 bnx2_resolve_flow_ctrl(bp);
2110 bnx2_set_mac_link(bp);
2111 }
2112 return 0;
2113 }
2114
2115 new_bmcr = 0;
2116 if (bp->req_line_speed == SPEED_100) {
2117 new_bmcr |= BMCR_SPEED100;
2118 }
2119 if (bp->req_duplex == DUPLEX_FULL) {
2120 new_bmcr |= BMCR_FULLDPLX;
2121 }
2122 if (new_bmcr != bmcr) {
2123 u32 bmsr;
2124
2125 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2126 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2127
2128 if (bmsr & BMSR_LSTATUS) {
2129 /* Force link down */
2130 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2131 spin_unlock_bh(&bp->phy_lock);
2132 msleep(50);
2133 spin_lock_bh(&bp->phy_lock);
2134
2135 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2136 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2137 }
2138
2139 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2140
2141 /* Normally, the new speed is setup after the link has
2142 * gone down and up again. In some cases, link will not go
2143 * down so we need to set up the new speed here.
2144 */
2145 if (bmsr & BMSR_LSTATUS) {
2146 bp->line_speed = bp->req_line_speed;
2147 bp->duplex = bp->req_duplex;
2148 bnx2_resolve_flow_ctrl(bp);
2149 bnx2_set_mac_link(bp);
2150 }
2151 } else {
2152 bnx2_resolve_flow_ctrl(bp);
2153 bnx2_set_mac_link(bp);
2154 }
2155 return 0;
2156 }
2157
2158 static int
2159 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2160 __releases(&bp->phy_lock)
2161 __acquires(&bp->phy_lock)
2162 {
2163 if (bp->loopback == MAC_LOOPBACK)
2164 return 0;
2165
2166 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2167 return (bnx2_setup_serdes_phy(bp, port));
2168 }
2169 else {
2170 return (bnx2_setup_copper_phy(bp));
2171 }
2172 }
2173
2174 static int
2175 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2176 {
2177 u32 val;
2178
2179 bp->mii_bmcr = MII_BMCR + 0x10;
2180 bp->mii_bmsr = MII_BMSR + 0x10;
2181 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2182 bp->mii_adv = MII_ADVERTISE + 0x10;
2183 bp->mii_lpa = MII_LPA + 0x10;
2184 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2185
2186 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2187 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2188
2189 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2190 if (reset_phy)
2191 bnx2_reset_phy(bp);
2192
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2194
2195 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2196 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2197 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2198 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2199
2200 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2201 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2202 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2203 val |= BCM5708S_UP1_2G5;
2204 else
2205 val &= ~BCM5708S_UP1_2G5;
2206 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2207
2208 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2209 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2210 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2211 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2212
2213 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2214
2215 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2216 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2217 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2218
2219 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2220
2221 return 0;
2222 }
2223
2224 static int
2225 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2226 {
2227 u32 val;
2228
2229 if (reset_phy)
2230 bnx2_reset_phy(bp);
2231
2232 bp->mii_up1 = BCM5708S_UP1;
2233
2234 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2235 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2236 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2237
2238 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2239 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2240 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2241
2242 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2243 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2244 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2245
2246 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2247 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2248 val |= BCM5708S_UP1_2G5;
2249 bnx2_write_phy(bp, BCM5708S_UP1, val);
2250 }
2251
2252 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2253 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2254 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2255 /* increase tx signal amplitude */
2256 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2257 BCM5708S_BLK_ADDR_TX_MISC);
2258 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2259 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2260 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2261 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2262 }
2263
2264 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2265 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2266
2267 if (val) {
2268 u32 is_backplane;
2269
2270 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2271 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2272 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2273 BCM5708S_BLK_ADDR_TX_MISC);
2274 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2275 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2276 BCM5708S_BLK_ADDR_DIG);
2277 }
2278 }
2279 return 0;
2280 }
2281
2282 static int
2283 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2284 {
2285 if (reset_phy)
2286 bnx2_reset_phy(bp);
2287
2288 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2289
2290 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2291 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2292
2293 if (bp->dev->mtu > 1500) {
2294 u32 val;
2295
2296 /* Set extended packet length bit */
2297 bnx2_write_phy(bp, 0x18, 0x7);
2298 bnx2_read_phy(bp, 0x18, &val);
2299 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2300
2301 bnx2_write_phy(bp, 0x1c, 0x6c00);
2302 bnx2_read_phy(bp, 0x1c, &val);
2303 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2304 }
2305 else {
2306 u32 val;
2307
2308 bnx2_write_phy(bp, 0x18, 0x7);
2309 bnx2_read_phy(bp, 0x18, &val);
2310 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2311
2312 bnx2_write_phy(bp, 0x1c, 0x6c00);
2313 bnx2_read_phy(bp, 0x1c, &val);
2314 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2315 }
2316
2317 return 0;
2318 }
2319
2320 static int
2321 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2322 {
2323 u32 val;
2324
2325 if (reset_phy)
2326 bnx2_reset_phy(bp);
2327
2328 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2329 bnx2_write_phy(bp, 0x18, 0x0c00);
2330 bnx2_write_phy(bp, 0x17, 0x000a);
2331 bnx2_write_phy(bp, 0x15, 0x310b);
2332 bnx2_write_phy(bp, 0x17, 0x201f);
2333 bnx2_write_phy(bp, 0x15, 0x9506);
2334 bnx2_write_phy(bp, 0x17, 0x401f);
2335 bnx2_write_phy(bp, 0x15, 0x14e2);
2336 bnx2_write_phy(bp, 0x18, 0x0400);
2337 }
2338
2339 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2340 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2341 MII_BNX2_DSP_EXPAND_REG | 0x8);
2342 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2343 val &= ~(1 << 8);
2344 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2345 }
2346
2347 if (bp->dev->mtu > 1500) {
2348 /* Set extended packet length bit */
2349 bnx2_write_phy(bp, 0x18, 0x7);
2350 bnx2_read_phy(bp, 0x18, &val);
2351 bnx2_write_phy(bp, 0x18, val | 0x4000);
2352
2353 bnx2_read_phy(bp, 0x10, &val);
2354 bnx2_write_phy(bp, 0x10, val | 0x1);
2355 }
2356 else {
2357 bnx2_write_phy(bp, 0x18, 0x7);
2358 bnx2_read_phy(bp, 0x18, &val);
2359 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2360
2361 bnx2_read_phy(bp, 0x10, &val);
2362 bnx2_write_phy(bp, 0x10, val & ~0x1);
2363 }
2364
2365 /* ethernet@wirespeed */
2366 bnx2_write_phy(bp, 0x18, 0x7007);
2367 bnx2_read_phy(bp, 0x18, &val);
2368 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2369 return 0;
2370 }
2371
2372
2373 static int
2374 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2375 __releases(&bp->phy_lock)
2376 __acquires(&bp->phy_lock)
2377 {
2378 u32 val;
2379 int rc = 0;
2380
2381 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2382 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2383
2384 bp->mii_bmcr = MII_BMCR;
2385 bp->mii_bmsr = MII_BMSR;
2386 bp->mii_bmsr1 = MII_BMSR;
2387 bp->mii_adv = MII_ADVERTISE;
2388 bp->mii_lpa = MII_LPA;
2389
2390 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2391
2392 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2393 goto setup_phy;
2394
2395 bnx2_read_phy(bp, MII_PHYSID1, &val);
2396 bp->phy_id = val << 16;
2397 bnx2_read_phy(bp, MII_PHYSID2, &val);
2398 bp->phy_id |= val & 0xffff;
2399
2400 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2401 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2402 rc = bnx2_init_5706s_phy(bp, reset_phy);
2403 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2404 rc = bnx2_init_5708s_phy(bp, reset_phy);
2405 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2406 rc = bnx2_init_5709s_phy(bp, reset_phy);
2407 }
2408 else {
2409 rc = bnx2_init_copper_phy(bp, reset_phy);
2410 }
2411
2412 setup_phy:
2413 if (!rc)
2414 rc = bnx2_setup_phy(bp, bp->phy_port);
2415
2416 return rc;
2417 }
2418
2419 static int
2420 bnx2_set_mac_loopback(struct bnx2 *bp)
2421 {
2422 u32 mac_mode;
2423
2424 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2425 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2426 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2427 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2428 bp->link_up = 1;
2429 return 0;
2430 }
2431
2432 static int bnx2_test_link(struct bnx2 *);
2433
2434 static int
2435 bnx2_set_phy_loopback(struct bnx2 *bp)
2436 {
2437 u32 mac_mode;
2438 int rc, i;
2439
2440 spin_lock_bh(&bp->phy_lock);
2441 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2442 BMCR_SPEED1000);
2443 spin_unlock_bh(&bp->phy_lock);
2444 if (rc)
2445 return rc;
2446
2447 for (i = 0; i < 10; i++) {
2448 if (bnx2_test_link(bp) == 0)
2449 break;
2450 msleep(100);
2451 }
2452
2453 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2454 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2455 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2456 BNX2_EMAC_MODE_25G_MODE);
2457
2458 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2459 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2460 bp->link_up = 1;
2461 return 0;
2462 }
2463
2464 static int
2465 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2466 {
2467 int i;
2468 u32 val;
2469
2470 bp->fw_wr_seq++;
2471 msg_data |= bp->fw_wr_seq;
2472
2473 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2474
2475 if (!ack)
2476 return 0;
2477
2478 /* wait for an acknowledgement. */
2479 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2480 msleep(10);
2481
2482 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2483
2484 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2485 break;
2486 }
2487 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2488 return 0;
2489
2490 /* If we timed out, inform the firmware that this is the case. */
2491 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2492 if (!silent)
2493 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2494
2495 msg_data &= ~BNX2_DRV_MSG_CODE;
2496 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2497
2498 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2499
2500 return -EBUSY;
2501 }
2502
2503 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2504 return -EIO;
2505
2506 return 0;
2507 }
2508
2509 static int
2510 bnx2_init_5709_context(struct bnx2 *bp)
2511 {
2512 int i, ret = 0;
2513 u32 val;
2514
2515 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2516 val |= (BCM_PAGE_BITS - 8) << 16;
2517 REG_WR(bp, BNX2_CTX_COMMAND, val);
2518 for (i = 0; i < 10; i++) {
2519 val = REG_RD(bp, BNX2_CTX_COMMAND);
2520 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2521 break;
2522 udelay(2);
2523 }
2524 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2525 return -EBUSY;
2526
2527 for (i = 0; i < bp->ctx_pages; i++) {
2528 int j;
2529
2530 if (bp->ctx_blk[i])
2531 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2532 else
2533 return -ENOMEM;
2534
2535 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2536 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2537 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2538 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2539 (u64) bp->ctx_blk_mapping[i] >> 32);
2540 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2541 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2542 for (j = 0; j < 10; j++) {
2543
2544 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2545 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2546 break;
2547 udelay(5);
2548 }
2549 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2550 ret = -EBUSY;
2551 break;
2552 }
2553 }
2554 return ret;
2555 }
2556
2557 static void
2558 bnx2_init_context(struct bnx2 *bp)
2559 {
2560 u32 vcid;
2561
2562 vcid = 96;
2563 while (vcid) {
2564 u32 vcid_addr, pcid_addr, offset;
2565 int i;
2566
2567 vcid--;
2568
2569 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2570 u32 new_vcid;
2571
2572 vcid_addr = GET_PCID_ADDR(vcid);
2573 if (vcid & 0x8) {
2574 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2575 }
2576 else {
2577 new_vcid = vcid;
2578 }
2579 pcid_addr = GET_PCID_ADDR(new_vcid);
2580 }
2581 else {
2582 vcid_addr = GET_CID_ADDR(vcid);
2583 pcid_addr = vcid_addr;
2584 }
2585
2586 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2587 vcid_addr += (i << PHY_CTX_SHIFT);
2588 pcid_addr += (i << PHY_CTX_SHIFT);
2589
2590 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2591 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2592
2593 /* Zero out the context. */
2594 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2595 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2596 }
2597 }
2598 }
2599
2600 static int
2601 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2602 {
2603 u16 *good_mbuf;
2604 u32 good_mbuf_cnt;
2605 u32 val;
2606
2607 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2608 if (good_mbuf == NULL) {
2609 pr_err("Failed to allocate memory in %s\n", __func__);
2610 return -ENOMEM;
2611 }
2612
2613 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2614 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2615
2616 good_mbuf_cnt = 0;
2617
2618 /* Allocate a bunch of mbufs and save the good ones in an array. */
2619 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2620 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2621 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2622 BNX2_RBUF_COMMAND_ALLOC_REQ);
2623
2624 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2625
2626 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2627
2628 /* The addresses with Bit 9 set are bad memory blocks. */
2629 if (!(val & (1 << 9))) {
2630 good_mbuf[good_mbuf_cnt] = (u16) val;
2631 good_mbuf_cnt++;
2632 }
2633
2634 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2635 }
2636
2637 /* Free the good ones back to the mbuf pool thus discarding
2638 * all the bad ones. */
2639 while (good_mbuf_cnt) {
2640 good_mbuf_cnt--;
2641
2642 val = good_mbuf[good_mbuf_cnt];
2643 val = (val << 9) | val | 1;
2644
2645 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2646 }
2647 kfree(good_mbuf);
2648 return 0;
2649 }
2650
2651 static void
2652 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2653 {
2654 u32 val;
2655
2656 val = (mac_addr[0] << 8) | mac_addr[1];
2657
2658 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2659
2660 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2661 (mac_addr[4] << 8) | mac_addr[5];
2662
2663 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2664 }
2665
2666 static inline int
2667 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2668 {
2669 dma_addr_t mapping;
2670 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2671 struct rx_bd *rxbd =
2672 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2673 struct page *page = alloc_page(GFP_ATOMIC);
2674
2675 if (!page)
2676 return -ENOMEM;
2677 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2678 PCI_DMA_FROMDEVICE);
2679 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2680 __free_page(page);
2681 return -EIO;
2682 }
2683
2684 rx_pg->page = page;
2685 dma_unmap_addr_set(rx_pg, mapping, mapping);
2686 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2687 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2688 return 0;
2689 }
2690
2691 static void
2692 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2693 {
2694 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2695 struct page *page = rx_pg->page;
2696
2697 if (!page)
2698 return;
2699
2700 pci_unmap_page(bp->pdev, dma_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2701 PCI_DMA_FROMDEVICE);
2702
2703 __free_page(page);
2704 rx_pg->page = NULL;
2705 }
2706
2707 static inline int
2708 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2709 {
2710 struct sk_buff *skb;
2711 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2712 dma_addr_t mapping;
2713 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2714 unsigned long align;
2715
2716 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2717 if (skb == NULL) {
2718 return -ENOMEM;
2719 }
2720
2721 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2722 skb_reserve(skb, BNX2_RX_ALIGN - align);
2723
2724 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2725 PCI_DMA_FROMDEVICE);
2726 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2727 dev_kfree_skb(skb);
2728 return -EIO;
2729 }
2730
2731 rx_buf->skb = skb;
2732 rx_buf->desc = (struct l2_fhdr *) skb->data;
2733 dma_unmap_addr_set(rx_buf, mapping, mapping);
2734
2735 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2736 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2737
2738 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2739
2740 return 0;
2741 }
2742
2743 static int
2744 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2745 {
2746 struct status_block *sblk = bnapi->status_blk.msi;
2747 u32 new_link_state, old_link_state;
2748 int is_set = 1;
2749
2750 new_link_state = sblk->status_attn_bits & event;
2751 old_link_state = sblk->status_attn_bits_ack & event;
2752 if (new_link_state != old_link_state) {
2753 if (new_link_state)
2754 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2755 else
2756 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2757 } else
2758 is_set = 0;
2759
2760 return is_set;
2761 }
2762
2763 static void
2764 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2765 {
2766 spin_lock(&bp->phy_lock);
2767
2768 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2769 bnx2_set_link(bp);
2770 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2771 bnx2_set_remote_link(bp);
2772
2773 spin_unlock(&bp->phy_lock);
2774
2775 }
2776
2777 static inline u16
2778 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2779 {
2780 u16 cons;
2781
2782 /* Tell compiler that status block fields can change. */
2783 barrier();
2784 cons = *bnapi->hw_tx_cons_ptr;
2785 barrier();
2786 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2787 cons++;
2788 return cons;
2789 }
2790
2791 static int
2792 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2793 {
2794 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2795 u16 hw_cons, sw_cons, sw_ring_cons;
2796 int tx_pkt = 0, index;
2797 struct netdev_queue *txq;
2798
2799 index = (bnapi - bp->bnx2_napi);
2800 txq = netdev_get_tx_queue(bp->dev, index);
2801
2802 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2803 sw_cons = txr->tx_cons;
2804
2805 while (sw_cons != hw_cons) {
2806 struct sw_tx_bd *tx_buf;
2807 struct sk_buff *skb;
2808 int i, last;
2809
2810 sw_ring_cons = TX_RING_IDX(sw_cons);
2811
2812 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2813 skb = tx_buf->skb;
2814
2815 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2816 prefetch(&skb->end);
2817
2818 /* partial BD completions possible with TSO packets */
2819 if (tx_buf->is_gso) {
2820 u16 last_idx, last_ring_idx;
2821
2822 last_idx = sw_cons + tx_buf->nr_frags + 1;
2823 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2824 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2825 last_idx++;
2826 }
2827 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2828 break;
2829 }
2830 }
2831
2832 pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
2833 skb_headlen(skb), PCI_DMA_TODEVICE);
2834
2835 tx_buf->skb = NULL;
2836 last = tx_buf->nr_frags;
2837
2838 for (i = 0; i < last; i++) {
2839 sw_cons = NEXT_TX_BD(sw_cons);
2840
2841 pci_unmap_page(bp->pdev,
2842 dma_unmap_addr(
2843 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2844 mapping),
2845 skb_shinfo(skb)->frags[i].size,
2846 PCI_DMA_TODEVICE);
2847 }
2848
2849 sw_cons = NEXT_TX_BD(sw_cons);
2850
2851 dev_kfree_skb(skb);
2852 tx_pkt++;
2853 if (tx_pkt == budget)
2854 break;
2855
2856 if (hw_cons == sw_cons)
2857 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2858 }
2859
2860 txr->hw_tx_cons = hw_cons;
2861 txr->tx_cons = sw_cons;
2862
2863 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2864 * before checking for netif_tx_queue_stopped(). Without the
2865 * memory barrier, there is a small possibility that bnx2_start_xmit()
2866 * will miss it and cause the queue to be stopped forever.
2867 */
2868 smp_mb();
2869
2870 if (unlikely(netif_tx_queue_stopped(txq)) &&
2871 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2872 __netif_tx_lock(txq, smp_processor_id());
2873 if ((netif_tx_queue_stopped(txq)) &&
2874 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2875 netif_tx_wake_queue(txq);
2876 __netif_tx_unlock(txq);
2877 }
2878
2879 return tx_pkt;
2880 }
2881
2882 static void
2883 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2884 struct sk_buff *skb, int count)
2885 {
2886 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2887 struct rx_bd *cons_bd, *prod_bd;
2888 int i;
2889 u16 hw_prod, prod;
2890 u16 cons = rxr->rx_pg_cons;
2891
2892 cons_rx_pg = &rxr->rx_pg_ring[cons];
2893
2894 /* The caller was unable to allocate a new page to replace the
2895 * last one in the frags array, so we need to recycle that page
2896 * and then free the skb.
2897 */
2898 if (skb) {
2899 struct page *page;
2900 struct skb_shared_info *shinfo;
2901
2902 shinfo = skb_shinfo(skb);
2903 shinfo->nr_frags--;
2904 page = shinfo->frags[shinfo->nr_frags].page;
2905 shinfo->frags[shinfo->nr_frags].page = NULL;
2906
2907 cons_rx_pg->page = page;
2908 dev_kfree_skb(skb);
2909 }
2910
2911 hw_prod = rxr->rx_pg_prod;
2912
2913 for (i = 0; i < count; i++) {
2914 prod = RX_PG_RING_IDX(hw_prod);
2915
2916 prod_rx_pg = &rxr->rx_pg_ring[prod];
2917 cons_rx_pg = &rxr->rx_pg_ring[cons];
2918 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2919 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2920
2921 if (prod != cons) {
2922 prod_rx_pg->page = cons_rx_pg->page;
2923 cons_rx_pg->page = NULL;
2924 dma_unmap_addr_set(prod_rx_pg, mapping,
2925 dma_unmap_addr(cons_rx_pg, mapping));
2926
2927 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2928 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2929
2930 }
2931 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2932 hw_prod = NEXT_RX_BD(hw_prod);
2933 }
2934 rxr->rx_pg_prod = hw_prod;
2935 rxr->rx_pg_cons = cons;
2936 }
2937
2938 static inline void
2939 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2940 struct sk_buff *skb, u16 cons, u16 prod)
2941 {
2942 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2943 struct rx_bd *cons_bd, *prod_bd;
2944
2945 cons_rx_buf = &rxr->rx_buf_ring[cons];
2946 prod_rx_buf = &rxr->rx_buf_ring[prod];
2947
2948 pci_dma_sync_single_for_device(bp->pdev,
2949 dma_unmap_addr(cons_rx_buf, mapping),
2950 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2951
2952 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2953
2954 prod_rx_buf->skb = skb;
2955 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2956
2957 if (cons == prod)
2958 return;
2959
2960 dma_unmap_addr_set(prod_rx_buf, mapping,
2961 dma_unmap_addr(cons_rx_buf, mapping));
2962
2963 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2964 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2965 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2966 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2967 }
2968
2969 static int
2970 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2971 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2972 u32 ring_idx)
2973 {
2974 int err;
2975 u16 prod = ring_idx & 0xffff;
2976
2977 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2978 if (unlikely(err)) {
2979 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2980 if (hdr_len) {
2981 unsigned int raw_len = len + 4;
2982 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2983
2984 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2985 }
2986 return err;
2987 }
2988
2989 skb_reserve(skb, BNX2_RX_OFFSET);
2990 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2991 PCI_DMA_FROMDEVICE);
2992
2993 if (hdr_len == 0) {
2994 skb_put(skb, len);
2995 return 0;
2996 } else {
2997 unsigned int i, frag_len, frag_size, pages;
2998 struct sw_pg *rx_pg;
2999 u16 pg_cons = rxr->rx_pg_cons;
3000 u16 pg_prod = rxr->rx_pg_prod;
3001
3002 frag_size = len + 4 - hdr_len;
3003 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
3004 skb_put(skb, hdr_len);
3005
3006 for (i = 0; i < pages; i++) {
3007 dma_addr_t mapping_old;
3008
3009 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3010 if (unlikely(frag_len <= 4)) {
3011 unsigned int tail = 4 - frag_len;
3012
3013 rxr->rx_pg_cons = pg_cons;
3014 rxr->rx_pg_prod = pg_prod;
3015 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3016 pages - i);
3017 skb->len -= tail;
3018 if (i == 0) {
3019 skb->tail -= tail;
3020 } else {
3021 skb_frag_t *frag =
3022 &skb_shinfo(skb)->frags[i - 1];
3023 frag->size -= tail;
3024 skb->data_len -= tail;
3025 skb->truesize -= tail;
3026 }
3027 return 0;
3028 }
3029 rx_pg = &rxr->rx_pg_ring[pg_cons];
3030
3031 /* Don't unmap yet. If we're unable to allocate a new
3032 * page, we need to recycle the page and the DMA addr.
3033 */
3034 mapping_old = dma_unmap_addr(rx_pg, mapping);
3035 if (i == pages - 1)
3036 frag_len -= 4;
3037
3038 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3039 rx_pg->page = NULL;
3040
3041 err = bnx2_alloc_rx_page(bp, rxr,
3042 RX_PG_RING_IDX(pg_prod));
3043 if (unlikely(err)) {
3044 rxr->rx_pg_cons = pg_cons;
3045 rxr->rx_pg_prod = pg_prod;
3046 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3047 pages - i);
3048 return err;
3049 }
3050
3051 pci_unmap_page(bp->pdev, mapping_old,
3052 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3053
3054 frag_size -= frag_len;
3055 skb->data_len += frag_len;
3056 skb->truesize += frag_len;
3057 skb->len += frag_len;
3058
3059 pg_prod = NEXT_RX_BD(pg_prod);
3060 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3061 }
3062 rxr->rx_pg_prod = pg_prod;
3063 rxr->rx_pg_cons = pg_cons;
3064 }
3065 return 0;
3066 }
3067
3068 static inline u16
3069 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3070 {
3071 u16 cons;
3072
3073 /* Tell compiler that status block fields can change. */
3074 barrier();
3075 cons = *bnapi->hw_rx_cons_ptr;
3076 barrier();
3077 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3078 cons++;
3079 return cons;
3080 }
3081
3082 static int
3083 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3084 {
3085 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3086 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3087 struct l2_fhdr *rx_hdr;
3088 int rx_pkt = 0, pg_ring_used = 0;
3089
3090 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3091 sw_cons = rxr->rx_cons;
3092 sw_prod = rxr->rx_prod;
3093
3094 /* Memory barrier necessary as speculative reads of the rx
3095 * buffer can be ahead of the index in the status block
3096 */
3097 rmb();
3098 while (sw_cons != hw_cons) {
3099 unsigned int len, hdr_len;
3100 u32 status;
3101 struct sw_bd *rx_buf, *next_rx_buf;
3102 struct sk_buff *skb;
3103 dma_addr_t dma_addr;
3104 u16 vtag = 0;
3105 int hw_vlan __maybe_unused = 0;
3106
3107 sw_ring_cons = RX_RING_IDX(sw_cons);
3108 sw_ring_prod = RX_RING_IDX(sw_prod);
3109
3110 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3111 skb = rx_buf->skb;
3112 prefetchw(skb);
3113
3114 next_rx_buf =
3115 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3116 prefetch(next_rx_buf->desc);
3117
3118 rx_buf->skb = NULL;
3119
3120 dma_addr = dma_unmap_addr(rx_buf, mapping);
3121
3122 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3123 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3124 PCI_DMA_FROMDEVICE);
3125
3126 rx_hdr = rx_buf->desc;
3127 len = rx_hdr->l2_fhdr_pkt_len;
3128 status = rx_hdr->l2_fhdr_status;
3129
3130 hdr_len = 0;
3131 if (status & L2_FHDR_STATUS_SPLIT) {
3132 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3133 pg_ring_used = 1;
3134 } else if (len > bp->rx_jumbo_thresh) {
3135 hdr_len = bp->rx_jumbo_thresh;
3136 pg_ring_used = 1;
3137 }
3138
3139 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3140 L2_FHDR_ERRORS_PHY_DECODE |
3141 L2_FHDR_ERRORS_ALIGNMENT |
3142 L2_FHDR_ERRORS_TOO_SHORT |
3143 L2_FHDR_ERRORS_GIANT_FRAME))) {
3144
3145 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3146 sw_ring_prod);
3147 if (pg_ring_used) {
3148 int pages;
3149
3150 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3151
3152 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3153 }
3154 goto next_rx;
3155 }
3156
3157 len -= 4;
3158
3159 if (len <= bp->rx_copy_thresh) {
3160 struct sk_buff *new_skb;
3161
3162 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3163 if (new_skb == NULL) {
3164 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3165 sw_ring_prod);
3166 goto next_rx;
3167 }
3168
3169 /* aligned copy */
3170 skb_copy_from_linear_data_offset(skb,
3171 BNX2_RX_OFFSET - 6,
3172 new_skb->data, len + 6);
3173 skb_reserve(new_skb, 6);
3174 skb_put(new_skb, len);
3175
3176 bnx2_reuse_rx_skb(bp, rxr, skb,
3177 sw_ring_cons, sw_ring_prod);
3178
3179 skb = new_skb;
3180 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3181 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3182 goto next_rx;
3183
3184 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3185 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3186 vtag = rx_hdr->l2_fhdr_vlan_tag;
3187 #ifdef BCM_VLAN
3188 if (bp->vlgrp)
3189 hw_vlan = 1;
3190 else
3191 #endif
3192 {
3193 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3194 __skb_push(skb, 4);
3195
3196 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3197 ve->h_vlan_proto = htons(ETH_P_8021Q);
3198 ve->h_vlan_TCI = htons(vtag);
3199 len += 4;
3200 }
3201 }
3202
3203 skb->protocol = eth_type_trans(skb, bp->dev);
3204
3205 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3206 (ntohs(skb->protocol) != 0x8100)) {
3207
3208 dev_kfree_skb(skb);
3209 goto next_rx;
3210
3211 }
3212
3213 skb->ip_summed = CHECKSUM_NONE;
3214 if (bp->rx_csum &&
3215 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3216 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3217
3218 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3219 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3220 skb->ip_summed = CHECKSUM_UNNECESSARY;
3221 }
3222 if ((bp->dev->features & NETIF_F_RXHASH) &&
3223 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3224 L2_FHDR_STATUS_USE_RXHASH))
3225 skb->rxhash = rx_hdr->l2_fhdr_hash;
3226
3227 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3228
3229 #ifdef BCM_VLAN
3230 if (hw_vlan)
3231 vlan_gro_receive(&bnapi->napi, bp->vlgrp, vtag, skb);
3232 else
3233 #endif
3234 napi_gro_receive(&bnapi->napi, skb);
3235
3236 rx_pkt++;
3237
3238 next_rx:
3239 sw_cons = NEXT_RX_BD(sw_cons);
3240 sw_prod = NEXT_RX_BD(sw_prod);
3241
3242 if ((rx_pkt == budget))
3243 break;
3244
3245 /* Refresh hw_cons to see if there is new work */
3246 if (sw_cons == hw_cons) {
3247 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3248 rmb();
3249 }
3250 }
3251 rxr->rx_cons = sw_cons;
3252 rxr->rx_prod = sw_prod;
3253
3254 if (pg_ring_used)
3255 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3256
3257 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3258
3259 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3260
3261 mmiowb();
3262
3263 return rx_pkt;
3264
3265 }
3266
3267 /* MSI ISR - The only difference between this and the INTx ISR
3268 * is that the MSI interrupt is always serviced.
3269 */
3270 static irqreturn_t
3271 bnx2_msi(int irq, void *dev_instance)
3272 {
3273 struct bnx2_napi *bnapi = dev_instance;
3274 struct bnx2 *bp = bnapi->bp;
3275
3276 prefetch(bnapi->status_blk.msi);
3277 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3278 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3279 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3280
3281 /* Return here if interrupt is disabled. */
3282 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3283 return IRQ_HANDLED;
3284
3285 napi_schedule(&bnapi->napi);
3286
3287 return IRQ_HANDLED;
3288 }
3289
3290 static irqreturn_t
3291 bnx2_msi_1shot(int irq, void *dev_instance)
3292 {
3293 struct bnx2_napi *bnapi = dev_instance;
3294 struct bnx2 *bp = bnapi->bp;
3295
3296 prefetch(bnapi->status_blk.msi);
3297
3298 /* Return here if interrupt is disabled. */
3299 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3300 return IRQ_HANDLED;
3301
3302 napi_schedule(&bnapi->napi);
3303
3304 return IRQ_HANDLED;
3305 }
3306
3307 static irqreturn_t
3308 bnx2_interrupt(int irq, void *dev_instance)
3309 {
3310 struct bnx2_napi *bnapi = dev_instance;
3311 struct bnx2 *bp = bnapi->bp;
3312 struct status_block *sblk = bnapi->status_blk.msi;
3313
3314 /* When using INTx, it is possible for the interrupt to arrive
3315 * at the CPU before the status block posted prior to the
3316 * interrupt. Reading a register will flush the status block.
3317 * When using MSI, the MSI message will always complete after
3318 * the status block write.
3319 */
3320 if ((sblk->status_idx == bnapi->last_status_idx) &&
3321 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3322 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3323 return IRQ_NONE;
3324
3325 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3326 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3327 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3328
3329 /* Read back to deassert IRQ immediately to avoid too many
3330 * spurious interrupts.
3331 */
3332 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3333
3334 /* Return here if interrupt is shared and is disabled. */
3335 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3336 return IRQ_HANDLED;
3337
3338 if (napi_schedule_prep(&bnapi->napi)) {
3339 bnapi->last_status_idx = sblk->status_idx;
3340 __napi_schedule(&bnapi->napi);
3341 }
3342
3343 return IRQ_HANDLED;
3344 }
3345
3346 static inline int
3347 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3348 {
3349 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3350 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3351
3352 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3353 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3354 return 1;
3355 return 0;
3356 }
3357
3358 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3359 STATUS_ATTN_BITS_TIMER_ABORT)
3360
3361 static inline int
3362 bnx2_has_work(struct bnx2_napi *bnapi)
3363 {
3364 struct status_block *sblk = bnapi->status_blk.msi;
3365
3366 if (bnx2_has_fast_work(bnapi))
3367 return 1;
3368
3369 #ifdef BCM_CNIC
3370 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3371 return 1;
3372 #endif
3373
3374 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3375 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3376 return 1;
3377
3378 return 0;
3379 }
3380
3381 static void
3382 bnx2_chk_missed_msi(struct bnx2 *bp)
3383 {
3384 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3385 u32 msi_ctrl;
3386
3387 if (bnx2_has_work(bnapi)) {
3388 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3389 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3390 return;
3391
3392 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3393 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3394 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3395 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3396 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3397 }
3398 }
3399
3400 bp->idle_chk_status_idx = bnapi->last_status_idx;
3401 }
3402
3403 #ifdef BCM_CNIC
3404 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3405 {
3406 struct cnic_ops *c_ops;
3407
3408 if (!bnapi->cnic_present)
3409 return;
3410
3411 rcu_read_lock();
3412 c_ops = rcu_dereference(bp->cnic_ops);
3413 if (c_ops)
3414 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3415 bnapi->status_blk.msi);
3416 rcu_read_unlock();
3417 }
3418 #endif
3419
3420 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3421 {
3422 struct status_block *sblk = bnapi->status_blk.msi;
3423 u32 status_attn_bits = sblk->status_attn_bits;
3424 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3425
3426 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3427 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3428
3429 bnx2_phy_int(bp, bnapi);
3430
3431 /* This is needed to take care of transient status
3432 * during link changes.
3433 */
3434 REG_WR(bp, BNX2_HC_COMMAND,
3435 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3436 REG_RD(bp, BNX2_HC_COMMAND);
3437 }
3438 }
3439
3440 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3441 int work_done, int budget)
3442 {
3443 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3444 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3445
3446 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3447 bnx2_tx_int(bp, bnapi, 0);
3448
3449 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3450 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3451
3452 return work_done;
3453 }
3454
3455 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3456 {
3457 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3458 struct bnx2 *bp = bnapi->bp;
3459 int work_done = 0;
3460 struct status_block_msix *sblk = bnapi->status_blk.msix;
3461
3462 while (1) {
3463 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3464 if (unlikely(work_done >= budget))
3465 break;
3466
3467 bnapi->last_status_idx = sblk->status_idx;
3468 /* status idx must be read before checking for more work. */
3469 rmb();
3470 if (likely(!bnx2_has_fast_work(bnapi))) {
3471
3472 napi_complete(napi);
3473 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3475 bnapi->last_status_idx);
3476 break;
3477 }
3478 }
3479 return work_done;
3480 }
3481
3482 static int bnx2_poll(struct napi_struct *napi, int budget)
3483 {
3484 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3485 struct bnx2 *bp = bnapi->bp;
3486 int work_done = 0;
3487 struct status_block *sblk = bnapi->status_blk.msi;
3488
3489 while (1) {
3490 bnx2_poll_link(bp, bnapi);
3491
3492 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3493
3494 #ifdef BCM_CNIC
3495 bnx2_poll_cnic(bp, bnapi);
3496 #endif
3497
3498 /* bnapi->last_status_idx is used below to tell the hw how
3499 * much work has been processed, so we must read it before
3500 * checking for more work.
3501 */
3502 bnapi->last_status_idx = sblk->status_idx;
3503
3504 if (unlikely(work_done >= budget))
3505 break;
3506
3507 rmb();
3508 if (likely(!bnx2_has_work(bnapi))) {
3509 napi_complete(napi);
3510 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3511 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3512 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3513 bnapi->last_status_idx);
3514 break;
3515 }
3516 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3517 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3518 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3519 bnapi->last_status_idx);
3520
3521 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3522 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3523 bnapi->last_status_idx);
3524 break;
3525 }
3526 }
3527
3528 return work_done;
3529 }
3530
3531 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3532 * from set_multicast.
3533 */
3534 static void
3535 bnx2_set_rx_mode(struct net_device *dev)
3536 {
3537 struct bnx2 *bp = netdev_priv(dev);
3538 u32 rx_mode, sort_mode;
3539 struct netdev_hw_addr *ha;
3540 int i;
3541
3542 if (!netif_running(dev))
3543 return;
3544
3545 spin_lock_bh(&bp->phy_lock);
3546
3547 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3548 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3549 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3550 #ifdef BCM_VLAN
3551 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3552 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3553 #else
3554 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3555 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3556 #endif
3557 if (dev->flags & IFF_PROMISC) {
3558 /* Promiscuous mode. */
3559 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3560 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3561 BNX2_RPM_SORT_USER0_PROM_VLAN;
3562 }
3563 else if (dev->flags & IFF_ALLMULTI) {
3564 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3565 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3566 0xffffffff);
3567 }
3568 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3569 }
3570 else {
3571 /* Accept one or more multicast(s). */
3572 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3573 u32 regidx;
3574 u32 bit;
3575 u32 crc;
3576
3577 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3578
3579 netdev_for_each_mc_addr(ha, dev) {
3580 crc = ether_crc_le(ETH_ALEN, ha->addr);
3581 bit = crc & 0xff;
3582 regidx = (bit & 0xe0) >> 5;
3583 bit &= 0x1f;
3584 mc_filter[regidx] |= (1 << bit);
3585 }
3586
3587 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3588 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3589 mc_filter[i]);
3590 }
3591
3592 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3593 }
3594
3595 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3596 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3597 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3598 BNX2_RPM_SORT_USER0_PROM_VLAN;
3599 } else if (!(dev->flags & IFF_PROMISC)) {
3600 /* Add all entries into to the match filter list */
3601 i = 0;
3602 netdev_for_each_uc_addr(ha, dev) {
3603 bnx2_set_mac_addr(bp, ha->addr,
3604 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3605 sort_mode |= (1 <<
3606 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3607 i++;
3608 }
3609
3610 }
3611
3612 if (rx_mode != bp->rx_mode) {
3613 bp->rx_mode = rx_mode;
3614 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3615 }
3616
3617 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3618 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3619 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3620
3621 spin_unlock_bh(&bp->phy_lock);
3622 }
3623
3624 static int __devinit
3625 check_fw_section(const struct firmware *fw,
3626 const struct bnx2_fw_file_section *section,
3627 u32 alignment, bool non_empty)
3628 {
3629 u32 offset = be32_to_cpu(section->offset);
3630 u32 len = be32_to_cpu(section->len);
3631
3632 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3633 return -EINVAL;
3634 if ((non_empty && len == 0) || len > fw->size - offset ||
3635 len & (alignment - 1))
3636 return -EINVAL;
3637 return 0;
3638 }
3639
3640 static int __devinit
3641 check_mips_fw_entry(const struct firmware *fw,
3642 const struct bnx2_mips_fw_file_entry *entry)
3643 {
3644 if (check_fw_section(fw, &entry->text, 4, true) ||
3645 check_fw_section(fw, &entry->data, 4, false) ||
3646 check_fw_section(fw, &entry->rodata, 4, false))
3647 return -EINVAL;
3648 return 0;
3649 }
3650
3651 static int __devinit
3652 bnx2_request_firmware(struct bnx2 *bp)
3653 {
3654 const char *mips_fw_file, *rv2p_fw_file;
3655 const struct bnx2_mips_fw_file *mips_fw;
3656 const struct bnx2_rv2p_fw_file *rv2p_fw;
3657 int rc;
3658
3659 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3660 mips_fw_file = FW_MIPS_FILE_09;
3661 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3662 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3663 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3664 else
3665 rv2p_fw_file = FW_RV2P_FILE_09;
3666 } else {
3667 mips_fw_file = FW_MIPS_FILE_06;
3668 rv2p_fw_file = FW_RV2P_FILE_06;
3669 }
3670
3671 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3672 if (rc) {
3673 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3674 return rc;
3675 }
3676
3677 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3678 if (rc) {
3679 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3680 return rc;
3681 }
3682 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3683 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3684 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3685 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3686 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3687 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3688 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3689 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3690 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3691 return -EINVAL;
3692 }
3693 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3694 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3695 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3696 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3697 return -EINVAL;
3698 }
3699
3700 return 0;
3701 }
3702
3703 static u32
3704 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3705 {
3706 switch (idx) {
3707 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3708 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3709 rv2p_code |= RV2P_BD_PAGE_SIZE;
3710 break;
3711 }
3712 return rv2p_code;
3713 }
3714
3715 static int
3716 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3717 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3718 {
3719 u32 rv2p_code_len, file_offset;
3720 __be32 *rv2p_code;
3721 int i;
3722 u32 val, cmd, addr;
3723
3724 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3725 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3726
3727 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3728
3729 if (rv2p_proc == RV2P_PROC1) {
3730 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3731 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3732 } else {
3733 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3734 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3735 }
3736
3737 for (i = 0; i < rv2p_code_len; i += 8) {
3738 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3739 rv2p_code++;
3740 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3741 rv2p_code++;
3742
3743 val = (i / 8) | cmd;
3744 REG_WR(bp, addr, val);
3745 }
3746
3747 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3748 for (i = 0; i < 8; i++) {
3749 u32 loc, code;
3750
3751 loc = be32_to_cpu(fw_entry->fixup[i]);
3752 if (loc && ((loc * 4) < rv2p_code_len)) {
3753 code = be32_to_cpu(*(rv2p_code + loc - 1));
3754 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3755 code = be32_to_cpu(*(rv2p_code + loc));
3756 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3757 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3758
3759 val = (loc / 2) | cmd;
3760 REG_WR(bp, addr, val);
3761 }
3762 }
3763
3764 /* Reset the processor, un-stall is done later. */
3765 if (rv2p_proc == RV2P_PROC1) {
3766 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3767 }
3768 else {
3769 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3770 }
3771
3772 return 0;
3773 }
3774
3775 static int
3776 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3777 const struct bnx2_mips_fw_file_entry *fw_entry)
3778 {
3779 u32 addr, len, file_offset;
3780 __be32 *data;
3781 u32 offset;
3782 u32 val;
3783
3784 /* Halt the CPU. */
3785 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3786 val |= cpu_reg->mode_value_halt;
3787 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3788 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3789
3790 /* Load the Text area. */
3791 addr = be32_to_cpu(fw_entry->text.addr);
3792 len = be32_to_cpu(fw_entry->text.len);
3793 file_offset = be32_to_cpu(fw_entry->text.offset);
3794 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3795
3796 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3797 if (len) {
3798 int j;
3799
3800 for (j = 0; j < (len / 4); j++, offset += 4)
3801 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3802 }
3803
3804 /* Load the Data area. */
3805 addr = be32_to_cpu(fw_entry->data.addr);
3806 len = be32_to_cpu(fw_entry->data.len);
3807 file_offset = be32_to_cpu(fw_entry->data.offset);
3808 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3809
3810 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3811 if (len) {
3812 int j;
3813
3814 for (j = 0; j < (len / 4); j++, offset += 4)
3815 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3816 }
3817
3818 /* Load the Read-Only area. */
3819 addr = be32_to_cpu(fw_entry->rodata.addr);
3820 len = be32_to_cpu(fw_entry->rodata.len);
3821 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3822 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3823
3824 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3825 if (len) {
3826 int j;
3827
3828 for (j = 0; j < (len / 4); j++, offset += 4)
3829 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3830 }
3831
3832 /* Clear the pre-fetch instruction. */
3833 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3834
3835 val = be32_to_cpu(fw_entry->start_addr);
3836 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3837
3838 /* Start the CPU. */
3839 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3840 val &= ~cpu_reg->mode_value_halt;
3841 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3842 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3843
3844 return 0;
3845 }
3846
3847 static int
3848 bnx2_init_cpus(struct bnx2 *bp)
3849 {
3850 const struct bnx2_mips_fw_file *mips_fw =
3851 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3852 const struct bnx2_rv2p_fw_file *rv2p_fw =
3853 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3854 int rc;
3855
3856 /* Initialize the RV2P processor. */
3857 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3858 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3859
3860 /* Initialize the RX Processor. */
3861 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3862 if (rc)
3863 goto init_cpu_err;
3864
3865 /* Initialize the TX Processor. */
3866 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3867 if (rc)
3868 goto init_cpu_err;
3869
3870 /* Initialize the TX Patch-up Processor. */
3871 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3872 if (rc)
3873 goto init_cpu_err;
3874
3875 /* Initialize the Completion Processor. */
3876 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3877 if (rc)
3878 goto init_cpu_err;
3879
3880 /* Initialize the Command Processor. */
3881 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3882
3883 init_cpu_err:
3884 return rc;
3885 }
3886
3887 static int
3888 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3889 {
3890 u16 pmcsr;
3891
3892 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3893
3894 switch (state) {
3895 case PCI_D0: {
3896 u32 val;
3897
3898 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3899 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3900 PCI_PM_CTRL_PME_STATUS);
3901
3902 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3903 /* delay required during transition out of D3hot */
3904 msleep(20);
3905
3906 val = REG_RD(bp, BNX2_EMAC_MODE);
3907 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3908 val &= ~BNX2_EMAC_MODE_MPKT;
3909 REG_WR(bp, BNX2_EMAC_MODE, val);
3910
3911 val = REG_RD(bp, BNX2_RPM_CONFIG);
3912 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3913 REG_WR(bp, BNX2_RPM_CONFIG, val);
3914 break;
3915 }
3916 case PCI_D3hot: {
3917 int i;
3918 u32 val, wol_msg;
3919
3920 if (bp->wol) {
3921 u32 advertising;
3922 u8 autoneg;
3923
3924 autoneg = bp->autoneg;
3925 advertising = bp->advertising;
3926
3927 if (bp->phy_port == PORT_TP) {
3928 bp->autoneg = AUTONEG_SPEED;
3929 bp->advertising = ADVERTISED_10baseT_Half |
3930 ADVERTISED_10baseT_Full |
3931 ADVERTISED_100baseT_Half |
3932 ADVERTISED_100baseT_Full |
3933 ADVERTISED_Autoneg;
3934 }
3935
3936 spin_lock_bh(&bp->phy_lock);
3937 bnx2_setup_phy(bp, bp->phy_port);
3938 spin_unlock_bh(&bp->phy_lock);
3939
3940 bp->autoneg = autoneg;
3941 bp->advertising = advertising;
3942
3943 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3944
3945 val = REG_RD(bp, BNX2_EMAC_MODE);
3946
3947 /* Enable port mode. */
3948 val &= ~BNX2_EMAC_MODE_PORT;
3949 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3950 BNX2_EMAC_MODE_ACPI_RCVD |
3951 BNX2_EMAC_MODE_MPKT;
3952 if (bp->phy_port == PORT_TP)
3953 val |= BNX2_EMAC_MODE_PORT_MII;
3954 else {
3955 val |= BNX2_EMAC_MODE_PORT_GMII;
3956 if (bp->line_speed == SPEED_2500)
3957 val |= BNX2_EMAC_MODE_25G_MODE;
3958 }
3959
3960 REG_WR(bp, BNX2_EMAC_MODE, val);
3961
3962 /* receive all multicast */
3963 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3964 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3965 0xffffffff);
3966 }
3967 REG_WR(bp, BNX2_EMAC_RX_MODE,
3968 BNX2_EMAC_RX_MODE_SORT_MODE);
3969
3970 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3971 BNX2_RPM_SORT_USER0_MC_EN;
3972 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3973 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3974 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3975 BNX2_RPM_SORT_USER0_ENA);
3976
3977 /* Need to enable EMAC and RPM for WOL. */
3978 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3979 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3980 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3981 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3982
3983 val = REG_RD(bp, BNX2_RPM_CONFIG);
3984 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3985 REG_WR(bp, BNX2_RPM_CONFIG, val);
3986
3987 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3988 }
3989 else {
3990 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3991 }
3992
3993 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3994 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3995 1, 0);
3996
3997 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3998 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3999 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
4000
4001 if (bp->wol)
4002 pmcsr |= 3;
4003 }
4004 else {
4005 pmcsr |= 3;
4006 }
4007 if (bp->wol) {
4008 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
4009 }
4010 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4011 pmcsr);
4012
4013 /* No more memory access after this point until
4014 * device is brought back to D0.
4015 */
4016 udelay(50);
4017 break;
4018 }
4019 default:
4020 return -EINVAL;
4021 }
4022 return 0;
4023 }
4024
4025 static int
4026 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4027 {
4028 u32 val;
4029 int j;
4030
4031 /* Request access to the flash interface. */
4032 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4033 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4034 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4035 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4036 break;
4037
4038 udelay(5);
4039 }
4040
4041 if (j >= NVRAM_TIMEOUT_COUNT)
4042 return -EBUSY;
4043
4044 return 0;
4045 }
4046
4047 static int
4048 bnx2_release_nvram_lock(struct bnx2 *bp)
4049 {
4050 int j;
4051 u32 val;
4052
4053 /* Relinquish nvram interface. */
4054 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4055
4056 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4057 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4058 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4059 break;
4060
4061 udelay(5);
4062 }
4063
4064 if (j >= NVRAM_TIMEOUT_COUNT)
4065 return -EBUSY;
4066
4067 return 0;
4068 }
4069
4070
4071 static int
4072 bnx2_enable_nvram_write(struct bnx2 *bp)
4073 {
4074 u32 val;
4075
4076 val = REG_RD(bp, BNX2_MISC_CFG);
4077 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4078
4079 if (bp->flash_info->flags & BNX2_NV_WREN) {
4080 int j;
4081
4082 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4083 REG_WR(bp, BNX2_NVM_COMMAND,
4084 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4085
4086 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4087 udelay(5);
4088
4089 val = REG_RD(bp, BNX2_NVM_COMMAND);
4090 if (val & BNX2_NVM_COMMAND_DONE)
4091 break;
4092 }
4093
4094 if (j >= NVRAM_TIMEOUT_COUNT)
4095 return -EBUSY;
4096 }
4097 return 0;
4098 }
4099
4100 static void
4101 bnx2_disable_nvram_write(struct bnx2 *bp)
4102 {
4103 u32 val;
4104
4105 val = REG_RD(bp, BNX2_MISC_CFG);
4106 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4107 }
4108
4109
4110 static void
4111 bnx2_enable_nvram_access(struct bnx2 *bp)
4112 {
4113 u32 val;
4114
4115 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4116 /* Enable both bits, even on read. */
4117 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4118 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4119 }
4120
4121 static void
4122 bnx2_disable_nvram_access(struct bnx2 *bp)
4123 {
4124 u32 val;
4125
4126 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4127 /* Disable both bits, even after read. */
4128 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4129 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4130 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4131 }
4132
4133 static int
4134 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4135 {
4136 u32 cmd;
4137 int j;
4138
4139 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4140 /* Buffered flash, no erase needed */
4141 return 0;
4142
4143 /* Build an erase command */
4144 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4145 BNX2_NVM_COMMAND_DOIT;
4146
4147 /* Need to clear DONE bit separately. */
4148 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4149
4150 /* Address of the NVRAM to read from. */
4151 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4152
4153 /* Issue an erase command. */
4154 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4155
4156 /* Wait for completion. */
4157 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4158 u32 val;
4159
4160 udelay(5);
4161
4162 val = REG_RD(bp, BNX2_NVM_COMMAND);
4163 if (val & BNX2_NVM_COMMAND_DONE)
4164 break;
4165 }
4166
4167 if (j >= NVRAM_TIMEOUT_COUNT)
4168 return -EBUSY;
4169
4170 return 0;
4171 }
4172
4173 static int
4174 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4175 {
4176 u32 cmd;
4177 int j;
4178
4179 /* Build the command word. */
4180 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4181
4182 /* Calculate an offset of a buffered flash, not needed for 5709. */
4183 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4184 offset = ((offset / bp->flash_info->page_size) <<
4185 bp->flash_info->page_bits) +
4186 (offset % bp->flash_info->page_size);
4187 }
4188
4189 /* Need to clear DONE bit separately. */
4190 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4191
4192 /* Address of the NVRAM to read from. */
4193 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4194
4195 /* Issue a read command. */
4196 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4197
4198 /* Wait for completion. */
4199 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4200 u32 val;
4201
4202 udelay(5);
4203
4204 val = REG_RD(bp, BNX2_NVM_COMMAND);
4205 if (val & BNX2_NVM_COMMAND_DONE) {
4206 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4207 memcpy(ret_val, &v, 4);
4208 break;
4209 }
4210 }
4211 if (j >= NVRAM_TIMEOUT_COUNT)
4212 return -EBUSY;
4213
4214 return 0;
4215 }
4216
4217
4218 static int
4219 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4220 {
4221 u32 cmd;
4222 __be32 val32;
4223 int j;
4224
4225 /* Build the command word. */
4226 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4227
4228 /* Calculate an offset of a buffered flash, not needed for 5709. */
4229 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4230 offset = ((offset / bp->flash_info->page_size) <<
4231 bp->flash_info->page_bits) +
4232 (offset % bp->flash_info->page_size);
4233 }
4234
4235 /* Need to clear DONE bit separately. */
4236 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4237
4238 memcpy(&val32, val, 4);
4239
4240 /* Write the data. */
4241 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4242
4243 /* Address of the NVRAM to write to. */
4244 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4245
4246 /* Issue the write command. */
4247 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4248
4249 /* Wait for completion. */
4250 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4251 udelay(5);
4252
4253 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4254 break;
4255 }
4256 if (j >= NVRAM_TIMEOUT_COUNT)
4257 return -EBUSY;
4258
4259 return 0;
4260 }
4261
4262 static int
4263 bnx2_init_nvram(struct bnx2 *bp)
4264 {
4265 u32 val;
4266 int j, entry_count, rc = 0;
4267 const struct flash_spec *flash;
4268
4269 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4270 bp->flash_info = &flash_5709;
4271 goto get_flash_size;
4272 }
4273
4274 /* Determine the selected interface. */
4275 val = REG_RD(bp, BNX2_NVM_CFG1);
4276
4277 entry_count = ARRAY_SIZE(flash_table);
4278
4279 if (val & 0x40000000) {
4280
4281 /* Flash interface has been reconfigured */
4282 for (j = 0, flash = &flash_table[0]; j < entry_count;
4283 j++, flash++) {
4284 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4285 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4286 bp->flash_info = flash;
4287 break;
4288 }
4289 }
4290 }
4291 else {
4292 u32 mask;
4293 /* Not yet been reconfigured */
4294
4295 if (val & (1 << 23))
4296 mask = FLASH_BACKUP_STRAP_MASK;
4297 else
4298 mask = FLASH_STRAP_MASK;
4299
4300 for (j = 0, flash = &flash_table[0]; j < entry_count;
4301 j++, flash++) {
4302
4303 if ((val & mask) == (flash->strapping & mask)) {
4304 bp->flash_info = flash;
4305
4306 /* Request access to the flash interface. */
4307 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4308 return rc;
4309
4310 /* Enable access to flash interface */
4311 bnx2_enable_nvram_access(bp);
4312
4313 /* Reconfigure the flash interface */
4314 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4315 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4316 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4317 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4318
4319 /* Disable access to flash interface */
4320 bnx2_disable_nvram_access(bp);
4321 bnx2_release_nvram_lock(bp);
4322
4323 break;
4324 }
4325 }
4326 } /* if (val & 0x40000000) */
4327
4328 if (j == entry_count) {
4329 bp->flash_info = NULL;
4330 pr_alert("Unknown flash/EEPROM type\n");
4331 return -ENODEV;
4332 }
4333
4334 get_flash_size:
4335 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4336 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4337 if (val)
4338 bp->flash_size = val;
4339 else
4340 bp->flash_size = bp->flash_info->total_size;
4341
4342 return rc;
4343 }
4344
4345 static int
4346 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4347 int buf_size)
4348 {
4349 int rc = 0;
4350 u32 cmd_flags, offset32, len32, extra;
4351
4352 if (buf_size == 0)
4353 return 0;
4354
4355 /* Request access to the flash interface. */
4356 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4357 return rc;
4358
4359 /* Enable access to flash interface */
4360 bnx2_enable_nvram_access(bp);
4361
4362 len32 = buf_size;
4363 offset32 = offset;
4364 extra = 0;
4365
4366 cmd_flags = 0;
4367
4368 if (offset32 & 3) {
4369 u8 buf[4];
4370 u32 pre_len;
4371
4372 offset32 &= ~3;
4373 pre_len = 4 - (offset & 3);
4374
4375 if (pre_len >= len32) {
4376 pre_len = len32;
4377 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4378 BNX2_NVM_COMMAND_LAST;
4379 }
4380 else {
4381 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4382 }
4383
4384 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4385
4386 if (rc)
4387 return rc;
4388
4389 memcpy(ret_buf, buf + (offset & 3), pre_len);
4390
4391 offset32 += 4;
4392 ret_buf += pre_len;
4393 len32 -= pre_len;
4394 }
4395 if (len32 & 3) {
4396 extra = 4 - (len32 & 3);
4397 len32 = (len32 + 4) & ~3;
4398 }
4399
4400 if (len32 == 4) {
4401 u8 buf[4];
4402
4403 if (cmd_flags)
4404 cmd_flags = BNX2_NVM_COMMAND_LAST;
4405 else
4406 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4407 BNX2_NVM_COMMAND_LAST;
4408
4409 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4410
4411 memcpy(ret_buf, buf, 4 - extra);
4412 }
4413 else if (len32 > 0) {
4414 u8 buf[4];
4415
4416 /* Read the first word. */
4417 if (cmd_flags)
4418 cmd_flags = 0;
4419 else
4420 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4421
4422 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4423
4424 /* Advance to the next dword. */
4425 offset32 += 4;
4426 ret_buf += 4;
4427 len32 -= 4;
4428
4429 while (len32 > 4 && rc == 0) {
4430 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4431
4432 /* Advance to the next dword. */
4433 offset32 += 4;
4434 ret_buf += 4;
4435 len32 -= 4;
4436 }
4437
4438 if (rc)
4439 return rc;
4440
4441 cmd_flags = BNX2_NVM_COMMAND_LAST;
4442 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4443
4444 memcpy(ret_buf, buf, 4 - extra);
4445 }
4446
4447 /* Disable access to flash interface */
4448 bnx2_disable_nvram_access(bp);
4449
4450 bnx2_release_nvram_lock(bp);
4451
4452 return rc;
4453 }
4454
4455 static int
4456 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4457 int buf_size)
4458 {
4459 u32 written, offset32, len32;
4460 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4461 int rc = 0;
4462 int align_start, align_end;
4463
4464 buf = data_buf;
4465 offset32 = offset;
4466 len32 = buf_size;
4467 align_start = align_end = 0;
4468
4469 if ((align_start = (offset32 & 3))) {
4470 offset32 &= ~3;
4471 len32 += align_start;
4472 if (len32 < 4)
4473 len32 = 4;
4474 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4475 return rc;
4476 }
4477
4478 if (len32 & 3) {
4479 align_end = 4 - (len32 & 3);
4480 len32 += align_end;
4481 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4482 return rc;
4483 }
4484
4485 if (align_start || align_end) {
4486 align_buf = kmalloc(len32, GFP_KERNEL);
4487 if (align_buf == NULL)
4488 return -ENOMEM;
4489 if (align_start) {
4490 memcpy(align_buf, start, 4);
4491 }
4492 if (align_end) {
4493 memcpy(align_buf + len32 - 4, end, 4);
4494 }
4495 memcpy(align_buf + align_start, data_buf, buf_size);
4496 buf = align_buf;
4497 }
4498
4499 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4500 flash_buffer = kmalloc(264, GFP_KERNEL);
4501 if (flash_buffer == NULL) {
4502 rc = -ENOMEM;
4503 goto nvram_write_end;
4504 }
4505 }
4506
4507 written = 0;
4508 while ((written < len32) && (rc == 0)) {
4509 u32 page_start, page_end, data_start, data_end;
4510 u32 addr, cmd_flags;
4511 int i;
4512
4513 /* Find the page_start addr */
4514 page_start = offset32 + written;
4515 page_start -= (page_start % bp->flash_info->page_size);
4516 /* Find the page_end addr */
4517 page_end = page_start + bp->flash_info->page_size;
4518 /* Find the data_start addr */
4519 data_start = (written == 0) ? offset32 : page_start;
4520 /* Find the data_end addr */
4521 data_end = (page_end > offset32 + len32) ?
4522 (offset32 + len32) : page_end;
4523
4524 /* Request access to the flash interface. */
4525 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4526 goto nvram_write_end;
4527
4528 /* Enable access to flash interface */
4529 bnx2_enable_nvram_access(bp);
4530
4531 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4532 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4533 int j;
4534
4535 /* Read the whole page into the buffer
4536 * (non-buffer flash only) */
4537 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4538 if (j == (bp->flash_info->page_size - 4)) {
4539 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4540 }
4541 rc = bnx2_nvram_read_dword(bp,
4542 page_start + j,
4543 &flash_buffer[j],
4544 cmd_flags);
4545
4546 if (rc)
4547 goto nvram_write_end;
4548
4549 cmd_flags = 0;
4550 }
4551 }
4552
4553 /* Enable writes to flash interface (unlock write-protect) */
4554 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4555 goto nvram_write_end;
4556
4557 /* Loop to write back the buffer data from page_start to
4558 * data_start */
4559 i = 0;
4560 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4561 /* Erase the page */
4562 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4563 goto nvram_write_end;
4564
4565 /* Re-enable the write again for the actual write */
4566 bnx2_enable_nvram_write(bp);
4567
4568 for (addr = page_start; addr < data_start;
4569 addr += 4, i += 4) {
4570
4571 rc = bnx2_nvram_write_dword(bp, addr,
4572 &flash_buffer[i], cmd_flags);
4573
4574 if (rc != 0)
4575 goto nvram_write_end;
4576
4577 cmd_flags = 0;
4578 }
4579 }
4580
4581 /* Loop to write the new data from data_start to data_end */
4582 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4583 if ((addr == page_end - 4) ||
4584 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4585 (addr == data_end - 4))) {
4586
4587 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4588 }
4589 rc = bnx2_nvram_write_dword(bp, addr, buf,
4590 cmd_flags);
4591
4592 if (rc != 0)
4593 goto nvram_write_end;
4594
4595 cmd_flags = 0;
4596 buf += 4;
4597 }
4598
4599 /* Loop to write back the buffer data from data_end
4600 * to page_end */
4601 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4602 for (addr = data_end; addr < page_end;
4603 addr += 4, i += 4) {
4604
4605 if (addr == page_end-4) {
4606 cmd_flags = BNX2_NVM_COMMAND_LAST;
4607 }
4608 rc = bnx2_nvram_write_dword(bp, addr,
4609 &flash_buffer[i], cmd_flags);
4610
4611 if (rc != 0)
4612 goto nvram_write_end;
4613
4614 cmd_flags = 0;
4615 }
4616 }
4617
4618 /* Disable writes to flash interface (lock write-protect) */
4619 bnx2_disable_nvram_write(bp);
4620
4621 /* Disable access to flash interface */
4622 bnx2_disable_nvram_access(bp);
4623 bnx2_release_nvram_lock(bp);
4624
4625 /* Increment written */
4626 written += data_end - data_start;
4627 }
4628
4629 nvram_write_end:
4630 kfree(flash_buffer);
4631 kfree(align_buf);
4632 return rc;
4633 }
4634
4635 static void
4636 bnx2_init_fw_cap(struct bnx2 *bp)
4637 {
4638 u32 val, sig = 0;
4639
4640 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4641 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4642
4643 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4644 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4645
4646 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4647 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4648 return;
4649
4650 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4651 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4652 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4653 }
4654
4655 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4656 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4657 u32 link;
4658
4659 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4660
4661 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4662 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4663 bp->phy_port = PORT_FIBRE;
4664 else
4665 bp->phy_port = PORT_TP;
4666
4667 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4668 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4669 }
4670
4671 if (netif_running(bp->dev) && sig)
4672 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4673 }
4674
4675 static void
4676 bnx2_setup_msix_tbl(struct bnx2 *bp)
4677 {
4678 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4679
4680 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4681 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4682 }
4683
4684 static int
4685 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4686 {
4687 u32 val;
4688 int i, rc = 0;
4689 u8 old_port;
4690
4691 /* Wait for the current PCI transaction to complete before
4692 * issuing a reset. */
4693 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4694 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4695 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4696 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4697 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4698 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4699 udelay(5);
4700
4701 /* Wait for the firmware to tell us it is ok to issue a reset. */
4702 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4703
4704 /* Deposit a driver reset signature so the firmware knows that
4705 * this is a soft reset. */
4706 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4707 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4708
4709 /* Do a dummy read to force the chip to complete all current transaction
4710 * before we issue a reset. */
4711 val = REG_RD(bp, BNX2_MISC_ID);
4712
4713 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4714 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4715 REG_RD(bp, BNX2_MISC_COMMAND);
4716 udelay(5);
4717
4718 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4719 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4720
4721 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4722
4723 } else {
4724 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4725 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4726 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4727
4728 /* Chip reset. */
4729 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4730
4731 /* Reading back any register after chip reset will hang the
4732 * bus on 5706 A0 and A1. The msleep below provides plenty
4733 * of margin for write posting.
4734 */
4735 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4736 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4737 msleep(20);
4738
4739 /* Reset takes approximate 30 usec */
4740 for (i = 0; i < 10; i++) {
4741 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4742 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4743 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4744 break;
4745 udelay(10);
4746 }
4747
4748 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4749 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4750 pr_err("Chip reset did not complete\n");
4751 return -EBUSY;
4752 }
4753 }
4754
4755 /* Make sure byte swapping is properly configured. */
4756 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4757 if (val != 0x01020304) {
4758 pr_err("Chip not in correct endian mode\n");
4759 return -ENODEV;
4760 }
4761
4762 /* Wait for the firmware to finish its initialization. */
4763 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4764 if (rc)
4765 return rc;
4766
4767 spin_lock_bh(&bp->phy_lock);
4768 old_port = bp->phy_port;
4769 bnx2_init_fw_cap(bp);
4770 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4771 old_port != bp->phy_port)
4772 bnx2_set_default_remote_link(bp);
4773 spin_unlock_bh(&bp->phy_lock);
4774
4775 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4776 /* Adjust the voltage regular to two steps lower. The default
4777 * of this register is 0x0000000e. */
4778 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4779
4780 /* Remove bad rbuf memory from the free pool. */
4781 rc = bnx2_alloc_bad_rbuf(bp);
4782 }
4783
4784 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4785 bnx2_setup_msix_tbl(bp);
4786 /* Prevent MSIX table reads and write from timing out */
4787 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4788 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4789 }
4790
4791 return rc;
4792 }
4793
4794 static int
4795 bnx2_init_chip(struct bnx2 *bp)
4796 {
4797 u32 val, mtu;
4798 int rc, i;
4799
4800 /* Make sure the interrupt is not active. */
4801 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4802
4803 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4804 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4805 #ifdef __BIG_ENDIAN
4806 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4807 #endif
4808 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4809 DMA_READ_CHANS << 12 |
4810 DMA_WRITE_CHANS << 16;
4811
4812 val |= (0x2 << 20) | (1 << 11);
4813
4814 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4815 val |= (1 << 23);
4816
4817 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4818 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4819 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4820
4821 REG_WR(bp, BNX2_DMA_CONFIG, val);
4822
4823 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4824 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4825 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4826 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4827 }
4828
4829 if (bp->flags & BNX2_FLAG_PCIX) {
4830 u16 val16;
4831
4832 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4833 &val16);
4834 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4835 val16 & ~PCI_X_CMD_ERO);
4836 }
4837
4838 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4839 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4840 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4841 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4842
4843 /* Initialize context mapping and zero out the quick contexts. The
4844 * context block must have already been enabled. */
4845 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4846 rc = bnx2_init_5709_context(bp);
4847 if (rc)
4848 return rc;
4849 } else
4850 bnx2_init_context(bp);
4851
4852 if ((rc = bnx2_init_cpus(bp)) != 0)
4853 return rc;
4854
4855 bnx2_init_nvram(bp);
4856
4857 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4858
4859 val = REG_RD(bp, BNX2_MQ_CONFIG);
4860 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4861 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4862 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4863 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4864 if (CHIP_REV(bp) == CHIP_REV_Ax)
4865 val |= BNX2_MQ_CONFIG_HALT_DIS;
4866 }
4867
4868 REG_WR(bp, BNX2_MQ_CONFIG, val);
4869
4870 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4871 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4872 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4873
4874 val = (BCM_PAGE_BITS - 8) << 24;
4875 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4876
4877 /* Configure page size. */
4878 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4879 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4880 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4881 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4882
4883 val = bp->mac_addr[0] +
4884 (bp->mac_addr[1] << 8) +
4885 (bp->mac_addr[2] << 16) +
4886 bp->mac_addr[3] +
4887 (bp->mac_addr[4] << 8) +
4888 (bp->mac_addr[5] << 16);
4889 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4890
4891 /* Program the MTU. Also include 4 bytes for CRC32. */
4892 mtu = bp->dev->mtu;
4893 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4894 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4895 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4896 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4897
4898 if (mtu < 1500)
4899 mtu = 1500;
4900
4901 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4902 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4903 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4904
4905 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4906 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4907 bp->bnx2_napi[i].last_status_idx = 0;
4908
4909 bp->idle_chk_status_idx = 0xffff;
4910
4911 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4912
4913 /* Set up how to generate a link change interrupt. */
4914 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4915
4916 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4917 (u64) bp->status_blk_mapping & 0xffffffff);
4918 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4919
4920 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4921 (u64) bp->stats_blk_mapping & 0xffffffff);
4922 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4923 (u64) bp->stats_blk_mapping >> 32);
4924
4925 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4926 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4927
4928 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4929 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4930
4931 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4932 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4933
4934 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4935
4936 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4937
4938 REG_WR(bp, BNX2_HC_COM_TICKS,
4939 (bp->com_ticks_int << 16) | bp->com_ticks);
4940
4941 REG_WR(bp, BNX2_HC_CMD_TICKS,
4942 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4943
4944 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4945 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4946 else
4947 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4948 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4949
4950 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4951 val = BNX2_HC_CONFIG_COLLECT_STATS;
4952 else {
4953 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4954 BNX2_HC_CONFIG_COLLECT_STATS;
4955 }
4956
4957 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4958 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4959 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4960
4961 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4962 }
4963
4964 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4965 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4966
4967 REG_WR(bp, BNX2_HC_CONFIG, val);
4968
4969 for (i = 1; i < bp->irq_nvecs; i++) {
4970 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4971 BNX2_HC_SB_CONFIG_1;
4972
4973 REG_WR(bp, base,
4974 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4975 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4976 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4977
4978 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4979 (bp->tx_quick_cons_trip_int << 16) |
4980 bp->tx_quick_cons_trip);
4981
4982 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4983 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4984
4985 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4986 (bp->rx_quick_cons_trip_int << 16) |
4987 bp->rx_quick_cons_trip);
4988
4989 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4990 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4991 }
4992
4993 /* Clear internal stats counters. */
4994 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4995
4996 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4997
4998 /* Initialize the receive filter. */
4999 bnx2_set_rx_mode(bp->dev);
5000
5001 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5002 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
5003 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
5004 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
5005 }
5006 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
5007 1, 0);
5008
5009 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
5010 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
5011
5012 udelay(20);
5013
5014 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5015
5016 return rc;
5017 }
5018
5019 static void
5020 bnx2_clear_ring_states(struct bnx2 *bp)
5021 {
5022 struct bnx2_napi *bnapi;
5023 struct bnx2_tx_ring_info *txr;
5024 struct bnx2_rx_ring_info *rxr;
5025 int i;
5026
5027 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5028 bnapi = &bp->bnx2_napi[i];
5029 txr = &bnapi->tx_ring;
5030 rxr = &bnapi->rx_ring;
5031
5032 txr->tx_cons = 0;
5033 txr->hw_tx_cons = 0;
5034 rxr->rx_prod_bseq = 0;
5035 rxr->rx_prod = 0;
5036 rxr->rx_cons = 0;
5037 rxr->rx_pg_prod = 0;
5038 rxr->rx_pg_cons = 0;
5039 }
5040 }
5041
5042 static void
5043 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5044 {
5045 u32 val, offset0, offset1, offset2, offset3;
5046 u32 cid_addr = GET_CID_ADDR(cid);
5047
5048 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5049 offset0 = BNX2_L2CTX_TYPE_XI;
5050 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5051 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5052 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5053 } else {
5054 offset0 = BNX2_L2CTX_TYPE;
5055 offset1 = BNX2_L2CTX_CMD_TYPE;
5056 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5057 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5058 }
5059 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5060 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5061
5062 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5063 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5064
5065 val = (u64) txr->tx_desc_mapping >> 32;
5066 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5067
5068 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5069 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5070 }
5071
5072 static void
5073 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5074 {
5075 struct tx_bd *txbd;
5076 u32 cid = TX_CID;
5077 struct bnx2_napi *bnapi;
5078 struct bnx2_tx_ring_info *txr;
5079
5080 bnapi = &bp->bnx2_napi[ring_num];
5081 txr = &bnapi->tx_ring;
5082
5083 if (ring_num == 0)
5084 cid = TX_CID;
5085 else
5086 cid = TX_TSS_CID + ring_num - 1;
5087
5088 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5089
5090 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5091
5092 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5093 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5094
5095 txr->tx_prod = 0;
5096 txr->tx_prod_bseq = 0;
5097
5098 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5099 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5100
5101 bnx2_init_tx_context(bp, cid, txr);
5102 }
5103
5104 static void
5105 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5106 int num_rings)
5107 {
5108 int i;
5109 struct rx_bd *rxbd;
5110
5111 for (i = 0; i < num_rings; i++) {
5112 int j;
5113
5114 rxbd = &rx_ring[i][0];
5115 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5116 rxbd->rx_bd_len = buf_size;
5117 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5118 }
5119 if (i == (num_rings - 1))
5120 j = 0;
5121 else
5122 j = i + 1;
5123 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5124 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5125 }
5126 }
5127
5128 static void
5129 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5130 {
5131 int i;
5132 u16 prod, ring_prod;
5133 u32 cid, rx_cid_addr, val;
5134 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5135 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5136
5137 if (ring_num == 0)
5138 cid = RX_CID;
5139 else
5140 cid = RX_RSS_CID + ring_num - 1;
5141
5142 rx_cid_addr = GET_CID_ADDR(cid);
5143
5144 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5145 bp->rx_buf_use_size, bp->rx_max_ring);
5146
5147 bnx2_init_rx_context(bp, cid);
5148
5149 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5150 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5151 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5152 }
5153
5154 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5155 if (bp->rx_pg_ring_size) {
5156 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5157 rxr->rx_pg_desc_mapping,
5158 PAGE_SIZE, bp->rx_max_pg_ring);
5159 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5160 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5161 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5162 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5163
5164 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5165 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5166
5167 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5168 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5169
5170 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5171 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5172 }
5173
5174 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5175 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5176
5177 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5178 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5179
5180 ring_prod = prod = rxr->rx_pg_prod;
5181 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5182 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
5183 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5184 ring_num, i, bp->rx_pg_ring_size);
5185 break;
5186 }
5187 prod = NEXT_RX_BD(prod);
5188 ring_prod = RX_PG_RING_IDX(prod);
5189 }
5190 rxr->rx_pg_prod = prod;
5191
5192 ring_prod = prod = rxr->rx_prod;
5193 for (i = 0; i < bp->rx_ring_size; i++) {
5194 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
5195 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5196 ring_num, i, bp->rx_ring_size);
5197 break;
5198 }
5199 prod = NEXT_RX_BD(prod);
5200 ring_prod = RX_RING_IDX(prod);
5201 }
5202 rxr->rx_prod = prod;
5203
5204 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5205 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5206 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5207
5208 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5209 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5210
5211 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5212 }
5213
5214 static void
5215 bnx2_init_all_rings(struct bnx2 *bp)
5216 {
5217 int i;
5218 u32 val;
5219
5220 bnx2_clear_ring_states(bp);
5221
5222 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5223 for (i = 0; i < bp->num_tx_rings; i++)
5224 bnx2_init_tx_ring(bp, i);
5225
5226 if (bp->num_tx_rings > 1)
5227 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5228 (TX_TSS_CID << 7));
5229
5230 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5231 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5232
5233 for (i = 0; i < bp->num_rx_rings; i++)
5234 bnx2_init_rx_ring(bp, i);
5235
5236 if (bp->num_rx_rings > 1) {
5237 u32 tbl_32;
5238 u8 *tbl = (u8 *) &tbl_32;
5239
5240 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5241 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5242
5243 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5244 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5245 if ((i % 4) == 3)
5246 bnx2_reg_wr_ind(bp,
5247 BNX2_RXP_SCRATCH_RSS_TBL + i,
5248 cpu_to_be32(tbl_32));
5249 }
5250
5251 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5252 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5253
5254 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5255
5256 }
5257 }
5258
5259 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5260 {
5261 u32 max, num_rings = 1;
5262
5263 while (ring_size > MAX_RX_DESC_CNT) {
5264 ring_size -= MAX_RX_DESC_CNT;
5265 num_rings++;
5266 }
5267 /* round to next power of 2 */
5268 max = max_size;
5269 while ((max & num_rings) == 0)
5270 max >>= 1;
5271
5272 if (num_rings != max)
5273 max <<= 1;
5274
5275 return max;
5276 }
5277
5278 static void
5279 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5280 {
5281 u32 rx_size, rx_space, jumbo_size;
5282
5283 /* 8 for CRC and VLAN */
5284 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5285
5286 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5287 sizeof(struct skb_shared_info);
5288
5289 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5290 bp->rx_pg_ring_size = 0;
5291 bp->rx_max_pg_ring = 0;
5292 bp->rx_max_pg_ring_idx = 0;
5293 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5294 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5295
5296 jumbo_size = size * pages;
5297 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5298 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5299
5300 bp->rx_pg_ring_size = jumbo_size;
5301 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5302 MAX_RX_PG_RINGS);
5303 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5304 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5305 bp->rx_copy_thresh = 0;
5306 }
5307
5308 bp->rx_buf_use_size = rx_size;
5309 /* hw alignment */
5310 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5311 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5312 bp->rx_ring_size = size;
5313 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5314 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5315 }
5316
5317 static void
5318 bnx2_free_tx_skbs(struct bnx2 *bp)
5319 {
5320 int i;
5321
5322 for (i = 0; i < bp->num_tx_rings; i++) {
5323 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5324 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5325 int j;
5326
5327 if (txr->tx_buf_ring == NULL)
5328 continue;
5329
5330 for (j = 0; j < TX_DESC_CNT; ) {
5331 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5332 struct sk_buff *skb = tx_buf->skb;
5333 int k, last;
5334
5335 if (skb == NULL) {
5336 j++;
5337 continue;
5338 }
5339
5340 pci_unmap_single(bp->pdev,
5341 dma_unmap_addr(tx_buf, mapping),
5342 skb_headlen(skb),
5343 PCI_DMA_TODEVICE);
5344
5345 tx_buf->skb = NULL;
5346
5347 last = tx_buf->nr_frags;
5348 j++;
5349 for (k = 0; k < last; k++, j++) {
5350 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5351 pci_unmap_page(bp->pdev,
5352 dma_unmap_addr(tx_buf, mapping),
5353 skb_shinfo(skb)->frags[k].size,
5354 PCI_DMA_TODEVICE);
5355 }
5356 dev_kfree_skb(skb);
5357 }
5358 }
5359 }
5360
5361 static void
5362 bnx2_free_rx_skbs(struct bnx2 *bp)
5363 {
5364 int i;
5365
5366 for (i = 0; i < bp->num_rx_rings; i++) {
5367 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5368 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5369 int j;
5370
5371 if (rxr->rx_buf_ring == NULL)
5372 return;
5373
5374 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5375 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5376 struct sk_buff *skb = rx_buf->skb;
5377
5378 if (skb == NULL)
5379 continue;
5380
5381 pci_unmap_single(bp->pdev,
5382 dma_unmap_addr(rx_buf, mapping),
5383 bp->rx_buf_use_size,
5384 PCI_DMA_FROMDEVICE);
5385
5386 rx_buf->skb = NULL;
5387
5388 dev_kfree_skb(skb);
5389 }
5390 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5391 bnx2_free_rx_page(bp, rxr, j);
5392 }
5393 }
5394
5395 static void
5396 bnx2_free_skbs(struct bnx2 *bp)
5397 {
5398 bnx2_free_tx_skbs(bp);
5399 bnx2_free_rx_skbs(bp);
5400 }
5401
5402 static int
5403 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5404 {
5405 int rc;
5406
5407 rc = bnx2_reset_chip(bp, reset_code);
5408 bnx2_free_skbs(bp);
5409 if (rc)
5410 return rc;
5411
5412 if ((rc = bnx2_init_chip(bp)) != 0)
5413 return rc;
5414
5415 bnx2_init_all_rings(bp);
5416 return 0;
5417 }
5418
5419 static int
5420 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5421 {
5422 int rc;
5423
5424 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5425 return rc;
5426
5427 spin_lock_bh(&bp->phy_lock);
5428 bnx2_init_phy(bp, reset_phy);
5429 bnx2_set_link(bp);
5430 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5431 bnx2_remote_phy_event(bp);
5432 spin_unlock_bh(&bp->phy_lock);
5433 return 0;
5434 }
5435
5436 static int
5437 bnx2_shutdown_chip(struct bnx2 *bp)
5438 {
5439 u32 reset_code;
5440
5441 if (bp->flags & BNX2_FLAG_NO_WOL)
5442 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5443 else if (bp->wol)
5444 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5445 else
5446 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5447
5448 return bnx2_reset_chip(bp, reset_code);
5449 }
5450
5451 static int
5452 bnx2_test_registers(struct bnx2 *bp)
5453 {
5454 int ret;
5455 int i, is_5709;
5456 static const struct {
5457 u16 offset;
5458 u16 flags;
5459 #define BNX2_FL_NOT_5709 1
5460 u32 rw_mask;
5461 u32 ro_mask;
5462 } reg_tbl[] = {
5463 { 0x006c, 0, 0x00000000, 0x0000003f },
5464 { 0x0090, 0, 0xffffffff, 0x00000000 },
5465 { 0x0094, 0, 0x00000000, 0x00000000 },
5466
5467 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5468 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5469 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5470 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5471 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5472 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5473 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5474 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5475 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5476
5477 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5478 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5479 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5480 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5481 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5482 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5483
5484 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5485 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5486 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5487
5488 { 0x1000, 0, 0x00000000, 0x00000001 },
5489 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5490
5491 { 0x1408, 0, 0x01c00800, 0x00000000 },
5492 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5493 { 0x14a8, 0, 0x00000000, 0x000001ff },
5494 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5495 { 0x14b0, 0, 0x00000002, 0x00000001 },
5496 { 0x14b8, 0, 0x00000000, 0x00000000 },
5497 { 0x14c0, 0, 0x00000000, 0x00000009 },
5498 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5499 { 0x14cc, 0, 0x00000000, 0x00000001 },
5500 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5501
5502 { 0x1800, 0, 0x00000000, 0x00000001 },
5503 { 0x1804, 0, 0x00000000, 0x00000003 },
5504
5505 { 0x2800, 0, 0x00000000, 0x00000001 },
5506 { 0x2804, 0, 0x00000000, 0x00003f01 },
5507 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5508 { 0x2810, 0, 0xffff0000, 0x00000000 },
5509 { 0x2814, 0, 0xffff0000, 0x00000000 },
5510 { 0x2818, 0, 0xffff0000, 0x00000000 },
5511 { 0x281c, 0, 0xffff0000, 0x00000000 },
5512 { 0x2834, 0, 0xffffffff, 0x00000000 },
5513 { 0x2840, 0, 0x00000000, 0xffffffff },
5514 { 0x2844, 0, 0x00000000, 0xffffffff },
5515 { 0x2848, 0, 0xffffffff, 0x00000000 },
5516 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5517
5518 { 0x2c00, 0, 0x00000000, 0x00000011 },
5519 { 0x2c04, 0, 0x00000000, 0x00030007 },
5520
5521 { 0x3c00, 0, 0x00000000, 0x00000001 },
5522 { 0x3c04, 0, 0x00000000, 0x00070000 },
5523 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5524 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5525 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5526 { 0x3c14, 0, 0x00000000, 0xffffffff },
5527 { 0x3c18, 0, 0x00000000, 0xffffffff },
5528 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5529 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5530
5531 { 0x5004, 0, 0x00000000, 0x0000007f },
5532 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5533
5534 { 0x5c00, 0, 0x00000000, 0x00000001 },
5535 { 0x5c04, 0, 0x00000000, 0x0003000f },
5536 { 0x5c08, 0, 0x00000003, 0x00000000 },
5537 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5538 { 0x5c10, 0, 0x00000000, 0xffffffff },
5539 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5540 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5541 { 0x5c88, 0, 0x00000000, 0x00077373 },
5542 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5543
5544 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5545 { 0x680c, 0, 0xffffffff, 0x00000000 },
5546 { 0x6810, 0, 0xffffffff, 0x00000000 },
5547 { 0x6814, 0, 0xffffffff, 0x00000000 },
5548 { 0x6818, 0, 0xffffffff, 0x00000000 },
5549 { 0x681c, 0, 0xffffffff, 0x00000000 },
5550 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5551 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5552 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5553 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5554 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5555 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5556 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5557 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5558 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5559 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5560 { 0x684c, 0, 0xffffffff, 0x00000000 },
5561 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5562 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5563 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5564 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5565 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5566 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5567
5568 { 0xffff, 0, 0x00000000, 0x00000000 },
5569 };
5570
5571 ret = 0;
5572 is_5709 = 0;
5573 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5574 is_5709 = 1;
5575
5576 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5577 u32 offset, rw_mask, ro_mask, save_val, val;
5578 u16 flags = reg_tbl[i].flags;
5579
5580 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5581 continue;
5582
5583 offset = (u32) reg_tbl[i].offset;
5584 rw_mask = reg_tbl[i].rw_mask;
5585 ro_mask = reg_tbl[i].ro_mask;
5586
5587 save_val = readl(bp->regview + offset);
5588
5589 writel(0, bp->regview + offset);
5590
5591 val = readl(bp->regview + offset);
5592 if ((val & rw_mask) != 0) {
5593 goto reg_test_err;
5594 }
5595
5596 if ((val & ro_mask) != (save_val & ro_mask)) {
5597 goto reg_test_err;
5598 }
5599
5600 writel(0xffffffff, bp->regview + offset);
5601
5602 val = readl(bp->regview + offset);
5603 if ((val & rw_mask) != rw_mask) {
5604 goto reg_test_err;
5605 }
5606
5607 if ((val & ro_mask) != (save_val & ro_mask)) {
5608 goto reg_test_err;
5609 }
5610
5611 writel(save_val, bp->regview + offset);
5612 continue;
5613
5614 reg_test_err:
5615 writel(save_val, bp->regview + offset);
5616 ret = -ENODEV;
5617 break;
5618 }
5619 return ret;
5620 }
5621
5622 static int
5623 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5624 {
5625 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5626 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5627 int i;
5628
5629 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5630 u32 offset;
5631
5632 for (offset = 0; offset < size; offset += 4) {
5633
5634 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5635
5636 if (bnx2_reg_rd_ind(bp, start + offset) !=
5637 test_pattern[i]) {
5638 return -ENODEV;
5639 }
5640 }
5641 }
5642 return 0;
5643 }
5644
5645 static int
5646 bnx2_test_memory(struct bnx2 *bp)
5647 {
5648 int ret = 0;
5649 int i;
5650 static struct mem_entry {
5651 u32 offset;
5652 u32 len;
5653 } mem_tbl_5706[] = {
5654 { 0x60000, 0x4000 },
5655 { 0xa0000, 0x3000 },
5656 { 0xe0000, 0x4000 },
5657 { 0x120000, 0x4000 },
5658 { 0x1a0000, 0x4000 },
5659 { 0x160000, 0x4000 },
5660 { 0xffffffff, 0 },
5661 },
5662 mem_tbl_5709[] = {
5663 { 0x60000, 0x4000 },
5664 { 0xa0000, 0x3000 },
5665 { 0xe0000, 0x4000 },
5666 { 0x120000, 0x4000 },
5667 { 0x1a0000, 0x4000 },
5668 { 0xffffffff, 0 },
5669 };
5670 struct mem_entry *mem_tbl;
5671
5672 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5673 mem_tbl = mem_tbl_5709;
5674 else
5675 mem_tbl = mem_tbl_5706;
5676
5677 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5678 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5679 mem_tbl[i].len)) != 0) {
5680 return ret;
5681 }
5682 }
5683
5684 return ret;
5685 }
5686
5687 #define BNX2_MAC_LOOPBACK 0
5688 #define BNX2_PHY_LOOPBACK 1
5689
5690 static int
5691 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5692 {
5693 unsigned int pkt_size, num_pkts, i;
5694 struct sk_buff *skb, *rx_skb;
5695 unsigned char *packet;
5696 u16 rx_start_idx, rx_idx;
5697 dma_addr_t map;
5698 struct tx_bd *txbd;
5699 struct sw_bd *rx_buf;
5700 struct l2_fhdr *rx_hdr;
5701 int ret = -ENODEV;
5702 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5703 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5705
5706 tx_napi = bnapi;
5707
5708 txr = &tx_napi->tx_ring;
5709 rxr = &bnapi->rx_ring;
5710 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5711 bp->loopback = MAC_LOOPBACK;
5712 bnx2_set_mac_loopback(bp);
5713 }
5714 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5715 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5716 return 0;
5717
5718 bp->loopback = PHY_LOOPBACK;
5719 bnx2_set_phy_loopback(bp);
5720 }
5721 else
5722 return -EINVAL;
5723
5724 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5725 skb = netdev_alloc_skb(bp->dev, pkt_size);
5726 if (!skb)
5727 return -ENOMEM;
5728 packet = skb_put(skb, pkt_size);
5729 memcpy(packet, bp->dev->dev_addr, 6);
5730 memset(packet + 6, 0x0, 8);
5731 for (i = 14; i < pkt_size; i++)
5732 packet[i] = (unsigned char) (i & 0xff);
5733
5734 map = pci_map_single(bp->pdev, skb->data, pkt_size,
5735 PCI_DMA_TODEVICE);
5736 if (pci_dma_mapping_error(bp->pdev, map)) {
5737 dev_kfree_skb(skb);
5738 return -EIO;
5739 }
5740
5741 REG_WR(bp, BNX2_HC_COMMAND,
5742 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5743
5744 REG_RD(bp, BNX2_HC_COMMAND);
5745
5746 udelay(5);
5747 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5748
5749 num_pkts = 0;
5750
5751 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5752
5753 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5754 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5755 txbd->tx_bd_mss_nbytes = pkt_size;
5756 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5757
5758 num_pkts++;
5759 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5760 txr->tx_prod_bseq += pkt_size;
5761
5762 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5763 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5764
5765 udelay(100);
5766
5767 REG_WR(bp, BNX2_HC_COMMAND,
5768 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5769
5770 REG_RD(bp, BNX2_HC_COMMAND);
5771
5772 udelay(5);
5773
5774 pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
5775 dev_kfree_skb(skb);
5776
5777 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5778 goto loopback_test_done;
5779
5780 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5781 if (rx_idx != rx_start_idx + num_pkts) {
5782 goto loopback_test_done;
5783 }
5784
5785 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5786 rx_skb = rx_buf->skb;
5787
5788 rx_hdr = rx_buf->desc;
5789 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5790
5791 pci_dma_sync_single_for_cpu(bp->pdev,
5792 dma_unmap_addr(rx_buf, mapping),
5793 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5794
5795 if (rx_hdr->l2_fhdr_status &
5796 (L2_FHDR_ERRORS_BAD_CRC |
5797 L2_FHDR_ERRORS_PHY_DECODE |
5798 L2_FHDR_ERRORS_ALIGNMENT |
5799 L2_FHDR_ERRORS_TOO_SHORT |
5800 L2_FHDR_ERRORS_GIANT_FRAME)) {
5801
5802 goto loopback_test_done;
5803 }
5804
5805 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5806 goto loopback_test_done;
5807 }
5808
5809 for (i = 14; i < pkt_size; i++) {
5810 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5811 goto loopback_test_done;
5812 }
5813 }
5814
5815 ret = 0;
5816
5817 loopback_test_done:
5818 bp->loopback = 0;
5819 return ret;
5820 }
5821
5822 #define BNX2_MAC_LOOPBACK_FAILED 1
5823 #define BNX2_PHY_LOOPBACK_FAILED 2
5824 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5825 BNX2_PHY_LOOPBACK_FAILED)
5826
5827 static int
5828 bnx2_test_loopback(struct bnx2 *bp)
5829 {
5830 int rc = 0;
5831
5832 if (!netif_running(bp->dev))
5833 return BNX2_LOOPBACK_FAILED;
5834
5835 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5836 spin_lock_bh(&bp->phy_lock);
5837 bnx2_init_phy(bp, 1);
5838 spin_unlock_bh(&bp->phy_lock);
5839 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5840 rc |= BNX2_MAC_LOOPBACK_FAILED;
5841 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5842 rc |= BNX2_PHY_LOOPBACK_FAILED;
5843 return rc;
5844 }
5845
5846 #define NVRAM_SIZE 0x200
5847 #define CRC32_RESIDUAL 0xdebb20e3
5848
5849 static int
5850 bnx2_test_nvram(struct bnx2 *bp)
5851 {
5852 __be32 buf[NVRAM_SIZE / 4];
5853 u8 *data = (u8 *) buf;
5854 int rc = 0;
5855 u32 magic, csum;
5856
5857 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5858 goto test_nvram_done;
5859
5860 magic = be32_to_cpu(buf[0]);
5861 if (magic != 0x669955aa) {
5862 rc = -ENODEV;
5863 goto test_nvram_done;
5864 }
5865
5866 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5867 goto test_nvram_done;
5868
5869 csum = ether_crc_le(0x100, data);
5870 if (csum != CRC32_RESIDUAL) {
5871 rc = -ENODEV;
5872 goto test_nvram_done;
5873 }
5874
5875 csum = ether_crc_le(0x100, data + 0x100);
5876 if (csum != CRC32_RESIDUAL) {
5877 rc = -ENODEV;
5878 }
5879
5880 test_nvram_done:
5881 return rc;
5882 }
5883
5884 static int
5885 bnx2_test_link(struct bnx2 *bp)
5886 {
5887 u32 bmsr;
5888
5889 if (!netif_running(bp->dev))
5890 return -ENODEV;
5891
5892 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5893 if (bp->link_up)
5894 return 0;
5895 return -ENODEV;
5896 }
5897 spin_lock_bh(&bp->phy_lock);
5898 bnx2_enable_bmsr1(bp);
5899 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5900 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5901 bnx2_disable_bmsr1(bp);
5902 spin_unlock_bh(&bp->phy_lock);
5903
5904 if (bmsr & BMSR_LSTATUS) {
5905 return 0;
5906 }
5907 return -ENODEV;
5908 }
5909
5910 static int
5911 bnx2_test_intr(struct bnx2 *bp)
5912 {
5913 int i;
5914 u16 status_idx;
5915
5916 if (!netif_running(bp->dev))
5917 return -ENODEV;
5918
5919 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5920
5921 /* This register is not touched during run-time. */
5922 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5923 REG_RD(bp, BNX2_HC_COMMAND);
5924
5925 for (i = 0; i < 10; i++) {
5926 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5927 status_idx) {
5928
5929 break;
5930 }
5931
5932 msleep_interruptible(10);
5933 }
5934 if (i < 10)
5935 return 0;
5936
5937 return -ENODEV;
5938 }
5939
5940 /* Determining link for parallel detection. */
5941 static int
5942 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5943 {
5944 u32 mode_ctl, an_dbg, exp;
5945
5946 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5947 return 0;
5948
5949 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5950 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5951
5952 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5953 return 0;
5954
5955 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5956 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5957 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5958
5959 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5960 return 0;
5961
5962 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5963 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5964 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5965
5966 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5967 return 0;
5968
5969 return 1;
5970 }
5971
5972 static void
5973 bnx2_5706_serdes_timer(struct bnx2 *bp)
5974 {
5975 int check_link = 1;
5976
5977 spin_lock(&bp->phy_lock);
5978 if (bp->serdes_an_pending) {
5979 bp->serdes_an_pending--;
5980 check_link = 0;
5981 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5982 u32 bmcr;
5983
5984 bp->current_interval = BNX2_TIMER_INTERVAL;
5985
5986 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5987
5988 if (bmcr & BMCR_ANENABLE) {
5989 if (bnx2_5706_serdes_has_link(bp)) {
5990 bmcr &= ~BMCR_ANENABLE;
5991 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5992 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5993 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5994 }
5995 }
5996 }
5997 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5998 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5999 u32 phy2;
6000
6001 bnx2_write_phy(bp, 0x17, 0x0f01);
6002 bnx2_read_phy(bp, 0x15, &phy2);
6003 if (phy2 & 0x20) {
6004 u32 bmcr;
6005
6006 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6007 bmcr |= BMCR_ANENABLE;
6008 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6009
6010 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
6011 }
6012 } else
6013 bp->current_interval = BNX2_TIMER_INTERVAL;
6014
6015 if (check_link) {
6016 u32 val;
6017
6018 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6019 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6020 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6021
6022 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6023 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6024 bnx2_5706s_force_link_dn(bp, 1);
6025 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6026 } else
6027 bnx2_set_link(bp);
6028 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6029 bnx2_set_link(bp);
6030 }
6031 spin_unlock(&bp->phy_lock);
6032 }
6033
6034 static void
6035 bnx2_5708_serdes_timer(struct bnx2 *bp)
6036 {
6037 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6038 return;
6039
6040 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6041 bp->serdes_an_pending = 0;
6042 return;
6043 }
6044
6045 spin_lock(&bp->phy_lock);
6046 if (bp->serdes_an_pending)
6047 bp->serdes_an_pending--;
6048 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6049 u32 bmcr;
6050
6051 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6052 if (bmcr & BMCR_ANENABLE) {
6053 bnx2_enable_forced_2g5(bp);
6054 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6055 } else {
6056 bnx2_disable_forced_2g5(bp);
6057 bp->serdes_an_pending = 2;
6058 bp->current_interval = BNX2_TIMER_INTERVAL;
6059 }
6060
6061 } else
6062 bp->current_interval = BNX2_TIMER_INTERVAL;
6063
6064 spin_unlock(&bp->phy_lock);
6065 }
6066
6067 static void
6068 bnx2_timer(unsigned long data)
6069 {
6070 struct bnx2 *bp = (struct bnx2 *) data;
6071
6072 if (!netif_running(bp->dev))
6073 return;
6074
6075 if (atomic_read(&bp->intr_sem) != 0)
6076 goto bnx2_restart_timer;
6077
6078 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6079 BNX2_FLAG_USING_MSI)
6080 bnx2_chk_missed_msi(bp);
6081
6082 bnx2_send_heart_beat(bp);
6083
6084 bp->stats_blk->stat_FwRxDrop =
6085 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6086
6087 /* workaround occasional corrupted counters */
6088 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6089 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6090 BNX2_HC_COMMAND_STATS_NOW);
6091
6092 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6093 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6094 bnx2_5706_serdes_timer(bp);
6095 else
6096 bnx2_5708_serdes_timer(bp);
6097 }
6098
6099 bnx2_restart_timer:
6100 mod_timer(&bp->timer, jiffies + bp->current_interval);
6101 }
6102
6103 static int
6104 bnx2_request_irq(struct bnx2 *bp)
6105 {
6106 unsigned long flags;
6107 struct bnx2_irq *irq;
6108 int rc = 0, i;
6109
6110 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6111 flags = 0;
6112 else
6113 flags = IRQF_SHARED;
6114
6115 for (i = 0; i < bp->irq_nvecs; i++) {
6116 irq = &bp->irq_tbl[i];
6117 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6118 &bp->bnx2_napi[i]);
6119 if (rc)
6120 break;
6121 irq->requested = 1;
6122 }
6123 return rc;
6124 }
6125
6126 static void
6127 bnx2_free_irq(struct bnx2 *bp)
6128 {
6129 struct bnx2_irq *irq;
6130 int i;
6131
6132 for (i = 0; i < bp->irq_nvecs; i++) {
6133 irq = &bp->irq_tbl[i];
6134 if (irq->requested)
6135 free_irq(irq->vector, &bp->bnx2_napi[i]);
6136 irq->requested = 0;
6137 }
6138 if (bp->flags & BNX2_FLAG_USING_MSI)
6139 pci_disable_msi(bp->pdev);
6140 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6141 pci_disable_msix(bp->pdev);
6142
6143 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6144 }
6145
6146 static void
6147 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6148 {
6149 int i, rc;
6150 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6151 struct net_device *dev = bp->dev;
6152 const int len = sizeof(bp->irq_tbl[0].name);
6153
6154 bnx2_setup_msix_tbl(bp);
6155 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6156 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6157 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6158
6159 /* Need to flush the previous three writes to ensure MSI-X
6160 * is setup properly */
6161 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6162
6163 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6164 msix_ent[i].entry = i;
6165 msix_ent[i].vector = 0;
6166 }
6167
6168 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6169 if (rc != 0)
6170 return;
6171
6172 bp->irq_nvecs = msix_vecs;
6173 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6174 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6175 bp->irq_tbl[i].vector = msix_ent[i].vector;
6176 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6177 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6178 }
6179 }
6180
6181 static void
6182 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6183 {
6184 int cpus = num_online_cpus();
6185 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6186
6187 bp->irq_tbl[0].handler = bnx2_interrupt;
6188 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6189 bp->irq_nvecs = 1;
6190 bp->irq_tbl[0].vector = bp->pdev->irq;
6191
6192 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6193 bnx2_enable_msix(bp, msix_vecs);
6194
6195 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6196 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6197 if (pci_enable_msi(bp->pdev) == 0) {
6198 bp->flags |= BNX2_FLAG_USING_MSI;
6199 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6200 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6201 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6202 } else
6203 bp->irq_tbl[0].handler = bnx2_msi;
6204
6205 bp->irq_tbl[0].vector = bp->pdev->irq;
6206 }
6207 }
6208
6209 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6210 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6211
6212 bp->num_rx_rings = bp->irq_nvecs;
6213 }
6214
6215 /* Called with rtnl_lock */
6216 static int
6217 bnx2_open(struct net_device *dev)
6218 {
6219 struct bnx2 *bp = netdev_priv(dev);
6220 int rc;
6221
6222 netif_carrier_off(dev);
6223
6224 bnx2_set_power_state(bp, PCI_D0);
6225 bnx2_disable_int(bp);
6226
6227 bnx2_setup_int_mode(bp, disable_msi);
6228 bnx2_init_napi(bp);
6229 bnx2_napi_enable(bp);
6230 rc = bnx2_alloc_mem(bp);
6231 if (rc)
6232 goto open_err;
6233
6234 rc = bnx2_request_irq(bp);
6235 if (rc)
6236 goto open_err;
6237
6238 rc = bnx2_init_nic(bp, 1);
6239 if (rc)
6240 goto open_err;
6241
6242 mod_timer(&bp->timer, jiffies + bp->current_interval);
6243
6244 atomic_set(&bp->intr_sem, 0);
6245
6246 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6247
6248 bnx2_enable_int(bp);
6249
6250 if (bp->flags & BNX2_FLAG_USING_MSI) {
6251 /* Test MSI to make sure it is working
6252 * If MSI test fails, go back to INTx mode
6253 */
6254 if (bnx2_test_intr(bp) != 0) {
6255 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6256
6257 bnx2_disable_int(bp);
6258 bnx2_free_irq(bp);
6259
6260 bnx2_setup_int_mode(bp, 1);
6261
6262 rc = bnx2_init_nic(bp, 0);
6263
6264 if (!rc)
6265 rc = bnx2_request_irq(bp);
6266
6267 if (rc) {
6268 del_timer_sync(&bp->timer);
6269 goto open_err;
6270 }
6271 bnx2_enable_int(bp);
6272 }
6273 }
6274 if (bp->flags & BNX2_FLAG_USING_MSI)
6275 netdev_info(dev, "using MSI\n");
6276 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6277 netdev_info(dev, "using MSIX\n");
6278
6279 netif_tx_start_all_queues(dev);
6280
6281 return 0;
6282
6283 open_err:
6284 bnx2_napi_disable(bp);
6285 bnx2_free_skbs(bp);
6286 bnx2_free_irq(bp);
6287 bnx2_free_mem(bp);
6288 bnx2_del_napi(bp);
6289 return rc;
6290 }
6291
6292 static void
6293 bnx2_reset_task(struct work_struct *work)
6294 {
6295 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6296
6297 rtnl_lock();
6298 if (!netif_running(bp->dev)) {
6299 rtnl_unlock();
6300 return;
6301 }
6302
6303 bnx2_netif_stop(bp, true);
6304
6305 bnx2_init_nic(bp, 1);
6306
6307 atomic_set(&bp->intr_sem, 1);
6308 bnx2_netif_start(bp, true);
6309 rtnl_unlock();
6310 }
6311
6312 static void
6313 bnx2_dump_state(struct bnx2 *bp)
6314 {
6315 struct net_device *dev = bp->dev;
6316 u32 mcp_p0, mcp_p1, val1, val2;
6317
6318 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6319 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6320 atomic_read(&bp->intr_sem), val1);
6321 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6322 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6323 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6324 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6325 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6326 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6327 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6328 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6329 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6330 mcp_p0 = BNX2_MCP_STATE_P0;
6331 mcp_p1 = BNX2_MCP_STATE_P1;
6332 } else {
6333 mcp_p0 = BNX2_MCP_STATE_P0_5708;
6334 mcp_p1 = BNX2_MCP_STATE_P1_5708;
6335 }
6336 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6337 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
6338 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6339 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6340 if (bp->flags & BNX2_FLAG_USING_MSIX)
6341 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6342 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6343 }
6344
6345 static void
6346 bnx2_tx_timeout(struct net_device *dev)
6347 {
6348 struct bnx2 *bp = netdev_priv(dev);
6349
6350 bnx2_dump_state(bp);
6351
6352 /* This allows the netif to be shutdown gracefully before resetting */
6353 schedule_work(&bp->reset_task);
6354 }
6355
6356 #ifdef BCM_VLAN
6357 /* Called with rtnl_lock */
6358 static void
6359 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6360 {
6361 struct bnx2 *bp = netdev_priv(dev);
6362
6363 if (netif_running(dev))
6364 bnx2_netif_stop(bp, false);
6365
6366 bp->vlgrp = vlgrp;
6367
6368 if (!netif_running(dev))
6369 return;
6370
6371 bnx2_set_rx_mode(dev);
6372 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6373 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6374
6375 bnx2_netif_start(bp, false);
6376 }
6377 #endif
6378
6379 /* Called with netif_tx_lock.
6380 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6381 * netif_wake_queue().
6382 */
6383 static netdev_tx_t
6384 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6385 {
6386 struct bnx2 *bp = netdev_priv(dev);
6387 dma_addr_t mapping;
6388 struct tx_bd *txbd;
6389 struct sw_tx_bd *tx_buf;
6390 u32 len, vlan_tag_flags, last_frag, mss;
6391 u16 prod, ring_prod;
6392 int i;
6393 struct bnx2_napi *bnapi;
6394 struct bnx2_tx_ring_info *txr;
6395 struct netdev_queue *txq;
6396
6397 /* Determine which tx ring we will be placed on */
6398 i = skb_get_queue_mapping(skb);
6399 bnapi = &bp->bnx2_napi[i];
6400 txr = &bnapi->tx_ring;
6401 txq = netdev_get_tx_queue(dev, i);
6402
6403 if (unlikely(bnx2_tx_avail(bp, txr) <
6404 (skb_shinfo(skb)->nr_frags + 1))) {
6405 netif_tx_stop_queue(txq);
6406 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6407
6408 return NETDEV_TX_BUSY;
6409 }
6410 len = skb_headlen(skb);
6411 prod = txr->tx_prod;
6412 ring_prod = TX_RING_IDX(prod);
6413
6414 vlan_tag_flags = 0;
6415 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6416 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6417 }
6418
6419 #ifdef BCM_VLAN
6420 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6421 vlan_tag_flags |=
6422 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6423 }
6424 #endif
6425 if ((mss = skb_shinfo(skb)->gso_size)) {
6426 u32 tcp_opt_len;
6427 struct iphdr *iph;
6428
6429 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6430
6431 tcp_opt_len = tcp_optlen(skb);
6432
6433 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6434 u32 tcp_off = skb_transport_offset(skb) -
6435 sizeof(struct ipv6hdr) - ETH_HLEN;
6436
6437 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6438 TX_BD_FLAGS_SW_FLAGS;
6439 if (likely(tcp_off == 0))
6440 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6441 else {
6442 tcp_off >>= 3;
6443 vlan_tag_flags |= ((tcp_off & 0x3) <<
6444 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6445 ((tcp_off & 0x10) <<
6446 TX_BD_FLAGS_TCP6_OFF4_SHL);
6447 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6448 }
6449 } else {
6450 iph = ip_hdr(skb);
6451 if (tcp_opt_len || (iph->ihl > 5)) {
6452 vlan_tag_flags |= ((iph->ihl - 5) +
6453 (tcp_opt_len >> 2)) << 8;
6454 }
6455 }
6456 } else
6457 mss = 0;
6458
6459 mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
6460 if (pci_dma_mapping_error(bp->pdev, mapping)) {
6461 dev_kfree_skb(skb);
6462 return NETDEV_TX_OK;
6463 }
6464
6465 tx_buf = &txr->tx_buf_ring[ring_prod];
6466 tx_buf->skb = skb;
6467 dma_unmap_addr_set(tx_buf, mapping, mapping);
6468
6469 txbd = &txr->tx_desc_ring[ring_prod];
6470
6471 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6472 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6473 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6474 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6475
6476 last_frag = skb_shinfo(skb)->nr_frags;
6477 tx_buf->nr_frags = last_frag;
6478 tx_buf->is_gso = skb_is_gso(skb);
6479
6480 for (i = 0; i < last_frag; i++) {
6481 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6482
6483 prod = NEXT_TX_BD(prod);
6484 ring_prod = TX_RING_IDX(prod);
6485 txbd = &txr->tx_desc_ring[ring_prod];
6486
6487 len = frag->size;
6488 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
6489 len, PCI_DMA_TODEVICE);
6490 if (pci_dma_mapping_error(bp->pdev, mapping))
6491 goto dma_error;
6492 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6493 mapping);
6494
6495 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6496 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6497 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6498 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6499
6500 }
6501 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6502
6503 prod = NEXT_TX_BD(prod);
6504 txr->tx_prod_bseq += skb->len;
6505
6506 REG_WR16(bp, txr->tx_bidx_addr, prod);
6507 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6508
6509 mmiowb();
6510
6511 txr->tx_prod = prod;
6512
6513 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6514 netif_tx_stop_queue(txq);
6515 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6516 netif_tx_wake_queue(txq);
6517 }
6518
6519 return NETDEV_TX_OK;
6520 dma_error:
6521 /* save value of frag that failed */
6522 last_frag = i;
6523
6524 /* start back at beginning and unmap skb */
6525 prod = txr->tx_prod;
6526 ring_prod = TX_RING_IDX(prod);
6527 tx_buf = &txr->tx_buf_ring[ring_prod];
6528 tx_buf->skb = NULL;
6529 pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
6530 skb_headlen(skb), PCI_DMA_TODEVICE);
6531
6532 /* unmap remaining mapped pages */
6533 for (i = 0; i < last_frag; i++) {
6534 prod = NEXT_TX_BD(prod);
6535 ring_prod = TX_RING_IDX(prod);
6536 tx_buf = &txr->tx_buf_ring[ring_prod];
6537 pci_unmap_page(bp->pdev, dma_unmap_addr(tx_buf, mapping),
6538 skb_shinfo(skb)->frags[i].size,
6539 PCI_DMA_TODEVICE);
6540 }
6541
6542 dev_kfree_skb(skb);
6543 return NETDEV_TX_OK;
6544 }
6545
6546 /* Called with rtnl_lock */
6547 static int
6548 bnx2_close(struct net_device *dev)
6549 {
6550 struct bnx2 *bp = netdev_priv(dev);
6551
6552 cancel_work_sync(&bp->reset_task);
6553
6554 bnx2_disable_int_sync(bp);
6555 bnx2_napi_disable(bp);
6556 del_timer_sync(&bp->timer);
6557 bnx2_shutdown_chip(bp);
6558 bnx2_free_irq(bp);
6559 bnx2_free_skbs(bp);
6560 bnx2_free_mem(bp);
6561 bnx2_del_napi(bp);
6562 bp->link_up = 0;
6563 netif_carrier_off(bp->dev);
6564 bnx2_set_power_state(bp, PCI_D3hot);
6565 return 0;
6566 }
6567
6568 static void
6569 bnx2_save_stats(struct bnx2 *bp)
6570 {
6571 u32 *hw_stats = (u32 *) bp->stats_blk;
6572 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6573 int i;
6574
6575 /* The 1st 10 counters are 64-bit counters */
6576 for (i = 0; i < 20; i += 2) {
6577 u32 hi;
6578 u64 lo;
6579
6580 hi = temp_stats[i] + hw_stats[i];
6581 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6582 if (lo > 0xffffffff)
6583 hi++;
6584 temp_stats[i] = hi;
6585 temp_stats[i + 1] = lo & 0xffffffff;
6586 }
6587
6588 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6589 temp_stats[i] += hw_stats[i];
6590 }
6591
6592 #define GET_64BIT_NET_STATS64(ctr) \
6593 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6594
6595 #define GET_64BIT_NET_STATS(ctr) \
6596 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6597 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6598
6599 #define GET_32BIT_NET_STATS(ctr) \
6600 (unsigned long) (bp->stats_blk->ctr + \
6601 bp->temp_stats_blk->ctr)
6602
6603 static struct rtnl_link_stats64 *
6604 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6605 {
6606 struct bnx2 *bp = netdev_priv(dev);
6607
6608 if (bp->stats_blk == NULL)
6609 return net_stats;
6610
6611 net_stats->rx_packets =
6612 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6613 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6614 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6615
6616 net_stats->tx_packets =
6617 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6618 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6619 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6620
6621 net_stats->rx_bytes =
6622 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6623
6624 net_stats->tx_bytes =
6625 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6626
6627 net_stats->multicast =
6628 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
6629
6630 net_stats->collisions =
6631 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6632
6633 net_stats->rx_length_errors =
6634 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6635 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6636
6637 net_stats->rx_over_errors =
6638 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6639 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6640
6641 net_stats->rx_frame_errors =
6642 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6643
6644 net_stats->rx_crc_errors =
6645 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6646
6647 net_stats->rx_errors = net_stats->rx_length_errors +
6648 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6649 net_stats->rx_crc_errors;
6650
6651 net_stats->tx_aborted_errors =
6652 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6653 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6654
6655 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6656 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6657 net_stats->tx_carrier_errors = 0;
6658 else {
6659 net_stats->tx_carrier_errors =
6660 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6661 }
6662
6663 net_stats->tx_errors =
6664 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6665 net_stats->tx_aborted_errors +
6666 net_stats->tx_carrier_errors;
6667
6668 net_stats->rx_missed_errors =
6669 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6670 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6671 GET_32BIT_NET_STATS(stat_FwRxDrop);
6672
6673 return net_stats;
6674 }
6675
6676 /* All ethtool functions called with rtnl_lock */
6677
6678 static int
6679 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6680 {
6681 struct bnx2 *bp = netdev_priv(dev);
6682 int support_serdes = 0, support_copper = 0;
6683
6684 cmd->supported = SUPPORTED_Autoneg;
6685 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6686 support_serdes = 1;
6687 support_copper = 1;
6688 } else if (bp->phy_port == PORT_FIBRE)
6689 support_serdes = 1;
6690 else
6691 support_copper = 1;
6692
6693 if (support_serdes) {
6694 cmd->supported |= SUPPORTED_1000baseT_Full |
6695 SUPPORTED_FIBRE;
6696 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6697 cmd->supported |= SUPPORTED_2500baseX_Full;
6698
6699 }
6700 if (support_copper) {
6701 cmd->supported |= SUPPORTED_10baseT_Half |
6702 SUPPORTED_10baseT_Full |
6703 SUPPORTED_100baseT_Half |
6704 SUPPORTED_100baseT_Full |
6705 SUPPORTED_1000baseT_Full |
6706 SUPPORTED_TP;
6707
6708 }
6709
6710 spin_lock_bh(&bp->phy_lock);
6711 cmd->port = bp->phy_port;
6712 cmd->advertising = bp->advertising;
6713
6714 if (bp->autoneg & AUTONEG_SPEED) {
6715 cmd->autoneg = AUTONEG_ENABLE;
6716 }
6717 else {
6718 cmd->autoneg = AUTONEG_DISABLE;
6719 }
6720
6721 if (netif_carrier_ok(dev)) {
6722 cmd->speed = bp->line_speed;
6723 cmd->duplex = bp->duplex;
6724 }
6725 else {
6726 cmd->speed = -1;
6727 cmd->duplex = -1;
6728 }
6729 spin_unlock_bh(&bp->phy_lock);
6730
6731 cmd->transceiver = XCVR_INTERNAL;
6732 cmd->phy_address = bp->phy_addr;
6733
6734 return 0;
6735 }
6736
6737 static int
6738 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6739 {
6740 struct bnx2 *bp = netdev_priv(dev);
6741 u8 autoneg = bp->autoneg;
6742 u8 req_duplex = bp->req_duplex;
6743 u16 req_line_speed = bp->req_line_speed;
6744 u32 advertising = bp->advertising;
6745 int err = -EINVAL;
6746
6747 spin_lock_bh(&bp->phy_lock);
6748
6749 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6750 goto err_out_unlock;
6751
6752 if (cmd->port != bp->phy_port &&
6753 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6754 goto err_out_unlock;
6755
6756 /* If device is down, we can store the settings only if the user
6757 * is setting the currently active port.
6758 */
6759 if (!netif_running(dev) && cmd->port != bp->phy_port)
6760 goto err_out_unlock;
6761
6762 if (cmd->autoneg == AUTONEG_ENABLE) {
6763 autoneg |= AUTONEG_SPEED;
6764
6765 advertising = cmd->advertising;
6766 if (cmd->port == PORT_TP) {
6767 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6768 if (!advertising)
6769 advertising = ETHTOOL_ALL_COPPER_SPEED;
6770 } else {
6771 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6772 if (!advertising)
6773 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6774 }
6775 advertising |= ADVERTISED_Autoneg;
6776 }
6777 else {
6778 if (cmd->port == PORT_FIBRE) {
6779 if ((cmd->speed != SPEED_1000 &&
6780 cmd->speed != SPEED_2500) ||
6781 (cmd->duplex != DUPLEX_FULL))
6782 goto err_out_unlock;
6783
6784 if (cmd->speed == SPEED_2500 &&
6785 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6786 goto err_out_unlock;
6787 }
6788 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6789 goto err_out_unlock;
6790
6791 autoneg &= ~AUTONEG_SPEED;
6792 req_line_speed = cmd->speed;
6793 req_duplex = cmd->duplex;
6794 advertising = 0;
6795 }
6796
6797 bp->autoneg = autoneg;
6798 bp->advertising = advertising;
6799 bp->req_line_speed = req_line_speed;
6800 bp->req_duplex = req_duplex;
6801
6802 err = 0;
6803 /* If device is down, the new settings will be picked up when it is
6804 * brought up.
6805 */
6806 if (netif_running(dev))
6807 err = bnx2_setup_phy(bp, cmd->port);
6808
6809 err_out_unlock:
6810 spin_unlock_bh(&bp->phy_lock);
6811
6812 return err;
6813 }
6814
6815 static void
6816 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6817 {
6818 struct bnx2 *bp = netdev_priv(dev);
6819
6820 strcpy(info->driver, DRV_MODULE_NAME);
6821 strcpy(info->version, DRV_MODULE_VERSION);
6822 strcpy(info->bus_info, pci_name(bp->pdev));
6823 strcpy(info->fw_version, bp->fw_version);
6824 }
6825
6826 #define BNX2_REGDUMP_LEN (32 * 1024)
6827
6828 static int
6829 bnx2_get_regs_len(struct net_device *dev)
6830 {
6831 return BNX2_REGDUMP_LEN;
6832 }
6833
6834 static void
6835 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6836 {
6837 u32 *p = _p, i, offset;
6838 u8 *orig_p = _p;
6839 struct bnx2 *bp = netdev_priv(dev);
6840 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6841 0x0800, 0x0880, 0x0c00, 0x0c10,
6842 0x0c30, 0x0d08, 0x1000, 0x101c,
6843 0x1040, 0x1048, 0x1080, 0x10a4,
6844 0x1400, 0x1490, 0x1498, 0x14f0,
6845 0x1500, 0x155c, 0x1580, 0x15dc,
6846 0x1600, 0x1658, 0x1680, 0x16d8,
6847 0x1800, 0x1820, 0x1840, 0x1854,
6848 0x1880, 0x1894, 0x1900, 0x1984,
6849 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6850 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6851 0x2000, 0x2030, 0x23c0, 0x2400,
6852 0x2800, 0x2820, 0x2830, 0x2850,
6853 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6854 0x3c00, 0x3c94, 0x4000, 0x4010,
6855 0x4080, 0x4090, 0x43c0, 0x4458,
6856 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6857 0x4fc0, 0x5010, 0x53c0, 0x5444,
6858 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6859 0x5fc0, 0x6000, 0x6400, 0x6428,
6860 0x6800, 0x6848, 0x684c, 0x6860,
6861 0x6888, 0x6910, 0x8000 };
6862
6863 regs->version = 0;
6864
6865 memset(p, 0, BNX2_REGDUMP_LEN);
6866
6867 if (!netif_running(bp->dev))
6868 return;
6869
6870 i = 0;
6871 offset = reg_boundaries[0];
6872 p += offset;
6873 while (offset < BNX2_REGDUMP_LEN) {
6874 *p++ = REG_RD(bp, offset);
6875 offset += 4;
6876 if (offset == reg_boundaries[i + 1]) {
6877 offset = reg_boundaries[i + 2];
6878 p = (u32 *) (orig_p + offset);
6879 i += 2;
6880 }
6881 }
6882 }
6883
6884 static void
6885 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6886 {
6887 struct bnx2 *bp = netdev_priv(dev);
6888
6889 if (bp->flags & BNX2_FLAG_NO_WOL) {
6890 wol->supported = 0;
6891 wol->wolopts = 0;
6892 }
6893 else {
6894 wol->supported = WAKE_MAGIC;
6895 if (bp->wol)
6896 wol->wolopts = WAKE_MAGIC;
6897 else
6898 wol->wolopts = 0;
6899 }
6900 memset(&wol->sopass, 0, sizeof(wol->sopass));
6901 }
6902
6903 static int
6904 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6905 {
6906 struct bnx2 *bp = netdev_priv(dev);
6907
6908 if (wol->wolopts & ~WAKE_MAGIC)
6909 return -EINVAL;
6910
6911 if (wol->wolopts & WAKE_MAGIC) {
6912 if (bp->flags & BNX2_FLAG_NO_WOL)
6913 return -EINVAL;
6914
6915 bp->wol = 1;
6916 }
6917 else {
6918 bp->wol = 0;
6919 }
6920 return 0;
6921 }
6922
6923 static int
6924 bnx2_nway_reset(struct net_device *dev)
6925 {
6926 struct bnx2 *bp = netdev_priv(dev);
6927 u32 bmcr;
6928
6929 if (!netif_running(dev))
6930 return -EAGAIN;
6931
6932 if (!(bp->autoneg & AUTONEG_SPEED)) {
6933 return -EINVAL;
6934 }
6935
6936 spin_lock_bh(&bp->phy_lock);
6937
6938 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6939 int rc;
6940
6941 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6942 spin_unlock_bh(&bp->phy_lock);
6943 return rc;
6944 }
6945
6946 /* Force a link down visible on the other side */
6947 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6948 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6949 spin_unlock_bh(&bp->phy_lock);
6950
6951 msleep(20);
6952
6953 spin_lock_bh(&bp->phy_lock);
6954
6955 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6956 bp->serdes_an_pending = 1;
6957 mod_timer(&bp->timer, jiffies + bp->current_interval);
6958 }
6959
6960 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6961 bmcr &= ~BMCR_LOOPBACK;
6962 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6963
6964 spin_unlock_bh(&bp->phy_lock);
6965
6966 return 0;
6967 }
6968
6969 static u32
6970 bnx2_get_link(struct net_device *dev)
6971 {
6972 struct bnx2 *bp = netdev_priv(dev);
6973
6974 return bp->link_up;
6975 }
6976
6977 static int
6978 bnx2_get_eeprom_len(struct net_device *dev)
6979 {
6980 struct bnx2 *bp = netdev_priv(dev);
6981
6982 if (bp->flash_info == NULL)
6983 return 0;
6984
6985 return (int) bp->flash_size;
6986 }
6987
6988 static int
6989 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6990 u8 *eebuf)
6991 {
6992 struct bnx2 *bp = netdev_priv(dev);
6993 int rc;
6994
6995 if (!netif_running(dev))
6996 return -EAGAIN;
6997
6998 /* parameters already validated in ethtool_get_eeprom */
6999
7000 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7001
7002 return rc;
7003 }
7004
7005 static int
7006 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7007 u8 *eebuf)
7008 {
7009 struct bnx2 *bp = netdev_priv(dev);
7010 int rc;
7011
7012 if (!netif_running(dev))
7013 return -EAGAIN;
7014
7015 /* parameters already validated in ethtool_set_eeprom */
7016
7017 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7018
7019 return rc;
7020 }
7021
7022 static int
7023 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7024 {
7025 struct bnx2 *bp = netdev_priv(dev);
7026
7027 memset(coal, 0, sizeof(struct ethtool_coalesce));
7028
7029 coal->rx_coalesce_usecs = bp->rx_ticks;
7030 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7031 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7032 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7033
7034 coal->tx_coalesce_usecs = bp->tx_ticks;
7035 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7036 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7037 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7038
7039 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7040
7041 return 0;
7042 }
7043
7044 static int
7045 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7046 {
7047 struct bnx2 *bp = netdev_priv(dev);
7048
7049 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7050 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7051
7052 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7053 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7054
7055 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7056 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7057
7058 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7059 if (bp->rx_quick_cons_trip_int > 0xff)
7060 bp->rx_quick_cons_trip_int = 0xff;
7061
7062 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7063 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7064
7065 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7066 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7067
7068 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7069 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7070
7071 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7072 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7073 0xff;
7074
7075 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7076 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7077 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7078 bp->stats_ticks = USEC_PER_SEC;
7079 }
7080 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7081 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7082 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7083
7084 if (netif_running(bp->dev)) {
7085 bnx2_netif_stop(bp, true);
7086 bnx2_init_nic(bp, 0);
7087 bnx2_netif_start(bp, true);
7088 }
7089
7090 return 0;
7091 }
7092
7093 static void
7094 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7095 {
7096 struct bnx2 *bp = netdev_priv(dev);
7097
7098 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7099 ering->rx_mini_max_pending = 0;
7100 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7101
7102 ering->rx_pending = bp->rx_ring_size;
7103 ering->rx_mini_pending = 0;
7104 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7105
7106 ering->tx_max_pending = MAX_TX_DESC_CNT;
7107 ering->tx_pending = bp->tx_ring_size;
7108 }
7109
7110 static int
7111 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7112 {
7113 if (netif_running(bp->dev)) {
7114 /* Reset will erase chipset stats; save them */
7115 bnx2_save_stats(bp);
7116
7117 bnx2_netif_stop(bp, true);
7118 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7119 bnx2_free_skbs(bp);
7120 bnx2_free_mem(bp);
7121 }
7122
7123 bnx2_set_rx_ring_size(bp, rx);
7124 bp->tx_ring_size = tx;
7125
7126 if (netif_running(bp->dev)) {
7127 int rc;
7128
7129 rc = bnx2_alloc_mem(bp);
7130 if (!rc)
7131 rc = bnx2_init_nic(bp, 0);
7132
7133 if (rc) {
7134 bnx2_napi_enable(bp);
7135 dev_close(bp->dev);
7136 return rc;
7137 }
7138 #ifdef BCM_CNIC
7139 mutex_lock(&bp->cnic_lock);
7140 /* Let cnic know about the new status block. */
7141 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7142 bnx2_setup_cnic_irq_info(bp);
7143 mutex_unlock(&bp->cnic_lock);
7144 #endif
7145 bnx2_netif_start(bp, true);
7146 }
7147 return 0;
7148 }
7149
7150 static int
7151 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7152 {
7153 struct bnx2 *bp = netdev_priv(dev);
7154 int rc;
7155
7156 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7157 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7158 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7159
7160 return -EINVAL;
7161 }
7162 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7163 return rc;
7164 }
7165
7166 static void
7167 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7168 {
7169 struct bnx2 *bp = netdev_priv(dev);
7170
7171 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7172 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7173 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7174 }
7175
7176 static int
7177 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7178 {
7179 struct bnx2 *bp = netdev_priv(dev);
7180
7181 bp->req_flow_ctrl = 0;
7182 if (epause->rx_pause)
7183 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7184 if (epause->tx_pause)
7185 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7186
7187 if (epause->autoneg) {
7188 bp->autoneg |= AUTONEG_FLOW_CTRL;
7189 }
7190 else {
7191 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7192 }
7193
7194 if (netif_running(dev)) {
7195 spin_lock_bh(&bp->phy_lock);
7196 bnx2_setup_phy(bp, bp->phy_port);
7197 spin_unlock_bh(&bp->phy_lock);
7198 }
7199
7200 return 0;
7201 }
7202
7203 static u32
7204 bnx2_get_rx_csum(struct net_device *dev)
7205 {
7206 struct bnx2 *bp = netdev_priv(dev);
7207
7208 return bp->rx_csum;
7209 }
7210
7211 static int
7212 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7213 {
7214 struct bnx2 *bp = netdev_priv(dev);
7215
7216 bp->rx_csum = data;
7217 return 0;
7218 }
7219
7220 static int
7221 bnx2_set_tso(struct net_device *dev, u32 data)
7222 {
7223 struct bnx2 *bp = netdev_priv(dev);
7224
7225 if (data) {
7226 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7227 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7228 dev->features |= NETIF_F_TSO6;
7229 } else
7230 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7231 NETIF_F_TSO_ECN);
7232 return 0;
7233 }
7234
7235 static struct {
7236 char string[ETH_GSTRING_LEN];
7237 } bnx2_stats_str_arr[] = {
7238 { "rx_bytes" },
7239 { "rx_error_bytes" },
7240 { "tx_bytes" },
7241 { "tx_error_bytes" },
7242 { "rx_ucast_packets" },
7243 { "rx_mcast_packets" },
7244 { "rx_bcast_packets" },
7245 { "tx_ucast_packets" },
7246 { "tx_mcast_packets" },
7247 { "tx_bcast_packets" },
7248 { "tx_mac_errors" },
7249 { "tx_carrier_errors" },
7250 { "rx_crc_errors" },
7251 { "rx_align_errors" },
7252 { "tx_single_collisions" },
7253 { "tx_multi_collisions" },
7254 { "tx_deferred" },
7255 { "tx_excess_collisions" },
7256 { "tx_late_collisions" },
7257 { "tx_total_collisions" },
7258 { "rx_fragments" },
7259 { "rx_jabbers" },
7260 { "rx_undersize_packets" },
7261 { "rx_oversize_packets" },
7262 { "rx_64_byte_packets" },
7263 { "rx_65_to_127_byte_packets" },
7264 { "rx_128_to_255_byte_packets" },
7265 { "rx_256_to_511_byte_packets" },
7266 { "rx_512_to_1023_byte_packets" },
7267 { "rx_1024_to_1522_byte_packets" },
7268 { "rx_1523_to_9022_byte_packets" },
7269 { "tx_64_byte_packets" },
7270 { "tx_65_to_127_byte_packets" },
7271 { "tx_128_to_255_byte_packets" },
7272 { "tx_256_to_511_byte_packets" },
7273 { "tx_512_to_1023_byte_packets" },
7274 { "tx_1024_to_1522_byte_packets" },
7275 { "tx_1523_to_9022_byte_packets" },
7276 { "rx_xon_frames" },
7277 { "rx_xoff_frames" },
7278 { "tx_xon_frames" },
7279 { "tx_xoff_frames" },
7280 { "rx_mac_ctrl_frames" },
7281 { "rx_filtered_packets" },
7282 { "rx_ftq_discards" },
7283 { "rx_discards" },
7284 { "rx_fw_discards" },
7285 };
7286
7287 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7288 sizeof(bnx2_stats_str_arr[0]))
7289
7290 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7291
7292 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7293 STATS_OFFSET32(stat_IfHCInOctets_hi),
7294 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7295 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7296 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7297 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7298 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7299 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7300 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7301 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7302 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7303 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7304 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7305 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7306 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7307 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7308 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7309 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7310 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7311 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7312 STATS_OFFSET32(stat_EtherStatsCollisions),
7313 STATS_OFFSET32(stat_EtherStatsFragments),
7314 STATS_OFFSET32(stat_EtherStatsJabbers),
7315 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7316 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7317 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7318 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7319 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7320 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7321 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7322 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7323 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7324 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7325 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7326 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7327 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7328 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7329 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7330 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7331 STATS_OFFSET32(stat_XonPauseFramesReceived),
7332 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7333 STATS_OFFSET32(stat_OutXonSent),
7334 STATS_OFFSET32(stat_OutXoffSent),
7335 STATS_OFFSET32(stat_MacControlFramesReceived),
7336 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7337 STATS_OFFSET32(stat_IfInFTQDiscards),
7338 STATS_OFFSET32(stat_IfInMBUFDiscards),
7339 STATS_OFFSET32(stat_FwRxDrop),
7340 };
7341
7342 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7343 * skipped because of errata.
7344 */
7345 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7346 8,0,8,8,8,8,8,8,8,8,
7347 4,0,4,4,4,4,4,4,4,4,
7348 4,4,4,4,4,4,4,4,4,4,
7349 4,4,4,4,4,4,4,4,4,4,
7350 4,4,4,4,4,4,4,
7351 };
7352
7353 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7354 8,0,8,8,8,8,8,8,8,8,
7355 4,4,4,4,4,4,4,4,4,4,
7356 4,4,4,4,4,4,4,4,4,4,
7357 4,4,4,4,4,4,4,4,4,4,
7358 4,4,4,4,4,4,4,
7359 };
7360
7361 #define BNX2_NUM_TESTS 6
7362
7363 static struct {
7364 char string[ETH_GSTRING_LEN];
7365 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7366 { "register_test (offline)" },
7367 { "memory_test (offline)" },
7368 { "loopback_test (offline)" },
7369 { "nvram_test (online)" },
7370 { "interrupt_test (online)" },
7371 { "link_test (online)" },
7372 };
7373
7374 static int
7375 bnx2_get_sset_count(struct net_device *dev, int sset)
7376 {
7377 switch (sset) {
7378 case ETH_SS_TEST:
7379 return BNX2_NUM_TESTS;
7380 case ETH_SS_STATS:
7381 return BNX2_NUM_STATS;
7382 default:
7383 return -EOPNOTSUPP;
7384 }
7385 }
7386
7387 static void
7388 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7389 {
7390 struct bnx2 *bp = netdev_priv(dev);
7391
7392 bnx2_set_power_state(bp, PCI_D0);
7393
7394 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7395 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7396 int i;
7397
7398 bnx2_netif_stop(bp, true);
7399 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7400 bnx2_free_skbs(bp);
7401
7402 if (bnx2_test_registers(bp) != 0) {
7403 buf[0] = 1;
7404 etest->flags |= ETH_TEST_FL_FAILED;
7405 }
7406 if (bnx2_test_memory(bp) != 0) {
7407 buf[1] = 1;
7408 etest->flags |= ETH_TEST_FL_FAILED;
7409 }
7410 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7411 etest->flags |= ETH_TEST_FL_FAILED;
7412
7413 if (!netif_running(bp->dev))
7414 bnx2_shutdown_chip(bp);
7415 else {
7416 bnx2_init_nic(bp, 1);
7417 bnx2_netif_start(bp, true);
7418 }
7419
7420 /* wait for link up */
7421 for (i = 0; i < 7; i++) {
7422 if (bp->link_up)
7423 break;
7424 msleep_interruptible(1000);
7425 }
7426 }
7427
7428 if (bnx2_test_nvram(bp) != 0) {
7429 buf[3] = 1;
7430 etest->flags |= ETH_TEST_FL_FAILED;
7431 }
7432 if (bnx2_test_intr(bp) != 0) {
7433 buf[4] = 1;
7434 etest->flags |= ETH_TEST_FL_FAILED;
7435 }
7436
7437 if (bnx2_test_link(bp) != 0) {
7438 buf[5] = 1;
7439 etest->flags |= ETH_TEST_FL_FAILED;
7440
7441 }
7442 if (!netif_running(bp->dev))
7443 bnx2_set_power_state(bp, PCI_D3hot);
7444 }
7445
7446 static void
7447 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7448 {
7449 switch (stringset) {
7450 case ETH_SS_STATS:
7451 memcpy(buf, bnx2_stats_str_arr,
7452 sizeof(bnx2_stats_str_arr));
7453 break;
7454 case ETH_SS_TEST:
7455 memcpy(buf, bnx2_tests_str_arr,
7456 sizeof(bnx2_tests_str_arr));
7457 break;
7458 }
7459 }
7460
7461 static void
7462 bnx2_get_ethtool_stats(struct net_device *dev,
7463 struct ethtool_stats *stats, u64 *buf)
7464 {
7465 struct bnx2 *bp = netdev_priv(dev);
7466 int i;
7467 u32 *hw_stats = (u32 *) bp->stats_blk;
7468 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7469 u8 *stats_len_arr = NULL;
7470
7471 if (hw_stats == NULL) {
7472 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7473 return;
7474 }
7475
7476 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7477 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7478 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7479 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7480 stats_len_arr = bnx2_5706_stats_len_arr;
7481 else
7482 stats_len_arr = bnx2_5708_stats_len_arr;
7483
7484 for (i = 0; i < BNX2_NUM_STATS; i++) {
7485 unsigned long offset;
7486
7487 if (stats_len_arr[i] == 0) {
7488 /* skip this counter */
7489 buf[i] = 0;
7490 continue;
7491 }
7492
7493 offset = bnx2_stats_offset_arr[i];
7494 if (stats_len_arr[i] == 4) {
7495 /* 4-byte counter */
7496 buf[i] = (u64) *(hw_stats + offset) +
7497 *(temp_stats + offset);
7498 continue;
7499 }
7500 /* 8-byte counter */
7501 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7502 *(hw_stats + offset + 1) +
7503 (((u64) *(temp_stats + offset)) << 32) +
7504 *(temp_stats + offset + 1);
7505 }
7506 }
7507
7508 static int
7509 bnx2_phys_id(struct net_device *dev, u32 data)
7510 {
7511 struct bnx2 *bp = netdev_priv(dev);
7512 int i;
7513 u32 save;
7514
7515 bnx2_set_power_state(bp, PCI_D0);
7516
7517 if (data == 0)
7518 data = 2;
7519
7520 save = REG_RD(bp, BNX2_MISC_CFG);
7521 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7522
7523 for (i = 0; i < (data * 2); i++) {
7524 if ((i % 2) == 0) {
7525 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7526 }
7527 else {
7528 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7529 BNX2_EMAC_LED_1000MB_OVERRIDE |
7530 BNX2_EMAC_LED_100MB_OVERRIDE |
7531 BNX2_EMAC_LED_10MB_OVERRIDE |
7532 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7533 BNX2_EMAC_LED_TRAFFIC);
7534 }
7535 msleep_interruptible(500);
7536 if (signal_pending(current))
7537 break;
7538 }
7539 REG_WR(bp, BNX2_EMAC_LED, 0);
7540 REG_WR(bp, BNX2_MISC_CFG, save);
7541
7542 if (!netif_running(dev))
7543 bnx2_set_power_state(bp, PCI_D3hot);
7544
7545 return 0;
7546 }
7547
7548 static int
7549 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7550 {
7551 struct bnx2 *bp = netdev_priv(dev);
7552
7553 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7554 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7555 else
7556 return (ethtool_op_set_tx_csum(dev, data));
7557 }
7558
7559 static int
7560 bnx2_set_flags(struct net_device *dev, u32 data)
7561 {
7562 return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
7563 }
7564
7565 static const struct ethtool_ops bnx2_ethtool_ops = {
7566 .get_settings = bnx2_get_settings,
7567 .set_settings = bnx2_set_settings,
7568 .get_drvinfo = bnx2_get_drvinfo,
7569 .get_regs_len = bnx2_get_regs_len,
7570 .get_regs = bnx2_get_regs,
7571 .get_wol = bnx2_get_wol,
7572 .set_wol = bnx2_set_wol,
7573 .nway_reset = bnx2_nway_reset,
7574 .get_link = bnx2_get_link,
7575 .get_eeprom_len = bnx2_get_eeprom_len,
7576 .get_eeprom = bnx2_get_eeprom,
7577 .set_eeprom = bnx2_set_eeprom,
7578 .get_coalesce = bnx2_get_coalesce,
7579 .set_coalesce = bnx2_set_coalesce,
7580 .get_ringparam = bnx2_get_ringparam,
7581 .set_ringparam = bnx2_set_ringparam,
7582 .get_pauseparam = bnx2_get_pauseparam,
7583 .set_pauseparam = bnx2_set_pauseparam,
7584 .get_rx_csum = bnx2_get_rx_csum,
7585 .set_rx_csum = bnx2_set_rx_csum,
7586 .set_tx_csum = bnx2_set_tx_csum,
7587 .set_sg = ethtool_op_set_sg,
7588 .set_tso = bnx2_set_tso,
7589 .self_test = bnx2_self_test,
7590 .get_strings = bnx2_get_strings,
7591 .phys_id = bnx2_phys_id,
7592 .get_ethtool_stats = bnx2_get_ethtool_stats,
7593 .get_sset_count = bnx2_get_sset_count,
7594 .set_flags = bnx2_set_flags,
7595 .get_flags = ethtool_op_get_flags,
7596 };
7597
7598 /* Called with rtnl_lock */
7599 static int
7600 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7601 {
7602 struct mii_ioctl_data *data = if_mii(ifr);
7603 struct bnx2 *bp = netdev_priv(dev);
7604 int err;
7605
7606 switch(cmd) {
7607 case SIOCGMIIPHY:
7608 data->phy_id = bp->phy_addr;
7609
7610 /* fallthru */
7611 case SIOCGMIIREG: {
7612 u32 mii_regval;
7613
7614 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7615 return -EOPNOTSUPP;
7616
7617 if (!netif_running(dev))
7618 return -EAGAIN;
7619
7620 spin_lock_bh(&bp->phy_lock);
7621 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7622 spin_unlock_bh(&bp->phy_lock);
7623
7624 data->val_out = mii_regval;
7625
7626 return err;
7627 }
7628
7629 case SIOCSMIIREG:
7630 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7631 return -EOPNOTSUPP;
7632
7633 if (!netif_running(dev))
7634 return -EAGAIN;
7635
7636 spin_lock_bh(&bp->phy_lock);
7637 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7638 spin_unlock_bh(&bp->phy_lock);
7639
7640 return err;
7641
7642 default:
7643 /* do nothing */
7644 break;
7645 }
7646 return -EOPNOTSUPP;
7647 }
7648
7649 /* Called with rtnl_lock */
7650 static int
7651 bnx2_change_mac_addr(struct net_device *dev, void *p)
7652 {
7653 struct sockaddr *addr = p;
7654 struct bnx2 *bp = netdev_priv(dev);
7655
7656 if (!is_valid_ether_addr(addr->sa_data))
7657 return -EINVAL;
7658
7659 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7660 if (netif_running(dev))
7661 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7662
7663 return 0;
7664 }
7665
7666 /* Called with rtnl_lock */
7667 static int
7668 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7669 {
7670 struct bnx2 *bp = netdev_priv(dev);
7671
7672 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7673 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7674 return -EINVAL;
7675
7676 dev->mtu = new_mtu;
7677 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7678 }
7679
7680 #ifdef CONFIG_NET_POLL_CONTROLLER
7681 static void
7682 poll_bnx2(struct net_device *dev)
7683 {
7684 struct bnx2 *bp = netdev_priv(dev);
7685 int i;
7686
7687 for (i = 0; i < bp->irq_nvecs; i++) {
7688 struct bnx2_irq *irq = &bp->irq_tbl[i];
7689
7690 disable_irq(irq->vector);
7691 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7692 enable_irq(irq->vector);
7693 }
7694 }
7695 #endif
7696
7697 static void __devinit
7698 bnx2_get_5709_media(struct bnx2 *bp)
7699 {
7700 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7701 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7702 u32 strap;
7703
7704 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7705 return;
7706 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7707 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7708 return;
7709 }
7710
7711 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7712 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7713 else
7714 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7715
7716 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7717 switch (strap) {
7718 case 0x4:
7719 case 0x5:
7720 case 0x6:
7721 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7722 return;
7723 }
7724 } else {
7725 switch (strap) {
7726 case 0x1:
7727 case 0x2:
7728 case 0x4:
7729 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7730 return;
7731 }
7732 }
7733 }
7734
7735 static void __devinit
7736 bnx2_get_pci_speed(struct bnx2 *bp)
7737 {
7738 u32 reg;
7739
7740 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7741 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7742 u32 clkreg;
7743
7744 bp->flags |= BNX2_FLAG_PCIX;
7745
7746 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7747
7748 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7749 switch (clkreg) {
7750 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7751 bp->bus_speed_mhz = 133;
7752 break;
7753
7754 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7755 bp->bus_speed_mhz = 100;
7756 break;
7757
7758 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7759 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7760 bp->bus_speed_mhz = 66;
7761 break;
7762
7763 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7764 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7765 bp->bus_speed_mhz = 50;
7766 break;
7767
7768 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7769 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7770 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7771 bp->bus_speed_mhz = 33;
7772 break;
7773 }
7774 }
7775 else {
7776 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7777 bp->bus_speed_mhz = 66;
7778 else
7779 bp->bus_speed_mhz = 33;
7780 }
7781
7782 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7783 bp->flags |= BNX2_FLAG_PCI_32BIT;
7784
7785 }
7786
7787 static void __devinit
7788 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7789 {
7790 int rc, i, j;
7791 u8 *data;
7792 unsigned int block_end, rosize, len;
7793
7794 #define BNX2_VPD_NVRAM_OFFSET 0x300
7795 #define BNX2_VPD_LEN 128
7796 #define BNX2_MAX_VER_SLEN 30
7797
7798 data = kmalloc(256, GFP_KERNEL);
7799 if (!data)
7800 return;
7801
7802 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7803 BNX2_VPD_LEN);
7804 if (rc)
7805 goto vpd_done;
7806
7807 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7808 data[i] = data[i + BNX2_VPD_LEN + 3];
7809 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7810 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7811 data[i + 3] = data[i + BNX2_VPD_LEN];
7812 }
7813
7814 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7815 if (i < 0)
7816 goto vpd_done;
7817
7818 rosize = pci_vpd_lrdt_size(&data[i]);
7819 i += PCI_VPD_LRDT_TAG_SIZE;
7820 block_end = i + rosize;
7821
7822 if (block_end > BNX2_VPD_LEN)
7823 goto vpd_done;
7824
7825 j = pci_vpd_find_info_keyword(data, i, rosize,
7826 PCI_VPD_RO_KEYWORD_MFR_ID);
7827 if (j < 0)
7828 goto vpd_done;
7829
7830 len = pci_vpd_info_field_size(&data[j]);
7831
7832 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7833 if (j + len > block_end || len != 4 ||
7834 memcmp(&data[j], "1028", 4))
7835 goto vpd_done;
7836
7837 j = pci_vpd_find_info_keyword(data, i, rosize,
7838 PCI_VPD_RO_KEYWORD_VENDOR0);
7839 if (j < 0)
7840 goto vpd_done;
7841
7842 len = pci_vpd_info_field_size(&data[j]);
7843
7844 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7845 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7846 goto vpd_done;
7847
7848 memcpy(bp->fw_version, &data[j], len);
7849 bp->fw_version[len] = ' ';
7850
7851 vpd_done:
7852 kfree(data);
7853 }
7854
7855 static int __devinit
7856 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7857 {
7858 struct bnx2 *bp;
7859 unsigned long mem_len;
7860 int rc, i, j;
7861 u32 reg;
7862 u64 dma_mask, persist_dma_mask;
7863
7864 SET_NETDEV_DEV(dev, &pdev->dev);
7865 bp = netdev_priv(dev);
7866
7867 bp->flags = 0;
7868 bp->phy_flags = 0;
7869
7870 bp->temp_stats_blk =
7871 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7872
7873 if (bp->temp_stats_blk == NULL) {
7874 rc = -ENOMEM;
7875 goto err_out;
7876 }
7877
7878 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7879 rc = pci_enable_device(pdev);
7880 if (rc) {
7881 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7882 goto err_out;
7883 }
7884
7885 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7886 dev_err(&pdev->dev,
7887 "Cannot find PCI device base address, aborting\n");
7888 rc = -ENODEV;
7889 goto err_out_disable;
7890 }
7891
7892 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7893 if (rc) {
7894 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7895 goto err_out_disable;
7896 }
7897
7898 pci_set_master(pdev);
7899 pci_save_state(pdev);
7900
7901 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7902 if (bp->pm_cap == 0) {
7903 dev_err(&pdev->dev,
7904 "Cannot find power management capability, aborting\n");
7905 rc = -EIO;
7906 goto err_out_release;
7907 }
7908
7909 bp->dev = dev;
7910 bp->pdev = pdev;
7911
7912 spin_lock_init(&bp->phy_lock);
7913 spin_lock_init(&bp->indirect_lock);
7914 #ifdef BCM_CNIC
7915 mutex_init(&bp->cnic_lock);
7916 #endif
7917 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7918
7919 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7920 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7921 dev->mem_end = dev->mem_start + mem_len;
7922 dev->irq = pdev->irq;
7923
7924 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7925
7926 if (!bp->regview) {
7927 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7928 rc = -ENOMEM;
7929 goto err_out_release;
7930 }
7931
7932 /* Configure byte swap and enable write to the reg_window registers.
7933 * Rely on CPU to do target byte swapping on big endian systems
7934 * The chip's target access swapping will not swap all accesses
7935 */
7936 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7937 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7938 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7939
7940 bnx2_set_power_state(bp, PCI_D0);
7941
7942 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7943
7944 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7945 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7946 dev_err(&pdev->dev,
7947 "Cannot find PCIE capability, aborting\n");
7948 rc = -EIO;
7949 goto err_out_unmap;
7950 }
7951 bp->flags |= BNX2_FLAG_PCIE;
7952 if (CHIP_REV(bp) == CHIP_REV_Ax)
7953 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7954 } else {
7955 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7956 if (bp->pcix_cap == 0) {
7957 dev_err(&pdev->dev,
7958 "Cannot find PCIX capability, aborting\n");
7959 rc = -EIO;
7960 goto err_out_unmap;
7961 }
7962 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7963 }
7964
7965 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7966 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7967 bp->flags |= BNX2_FLAG_MSIX_CAP;
7968 }
7969
7970 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7971 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7972 bp->flags |= BNX2_FLAG_MSI_CAP;
7973 }
7974
7975 /* 5708 cannot support DMA addresses > 40-bit. */
7976 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7977 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7978 else
7979 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7980
7981 /* Configure DMA attributes. */
7982 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7983 dev->features |= NETIF_F_HIGHDMA;
7984 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7985 if (rc) {
7986 dev_err(&pdev->dev,
7987 "pci_set_consistent_dma_mask failed, aborting\n");
7988 goto err_out_unmap;
7989 }
7990 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7991 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7992 goto err_out_unmap;
7993 }
7994
7995 if (!(bp->flags & BNX2_FLAG_PCIE))
7996 bnx2_get_pci_speed(bp);
7997
7998 /* 5706A0 may falsely detect SERR and PERR. */
7999 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8000 reg = REG_RD(bp, PCI_COMMAND);
8001 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8002 REG_WR(bp, PCI_COMMAND, reg);
8003 }
8004 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8005 !(bp->flags & BNX2_FLAG_PCIX)) {
8006
8007 dev_err(&pdev->dev,
8008 "5706 A1 can only be used in a PCIX bus, aborting\n");
8009 goto err_out_unmap;
8010 }
8011
8012 bnx2_init_nvram(bp);
8013
8014 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8015
8016 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8017 BNX2_SHM_HDR_SIGNATURE_SIG) {
8018 u32 off = PCI_FUNC(pdev->devfn) << 2;
8019
8020 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8021 } else
8022 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8023
8024 /* Get the permanent MAC address. First we need to make sure the
8025 * firmware is actually running.
8026 */
8027 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8028
8029 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8030 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8031 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8032 rc = -ENODEV;
8033 goto err_out_unmap;
8034 }
8035
8036 bnx2_read_vpd_fw_ver(bp);
8037
8038 j = strlen(bp->fw_version);
8039 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8040 for (i = 0; i < 3 && j < 24; i++) {
8041 u8 num, k, skip0;
8042
8043 if (i == 0) {
8044 bp->fw_version[j++] = 'b';
8045 bp->fw_version[j++] = 'c';
8046 bp->fw_version[j++] = ' ';
8047 }
8048 num = (u8) (reg >> (24 - (i * 8)));
8049 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8050 if (num >= k || !skip0 || k == 1) {
8051 bp->fw_version[j++] = (num / k) + '0';
8052 skip0 = 0;
8053 }
8054 }
8055 if (i != 2)
8056 bp->fw_version[j++] = '.';
8057 }
8058 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8059 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8060 bp->wol = 1;
8061
8062 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8063 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8064
8065 for (i = 0; i < 30; i++) {
8066 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8067 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8068 break;
8069 msleep(10);
8070 }
8071 }
8072 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8073 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8074 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8075 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8076 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8077
8078 if (j < 32)
8079 bp->fw_version[j++] = ' ';
8080 for (i = 0; i < 3 && j < 28; i++) {
8081 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8082 reg = swab32(reg);
8083 memcpy(&bp->fw_version[j], &reg, 4);
8084 j += 4;
8085 }
8086 }
8087
8088 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8089 bp->mac_addr[0] = (u8) (reg >> 8);
8090 bp->mac_addr[1] = (u8) reg;
8091
8092 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8093 bp->mac_addr[2] = (u8) (reg >> 24);
8094 bp->mac_addr[3] = (u8) (reg >> 16);
8095 bp->mac_addr[4] = (u8) (reg >> 8);
8096 bp->mac_addr[5] = (u8) reg;
8097
8098 bp->tx_ring_size = MAX_TX_DESC_CNT;
8099 bnx2_set_rx_ring_size(bp, 255);
8100
8101 bp->rx_csum = 1;
8102
8103 bp->tx_quick_cons_trip_int = 2;
8104 bp->tx_quick_cons_trip = 20;
8105 bp->tx_ticks_int = 18;
8106 bp->tx_ticks = 80;
8107
8108 bp->rx_quick_cons_trip_int = 2;
8109 bp->rx_quick_cons_trip = 12;
8110 bp->rx_ticks_int = 18;
8111 bp->rx_ticks = 18;
8112
8113 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8114
8115 bp->current_interval = BNX2_TIMER_INTERVAL;
8116
8117 bp->phy_addr = 1;
8118
8119 /* Disable WOL support if we are running on a SERDES chip. */
8120 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8121 bnx2_get_5709_media(bp);
8122 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8123 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8124
8125 bp->phy_port = PORT_TP;
8126 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8127 bp->phy_port = PORT_FIBRE;
8128 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8129 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8130 bp->flags |= BNX2_FLAG_NO_WOL;
8131 bp->wol = 0;
8132 }
8133 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8134 /* Don't do parallel detect on this board because of
8135 * some board problems. The link will not go down
8136 * if we do parallel detect.
8137 */
8138 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8139 pdev->subsystem_device == 0x310c)
8140 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8141 } else {
8142 bp->phy_addr = 2;
8143 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8144 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8145 }
8146 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8147 CHIP_NUM(bp) == CHIP_NUM_5708)
8148 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8149 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8150 (CHIP_REV(bp) == CHIP_REV_Ax ||
8151 CHIP_REV(bp) == CHIP_REV_Bx))
8152 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8153
8154 bnx2_init_fw_cap(bp);
8155
8156 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8157 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8158 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8159 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8160 bp->flags |= BNX2_FLAG_NO_WOL;
8161 bp->wol = 0;
8162 }
8163
8164 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8165 bp->tx_quick_cons_trip_int =
8166 bp->tx_quick_cons_trip;
8167 bp->tx_ticks_int = bp->tx_ticks;
8168 bp->rx_quick_cons_trip_int =
8169 bp->rx_quick_cons_trip;
8170 bp->rx_ticks_int = bp->rx_ticks;
8171 bp->comp_prod_trip_int = bp->comp_prod_trip;
8172 bp->com_ticks_int = bp->com_ticks;
8173 bp->cmd_ticks_int = bp->cmd_ticks;
8174 }
8175
8176 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8177 *
8178 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8179 * with byte enables disabled on the unused 32-bit word. This is legal
8180 * but causes problems on the AMD 8132 which will eventually stop
8181 * responding after a while.
8182 *
8183 * AMD believes this incompatibility is unique to the 5706, and
8184 * prefers to locally disable MSI rather than globally disabling it.
8185 */
8186 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8187 struct pci_dev *amd_8132 = NULL;
8188
8189 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8190 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8191 amd_8132))) {
8192
8193 if (amd_8132->revision >= 0x10 &&
8194 amd_8132->revision <= 0x13) {
8195 disable_msi = 1;
8196 pci_dev_put(amd_8132);
8197 break;
8198 }
8199 }
8200 }
8201
8202 bnx2_set_default_link(bp);
8203 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8204
8205 init_timer(&bp->timer);
8206 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8207 bp->timer.data = (unsigned long) bp;
8208 bp->timer.function = bnx2_timer;
8209
8210 return 0;
8211
8212 err_out_unmap:
8213 if (bp->regview) {
8214 iounmap(bp->regview);
8215 bp->regview = NULL;
8216 }
8217
8218 err_out_release:
8219 pci_release_regions(pdev);
8220
8221 err_out_disable:
8222 pci_disable_device(pdev);
8223 pci_set_drvdata(pdev, NULL);
8224
8225 err_out:
8226 return rc;
8227 }
8228
8229 static char * __devinit
8230 bnx2_bus_string(struct bnx2 *bp, char *str)
8231 {
8232 char *s = str;
8233
8234 if (bp->flags & BNX2_FLAG_PCIE) {
8235 s += sprintf(s, "PCI Express");
8236 } else {
8237 s += sprintf(s, "PCI");
8238 if (bp->flags & BNX2_FLAG_PCIX)
8239 s += sprintf(s, "-X");
8240 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8241 s += sprintf(s, " 32-bit");
8242 else
8243 s += sprintf(s, " 64-bit");
8244 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8245 }
8246 return str;
8247 }
8248
8249 static void
8250 bnx2_del_napi(struct bnx2 *bp)
8251 {
8252 int i;
8253
8254 for (i = 0; i < bp->irq_nvecs; i++)
8255 netif_napi_del(&bp->bnx2_napi[i].napi);
8256 }
8257
8258 static void
8259 bnx2_init_napi(struct bnx2 *bp)
8260 {
8261 int i;
8262
8263 for (i = 0; i < bp->irq_nvecs; i++) {
8264 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8265 int (*poll)(struct napi_struct *, int);
8266
8267 if (i == 0)
8268 poll = bnx2_poll;
8269 else
8270 poll = bnx2_poll_msix;
8271
8272 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8273 bnapi->bp = bp;
8274 }
8275 }
8276
8277 static const struct net_device_ops bnx2_netdev_ops = {
8278 .ndo_open = bnx2_open,
8279 .ndo_start_xmit = bnx2_start_xmit,
8280 .ndo_stop = bnx2_close,
8281 .ndo_get_stats64 = bnx2_get_stats64,
8282 .ndo_set_rx_mode = bnx2_set_rx_mode,
8283 .ndo_do_ioctl = bnx2_ioctl,
8284 .ndo_validate_addr = eth_validate_addr,
8285 .ndo_set_mac_address = bnx2_change_mac_addr,
8286 .ndo_change_mtu = bnx2_change_mtu,
8287 .ndo_tx_timeout = bnx2_tx_timeout,
8288 #ifdef BCM_VLAN
8289 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8290 #endif
8291 #ifdef CONFIG_NET_POLL_CONTROLLER
8292 .ndo_poll_controller = poll_bnx2,
8293 #endif
8294 };
8295
8296 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8297 {
8298 #ifdef BCM_VLAN
8299 dev->vlan_features |= flags;
8300 #endif
8301 }
8302
8303 static int __devinit
8304 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8305 {
8306 static int version_printed = 0;
8307 struct net_device *dev = NULL;
8308 struct bnx2 *bp;
8309 int rc;
8310 char str[40];
8311
8312 if (version_printed++ == 0)
8313 pr_info("%s", version);
8314
8315 /* dev zeroed in init_etherdev */
8316 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8317
8318 if (!dev)
8319 return -ENOMEM;
8320
8321 rc = bnx2_init_board(pdev, dev);
8322 if (rc < 0) {
8323 free_netdev(dev);
8324 return rc;
8325 }
8326
8327 dev->netdev_ops = &bnx2_netdev_ops;
8328 dev->watchdog_timeo = TX_TIMEOUT;
8329 dev->ethtool_ops = &bnx2_ethtool_ops;
8330
8331 bp = netdev_priv(dev);
8332
8333 pci_set_drvdata(pdev, dev);
8334
8335 rc = bnx2_request_firmware(bp);
8336 if (rc)
8337 goto error;
8338
8339 memcpy(dev->dev_addr, bp->mac_addr, 6);
8340 memcpy(dev->perm_addr, bp->mac_addr, 6);
8341
8342 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
8343 NETIF_F_RXHASH;
8344 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8345 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8346 dev->features |= NETIF_F_IPV6_CSUM;
8347 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8348 }
8349 #ifdef BCM_VLAN
8350 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8351 #endif
8352 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8353 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8354 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8355 dev->features |= NETIF_F_TSO6;
8356 vlan_features_add(dev, NETIF_F_TSO6);
8357 }
8358 if ((rc = register_netdev(dev))) {
8359 dev_err(&pdev->dev, "Cannot register net device\n");
8360 goto error;
8361 }
8362
8363 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8364 board_info[ent->driver_data].name,
8365 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8366 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8367 bnx2_bus_string(bp, str),
8368 dev->base_addr,
8369 bp->pdev->irq, dev->dev_addr);
8370
8371 return 0;
8372
8373 error:
8374 if (bp->mips_firmware)
8375 release_firmware(bp->mips_firmware);
8376 if (bp->rv2p_firmware)
8377 release_firmware(bp->rv2p_firmware);
8378
8379 if (bp->regview)
8380 iounmap(bp->regview);
8381 pci_release_regions(pdev);
8382 pci_disable_device(pdev);
8383 pci_set_drvdata(pdev, NULL);
8384 free_netdev(dev);
8385 return rc;
8386 }
8387
8388 static void __devexit
8389 bnx2_remove_one(struct pci_dev *pdev)
8390 {
8391 struct net_device *dev = pci_get_drvdata(pdev);
8392 struct bnx2 *bp = netdev_priv(dev);
8393
8394 flush_scheduled_work();
8395
8396 unregister_netdev(dev);
8397
8398 if (bp->mips_firmware)
8399 release_firmware(bp->mips_firmware);
8400 if (bp->rv2p_firmware)
8401 release_firmware(bp->rv2p_firmware);
8402
8403 if (bp->regview)
8404 iounmap(bp->regview);
8405
8406 kfree(bp->temp_stats_blk);
8407
8408 free_netdev(dev);
8409 pci_release_regions(pdev);
8410 pci_disable_device(pdev);
8411 pci_set_drvdata(pdev, NULL);
8412 }
8413
8414 static int
8415 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8416 {
8417 struct net_device *dev = pci_get_drvdata(pdev);
8418 struct bnx2 *bp = netdev_priv(dev);
8419
8420 /* PCI register 4 needs to be saved whether netif_running() or not.
8421 * MSI address and data need to be saved if using MSI and
8422 * netif_running().
8423 */
8424 pci_save_state(pdev);
8425 if (!netif_running(dev))
8426 return 0;
8427
8428 flush_scheduled_work();
8429 bnx2_netif_stop(bp, true);
8430 netif_device_detach(dev);
8431 del_timer_sync(&bp->timer);
8432 bnx2_shutdown_chip(bp);
8433 bnx2_free_skbs(bp);
8434 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8435 return 0;
8436 }
8437
8438 static int
8439 bnx2_resume(struct pci_dev *pdev)
8440 {
8441 struct net_device *dev = pci_get_drvdata(pdev);
8442 struct bnx2 *bp = netdev_priv(dev);
8443
8444 pci_restore_state(pdev);
8445 if (!netif_running(dev))
8446 return 0;
8447
8448 bnx2_set_power_state(bp, PCI_D0);
8449 netif_device_attach(dev);
8450 bnx2_init_nic(bp, 1);
8451 bnx2_netif_start(bp, true);
8452 return 0;
8453 }
8454
8455 /**
8456 * bnx2_io_error_detected - called when PCI error is detected
8457 * @pdev: Pointer to PCI device
8458 * @state: The current pci connection state
8459 *
8460 * This function is called after a PCI bus error affecting
8461 * this device has been detected.
8462 */
8463 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8464 pci_channel_state_t state)
8465 {
8466 struct net_device *dev = pci_get_drvdata(pdev);
8467 struct bnx2 *bp = netdev_priv(dev);
8468
8469 rtnl_lock();
8470 netif_device_detach(dev);
8471
8472 if (state == pci_channel_io_perm_failure) {
8473 rtnl_unlock();
8474 return PCI_ERS_RESULT_DISCONNECT;
8475 }
8476
8477 if (netif_running(dev)) {
8478 bnx2_netif_stop(bp, true);
8479 del_timer_sync(&bp->timer);
8480 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8481 }
8482
8483 pci_disable_device(pdev);
8484 rtnl_unlock();
8485
8486 /* Request a slot slot reset. */
8487 return PCI_ERS_RESULT_NEED_RESET;
8488 }
8489
8490 /**
8491 * bnx2_io_slot_reset - called after the pci bus has been reset.
8492 * @pdev: Pointer to PCI device
8493 *
8494 * Restart the card from scratch, as if from a cold-boot.
8495 */
8496 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8497 {
8498 struct net_device *dev = pci_get_drvdata(pdev);
8499 struct bnx2 *bp = netdev_priv(dev);
8500
8501 rtnl_lock();
8502 if (pci_enable_device(pdev)) {
8503 dev_err(&pdev->dev,
8504 "Cannot re-enable PCI device after reset\n");
8505 rtnl_unlock();
8506 return PCI_ERS_RESULT_DISCONNECT;
8507 }
8508 pci_set_master(pdev);
8509 pci_restore_state(pdev);
8510 pci_save_state(pdev);
8511
8512 if (netif_running(dev)) {
8513 bnx2_set_power_state(bp, PCI_D0);
8514 bnx2_init_nic(bp, 1);
8515 }
8516
8517 rtnl_unlock();
8518 return PCI_ERS_RESULT_RECOVERED;
8519 }
8520
8521 /**
8522 * bnx2_io_resume - called when traffic can start flowing again.
8523 * @pdev: Pointer to PCI device
8524 *
8525 * This callback is called when the error recovery driver tells us that
8526 * its OK to resume normal operation.
8527 */
8528 static void bnx2_io_resume(struct pci_dev *pdev)
8529 {
8530 struct net_device *dev = pci_get_drvdata(pdev);
8531 struct bnx2 *bp = netdev_priv(dev);
8532
8533 rtnl_lock();
8534 if (netif_running(dev))
8535 bnx2_netif_start(bp, true);
8536
8537 netif_device_attach(dev);
8538 rtnl_unlock();
8539 }
8540
8541 static struct pci_error_handlers bnx2_err_handler = {
8542 .error_detected = bnx2_io_error_detected,
8543 .slot_reset = bnx2_io_slot_reset,
8544 .resume = bnx2_io_resume,
8545 };
8546
8547 static struct pci_driver bnx2_pci_driver = {
8548 .name = DRV_MODULE_NAME,
8549 .id_table = bnx2_pci_tbl,
8550 .probe = bnx2_init_one,
8551 .remove = __devexit_p(bnx2_remove_one),
8552 .suspend = bnx2_suspend,
8553 .resume = bnx2_resume,
8554 .err_handler = &bnx2_err_handler,
8555 };
8556
8557 static int __init bnx2_init(void)
8558 {
8559 return pci_register_driver(&bnx2_pci_driver);
8560 }
8561
8562 static void __exit bnx2_cleanup(void)
8563 {
8564 pci_unregister_driver(&bnx2_pci_driver);
8565 }
8566
8567 module_init(bnx2_init);
8568 module_exit(bnx2_cleanup);
8569
8570
8571