]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/bnx2.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/lowpan...
[mirror_ubuntu-artful-kernel.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.1"
63 #define DRV_MODULE_RELDATE "May 6, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
73
74 static char version[] __devinitdata =
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85
86 static int disable_msi = 0;
87
88 module_param(disable_msi, int, 0);
89 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
90
91 typedef enum {
92 BCM5706 = 0,
93 NC370T,
94 NC370I,
95 BCM5706S,
96 NC370F,
97 BCM5708,
98 BCM5708S,
99 BCM5709,
100 BCM5709S,
101 BCM5716,
102 BCM5716S,
103 } board_t;
104
105 /* indexed by board_t, above */
106 static struct {
107 char *name;
108 } board_info[] __devinitdata = {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
120 };
121
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
124 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
132 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
141 { PCI_VENDOR_ID_BROADCOM, 0x163b,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
143 { PCI_VENDOR_ID_BROADCOM, 0x163c,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
145 { 0, }
146 };
147
148 static struct flash_spec flash_table[] =
149 {
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 /* Slow EEPROM */
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
155 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
156 "EEPROM - slow"},
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
160 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
161 "Entry 0001"},
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
166 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
172 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 "Entry 0100"},
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
194 "Non-buffered flash (64kB)"},
195 /* Fast EEPROM */
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
198 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
199 "EEPROM - fast"},
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
203 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
204 "Entry 1001"},
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
209 "Entry 1010"},
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
213 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
218 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1100"},
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
224 "Entry 1101"},
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
228 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
233 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
234 "Buffered flash (256kB)"},
235 };
236
237 static struct flash_spec flash_5709 = {
238 .flags = BNX2_NV_BUFFERED,
239 .page_bits = BCM5709_FLASH_PAGE_BITS,
240 .page_size = BCM5709_FLASH_PAGE_SIZE,
241 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
242 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
243 .name = "5709 Buffered flash (256kB)",
244 };
245
246 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
247
248 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
249 {
250 u32 diff;
251
252 smp_mb();
253
254 /* The ring uses 256 indices for 255 entries, one of them
255 * needs to be skipped.
256 */
257 diff = txr->tx_prod - txr->tx_cons;
258 if (unlikely(diff >= TX_DESC_CNT)) {
259 diff &= 0xffff;
260 if (diff == TX_DESC_CNT)
261 diff = MAX_TX_DESC_CNT;
262 }
263 return (bp->tx_ring_size - diff);
264 }
265
266 static u32
267 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
268 {
269 u32 val;
270
271 spin_lock_bh(&bp->indirect_lock);
272 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
273 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
274 spin_unlock_bh(&bp->indirect_lock);
275 return val;
276 }
277
278 static void
279 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
280 {
281 spin_lock_bh(&bp->indirect_lock);
282 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
283 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
284 spin_unlock_bh(&bp->indirect_lock);
285 }
286
287 static void
288 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
289 {
290 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
291 }
292
293 static u32
294 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
295 {
296 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
297 }
298
299 static void
300 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
301 {
302 offset += cid_addr;
303 spin_lock_bh(&bp->indirect_lock);
304 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
305 int i;
306
307 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
308 REG_WR(bp, BNX2_CTX_CTX_CTRL,
309 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
310 for (i = 0; i < 5; i++) {
311 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
312 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
313 break;
314 udelay(5);
315 }
316 } else {
317 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
318 REG_WR(bp, BNX2_CTX_DATA, val);
319 }
320 spin_unlock_bh(&bp->indirect_lock);
321 }
322
323 #ifdef BCM_CNIC
324 static int
325 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
326 {
327 struct bnx2 *bp = netdev_priv(dev);
328 struct drv_ctl_io *io = &info->data.io;
329
330 switch (info->cmd) {
331 case DRV_CTL_IO_WR_CMD:
332 bnx2_reg_wr_ind(bp, io->offset, io->data);
333 break;
334 case DRV_CTL_IO_RD_CMD:
335 io->data = bnx2_reg_rd_ind(bp, io->offset);
336 break;
337 case DRV_CTL_CTX_WR_CMD:
338 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
339 break;
340 default:
341 return -EINVAL;
342 }
343 return 0;
344 }
345
346 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
347 {
348 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
349 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
350 int sb_id;
351
352 if (bp->flags & BNX2_FLAG_USING_MSIX) {
353 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
354 bnapi->cnic_present = 0;
355 sb_id = bp->irq_nvecs;
356 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
357 } else {
358 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
359 bnapi->cnic_tag = bnapi->last_status_idx;
360 bnapi->cnic_present = 1;
361 sb_id = 0;
362 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
363 }
364
365 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
366 cp->irq_arr[0].status_blk = (void *)
367 ((unsigned long) bnapi->status_blk.msi +
368 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
369 cp->irq_arr[0].status_blk_num = sb_id;
370 cp->num_irq = 1;
371 }
372
373 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
374 void *data)
375 {
376 struct bnx2 *bp = netdev_priv(dev);
377 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
378
379 if (ops == NULL)
380 return -EINVAL;
381
382 if (cp->drv_state & CNIC_DRV_STATE_REGD)
383 return -EBUSY;
384
385 bp->cnic_data = data;
386 rcu_assign_pointer(bp->cnic_ops, ops);
387
388 cp->num_irq = 0;
389 cp->drv_state = CNIC_DRV_STATE_REGD;
390
391 bnx2_setup_cnic_irq_info(bp);
392
393 return 0;
394 }
395
396 static int bnx2_unregister_cnic(struct net_device *dev)
397 {
398 struct bnx2 *bp = netdev_priv(dev);
399 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
400 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
401
402 cp->drv_state = 0;
403 bnapi->cnic_present = 0;
404 rcu_assign_pointer(bp->cnic_ops, NULL);
405 synchronize_rcu();
406 return 0;
407 }
408
409 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
410 {
411 struct bnx2 *bp = netdev_priv(dev);
412 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
413
414 cp->drv_owner = THIS_MODULE;
415 cp->chip_id = bp->chip_id;
416 cp->pdev = bp->pdev;
417 cp->io_base = bp->regview;
418 cp->drv_ctl = bnx2_drv_ctl;
419 cp->drv_register_cnic = bnx2_register_cnic;
420 cp->drv_unregister_cnic = bnx2_unregister_cnic;
421
422 return cp;
423 }
424 EXPORT_SYMBOL(bnx2_cnic_probe);
425
426 static void
427 bnx2_cnic_stop(struct bnx2 *bp)
428 {
429 struct cnic_ops *c_ops;
430 struct cnic_ctl_info info;
431
432 rcu_read_lock();
433 c_ops = rcu_dereference(bp->cnic_ops);
434 if (c_ops) {
435 info.cmd = CNIC_CTL_STOP_CMD;
436 c_ops->cnic_ctl(bp->cnic_data, &info);
437 }
438 rcu_read_unlock();
439 }
440
441 static void
442 bnx2_cnic_start(struct bnx2 *bp)
443 {
444 struct cnic_ops *c_ops;
445 struct cnic_ctl_info info;
446
447 rcu_read_lock();
448 c_ops = rcu_dereference(bp->cnic_ops);
449 if (c_ops) {
450 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
451 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
452
453 bnapi->cnic_tag = bnapi->last_status_idx;
454 }
455 info.cmd = CNIC_CTL_START_CMD;
456 c_ops->cnic_ctl(bp->cnic_data, &info);
457 }
458 rcu_read_unlock();
459 }
460
461 #else
462
463 static void
464 bnx2_cnic_stop(struct bnx2 *bp)
465 {
466 }
467
468 static void
469 bnx2_cnic_start(struct bnx2 *bp)
470 {
471 }
472
473 #endif
474
475 static int
476 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
477 {
478 u32 val1;
479 int i, ret;
480
481 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
482 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
483 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
484
485 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
486 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487
488 udelay(40);
489 }
490
491 val1 = (bp->phy_addr << 21) | (reg << 16) |
492 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
493 BNX2_EMAC_MDIO_COMM_START_BUSY;
494 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
495
496 for (i = 0; i < 50; i++) {
497 udelay(10);
498
499 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
500 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
501 udelay(5);
502
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
505
506 break;
507 }
508 }
509
510 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
511 *val = 0x0;
512 ret = -EBUSY;
513 }
514 else {
515 *val = val1;
516 ret = 0;
517 }
518
519 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
520 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
521 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
522
523 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
524 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525
526 udelay(40);
527 }
528
529 return ret;
530 }
531
532 static int
533 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
534 {
535 u32 val1;
536 int i, ret;
537
538 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
539 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
540 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
541
542 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
543 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544
545 udelay(40);
546 }
547
548 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
549 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
550 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
551 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
552
553 for (i = 0; i < 50; i++) {
554 udelay(10);
555
556 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
557 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
558 udelay(5);
559 break;
560 }
561 }
562
563 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
564 ret = -EBUSY;
565 else
566 ret = 0;
567
568 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
569 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
570 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
571
572 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
573 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574
575 udelay(40);
576 }
577
578 return ret;
579 }
580
581 static void
582 bnx2_disable_int(struct bnx2 *bp)
583 {
584 int i;
585 struct bnx2_napi *bnapi;
586
587 for (i = 0; i < bp->irq_nvecs; i++) {
588 bnapi = &bp->bnx2_napi[i];
589 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
590 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
591 }
592 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
593 }
594
595 static void
596 bnx2_enable_int(struct bnx2 *bp)
597 {
598 int i;
599 struct bnx2_napi *bnapi;
600
601 for (i = 0; i < bp->irq_nvecs; i++) {
602 bnapi = &bp->bnx2_napi[i];
603
604 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
605 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
606 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
607 bnapi->last_status_idx);
608
609 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
611 bnapi->last_status_idx);
612 }
613 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
614 }
615
616 static void
617 bnx2_disable_int_sync(struct bnx2 *bp)
618 {
619 int i;
620
621 atomic_inc(&bp->intr_sem);
622 bnx2_disable_int(bp);
623 for (i = 0; i < bp->irq_nvecs; i++)
624 synchronize_irq(bp->irq_tbl[i].vector);
625 }
626
627 static void
628 bnx2_napi_disable(struct bnx2 *bp)
629 {
630 int i;
631
632 for (i = 0; i < bp->irq_nvecs; i++)
633 napi_disable(&bp->bnx2_napi[i].napi);
634 }
635
636 static void
637 bnx2_napi_enable(struct bnx2 *bp)
638 {
639 int i;
640
641 for (i = 0; i < bp->irq_nvecs; i++)
642 napi_enable(&bp->bnx2_napi[i].napi);
643 }
644
645 static void
646 bnx2_netif_stop(struct bnx2 *bp)
647 {
648 bnx2_cnic_stop(bp);
649 bnx2_disable_int_sync(bp);
650 if (netif_running(bp->dev)) {
651 bnx2_napi_disable(bp);
652 netif_tx_disable(bp->dev);
653 bp->dev->trans_start = jiffies; /* prevent tx timeout */
654 }
655 }
656
657 static void
658 bnx2_netif_start(struct bnx2 *bp)
659 {
660 if (atomic_dec_and_test(&bp->intr_sem)) {
661 if (netif_running(bp->dev)) {
662 netif_tx_wake_all_queues(bp->dev);
663 bnx2_napi_enable(bp);
664 bnx2_enable_int(bp);
665 bnx2_cnic_start(bp);
666 }
667 }
668 }
669
670 static void
671 bnx2_free_tx_mem(struct bnx2 *bp)
672 {
673 int i;
674
675 for (i = 0; i < bp->num_tx_rings; i++) {
676 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
677 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
678
679 if (txr->tx_desc_ring) {
680 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
681 txr->tx_desc_ring,
682 txr->tx_desc_mapping);
683 txr->tx_desc_ring = NULL;
684 }
685 kfree(txr->tx_buf_ring);
686 txr->tx_buf_ring = NULL;
687 }
688 }
689
690 static void
691 bnx2_free_rx_mem(struct bnx2 *bp)
692 {
693 int i;
694
695 for (i = 0; i < bp->num_rx_rings; i++) {
696 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
697 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
698 int j;
699
700 for (j = 0; j < bp->rx_max_ring; j++) {
701 if (rxr->rx_desc_ring[j])
702 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
703 rxr->rx_desc_ring[j],
704 rxr->rx_desc_mapping[j]);
705 rxr->rx_desc_ring[j] = NULL;
706 }
707 vfree(rxr->rx_buf_ring);
708 rxr->rx_buf_ring = NULL;
709
710 for (j = 0; j < bp->rx_max_pg_ring; j++) {
711 if (rxr->rx_pg_desc_ring[j])
712 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
713 rxr->rx_pg_desc_ring[j],
714 rxr->rx_pg_desc_mapping[j]);
715 rxr->rx_pg_desc_ring[j] = NULL;
716 }
717 vfree(rxr->rx_pg_ring);
718 rxr->rx_pg_ring = NULL;
719 }
720 }
721
722 static int
723 bnx2_alloc_tx_mem(struct bnx2 *bp)
724 {
725 int i;
726
727 for (i = 0; i < bp->num_tx_rings; i++) {
728 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
729 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
730
731 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
732 if (txr->tx_buf_ring == NULL)
733 return -ENOMEM;
734
735 txr->tx_desc_ring =
736 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
737 &txr->tx_desc_mapping);
738 if (txr->tx_desc_ring == NULL)
739 return -ENOMEM;
740 }
741 return 0;
742 }
743
744 static int
745 bnx2_alloc_rx_mem(struct bnx2 *bp)
746 {
747 int i;
748
749 for (i = 0; i < bp->num_rx_rings; i++) {
750 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
751 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
752 int j;
753
754 rxr->rx_buf_ring =
755 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
756 if (rxr->rx_buf_ring == NULL)
757 return -ENOMEM;
758
759 memset(rxr->rx_buf_ring, 0,
760 SW_RXBD_RING_SIZE * bp->rx_max_ring);
761
762 for (j = 0; j < bp->rx_max_ring; j++) {
763 rxr->rx_desc_ring[j] =
764 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
765 &rxr->rx_desc_mapping[j]);
766 if (rxr->rx_desc_ring[j] == NULL)
767 return -ENOMEM;
768
769 }
770
771 if (bp->rx_pg_ring_size) {
772 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
773 bp->rx_max_pg_ring);
774 if (rxr->rx_pg_ring == NULL)
775 return -ENOMEM;
776
777 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
778 bp->rx_max_pg_ring);
779 }
780
781 for (j = 0; j < bp->rx_max_pg_ring; j++) {
782 rxr->rx_pg_desc_ring[j] =
783 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
784 &rxr->rx_pg_desc_mapping[j]);
785 if (rxr->rx_pg_desc_ring[j] == NULL)
786 return -ENOMEM;
787
788 }
789 }
790 return 0;
791 }
792
793 static void
794 bnx2_free_mem(struct bnx2 *bp)
795 {
796 int i;
797 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
798
799 bnx2_free_tx_mem(bp);
800 bnx2_free_rx_mem(bp);
801
802 for (i = 0; i < bp->ctx_pages; i++) {
803 if (bp->ctx_blk[i]) {
804 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
805 bp->ctx_blk[i],
806 bp->ctx_blk_mapping[i]);
807 bp->ctx_blk[i] = NULL;
808 }
809 }
810 if (bnapi->status_blk.msi) {
811 pci_free_consistent(bp->pdev, bp->status_stats_size,
812 bnapi->status_blk.msi,
813 bp->status_blk_mapping);
814 bnapi->status_blk.msi = NULL;
815 bp->stats_blk = NULL;
816 }
817 }
818
819 static int
820 bnx2_alloc_mem(struct bnx2 *bp)
821 {
822 int i, status_blk_size, err;
823 struct bnx2_napi *bnapi;
824 void *status_blk;
825
826 /* Combine status and statistics blocks into one allocation. */
827 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
828 if (bp->flags & BNX2_FLAG_MSIX_CAP)
829 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
830 BNX2_SBLK_MSIX_ALIGN_SIZE);
831 bp->status_stats_size = status_blk_size +
832 sizeof(struct statistics_block);
833
834 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
835 &bp->status_blk_mapping);
836 if (status_blk == NULL)
837 goto alloc_mem_err;
838
839 memset(status_blk, 0, bp->status_stats_size);
840
841 bnapi = &bp->bnx2_napi[0];
842 bnapi->status_blk.msi = status_blk;
843 bnapi->hw_tx_cons_ptr =
844 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
845 bnapi->hw_rx_cons_ptr =
846 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
847 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
848 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
849 struct status_block_msix *sblk;
850
851 bnapi = &bp->bnx2_napi[i];
852
853 sblk = (void *) (status_blk +
854 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
855 bnapi->status_blk.msix = sblk;
856 bnapi->hw_tx_cons_ptr =
857 &sblk->status_tx_quick_consumer_index;
858 bnapi->hw_rx_cons_ptr =
859 &sblk->status_rx_quick_consumer_index;
860 bnapi->int_num = i << 24;
861 }
862 }
863
864 bp->stats_blk = status_blk + status_blk_size;
865
866 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
867
868 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
869 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
870 if (bp->ctx_pages == 0)
871 bp->ctx_pages = 1;
872 for (i = 0; i < bp->ctx_pages; i++) {
873 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
874 BCM_PAGE_SIZE,
875 &bp->ctx_blk_mapping[i]);
876 if (bp->ctx_blk[i] == NULL)
877 goto alloc_mem_err;
878 }
879 }
880
881 err = bnx2_alloc_rx_mem(bp);
882 if (err)
883 goto alloc_mem_err;
884
885 err = bnx2_alloc_tx_mem(bp);
886 if (err)
887 goto alloc_mem_err;
888
889 return 0;
890
891 alloc_mem_err:
892 bnx2_free_mem(bp);
893 return -ENOMEM;
894 }
895
896 static void
897 bnx2_report_fw_link(struct bnx2 *bp)
898 {
899 u32 fw_link_status = 0;
900
901 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
902 return;
903
904 if (bp->link_up) {
905 u32 bmsr;
906
907 switch (bp->line_speed) {
908 case SPEED_10:
909 if (bp->duplex == DUPLEX_HALF)
910 fw_link_status = BNX2_LINK_STATUS_10HALF;
911 else
912 fw_link_status = BNX2_LINK_STATUS_10FULL;
913 break;
914 case SPEED_100:
915 if (bp->duplex == DUPLEX_HALF)
916 fw_link_status = BNX2_LINK_STATUS_100HALF;
917 else
918 fw_link_status = BNX2_LINK_STATUS_100FULL;
919 break;
920 case SPEED_1000:
921 if (bp->duplex == DUPLEX_HALF)
922 fw_link_status = BNX2_LINK_STATUS_1000HALF;
923 else
924 fw_link_status = BNX2_LINK_STATUS_1000FULL;
925 break;
926 case SPEED_2500:
927 if (bp->duplex == DUPLEX_HALF)
928 fw_link_status = BNX2_LINK_STATUS_2500HALF;
929 else
930 fw_link_status = BNX2_LINK_STATUS_2500FULL;
931 break;
932 }
933
934 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
935
936 if (bp->autoneg) {
937 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
938
939 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
940 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
941
942 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
943 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
944 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
945 else
946 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
947 }
948 }
949 else
950 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
951
952 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
953 }
954
955 static char *
956 bnx2_xceiver_str(struct bnx2 *bp)
957 {
958 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
959 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
960 "Copper"));
961 }
962
963 static void
964 bnx2_report_link(struct bnx2 *bp)
965 {
966 if (bp->link_up) {
967 netif_carrier_on(bp->dev);
968 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
969 bnx2_xceiver_str(bp));
970
971 printk("%d Mbps ", bp->line_speed);
972
973 if (bp->duplex == DUPLEX_FULL)
974 printk("full duplex");
975 else
976 printk("half duplex");
977
978 if (bp->flow_ctrl) {
979 if (bp->flow_ctrl & FLOW_CTRL_RX) {
980 printk(", receive ");
981 if (bp->flow_ctrl & FLOW_CTRL_TX)
982 printk("& transmit ");
983 }
984 else {
985 printk(", transmit ");
986 }
987 printk("flow control ON");
988 }
989 printk("\n");
990 }
991 else {
992 netif_carrier_off(bp->dev);
993 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
994 bnx2_xceiver_str(bp));
995 }
996
997 bnx2_report_fw_link(bp);
998 }
999
1000 static void
1001 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1002 {
1003 u32 local_adv, remote_adv;
1004
1005 bp->flow_ctrl = 0;
1006 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1007 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1008
1009 if (bp->duplex == DUPLEX_FULL) {
1010 bp->flow_ctrl = bp->req_flow_ctrl;
1011 }
1012 return;
1013 }
1014
1015 if (bp->duplex != DUPLEX_FULL) {
1016 return;
1017 }
1018
1019 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1020 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1021 u32 val;
1022
1023 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1024 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1025 bp->flow_ctrl |= FLOW_CTRL_TX;
1026 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1027 bp->flow_ctrl |= FLOW_CTRL_RX;
1028 return;
1029 }
1030
1031 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1032 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1033
1034 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1035 u32 new_local_adv = 0;
1036 u32 new_remote_adv = 0;
1037
1038 if (local_adv & ADVERTISE_1000XPAUSE)
1039 new_local_adv |= ADVERTISE_PAUSE_CAP;
1040 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1041 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1042 if (remote_adv & ADVERTISE_1000XPAUSE)
1043 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1044 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1045 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1046
1047 local_adv = new_local_adv;
1048 remote_adv = new_remote_adv;
1049 }
1050
1051 /* See Table 28B-3 of 802.3ab-1999 spec. */
1052 if (local_adv & ADVERTISE_PAUSE_CAP) {
1053 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1054 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1055 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1056 }
1057 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1058 bp->flow_ctrl = FLOW_CTRL_RX;
1059 }
1060 }
1061 else {
1062 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1063 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 }
1065 }
1066 }
1067 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1068 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1069 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1070
1071 bp->flow_ctrl = FLOW_CTRL_TX;
1072 }
1073 }
1074 }
1075
1076 static int
1077 bnx2_5709s_linkup(struct bnx2 *bp)
1078 {
1079 u32 val, speed;
1080
1081 bp->link_up = 1;
1082
1083 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1084 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1085 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1086
1087 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1088 bp->line_speed = bp->req_line_speed;
1089 bp->duplex = bp->req_duplex;
1090 return 0;
1091 }
1092 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1093 switch (speed) {
1094 case MII_BNX2_GP_TOP_AN_SPEED_10:
1095 bp->line_speed = SPEED_10;
1096 break;
1097 case MII_BNX2_GP_TOP_AN_SPEED_100:
1098 bp->line_speed = SPEED_100;
1099 break;
1100 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1101 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1102 bp->line_speed = SPEED_1000;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1105 bp->line_speed = SPEED_2500;
1106 break;
1107 }
1108 if (val & MII_BNX2_GP_TOP_AN_FD)
1109 bp->duplex = DUPLEX_FULL;
1110 else
1111 bp->duplex = DUPLEX_HALF;
1112 return 0;
1113 }
1114
1115 static int
1116 bnx2_5708s_linkup(struct bnx2 *bp)
1117 {
1118 u32 val;
1119
1120 bp->link_up = 1;
1121 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1122 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1123 case BCM5708S_1000X_STAT1_SPEED_10:
1124 bp->line_speed = SPEED_10;
1125 break;
1126 case BCM5708S_1000X_STAT1_SPEED_100:
1127 bp->line_speed = SPEED_100;
1128 break;
1129 case BCM5708S_1000X_STAT1_SPEED_1G:
1130 bp->line_speed = SPEED_1000;
1131 break;
1132 case BCM5708S_1000X_STAT1_SPEED_2G5:
1133 bp->line_speed = SPEED_2500;
1134 break;
1135 }
1136 if (val & BCM5708S_1000X_STAT1_FD)
1137 bp->duplex = DUPLEX_FULL;
1138 else
1139 bp->duplex = DUPLEX_HALF;
1140
1141 return 0;
1142 }
1143
1144 static int
1145 bnx2_5706s_linkup(struct bnx2 *bp)
1146 {
1147 u32 bmcr, local_adv, remote_adv, common;
1148
1149 bp->link_up = 1;
1150 bp->line_speed = SPEED_1000;
1151
1152 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1153 if (bmcr & BMCR_FULLDPLX) {
1154 bp->duplex = DUPLEX_FULL;
1155 }
1156 else {
1157 bp->duplex = DUPLEX_HALF;
1158 }
1159
1160 if (!(bmcr & BMCR_ANENABLE)) {
1161 return 0;
1162 }
1163
1164 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1165 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1166
1167 common = local_adv & remote_adv;
1168 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1169
1170 if (common & ADVERTISE_1000XFULL) {
1171 bp->duplex = DUPLEX_FULL;
1172 }
1173 else {
1174 bp->duplex = DUPLEX_HALF;
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 static int
1182 bnx2_copper_linkup(struct bnx2 *bp)
1183 {
1184 u32 bmcr;
1185
1186 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1187 if (bmcr & BMCR_ANENABLE) {
1188 u32 local_adv, remote_adv, common;
1189
1190 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1191 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1192
1193 common = local_adv & (remote_adv >> 2);
1194 if (common & ADVERTISE_1000FULL) {
1195 bp->line_speed = SPEED_1000;
1196 bp->duplex = DUPLEX_FULL;
1197 }
1198 else if (common & ADVERTISE_1000HALF) {
1199 bp->line_speed = SPEED_1000;
1200 bp->duplex = DUPLEX_HALF;
1201 }
1202 else {
1203 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1204 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1205
1206 common = local_adv & remote_adv;
1207 if (common & ADVERTISE_100FULL) {
1208 bp->line_speed = SPEED_100;
1209 bp->duplex = DUPLEX_FULL;
1210 }
1211 else if (common & ADVERTISE_100HALF) {
1212 bp->line_speed = SPEED_100;
1213 bp->duplex = DUPLEX_HALF;
1214 }
1215 else if (common & ADVERTISE_10FULL) {
1216 bp->line_speed = SPEED_10;
1217 bp->duplex = DUPLEX_FULL;
1218 }
1219 else if (common & ADVERTISE_10HALF) {
1220 bp->line_speed = SPEED_10;
1221 bp->duplex = DUPLEX_HALF;
1222 }
1223 else {
1224 bp->line_speed = 0;
1225 bp->link_up = 0;
1226 }
1227 }
1228 }
1229 else {
1230 if (bmcr & BMCR_SPEED100) {
1231 bp->line_speed = SPEED_100;
1232 }
1233 else {
1234 bp->line_speed = SPEED_10;
1235 }
1236 if (bmcr & BMCR_FULLDPLX) {
1237 bp->duplex = DUPLEX_FULL;
1238 }
1239 else {
1240 bp->duplex = DUPLEX_HALF;
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247 static void
1248 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1249 {
1250 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1251
1252 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1253 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1254 val |= 0x02 << 8;
1255
1256 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1257 u32 lo_water, hi_water;
1258
1259 if (bp->flow_ctrl & FLOW_CTRL_TX)
1260 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1261 else
1262 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1263 if (lo_water >= bp->rx_ring_size)
1264 lo_water = 0;
1265
1266 hi_water = bp->rx_ring_size / 4;
1267
1268 if (hi_water <= lo_water)
1269 lo_water = 0;
1270
1271 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1272 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1273
1274 if (hi_water > 0xf)
1275 hi_water = 0xf;
1276 else if (hi_water == 0)
1277 lo_water = 0;
1278 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1279 }
1280 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1281 }
1282
1283 static void
1284 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1285 {
1286 int i;
1287 u32 cid;
1288
1289 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1290 if (i == 1)
1291 cid = RX_RSS_CID;
1292 bnx2_init_rx_context(bp, cid);
1293 }
1294 }
1295
1296 static void
1297 bnx2_set_mac_link(struct bnx2 *bp)
1298 {
1299 u32 val;
1300
1301 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1302 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1303 (bp->duplex == DUPLEX_HALF)) {
1304 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1305 }
1306
1307 /* Configure the EMAC mode register. */
1308 val = REG_RD(bp, BNX2_EMAC_MODE);
1309
1310 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1311 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1312 BNX2_EMAC_MODE_25G_MODE);
1313
1314 if (bp->link_up) {
1315 switch (bp->line_speed) {
1316 case SPEED_10:
1317 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1318 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1319 break;
1320 }
1321 /* fall through */
1322 case SPEED_100:
1323 val |= BNX2_EMAC_MODE_PORT_MII;
1324 break;
1325 case SPEED_2500:
1326 val |= BNX2_EMAC_MODE_25G_MODE;
1327 /* fall through */
1328 case SPEED_1000:
1329 val |= BNX2_EMAC_MODE_PORT_GMII;
1330 break;
1331 }
1332 }
1333 else {
1334 val |= BNX2_EMAC_MODE_PORT_GMII;
1335 }
1336
1337 /* Set the MAC to operate in the appropriate duplex mode. */
1338 if (bp->duplex == DUPLEX_HALF)
1339 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1340 REG_WR(bp, BNX2_EMAC_MODE, val);
1341
1342 /* Enable/disable rx PAUSE. */
1343 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1344
1345 if (bp->flow_ctrl & FLOW_CTRL_RX)
1346 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1347 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1348
1349 /* Enable/disable tx PAUSE. */
1350 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1351 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1352
1353 if (bp->flow_ctrl & FLOW_CTRL_TX)
1354 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1355 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1356
1357 /* Acknowledge the interrupt. */
1358 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1359
1360 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1361 bnx2_init_all_rx_contexts(bp);
1362 }
1363
1364 static void
1365 bnx2_enable_bmsr1(struct bnx2 *bp)
1366 {
1367 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1368 (CHIP_NUM(bp) == CHIP_NUM_5709))
1369 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1370 MII_BNX2_BLK_ADDR_GP_STATUS);
1371 }
1372
1373 static void
1374 bnx2_disable_bmsr1(struct bnx2 *bp)
1375 {
1376 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1377 (CHIP_NUM(bp) == CHIP_NUM_5709))
1378 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1379 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1380 }
1381
1382 static int
1383 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1384 {
1385 u32 up1;
1386 int ret = 1;
1387
1388 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1389 return 0;
1390
1391 if (bp->autoneg & AUTONEG_SPEED)
1392 bp->advertising |= ADVERTISED_2500baseX_Full;
1393
1394 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1395 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1396
1397 bnx2_read_phy(bp, bp->mii_up1, &up1);
1398 if (!(up1 & BCM5708S_UP1_2G5)) {
1399 up1 |= BCM5708S_UP1_2G5;
1400 bnx2_write_phy(bp, bp->mii_up1, up1);
1401 ret = 0;
1402 }
1403
1404 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1405 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1406 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1407
1408 return ret;
1409 }
1410
1411 static int
1412 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1413 {
1414 u32 up1;
1415 int ret = 0;
1416
1417 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1418 return 0;
1419
1420 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1421 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1422
1423 bnx2_read_phy(bp, bp->mii_up1, &up1);
1424 if (up1 & BCM5708S_UP1_2G5) {
1425 up1 &= ~BCM5708S_UP1_2G5;
1426 bnx2_write_phy(bp, bp->mii_up1, up1);
1427 ret = 1;
1428 }
1429
1430 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1431 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1432 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1433
1434 return ret;
1435 }
1436
1437 static void
1438 bnx2_enable_forced_2g5(struct bnx2 *bp)
1439 {
1440 u32 bmcr;
1441
1442 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1443 return;
1444
1445 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1446 u32 val;
1447
1448 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1449 MII_BNX2_BLK_ADDR_SERDES_DIG);
1450 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1451 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1452 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1453 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1454
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1457 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1458
1459 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1460 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1461 bmcr |= BCM5708S_BMCR_FORCE_2500;
1462 }
1463
1464 if (bp->autoneg & AUTONEG_SPEED) {
1465 bmcr &= ~BMCR_ANENABLE;
1466 if (bp->req_duplex == DUPLEX_FULL)
1467 bmcr |= BMCR_FULLDPLX;
1468 }
1469 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1470 }
1471
1472 static void
1473 bnx2_disable_forced_2g5(struct bnx2 *bp)
1474 {
1475 u32 bmcr;
1476
1477 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1478 return;
1479
1480 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1481 u32 val;
1482
1483 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1484 MII_BNX2_BLK_ADDR_SERDES_DIG);
1485 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1486 val &= ~MII_BNX2_SD_MISC1_FORCE;
1487 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1488
1489 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1490 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1491 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1492
1493 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1494 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1495 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1496 }
1497
1498 if (bp->autoneg & AUTONEG_SPEED)
1499 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1500 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1501 }
1502
1503 static void
1504 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1505 {
1506 u32 val;
1507
1508 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1509 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1510 if (start)
1511 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1512 else
1513 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1514 }
1515
1516 static int
1517 bnx2_set_link(struct bnx2 *bp)
1518 {
1519 u32 bmsr;
1520 u8 link_up;
1521
1522 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1523 bp->link_up = 1;
1524 return 0;
1525 }
1526
1527 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1528 return 0;
1529
1530 link_up = bp->link_up;
1531
1532 bnx2_enable_bmsr1(bp);
1533 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1534 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1535 bnx2_disable_bmsr1(bp);
1536
1537 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1538 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1539 u32 val, an_dbg;
1540
1541 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1542 bnx2_5706s_force_link_dn(bp, 0);
1543 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1544 }
1545 val = REG_RD(bp, BNX2_EMAC_STATUS);
1546
1547 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1548 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1549 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1550
1551 if ((val & BNX2_EMAC_STATUS_LINK) &&
1552 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1553 bmsr |= BMSR_LSTATUS;
1554 else
1555 bmsr &= ~BMSR_LSTATUS;
1556 }
1557
1558 if (bmsr & BMSR_LSTATUS) {
1559 bp->link_up = 1;
1560
1561 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1562 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1563 bnx2_5706s_linkup(bp);
1564 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1565 bnx2_5708s_linkup(bp);
1566 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1567 bnx2_5709s_linkup(bp);
1568 }
1569 else {
1570 bnx2_copper_linkup(bp);
1571 }
1572 bnx2_resolve_flow_ctrl(bp);
1573 }
1574 else {
1575 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1576 (bp->autoneg & AUTONEG_SPEED))
1577 bnx2_disable_forced_2g5(bp);
1578
1579 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1580 u32 bmcr;
1581
1582 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1583 bmcr |= BMCR_ANENABLE;
1584 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1585
1586 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1587 }
1588 bp->link_up = 0;
1589 }
1590
1591 if (bp->link_up != link_up) {
1592 bnx2_report_link(bp);
1593 }
1594
1595 bnx2_set_mac_link(bp);
1596
1597 return 0;
1598 }
1599
1600 static int
1601 bnx2_reset_phy(struct bnx2 *bp)
1602 {
1603 int i;
1604 u32 reg;
1605
1606 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1607
1608 #define PHY_RESET_MAX_WAIT 100
1609 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1610 udelay(10);
1611
1612 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1613 if (!(reg & BMCR_RESET)) {
1614 udelay(20);
1615 break;
1616 }
1617 }
1618 if (i == PHY_RESET_MAX_WAIT) {
1619 return -EBUSY;
1620 }
1621 return 0;
1622 }
1623
1624 static u32
1625 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1626 {
1627 u32 adv = 0;
1628
1629 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1630 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1631
1632 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1633 adv = ADVERTISE_1000XPAUSE;
1634 }
1635 else {
1636 adv = ADVERTISE_PAUSE_CAP;
1637 }
1638 }
1639 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1640 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1641 adv = ADVERTISE_1000XPSE_ASYM;
1642 }
1643 else {
1644 adv = ADVERTISE_PAUSE_ASYM;
1645 }
1646 }
1647 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1648 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1649 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1650 }
1651 else {
1652 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1653 }
1654 }
1655 return adv;
1656 }
1657
1658 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1659
1660 static int
1661 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1662 __releases(&bp->phy_lock)
1663 __acquires(&bp->phy_lock)
1664 {
1665 u32 speed_arg = 0, pause_adv;
1666
1667 pause_adv = bnx2_phy_get_pause_adv(bp);
1668
1669 if (bp->autoneg & AUTONEG_SPEED) {
1670 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1671 if (bp->advertising & ADVERTISED_10baseT_Half)
1672 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1673 if (bp->advertising & ADVERTISED_10baseT_Full)
1674 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1675 if (bp->advertising & ADVERTISED_100baseT_Half)
1676 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1677 if (bp->advertising & ADVERTISED_100baseT_Full)
1678 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1679 if (bp->advertising & ADVERTISED_1000baseT_Full)
1680 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1681 if (bp->advertising & ADVERTISED_2500baseX_Full)
1682 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1683 } else {
1684 if (bp->req_line_speed == SPEED_2500)
1685 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1686 else if (bp->req_line_speed == SPEED_1000)
1687 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1688 else if (bp->req_line_speed == SPEED_100) {
1689 if (bp->req_duplex == DUPLEX_FULL)
1690 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1691 else
1692 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1693 } else if (bp->req_line_speed == SPEED_10) {
1694 if (bp->req_duplex == DUPLEX_FULL)
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1696 else
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1698 }
1699 }
1700
1701 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1702 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1703 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1704 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1705
1706 if (port == PORT_TP)
1707 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1708 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1709
1710 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1711
1712 spin_unlock_bh(&bp->phy_lock);
1713 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1714 spin_lock_bh(&bp->phy_lock);
1715
1716 return 0;
1717 }
1718
1719 static int
1720 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1721 __releases(&bp->phy_lock)
1722 __acquires(&bp->phy_lock)
1723 {
1724 u32 adv, bmcr;
1725 u32 new_adv = 0;
1726
1727 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1728 return (bnx2_setup_remote_phy(bp, port));
1729
1730 if (!(bp->autoneg & AUTONEG_SPEED)) {
1731 u32 new_bmcr;
1732 int force_link_down = 0;
1733
1734 if (bp->req_line_speed == SPEED_2500) {
1735 if (!bnx2_test_and_enable_2g5(bp))
1736 force_link_down = 1;
1737 } else if (bp->req_line_speed == SPEED_1000) {
1738 if (bnx2_test_and_disable_2g5(bp))
1739 force_link_down = 1;
1740 }
1741 bnx2_read_phy(bp, bp->mii_adv, &adv);
1742 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1743
1744 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1745 new_bmcr = bmcr & ~BMCR_ANENABLE;
1746 new_bmcr |= BMCR_SPEED1000;
1747
1748 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1749 if (bp->req_line_speed == SPEED_2500)
1750 bnx2_enable_forced_2g5(bp);
1751 else if (bp->req_line_speed == SPEED_1000) {
1752 bnx2_disable_forced_2g5(bp);
1753 new_bmcr &= ~0x2000;
1754 }
1755
1756 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1757 if (bp->req_line_speed == SPEED_2500)
1758 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1759 else
1760 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1761 }
1762
1763 if (bp->req_duplex == DUPLEX_FULL) {
1764 adv |= ADVERTISE_1000XFULL;
1765 new_bmcr |= BMCR_FULLDPLX;
1766 }
1767 else {
1768 adv |= ADVERTISE_1000XHALF;
1769 new_bmcr &= ~BMCR_FULLDPLX;
1770 }
1771 if ((new_bmcr != bmcr) || (force_link_down)) {
1772 /* Force a link down visible on the other side */
1773 if (bp->link_up) {
1774 bnx2_write_phy(bp, bp->mii_adv, adv &
1775 ~(ADVERTISE_1000XFULL |
1776 ADVERTISE_1000XHALF));
1777 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1778 BMCR_ANRESTART | BMCR_ANENABLE);
1779
1780 bp->link_up = 0;
1781 netif_carrier_off(bp->dev);
1782 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1783 bnx2_report_link(bp);
1784 }
1785 bnx2_write_phy(bp, bp->mii_adv, adv);
1786 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1787 } else {
1788 bnx2_resolve_flow_ctrl(bp);
1789 bnx2_set_mac_link(bp);
1790 }
1791 return 0;
1792 }
1793
1794 bnx2_test_and_enable_2g5(bp);
1795
1796 if (bp->advertising & ADVERTISED_1000baseT_Full)
1797 new_adv |= ADVERTISE_1000XFULL;
1798
1799 new_adv |= bnx2_phy_get_pause_adv(bp);
1800
1801 bnx2_read_phy(bp, bp->mii_adv, &adv);
1802 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1803
1804 bp->serdes_an_pending = 0;
1805 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1806 /* Force a link down visible on the other side */
1807 if (bp->link_up) {
1808 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1809 spin_unlock_bh(&bp->phy_lock);
1810 msleep(20);
1811 spin_lock_bh(&bp->phy_lock);
1812 }
1813
1814 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1815 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1816 BMCR_ANENABLE);
1817 /* Speed up link-up time when the link partner
1818 * does not autonegotiate which is very common
1819 * in blade servers. Some blade servers use
1820 * IPMI for kerboard input and it's important
1821 * to minimize link disruptions. Autoneg. involves
1822 * exchanging base pages plus 3 next pages and
1823 * normally completes in about 120 msec.
1824 */
1825 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1826 bp->serdes_an_pending = 1;
1827 mod_timer(&bp->timer, jiffies + bp->current_interval);
1828 } else {
1829 bnx2_resolve_flow_ctrl(bp);
1830 bnx2_set_mac_link(bp);
1831 }
1832
1833 return 0;
1834 }
1835
1836 #define ETHTOOL_ALL_FIBRE_SPEED \
1837 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1838 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1839 (ADVERTISED_1000baseT_Full)
1840
1841 #define ETHTOOL_ALL_COPPER_SPEED \
1842 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1843 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1844 ADVERTISED_1000baseT_Full)
1845
1846 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1847 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1848
1849 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1850
1851 static void
1852 bnx2_set_default_remote_link(struct bnx2 *bp)
1853 {
1854 u32 link;
1855
1856 if (bp->phy_port == PORT_TP)
1857 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1858 else
1859 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1860
1861 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1862 bp->req_line_speed = 0;
1863 bp->autoneg |= AUTONEG_SPEED;
1864 bp->advertising = ADVERTISED_Autoneg;
1865 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1866 bp->advertising |= ADVERTISED_10baseT_Half;
1867 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1868 bp->advertising |= ADVERTISED_10baseT_Full;
1869 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1870 bp->advertising |= ADVERTISED_100baseT_Half;
1871 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1872 bp->advertising |= ADVERTISED_100baseT_Full;
1873 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1874 bp->advertising |= ADVERTISED_1000baseT_Full;
1875 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1876 bp->advertising |= ADVERTISED_2500baseX_Full;
1877 } else {
1878 bp->autoneg = 0;
1879 bp->advertising = 0;
1880 bp->req_duplex = DUPLEX_FULL;
1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1882 bp->req_line_speed = SPEED_10;
1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1884 bp->req_duplex = DUPLEX_HALF;
1885 }
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1887 bp->req_line_speed = SPEED_100;
1888 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1889 bp->req_duplex = DUPLEX_HALF;
1890 }
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1892 bp->req_line_speed = SPEED_1000;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1894 bp->req_line_speed = SPEED_2500;
1895 }
1896 }
1897
1898 static void
1899 bnx2_set_default_link(struct bnx2 *bp)
1900 {
1901 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1902 bnx2_set_default_remote_link(bp);
1903 return;
1904 }
1905
1906 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1907 bp->req_line_speed = 0;
1908 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1909 u32 reg;
1910
1911 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1912
1913 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1914 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1915 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1916 bp->autoneg = 0;
1917 bp->req_line_speed = bp->line_speed = SPEED_1000;
1918 bp->req_duplex = DUPLEX_FULL;
1919 }
1920 } else
1921 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1922 }
1923
1924 static void
1925 bnx2_send_heart_beat(struct bnx2 *bp)
1926 {
1927 u32 msg;
1928 u32 addr;
1929
1930 spin_lock(&bp->indirect_lock);
1931 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1932 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1933 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1934 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1935 spin_unlock(&bp->indirect_lock);
1936 }
1937
1938 static void
1939 bnx2_remote_phy_event(struct bnx2 *bp)
1940 {
1941 u32 msg;
1942 u8 link_up = bp->link_up;
1943 u8 old_port;
1944
1945 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1946
1947 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1948 bnx2_send_heart_beat(bp);
1949
1950 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1951
1952 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1953 bp->link_up = 0;
1954 else {
1955 u32 speed;
1956
1957 bp->link_up = 1;
1958 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1959 bp->duplex = DUPLEX_FULL;
1960 switch (speed) {
1961 case BNX2_LINK_STATUS_10HALF:
1962 bp->duplex = DUPLEX_HALF;
1963 case BNX2_LINK_STATUS_10FULL:
1964 bp->line_speed = SPEED_10;
1965 break;
1966 case BNX2_LINK_STATUS_100HALF:
1967 bp->duplex = DUPLEX_HALF;
1968 case BNX2_LINK_STATUS_100BASE_T4:
1969 case BNX2_LINK_STATUS_100FULL:
1970 bp->line_speed = SPEED_100;
1971 break;
1972 case BNX2_LINK_STATUS_1000HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_1000FULL:
1975 bp->line_speed = SPEED_1000;
1976 break;
1977 case BNX2_LINK_STATUS_2500HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_2500FULL:
1980 bp->line_speed = SPEED_2500;
1981 break;
1982 default:
1983 bp->line_speed = 0;
1984 break;
1985 }
1986
1987 bp->flow_ctrl = 0;
1988 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1989 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1990 if (bp->duplex == DUPLEX_FULL)
1991 bp->flow_ctrl = bp->req_flow_ctrl;
1992 } else {
1993 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1994 bp->flow_ctrl |= FLOW_CTRL_TX;
1995 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1996 bp->flow_ctrl |= FLOW_CTRL_RX;
1997 }
1998
1999 old_port = bp->phy_port;
2000 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2001 bp->phy_port = PORT_FIBRE;
2002 else
2003 bp->phy_port = PORT_TP;
2004
2005 if (old_port != bp->phy_port)
2006 bnx2_set_default_link(bp);
2007
2008 }
2009 if (bp->link_up != link_up)
2010 bnx2_report_link(bp);
2011
2012 bnx2_set_mac_link(bp);
2013 }
2014
2015 static int
2016 bnx2_set_remote_link(struct bnx2 *bp)
2017 {
2018 u32 evt_code;
2019
2020 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2021 switch (evt_code) {
2022 case BNX2_FW_EVT_CODE_LINK_EVENT:
2023 bnx2_remote_phy_event(bp);
2024 break;
2025 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2026 default:
2027 bnx2_send_heart_beat(bp);
2028 break;
2029 }
2030 return 0;
2031 }
2032
2033 static int
2034 bnx2_setup_copper_phy(struct bnx2 *bp)
2035 __releases(&bp->phy_lock)
2036 __acquires(&bp->phy_lock)
2037 {
2038 u32 bmcr;
2039 u32 new_bmcr;
2040
2041 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2042
2043 if (bp->autoneg & AUTONEG_SPEED) {
2044 u32 adv_reg, adv1000_reg;
2045 u32 new_adv_reg = 0;
2046 u32 new_adv1000_reg = 0;
2047
2048 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2049 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2050 ADVERTISE_PAUSE_ASYM);
2051
2052 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2053 adv1000_reg &= PHY_ALL_1000_SPEED;
2054
2055 if (bp->advertising & ADVERTISED_10baseT_Half)
2056 new_adv_reg |= ADVERTISE_10HALF;
2057 if (bp->advertising & ADVERTISED_10baseT_Full)
2058 new_adv_reg |= ADVERTISE_10FULL;
2059 if (bp->advertising & ADVERTISED_100baseT_Half)
2060 new_adv_reg |= ADVERTISE_100HALF;
2061 if (bp->advertising & ADVERTISED_100baseT_Full)
2062 new_adv_reg |= ADVERTISE_100FULL;
2063 if (bp->advertising & ADVERTISED_1000baseT_Full)
2064 new_adv1000_reg |= ADVERTISE_1000FULL;
2065
2066 new_adv_reg |= ADVERTISE_CSMA;
2067
2068 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2069
2070 if ((adv1000_reg != new_adv1000_reg) ||
2071 (adv_reg != new_adv_reg) ||
2072 ((bmcr & BMCR_ANENABLE) == 0)) {
2073
2074 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2075 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2076 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2077 BMCR_ANENABLE);
2078 }
2079 else if (bp->link_up) {
2080 /* Flow ctrl may have changed from auto to forced */
2081 /* or vice-versa. */
2082
2083 bnx2_resolve_flow_ctrl(bp);
2084 bnx2_set_mac_link(bp);
2085 }
2086 return 0;
2087 }
2088
2089 new_bmcr = 0;
2090 if (bp->req_line_speed == SPEED_100) {
2091 new_bmcr |= BMCR_SPEED100;
2092 }
2093 if (bp->req_duplex == DUPLEX_FULL) {
2094 new_bmcr |= BMCR_FULLDPLX;
2095 }
2096 if (new_bmcr != bmcr) {
2097 u32 bmsr;
2098
2099 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2100 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2101
2102 if (bmsr & BMSR_LSTATUS) {
2103 /* Force link down */
2104 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2105 spin_unlock_bh(&bp->phy_lock);
2106 msleep(50);
2107 spin_lock_bh(&bp->phy_lock);
2108
2109 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 }
2112
2113 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2114
2115 /* Normally, the new speed is setup after the link has
2116 * gone down and up again. In some cases, link will not go
2117 * down so we need to set up the new speed here.
2118 */
2119 if (bmsr & BMSR_LSTATUS) {
2120 bp->line_speed = bp->req_line_speed;
2121 bp->duplex = bp->req_duplex;
2122 bnx2_resolve_flow_ctrl(bp);
2123 bnx2_set_mac_link(bp);
2124 }
2125 } else {
2126 bnx2_resolve_flow_ctrl(bp);
2127 bnx2_set_mac_link(bp);
2128 }
2129 return 0;
2130 }
2131
2132 static int
2133 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2134 __releases(&bp->phy_lock)
2135 __acquires(&bp->phy_lock)
2136 {
2137 if (bp->loopback == MAC_LOOPBACK)
2138 return 0;
2139
2140 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2141 return (bnx2_setup_serdes_phy(bp, port));
2142 }
2143 else {
2144 return (bnx2_setup_copper_phy(bp));
2145 }
2146 }
2147
2148 static int
2149 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2150 {
2151 u32 val;
2152
2153 bp->mii_bmcr = MII_BMCR + 0x10;
2154 bp->mii_bmsr = MII_BMSR + 0x10;
2155 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2156 bp->mii_adv = MII_ADVERTISE + 0x10;
2157 bp->mii_lpa = MII_LPA + 0x10;
2158 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2159
2160 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2161 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2162
2163 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2164 if (reset_phy)
2165 bnx2_reset_phy(bp);
2166
2167 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2168
2169 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2170 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2171 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2172 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2173
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2175 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2176 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2177 val |= BCM5708S_UP1_2G5;
2178 else
2179 val &= ~BCM5708S_UP1_2G5;
2180 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2181
2182 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2183 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2184 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2185 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2186
2187 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2188
2189 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2190 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2191 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2192
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2194
2195 return 0;
2196 }
2197
2198 static int
2199 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2200 {
2201 u32 val;
2202
2203 if (reset_phy)
2204 bnx2_reset_phy(bp);
2205
2206 bp->mii_up1 = BCM5708S_UP1;
2207
2208 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2209 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2210 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2211
2212 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2213 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2214 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2215
2216 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2217 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2218 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2219
2220 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2221 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2222 val |= BCM5708S_UP1_2G5;
2223 bnx2_write_phy(bp, BCM5708S_UP1, val);
2224 }
2225
2226 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2227 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2228 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2229 /* increase tx signal amplitude */
2230 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2231 BCM5708S_BLK_ADDR_TX_MISC);
2232 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2233 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2234 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2235 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2236 }
2237
2238 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2239 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2240
2241 if (val) {
2242 u32 is_backplane;
2243
2244 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2245 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2247 BCM5708S_BLK_ADDR_TX_MISC);
2248 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2249 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2250 BCM5708S_BLK_ADDR_DIG);
2251 }
2252 }
2253 return 0;
2254 }
2255
2256 static int
2257 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2258 {
2259 if (reset_phy)
2260 bnx2_reset_phy(bp);
2261
2262 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2263
2264 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2265 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2266
2267 if (bp->dev->mtu > 1500) {
2268 u32 val;
2269
2270 /* Set extended packet length bit */
2271 bnx2_write_phy(bp, 0x18, 0x7);
2272 bnx2_read_phy(bp, 0x18, &val);
2273 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2274
2275 bnx2_write_phy(bp, 0x1c, 0x6c00);
2276 bnx2_read_phy(bp, 0x1c, &val);
2277 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2278 }
2279 else {
2280 u32 val;
2281
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2285
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2289 }
2290
2291 return 0;
2292 }
2293
2294 static int
2295 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2296 {
2297 u32 val;
2298
2299 if (reset_phy)
2300 bnx2_reset_phy(bp);
2301
2302 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2303 bnx2_write_phy(bp, 0x18, 0x0c00);
2304 bnx2_write_phy(bp, 0x17, 0x000a);
2305 bnx2_write_phy(bp, 0x15, 0x310b);
2306 bnx2_write_phy(bp, 0x17, 0x201f);
2307 bnx2_write_phy(bp, 0x15, 0x9506);
2308 bnx2_write_phy(bp, 0x17, 0x401f);
2309 bnx2_write_phy(bp, 0x15, 0x14e2);
2310 bnx2_write_phy(bp, 0x18, 0x0400);
2311 }
2312
2313 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2314 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2315 MII_BNX2_DSP_EXPAND_REG | 0x8);
2316 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2317 val &= ~(1 << 8);
2318 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2319 }
2320
2321 if (bp->dev->mtu > 1500) {
2322 /* Set extended packet length bit */
2323 bnx2_write_phy(bp, 0x18, 0x7);
2324 bnx2_read_phy(bp, 0x18, &val);
2325 bnx2_write_phy(bp, 0x18, val | 0x4000);
2326
2327 bnx2_read_phy(bp, 0x10, &val);
2328 bnx2_write_phy(bp, 0x10, val | 0x1);
2329 }
2330 else {
2331 bnx2_write_phy(bp, 0x18, 0x7);
2332 bnx2_read_phy(bp, 0x18, &val);
2333 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2334
2335 bnx2_read_phy(bp, 0x10, &val);
2336 bnx2_write_phy(bp, 0x10, val & ~0x1);
2337 }
2338
2339 /* ethernet@wirespeed */
2340 bnx2_write_phy(bp, 0x18, 0x7007);
2341 bnx2_read_phy(bp, 0x18, &val);
2342 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2343 return 0;
2344 }
2345
2346
2347 static int
2348 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2349 __releases(&bp->phy_lock)
2350 __acquires(&bp->phy_lock)
2351 {
2352 u32 val;
2353 int rc = 0;
2354
2355 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2356 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2357
2358 bp->mii_bmcr = MII_BMCR;
2359 bp->mii_bmsr = MII_BMSR;
2360 bp->mii_bmsr1 = MII_BMSR;
2361 bp->mii_adv = MII_ADVERTISE;
2362 bp->mii_lpa = MII_LPA;
2363
2364 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2365
2366 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2367 goto setup_phy;
2368
2369 bnx2_read_phy(bp, MII_PHYSID1, &val);
2370 bp->phy_id = val << 16;
2371 bnx2_read_phy(bp, MII_PHYSID2, &val);
2372 bp->phy_id |= val & 0xffff;
2373
2374 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2375 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2376 rc = bnx2_init_5706s_phy(bp, reset_phy);
2377 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2378 rc = bnx2_init_5708s_phy(bp, reset_phy);
2379 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2380 rc = bnx2_init_5709s_phy(bp, reset_phy);
2381 }
2382 else {
2383 rc = bnx2_init_copper_phy(bp, reset_phy);
2384 }
2385
2386 setup_phy:
2387 if (!rc)
2388 rc = bnx2_setup_phy(bp, bp->phy_port);
2389
2390 return rc;
2391 }
2392
2393 static int
2394 bnx2_set_mac_loopback(struct bnx2 *bp)
2395 {
2396 u32 mac_mode;
2397
2398 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2399 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2400 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2401 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2402 bp->link_up = 1;
2403 return 0;
2404 }
2405
2406 static int bnx2_test_link(struct bnx2 *);
2407
2408 static int
2409 bnx2_set_phy_loopback(struct bnx2 *bp)
2410 {
2411 u32 mac_mode;
2412 int rc, i;
2413
2414 spin_lock_bh(&bp->phy_lock);
2415 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2416 BMCR_SPEED1000);
2417 spin_unlock_bh(&bp->phy_lock);
2418 if (rc)
2419 return rc;
2420
2421 for (i = 0; i < 10; i++) {
2422 if (bnx2_test_link(bp) == 0)
2423 break;
2424 msleep(100);
2425 }
2426
2427 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2428 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2429 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2430 BNX2_EMAC_MODE_25G_MODE);
2431
2432 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2433 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2434 bp->link_up = 1;
2435 return 0;
2436 }
2437
2438 static int
2439 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2440 {
2441 int i;
2442 u32 val;
2443
2444 bp->fw_wr_seq++;
2445 msg_data |= bp->fw_wr_seq;
2446
2447 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2448
2449 if (!ack)
2450 return 0;
2451
2452 /* wait for an acknowledgement. */
2453 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2454 msleep(10);
2455
2456 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2457
2458 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2459 break;
2460 }
2461 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2462 return 0;
2463
2464 /* If we timed out, inform the firmware that this is the case. */
2465 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2466 if (!silent)
2467 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2468 "%x\n", msg_data);
2469
2470 msg_data &= ~BNX2_DRV_MSG_CODE;
2471 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2472
2473 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2474
2475 return -EBUSY;
2476 }
2477
2478 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2479 return -EIO;
2480
2481 return 0;
2482 }
2483
2484 static int
2485 bnx2_init_5709_context(struct bnx2 *bp)
2486 {
2487 int i, ret = 0;
2488 u32 val;
2489
2490 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2491 val |= (BCM_PAGE_BITS - 8) << 16;
2492 REG_WR(bp, BNX2_CTX_COMMAND, val);
2493 for (i = 0; i < 10; i++) {
2494 val = REG_RD(bp, BNX2_CTX_COMMAND);
2495 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2496 break;
2497 udelay(2);
2498 }
2499 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2500 return -EBUSY;
2501
2502 for (i = 0; i < bp->ctx_pages; i++) {
2503 int j;
2504
2505 if (bp->ctx_blk[i])
2506 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2507 else
2508 return -ENOMEM;
2509
2510 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2511 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2512 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2513 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2514 (u64) bp->ctx_blk_mapping[i] >> 32);
2515 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2516 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2517 for (j = 0; j < 10; j++) {
2518
2519 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2520 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2521 break;
2522 udelay(5);
2523 }
2524 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2525 ret = -EBUSY;
2526 break;
2527 }
2528 }
2529 return ret;
2530 }
2531
2532 static void
2533 bnx2_init_context(struct bnx2 *bp)
2534 {
2535 u32 vcid;
2536
2537 vcid = 96;
2538 while (vcid) {
2539 u32 vcid_addr, pcid_addr, offset;
2540 int i;
2541
2542 vcid--;
2543
2544 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2545 u32 new_vcid;
2546
2547 vcid_addr = GET_PCID_ADDR(vcid);
2548 if (vcid & 0x8) {
2549 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2550 }
2551 else {
2552 new_vcid = vcid;
2553 }
2554 pcid_addr = GET_PCID_ADDR(new_vcid);
2555 }
2556 else {
2557 vcid_addr = GET_CID_ADDR(vcid);
2558 pcid_addr = vcid_addr;
2559 }
2560
2561 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2562 vcid_addr += (i << PHY_CTX_SHIFT);
2563 pcid_addr += (i << PHY_CTX_SHIFT);
2564
2565 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2566 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2567
2568 /* Zero out the context. */
2569 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2570 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2571 }
2572 }
2573 }
2574
2575 static int
2576 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2577 {
2578 u16 *good_mbuf;
2579 u32 good_mbuf_cnt;
2580 u32 val;
2581
2582 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2583 if (good_mbuf == NULL) {
2584 printk(KERN_ERR PFX "Failed to allocate memory in "
2585 "bnx2_alloc_bad_rbuf\n");
2586 return -ENOMEM;
2587 }
2588
2589 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2590 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2591
2592 good_mbuf_cnt = 0;
2593
2594 /* Allocate a bunch of mbufs and save the good ones in an array. */
2595 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2596 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2597 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2598 BNX2_RBUF_COMMAND_ALLOC_REQ);
2599
2600 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2601
2602 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2603
2604 /* The addresses with Bit 9 set are bad memory blocks. */
2605 if (!(val & (1 << 9))) {
2606 good_mbuf[good_mbuf_cnt] = (u16) val;
2607 good_mbuf_cnt++;
2608 }
2609
2610 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2611 }
2612
2613 /* Free the good ones back to the mbuf pool thus discarding
2614 * all the bad ones. */
2615 while (good_mbuf_cnt) {
2616 good_mbuf_cnt--;
2617
2618 val = good_mbuf[good_mbuf_cnt];
2619 val = (val << 9) | val | 1;
2620
2621 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2622 }
2623 kfree(good_mbuf);
2624 return 0;
2625 }
2626
2627 static void
2628 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2629 {
2630 u32 val;
2631
2632 val = (mac_addr[0] << 8) | mac_addr[1];
2633
2634 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2635
2636 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2637 (mac_addr[4] << 8) | mac_addr[5];
2638
2639 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2640 }
2641
2642 static inline int
2643 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2644 {
2645 dma_addr_t mapping;
2646 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2647 struct rx_bd *rxbd =
2648 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2649 struct page *page = alloc_page(GFP_ATOMIC);
2650
2651 if (!page)
2652 return -ENOMEM;
2653 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2654 PCI_DMA_FROMDEVICE);
2655 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2656 __free_page(page);
2657 return -EIO;
2658 }
2659
2660 rx_pg->page = page;
2661 pci_unmap_addr_set(rx_pg, mapping, mapping);
2662 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2663 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2664 return 0;
2665 }
2666
2667 static void
2668 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2669 {
2670 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2671 struct page *page = rx_pg->page;
2672
2673 if (!page)
2674 return;
2675
2676 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2677 PCI_DMA_FROMDEVICE);
2678
2679 __free_page(page);
2680 rx_pg->page = NULL;
2681 }
2682
2683 static inline int
2684 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2685 {
2686 struct sk_buff *skb;
2687 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2688 dma_addr_t mapping;
2689 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2690 unsigned long align;
2691
2692 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2693 if (skb == NULL) {
2694 return -ENOMEM;
2695 }
2696
2697 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2698 skb_reserve(skb, BNX2_RX_ALIGN - align);
2699
2700 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2701 PCI_DMA_FROMDEVICE);
2702 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2703 dev_kfree_skb(skb);
2704 return -EIO;
2705 }
2706
2707 rx_buf->skb = skb;
2708 pci_unmap_addr_set(rx_buf, mapping, mapping);
2709
2710 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2711 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2712
2713 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2714
2715 return 0;
2716 }
2717
2718 static int
2719 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2720 {
2721 struct status_block *sblk = bnapi->status_blk.msi;
2722 u32 new_link_state, old_link_state;
2723 int is_set = 1;
2724
2725 new_link_state = sblk->status_attn_bits & event;
2726 old_link_state = sblk->status_attn_bits_ack & event;
2727 if (new_link_state != old_link_state) {
2728 if (new_link_state)
2729 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2730 else
2731 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2732 } else
2733 is_set = 0;
2734
2735 return is_set;
2736 }
2737
2738 static void
2739 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2740 {
2741 spin_lock(&bp->phy_lock);
2742
2743 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2744 bnx2_set_link(bp);
2745 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2746 bnx2_set_remote_link(bp);
2747
2748 spin_unlock(&bp->phy_lock);
2749
2750 }
2751
2752 static inline u16
2753 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2754 {
2755 u16 cons;
2756
2757 /* Tell compiler that status block fields can change. */
2758 barrier();
2759 cons = *bnapi->hw_tx_cons_ptr;
2760 barrier();
2761 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2762 cons++;
2763 return cons;
2764 }
2765
2766 static int
2767 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2768 {
2769 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2770 u16 hw_cons, sw_cons, sw_ring_cons;
2771 int tx_pkt = 0, index;
2772 struct netdev_queue *txq;
2773
2774 index = (bnapi - bp->bnx2_napi);
2775 txq = netdev_get_tx_queue(bp->dev, index);
2776
2777 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2778 sw_cons = txr->tx_cons;
2779
2780 while (sw_cons != hw_cons) {
2781 struct sw_tx_bd *tx_buf;
2782 struct sk_buff *skb;
2783 int i, last;
2784
2785 sw_ring_cons = TX_RING_IDX(sw_cons);
2786
2787 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2788 skb = tx_buf->skb;
2789
2790 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2791 prefetch(&skb->end);
2792
2793 /* partial BD completions possible with TSO packets */
2794 if (tx_buf->is_gso) {
2795 u16 last_idx, last_ring_idx;
2796
2797 last_idx = sw_cons + tx_buf->nr_frags + 1;
2798 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2799 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2800 last_idx++;
2801 }
2802 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2803 break;
2804 }
2805 }
2806
2807 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2808
2809 tx_buf->skb = NULL;
2810 last = tx_buf->nr_frags;
2811
2812 for (i = 0; i < last; i++) {
2813 sw_cons = NEXT_TX_BD(sw_cons);
2814 }
2815
2816 sw_cons = NEXT_TX_BD(sw_cons);
2817
2818 dev_kfree_skb(skb);
2819 tx_pkt++;
2820 if (tx_pkt == budget)
2821 break;
2822
2823 if (hw_cons == sw_cons)
2824 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2825 }
2826
2827 txr->hw_tx_cons = hw_cons;
2828 txr->tx_cons = sw_cons;
2829
2830 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2831 * before checking for netif_tx_queue_stopped(). Without the
2832 * memory barrier, there is a small possibility that bnx2_start_xmit()
2833 * will miss it and cause the queue to be stopped forever.
2834 */
2835 smp_mb();
2836
2837 if (unlikely(netif_tx_queue_stopped(txq)) &&
2838 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2839 __netif_tx_lock(txq, smp_processor_id());
2840 if ((netif_tx_queue_stopped(txq)) &&
2841 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2842 netif_tx_wake_queue(txq);
2843 __netif_tx_unlock(txq);
2844 }
2845
2846 return tx_pkt;
2847 }
2848
2849 static void
2850 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2851 struct sk_buff *skb, int count)
2852 {
2853 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2854 struct rx_bd *cons_bd, *prod_bd;
2855 int i;
2856 u16 hw_prod, prod;
2857 u16 cons = rxr->rx_pg_cons;
2858
2859 cons_rx_pg = &rxr->rx_pg_ring[cons];
2860
2861 /* The caller was unable to allocate a new page to replace the
2862 * last one in the frags array, so we need to recycle that page
2863 * and then free the skb.
2864 */
2865 if (skb) {
2866 struct page *page;
2867 struct skb_shared_info *shinfo;
2868
2869 shinfo = skb_shinfo(skb);
2870 shinfo->nr_frags--;
2871 page = shinfo->frags[shinfo->nr_frags].page;
2872 shinfo->frags[shinfo->nr_frags].page = NULL;
2873
2874 cons_rx_pg->page = page;
2875 dev_kfree_skb(skb);
2876 }
2877
2878 hw_prod = rxr->rx_pg_prod;
2879
2880 for (i = 0; i < count; i++) {
2881 prod = RX_PG_RING_IDX(hw_prod);
2882
2883 prod_rx_pg = &rxr->rx_pg_ring[prod];
2884 cons_rx_pg = &rxr->rx_pg_ring[cons];
2885 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2886 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2887
2888 if (prod != cons) {
2889 prod_rx_pg->page = cons_rx_pg->page;
2890 cons_rx_pg->page = NULL;
2891 pci_unmap_addr_set(prod_rx_pg, mapping,
2892 pci_unmap_addr(cons_rx_pg, mapping));
2893
2894 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2895 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2896
2897 }
2898 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2899 hw_prod = NEXT_RX_BD(hw_prod);
2900 }
2901 rxr->rx_pg_prod = hw_prod;
2902 rxr->rx_pg_cons = cons;
2903 }
2904
2905 static inline void
2906 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2907 struct sk_buff *skb, u16 cons, u16 prod)
2908 {
2909 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2910 struct rx_bd *cons_bd, *prod_bd;
2911
2912 cons_rx_buf = &rxr->rx_buf_ring[cons];
2913 prod_rx_buf = &rxr->rx_buf_ring[prod];
2914
2915 pci_dma_sync_single_for_device(bp->pdev,
2916 pci_unmap_addr(cons_rx_buf, mapping),
2917 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2918
2919 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2920
2921 prod_rx_buf->skb = skb;
2922
2923 if (cons == prod)
2924 return;
2925
2926 pci_unmap_addr_set(prod_rx_buf, mapping,
2927 pci_unmap_addr(cons_rx_buf, mapping));
2928
2929 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2930 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2931 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2932 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2933 }
2934
2935 static int
2936 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2937 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2938 u32 ring_idx)
2939 {
2940 int err;
2941 u16 prod = ring_idx & 0xffff;
2942
2943 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2944 if (unlikely(err)) {
2945 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2946 if (hdr_len) {
2947 unsigned int raw_len = len + 4;
2948 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2949
2950 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2951 }
2952 return err;
2953 }
2954
2955 skb_reserve(skb, BNX2_RX_OFFSET);
2956 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2957 PCI_DMA_FROMDEVICE);
2958
2959 if (hdr_len == 0) {
2960 skb_put(skb, len);
2961 return 0;
2962 } else {
2963 unsigned int i, frag_len, frag_size, pages;
2964 struct sw_pg *rx_pg;
2965 u16 pg_cons = rxr->rx_pg_cons;
2966 u16 pg_prod = rxr->rx_pg_prod;
2967
2968 frag_size = len + 4 - hdr_len;
2969 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2970 skb_put(skb, hdr_len);
2971
2972 for (i = 0; i < pages; i++) {
2973 dma_addr_t mapping_old;
2974
2975 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2976 if (unlikely(frag_len <= 4)) {
2977 unsigned int tail = 4 - frag_len;
2978
2979 rxr->rx_pg_cons = pg_cons;
2980 rxr->rx_pg_prod = pg_prod;
2981 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2982 pages - i);
2983 skb->len -= tail;
2984 if (i == 0) {
2985 skb->tail -= tail;
2986 } else {
2987 skb_frag_t *frag =
2988 &skb_shinfo(skb)->frags[i - 1];
2989 frag->size -= tail;
2990 skb->data_len -= tail;
2991 skb->truesize -= tail;
2992 }
2993 return 0;
2994 }
2995 rx_pg = &rxr->rx_pg_ring[pg_cons];
2996
2997 /* Don't unmap yet. If we're unable to allocate a new
2998 * page, we need to recycle the page and the DMA addr.
2999 */
3000 mapping_old = pci_unmap_addr(rx_pg, mapping);
3001 if (i == pages - 1)
3002 frag_len -= 4;
3003
3004 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3005 rx_pg->page = NULL;
3006
3007 err = bnx2_alloc_rx_page(bp, rxr,
3008 RX_PG_RING_IDX(pg_prod));
3009 if (unlikely(err)) {
3010 rxr->rx_pg_cons = pg_cons;
3011 rxr->rx_pg_prod = pg_prod;
3012 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3013 pages - i);
3014 return err;
3015 }
3016
3017 pci_unmap_page(bp->pdev, mapping_old,
3018 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3019
3020 frag_size -= frag_len;
3021 skb->data_len += frag_len;
3022 skb->truesize += frag_len;
3023 skb->len += frag_len;
3024
3025 pg_prod = NEXT_RX_BD(pg_prod);
3026 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3027 }
3028 rxr->rx_pg_prod = pg_prod;
3029 rxr->rx_pg_cons = pg_cons;
3030 }
3031 return 0;
3032 }
3033
3034 static inline u16
3035 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3036 {
3037 u16 cons;
3038
3039 /* Tell compiler that status block fields can change. */
3040 barrier();
3041 cons = *bnapi->hw_rx_cons_ptr;
3042 barrier();
3043 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3044 cons++;
3045 return cons;
3046 }
3047
3048 static int
3049 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3050 {
3051 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3052 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3053 struct l2_fhdr *rx_hdr;
3054 int rx_pkt = 0, pg_ring_used = 0;
3055
3056 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3057 sw_cons = rxr->rx_cons;
3058 sw_prod = rxr->rx_prod;
3059
3060 /* Memory barrier necessary as speculative reads of the rx
3061 * buffer can be ahead of the index in the status block
3062 */
3063 rmb();
3064 while (sw_cons != hw_cons) {
3065 unsigned int len, hdr_len;
3066 u32 status;
3067 struct sw_bd *rx_buf;
3068 struct sk_buff *skb;
3069 dma_addr_t dma_addr;
3070 u16 vtag = 0;
3071 int hw_vlan __maybe_unused = 0;
3072
3073 sw_ring_cons = RX_RING_IDX(sw_cons);
3074 sw_ring_prod = RX_RING_IDX(sw_prod);
3075
3076 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3077 skb = rx_buf->skb;
3078
3079 rx_buf->skb = NULL;
3080
3081 dma_addr = pci_unmap_addr(rx_buf, mapping);
3082
3083 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3084 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3085 PCI_DMA_FROMDEVICE);
3086
3087 rx_hdr = (struct l2_fhdr *) skb->data;
3088 len = rx_hdr->l2_fhdr_pkt_len;
3089 status = rx_hdr->l2_fhdr_status;
3090
3091 hdr_len = 0;
3092 if (status & L2_FHDR_STATUS_SPLIT) {
3093 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3094 pg_ring_used = 1;
3095 } else if (len > bp->rx_jumbo_thresh) {
3096 hdr_len = bp->rx_jumbo_thresh;
3097 pg_ring_used = 1;
3098 }
3099
3100 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3101 L2_FHDR_ERRORS_PHY_DECODE |
3102 L2_FHDR_ERRORS_ALIGNMENT |
3103 L2_FHDR_ERRORS_TOO_SHORT |
3104 L2_FHDR_ERRORS_GIANT_FRAME))) {
3105
3106 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3107 sw_ring_prod);
3108 if (pg_ring_used) {
3109 int pages;
3110
3111 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3112
3113 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3114 }
3115 goto next_rx;
3116 }
3117
3118 len -= 4;
3119
3120 if (len <= bp->rx_copy_thresh) {
3121 struct sk_buff *new_skb;
3122
3123 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3124 if (new_skb == NULL) {
3125 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3126 sw_ring_prod);
3127 goto next_rx;
3128 }
3129
3130 /* aligned copy */
3131 skb_copy_from_linear_data_offset(skb,
3132 BNX2_RX_OFFSET - 6,
3133 new_skb->data, len + 6);
3134 skb_reserve(new_skb, 6);
3135 skb_put(new_skb, len);
3136
3137 bnx2_reuse_rx_skb(bp, rxr, skb,
3138 sw_ring_cons, sw_ring_prod);
3139
3140 skb = new_skb;
3141 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3142 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3143 goto next_rx;
3144
3145 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3146 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3147 vtag = rx_hdr->l2_fhdr_vlan_tag;
3148 #ifdef BCM_VLAN
3149 if (bp->vlgrp)
3150 hw_vlan = 1;
3151 else
3152 #endif
3153 {
3154 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3155 __skb_push(skb, 4);
3156
3157 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3158 ve->h_vlan_proto = htons(ETH_P_8021Q);
3159 ve->h_vlan_TCI = htons(vtag);
3160 len += 4;
3161 }
3162 }
3163
3164 skb->protocol = eth_type_trans(skb, bp->dev);
3165
3166 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3167 (ntohs(skb->protocol) != 0x8100)) {
3168
3169 dev_kfree_skb(skb);
3170 goto next_rx;
3171
3172 }
3173
3174 skb->ip_summed = CHECKSUM_NONE;
3175 if (bp->rx_csum &&
3176 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3177 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3178
3179 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3180 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3181 skb->ip_summed = CHECKSUM_UNNECESSARY;
3182 }
3183
3184 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3185
3186 #ifdef BCM_VLAN
3187 if (hw_vlan)
3188 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3189 else
3190 #endif
3191 netif_receive_skb(skb);
3192
3193 rx_pkt++;
3194
3195 next_rx:
3196 sw_cons = NEXT_RX_BD(sw_cons);
3197 sw_prod = NEXT_RX_BD(sw_prod);
3198
3199 if ((rx_pkt == budget))
3200 break;
3201
3202 /* Refresh hw_cons to see if there is new work */
3203 if (sw_cons == hw_cons) {
3204 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3205 rmb();
3206 }
3207 }
3208 rxr->rx_cons = sw_cons;
3209 rxr->rx_prod = sw_prod;
3210
3211 if (pg_ring_used)
3212 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3213
3214 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3215
3216 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3217
3218 mmiowb();
3219
3220 return rx_pkt;
3221
3222 }
3223
3224 /* MSI ISR - The only difference between this and the INTx ISR
3225 * is that the MSI interrupt is always serviced.
3226 */
3227 static irqreturn_t
3228 bnx2_msi(int irq, void *dev_instance)
3229 {
3230 struct bnx2_napi *bnapi = dev_instance;
3231 struct bnx2 *bp = bnapi->bp;
3232
3233 prefetch(bnapi->status_blk.msi);
3234 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3235 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3236 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3237
3238 /* Return here if interrupt is disabled. */
3239 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3240 return IRQ_HANDLED;
3241
3242 napi_schedule(&bnapi->napi);
3243
3244 return IRQ_HANDLED;
3245 }
3246
3247 static irqreturn_t
3248 bnx2_msi_1shot(int irq, void *dev_instance)
3249 {
3250 struct bnx2_napi *bnapi = dev_instance;
3251 struct bnx2 *bp = bnapi->bp;
3252
3253 prefetch(bnapi->status_blk.msi);
3254
3255 /* Return here if interrupt is disabled. */
3256 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3257 return IRQ_HANDLED;
3258
3259 napi_schedule(&bnapi->napi);
3260
3261 return IRQ_HANDLED;
3262 }
3263
3264 static irqreturn_t
3265 bnx2_interrupt(int irq, void *dev_instance)
3266 {
3267 struct bnx2_napi *bnapi = dev_instance;
3268 struct bnx2 *bp = bnapi->bp;
3269 struct status_block *sblk = bnapi->status_blk.msi;
3270
3271 /* When using INTx, it is possible for the interrupt to arrive
3272 * at the CPU before the status block posted prior to the
3273 * interrupt. Reading a register will flush the status block.
3274 * When using MSI, the MSI message will always complete after
3275 * the status block write.
3276 */
3277 if ((sblk->status_idx == bnapi->last_status_idx) &&
3278 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3279 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3280 return IRQ_NONE;
3281
3282 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3283 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3284 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3285
3286 /* Read back to deassert IRQ immediately to avoid too many
3287 * spurious interrupts.
3288 */
3289 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3290
3291 /* Return here if interrupt is shared and is disabled. */
3292 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3293 return IRQ_HANDLED;
3294
3295 if (napi_schedule_prep(&bnapi->napi)) {
3296 bnapi->last_status_idx = sblk->status_idx;
3297 __napi_schedule(&bnapi->napi);
3298 }
3299
3300 return IRQ_HANDLED;
3301 }
3302
3303 static inline int
3304 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3305 {
3306 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3307 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3308
3309 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3310 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3311 return 1;
3312 return 0;
3313 }
3314
3315 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3316 STATUS_ATTN_BITS_TIMER_ABORT)
3317
3318 static inline int
3319 bnx2_has_work(struct bnx2_napi *bnapi)
3320 {
3321 struct status_block *sblk = bnapi->status_blk.msi;
3322
3323 if (bnx2_has_fast_work(bnapi))
3324 return 1;
3325
3326 #ifdef BCM_CNIC
3327 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3328 return 1;
3329 #endif
3330
3331 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3332 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3333 return 1;
3334
3335 return 0;
3336 }
3337
3338 static void
3339 bnx2_chk_missed_msi(struct bnx2 *bp)
3340 {
3341 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3342 u32 msi_ctrl;
3343
3344 if (bnx2_has_work(bnapi)) {
3345 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3346 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3347 return;
3348
3349 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3350 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3351 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3352 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3353 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3354 }
3355 }
3356
3357 bp->idle_chk_status_idx = bnapi->last_status_idx;
3358 }
3359
3360 #ifdef BCM_CNIC
3361 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3362 {
3363 struct cnic_ops *c_ops;
3364
3365 if (!bnapi->cnic_present)
3366 return;
3367
3368 rcu_read_lock();
3369 c_ops = rcu_dereference(bp->cnic_ops);
3370 if (c_ops)
3371 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3372 bnapi->status_blk.msi);
3373 rcu_read_unlock();
3374 }
3375 #endif
3376
3377 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3378 {
3379 struct status_block *sblk = bnapi->status_blk.msi;
3380 u32 status_attn_bits = sblk->status_attn_bits;
3381 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3382
3383 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3384 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3385
3386 bnx2_phy_int(bp, bnapi);
3387
3388 /* This is needed to take care of transient status
3389 * during link changes.
3390 */
3391 REG_WR(bp, BNX2_HC_COMMAND,
3392 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3393 REG_RD(bp, BNX2_HC_COMMAND);
3394 }
3395 }
3396
3397 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3398 int work_done, int budget)
3399 {
3400 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3401 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3402
3403 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3404 bnx2_tx_int(bp, bnapi, 0);
3405
3406 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3407 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3408
3409 return work_done;
3410 }
3411
3412 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3413 {
3414 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3415 struct bnx2 *bp = bnapi->bp;
3416 int work_done = 0;
3417 struct status_block_msix *sblk = bnapi->status_blk.msix;
3418
3419 while (1) {
3420 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3421 if (unlikely(work_done >= budget))
3422 break;
3423
3424 bnapi->last_status_idx = sblk->status_idx;
3425 /* status idx must be read before checking for more work. */
3426 rmb();
3427 if (likely(!bnx2_has_fast_work(bnapi))) {
3428
3429 napi_complete(napi);
3430 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3431 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3432 bnapi->last_status_idx);
3433 break;
3434 }
3435 }
3436 return work_done;
3437 }
3438
3439 static int bnx2_poll(struct napi_struct *napi, int budget)
3440 {
3441 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3442 struct bnx2 *bp = bnapi->bp;
3443 int work_done = 0;
3444 struct status_block *sblk = bnapi->status_blk.msi;
3445
3446 while (1) {
3447 bnx2_poll_link(bp, bnapi);
3448
3449 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3450
3451 #ifdef BCM_CNIC
3452 bnx2_poll_cnic(bp, bnapi);
3453 #endif
3454
3455 /* bnapi->last_status_idx is used below to tell the hw how
3456 * much work has been processed, so we must read it before
3457 * checking for more work.
3458 */
3459 bnapi->last_status_idx = sblk->status_idx;
3460
3461 if (unlikely(work_done >= budget))
3462 break;
3463
3464 rmb();
3465 if (likely(!bnx2_has_work(bnapi))) {
3466 napi_complete(napi);
3467 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3468 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3469 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3470 bnapi->last_status_idx);
3471 break;
3472 }
3473 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3475 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3476 bnapi->last_status_idx);
3477
3478 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3480 bnapi->last_status_idx);
3481 break;
3482 }
3483 }
3484
3485 return work_done;
3486 }
3487
3488 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3489 * from set_multicast.
3490 */
3491 static void
3492 bnx2_set_rx_mode(struct net_device *dev)
3493 {
3494 struct bnx2 *bp = netdev_priv(dev);
3495 u32 rx_mode, sort_mode;
3496 struct netdev_hw_addr *ha;
3497 int i;
3498
3499 if (!netif_running(dev))
3500 return;
3501
3502 spin_lock_bh(&bp->phy_lock);
3503
3504 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3505 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3506 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3507 #ifdef BCM_VLAN
3508 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3509 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3510 #else
3511 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3512 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3513 #endif
3514 if (dev->flags & IFF_PROMISC) {
3515 /* Promiscuous mode. */
3516 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3517 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3518 BNX2_RPM_SORT_USER0_PROM_VLAN;
3519 }
3520 else if (dev->flags & IFF_ALLMULTI) {
3521 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3522 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3523 0xffffffff);
3524 }
3525 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3526 }
3527 else {
3528 /* Accept one or more multicast(s). */
3529 struct dev_mc_list *mclist;
3530 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3531 u32 regidx;
3532 u32 bit;
3533 u32 crc;
3534
3535 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3536
3537 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3538 i++, mclist = mclist->next) {
3539
3540 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3541 bit = crc & 0xff;
3542 regidx = (bit & 0xe0) >> 5;
3543 bit &= 0x1f;
3544 mc_filter[regidx] |= (1 << bit);
3545 }
3546
3547 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3548 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3549 mc_filter[i]);
3550 }
3551
3552 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3553 }
3554
3555 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3556 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3557 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3558 BNX2_RPM_SORT_USER0_PROM_VLAN;
3559 } else if (!(dev->flags & IFF_PROMISC)) {
3560 /* Add all entries into to the match filter list */
3561 i = 0;
3562 list_for_each_entry(ha, &dev->uc.list, list) {
3563 bnx2_set_mac_addr(bp, ha->addr,
3564 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3565 sort_mode |= (1 <<
3566 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3567 i++;
3568 }
3569
3570 }
3571
3572 if (rx_mode != bp->rx_mode) {
3573 bp->rx_mode = rx_mode;
3574 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3575 }
3576
3577 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3578 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3579 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3580
3581 spin_unlock_bh(&bp->phy_lock);
3582 }
3583
3584 static int __devinit
3585 check_fw_section(const struct firmware *fw,
3586 const struct bnx2_fw_file_section *section,
3587 u32 alignment, bool non_empty)
3588 {
3589 u32 offset = be32_to_cpu(section->offset);
3590 u32 len = be32_to_cpu(section->len);
3591
3592 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3593 return -EINVAL;
3594 if ((non_empty && len == 0) || len > fw->size - offset ||
3595 len & (alignment - 1))
3596 return -EINVAL;
3597 return 0;
3598 }
3599
3600 static int __devinit
3601 check_mips_fw_entry(const struct firmware *fw,
3602 const struct bnx2_mips_fw_file_entry *entry)
3603 {
3604 if (check_fw_section(fw, &entry->text, 4, true) ||
3605 check_fw_section(fw, &entry->data, 4, false) ||
3606 check_fw_section(fw, &entry->rodata, 4, false))
3607 return -EINVAL;
3608 return 0;
3609 }
3610
3611 static int __devinit
3612 bnx2_request_firmware(struct bnx2 *bp)
3613 {
3614 const char *mips_fw_file, *rv2p_fw_file;
3615 const struct bnx2_mips_fw_file *mips_fw;
3616 const struct bnx2_rv2p_fw_file *rv2p_fw;
3617 int rc;
3618
3619 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3620 mips_fw_file = FW_MIPS_FILE_09;
3621 rv2p_fw_file = FW_RV2P_FILE_09;
3622 } else {
3623 mips_fw_file = FW_MIPS_FILE_06;
3624 rv2p_fw_file = FW_RV2P_FILE_06;
3625 }
3626
3627 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3628 if (rc) {
3629 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3630 mips_fw_file);
3631 return rc;
3632 }
3633
3634 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3635 if (rc) {
3636 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3637 rv2p_fw_file);
3638 return rc;
3639 }
3640 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3641 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3642 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3643 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3644 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3645 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3646 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3647 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3648 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3649 mips_fw_file);
3650 return -EINVAL;
3651 }
3652 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3653 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3654 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3655 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3656 rv2p_fw_file);
3657 return -EINVAL;
3658 }
3659
3660 return 0;
3661 }
3662
3663 static u32
3664 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3665 {
3666 switch (idx) {
3667 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3668 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3669 rv2p_code |= RV2P_BD_PAGE_SIZE;
3670 break;
3671 }
3672 return rv2p_code;
3673 }
3674
3675 static int
3676 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3677 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3678 {
3679 u32 rv2p_code_len, file_offset;
3680 __be32 *rv2p_code;
3681 int i;
3682 u32 val, cmd, addr;
3683
3684 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3685 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3686
3687 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3688
3689 if (rv2p_proc == RV2P_PROC1) {
3690 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3691 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3692 } else {
3693 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3694 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3695 }
3696
3697 for (i = 0; i < rv2p_code_len; i += 8) {
3698 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3699 rv2p_code++;
3700 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3701 rv2p_code++;
3702
3703 val = (i / 8) | cmd;
3704 REG_WR(bp, addr, val);
3705 }
3706
3707 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3708 for (i = 0; i < 8; i++) {
3709 u32 loc, code;
3710
3711 loc = be32_to_cpu(fw_entry->fixup[i]);
3712 if (loc && ((loc * 4) < rv2p_code_len)) {
3713 code = be32_to_cpu(*(rv2p_code + loc - 1));
3714 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3715 code = be32_to_cpu(*(rv2p_code + loc));
3716 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3717 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3718
3719 val = (loc / 2) | cmd;
3720 REG_WR(bp, addr, val);
3721 }
3722 }
3723
3724 /* Reset the processor, un-stall is done later. */
3725 if (rv2p_proc == RV2P_PROC1) {
3726 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3727 }
3728 else {
3729 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3730 }
3731
3732 return 0;
3733 }
3734
3735 static int
3736 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3737 const struct bnx2_mips_fw_file_entry *fw_entry)
3738 {
3739 u32 addr, len, file_offset;
3740 __be32 *data;
3741 u32 offset;
3742 u32 val;
3743
3744 /* Halt the CPU. */
3745 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3746 val |= cpu_reg->mode_value_halt;
3747 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3748 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3749
3750 /* Load the Text area. */
3751 addr = be32_to_cpu(fw_entry->text.addr);
3752 len = be32_to_cpu(fw_entry->text.len);
3753 file_offset = be32_to_cpu(fw_entry->text.offset);
3754 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3755
3756 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3757 if (len) {
3758 int j;
3759
3760 for (j = 0; j < (len / 4); j++, offset += 4)
3761 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3762 }
3763
3764 /* Load the Data area. */
3765 addr = be32_to_cpu(fw_entry->data.addr);
3766 len = be32_to_cpu(fw_entry->data.len);
3767 file_offset = be32_to_cpu(fw_entry->data.offset);
3768 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3769
3770 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3771 if (len) {
3772 int j;
3773
3774 for (j = 0; j < (len / 4); j++, offset += 4)
3775 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3776 }
3777
3778 /* Load the Read-Only area. */
3779 addr = be32_to_cpu(fw_entry->rodata.addr);
3780 len = be32_to_cpu(fw_entry->rodata.len);
3781 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3782 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3783
3784 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3785 if (len) {
3786 int j;
3787
3788 for (j = 0; j < (len / 4); j++, offset += 4)
3789 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3790 }
3791
3792 /* Clear the pre-fetch instruction. */
3793 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3794
3795 val = be32_to_cpu(fw_entry->start_addr);
3796 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3797
3798 /* Start the CPU. */
3799 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3800 val &= ~cpu_reg->mode_value_halt;
3801 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3802 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3803
3804 return 0;
3805 }
3806
3807 static int
3808 bnx2_init_cpus(struct bnx2 *bp)
3809 {
3810 const struct bnx2_mips_fw_file *mips_fw =
3811 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3812 const struct bnx2_rv2p_fw_file *rv2p_fw =
3813 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3814 int rc;
3815
3816 /* Initialize the RV2P processor. */
3817 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3818 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3819
3820 /* Initialize the RX Processor. */
3821 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3822 if (rc)
3823 goto init_cpu_err;
3824
3825 /* Initialize the TX Processor. */
3826 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3827 if (rc)
3828 goto init_cpu_err;
3829
3830 /* Initialize the TX Patch-up Processor. */
3831 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3832 if (rc)
3833 goto init_cpu_err;
3834
3835 /* Initialize the Completion Processor. */
3836 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3837 if (rc)
3838 goto init_cpu_err;
3839
3840 /* Initialize the Command Processor. */
3841 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3842
3843 init_cpu_err:
3844 return rc;
3845 }
3846
3847 static int
3848 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3849 {
3850 u16 pmcsr;
3851
3852 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3853
3854 switch (state) {
3855 case PCI_D0: {
3856 u32 val;
3857
3858 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3859 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3860 PCI_PM_CTRL_PME_STATUS);
3861
3862 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3863 /* delay required during transition out of D3hot */
3864 msleep(20);
3865
3866 val = REG_RD(bp, BNX2_EMAC_MODE);
3867 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3868 val &= ~BNX2_EMAC_MODE_MPKT;
3869 REG_WR(bp, BNX2_EMAC_MODE, val);
3870
3871 val = REG_RD(bp, BNX2_RPM_CONFIG);
3872 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3873 REG_WR(bp, BNX2_RPM_CONFIG, val);
3874 break;
3875 }
3876 case PCI_D3hot: {
3877 int i;
3878 u32 val, wol_msg;
3879
3880 if (bp->wol) {
3881 u32 advertising;
3882 u8 autoneg;
3883
3884 autoneg = bp->autoneg;
3885 advertising = bp->advertising;
3886
3887 if (bp->phy_port == PORT_TP) {
3888 bp->autoneg = AUTONEG_SPEED;
3889 bp->advertising = ADVERTISED_10baseT_Half |
3890 ADVERTISED_10baseT_Full |
3891 ADVERTISED_100baseT_Half |
3892 ADVERTISED_100baseT_Full |
3893 ADVERTISED_Autoneg;
3894 }
3895
3896 spin_lock_bh(&bp->phy_lock);
3897 bnx2_setup_phy(bp, bp->phy_port);
3898 spin_unlock_bh(&bp->phy_lock);
3899
3900 bp->autoneg = autoneg;
3901 bp->advertising = advertising;
3902
3903 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3904
3905 val = REG_RD(bp, BNX2_EMAC_MODE);
3906
3907 /* Enable port mode. */
3908 val &= ~BNX2_EMAC_MODE_PORT;
3909 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3910 BNX2_EMAC_MODE_ACPI_RCVD |
3911 BNX2_EMAC_MODE_MPKT;
3912 if (bp->phy_port == PORT_TP)
3913 val |= BNX2_EMAC_MODE_PORT_MII;
3914 else {
3915 val |= BNX2_EMAC_MODE_PORT_GMII;
3916 if (bp->line_speed == SPEED_2500)
3917 val |= BNX2_EMAC_MODE_25G_MODE;
3918 }
3919
3920 REG_WR(bp, BNX2_EMAC_MODE, val);
3921
3922 /* receive all multicast */
3923 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3924 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3925 0xffffffff);
3926 }
3927 REG_WR(bp, BNX2_EMAC_RX_MODE,
3928 BNX2_EMAC_RX_MODE_SORT_MODE);
3929
3930 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3931 BNX2_RPM_SORT_USER0_MC_EN;
3932 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3933 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3934 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3935 BNX2_RPM_SORT_USER0_ENA);
3936
3937 /* Need to enable EMAC and RPM for WOL. */
3938 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3939 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3940 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3941 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3942
3943 val = REG_RD(bp, BNX2_RPM_CONFIG);
3944 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3945 REG_WR(bp, BNX2_RPM_CONFIG, val);
3946
3947 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3948 }
3949 else {
3950 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3951 }
3952
3953 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3954 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3955 1, 0);
3956
3957 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3958 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3959 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3960
3961 if (bp->wol)
3962 pmcsr |= 3;
3963 }
3964 else {
3965 pmcsr |= 3;
3966 }
3967 if (bp->wol) {
3968 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3969 }
3970 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3971 pmcsr);
3972
3973 /* No more memory access after this point until
3974 * device is brought back to D0.
3975 */
3976 udelay(50);
3977 break;
3978 }
3979 default:
3980 return -EINVAL;
3981 }
3982 return 0;
3983 }
3984
3985 static int
3986 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3987 {
3988 u32 val;
3989 int j;
3990
3991 /* Request access to the flash interface. */
3992 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3993 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3994 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3995 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3996 break;
3997
3998 udelay(5);
3999 }
4000
4001 if (j >= NVRAM_TIMEOUT_COUNT)
4002 return -EBUSY;
4003
4004 return 0;
4005 }
4006
4007 static int
4008 bnx2_release_nvram_lock(struct bnx2 *bp)
4009 {
4010 int j;
4011 u32 val;
4012
4013 /* Relinquish nvram interface. */
4014 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4015
4016 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4017 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4018 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4019 break;
4020
4021 udelay(5);
4022 }
4023
4024 if (j >= NVRAM_TIMEOUT_COUNT)
4025 return -EBUSY;
4026
4027 return 0;
4028 }
4029
4030
4031 static int
4032 bnx2_enable_nvram_write(struct bnx2 *bp)
4033 {
4034 u32 val;
4035
4036 val = REG_RD(bp, BNX2_MISC_CFG);
4037 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4038
4039 if (bp->flash_info->flags & BNX2_NV_WREN) {
4040 int j;
4041
4042 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4043 REG_WR(bp, BNX2_NVM_COMMAND,
4044 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4045
4046 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4047 udelay(5);
4048
4049 val = REG_RD(bp, BNX2_NVM_COMMAND);
4050 if (val & BNX2_NVM_COMMAND_DONE)
4051 break;
4052 }
4053
4054 if (j >= NVRAM_TIMEOUT_COUNT)
4055 return -EBUSY;
4056 }
4057 return 0;
4058 }
4059
4060 static void
4061 bnx2_disable_nvram_write(struct bnx2 *bp)
4062 {
4063 u32 val;
4064
4065 val = REG_RD(bp, BNX2_MISC_CFG);
4066 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4067 }
4068
4069
4070 static void
4071 bnx2_enable_nvram_access(struct bnx2 *bp)
4072 {
4073 u32 val;
4074
4075 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4076 /* Enable both bits, even on read. */
4077 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4078 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4079 }
4080
4081 static void
4082 bnx2_disable_nvram_access(struct bnx2 *bp)
4083 {
4084 u32 val;
4085
4086 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4087 /* Disable both bits, even after read. */
4088 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4089 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4090 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4091 }
4092
4093 static int
4094 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4095 {
4096 u32 cmd;
4097 int j;
4098
4099 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4100 /* Buffered flash, no erase needed */
4101 return 0;
4102
4103 /* Build an erase command */
4104 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4105 BNX2_NVM_COMMAND_DOIT;
4106
4107 /* Need to clear DONE bit separately. */
4108 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4109
4110 /* Address of the NVRAM to read from. */
4111 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4112
4113 /* Issue an erase command. */
4114 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4115
4116 /* Wait for completion. */
4117 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4118 u32 val;
4119
4120 udelay(5);
4121
4122 val = REG_RD(bp, BNX2_NVM_COMMAND);
4123 if (val & BNX2_NVM_COMMAND_DONE)
4124 break;
4125 }
4126
4127 if (j >= NVRAM_TIMEOUT_COUNT)
4128 return -EBUSY;
4129
4130 return 0;
4131 }
4132
4133 static int
4134 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4135 {
4136 u32 cmd;
4137 int j;
4138
4139 /* Build the command word. */
4140 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4141
4142 /* Calculate an offset of a buffered flash, not needed for 5709. */
4143 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4144 offset = ((offset / bp->flash_info->page_size) <<
4145 bp->flash_info->page_bits) +
4146 (offset % bp->flash_info->page_size);
4147 }
4148
4149 /* Need to clear DONE bit separately. */
4150 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4151
4152 /* Address of the NVRAM to read from. */
4153 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4154
4155 /* Issue a read command. */
4156 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4157
4158 /* Wait for completion. */
4159 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4160 u32 val;
4161
4162 udelay(5);
4163
4164 val = REG_RD(bp, BNX2_NVM_COMMAND);
4165 if (val & BNX2_NVM_COMMAND_DONE) {
4166 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4167 memcpy(ret_val, &v, 4);
4168 break;
4169 }
4170 }
4171 if (j >= NVRAM_TIMEOUT_COUNT)
4172 return -EBUSY;
4173
4174 return 0;
4175 }
4176
4177
4178 static int
4179 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4180 {
4181 u32 cmd;
4182 __be32 val32;
4183 int j;
4184
4185 /* Build the command word. */
4186 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4187
4188 /* Calculate an offset of a buffered flash, not needed for 5709. */
4189 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4190 offset = ((offset / bp->flash_info->page_size) <<
4191 bp->flash_info->page_bits) +
4192 (offset % bp->flash_info->page_size);
4193 }
4194
4195 /* Need to clear DONE bit separately. */
4196 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4197
4198 memcpy(&val32, val, 4);
4199
4200 /* Write the data. */
4201 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4202
4203 /* Address of the NVRAM to write to. */
4204 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4205
4206 /* Issue the write command. */
4207 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4208
4209 /* Wait for completion. */
4210 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4211 udelay(5);
4212
4213 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4214 break;
4215 }
4216 if (j >= NVRAM_TIMEOUT_COUNT)
4217 return -EBUSY;
4218
4219 return 0;
4220 }
4221
4222 static int
4223 bnx2_init_nvram(struct bnx2 *bp)
4224 {
4225 u32 val;
4226 int j, entry_count, rc = 0;
4227 struct flash_spec *flash;
4228
4229 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4230 bp->flash_info = &flash_5709;
4231 goto get_flash_size;
4232 }
4233
4234 /* Determine the selected interface. */
4235 val = REG_RD(bp, BNX2_NVM_CFG1);
4236
4237 entry_count = ARRAY_SIZE(flash_table);
4238
4239 if (val & 0x40000000) {
4240
4241 /* Flash interface has been reconfigured */
4242 for (j = 0, flash = &flash_table[0]; j < entry_count;
4243 j++, flash++) {
4244 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4245 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4246 bp->flash_info = flash;
4247 break;
4248 }
4249 }
4250 }
4251 else {
4252 u32 mask;
4253 /* Not yet been reconfigured */
4254
4255 if (val & (1 << 23))
4256 mask = FLASH_BACKUP_STRAP_MASK;
4257 else
4258 mask = FLASH_STRAP_MASK;
4259
4260 for (j = 0, flash = &flash_table[0]; j < entry_count;
4261 j++, flash++) {
4262
4263 if ((val & mask) == (flash->strapping & mask)) {
4264 bp->flash_info = flash;
4265
4266 /* Request access to the flash interface. */
4267 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4268 return rc;
4269
4270 /* Enable access to flash interface */
4271 bnx2_enable_nvram_access(bp);
4272
4273 /* Reconfigure the flash interface */
4274 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4275 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4276 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4277 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4278
4279 /* Disable access to flash interface */
4280 bnx2_disable_nvram_access(bp);
4281 bnx2_release_nvram_lock(bp);
4282
4283 break;
4284 }
4285 }
4286 } /* if (val & 0x40000000) */
4287
4288 if (j == entry_count) {
4289 bp->flash_info = NULL;
4290 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4291 return -ENODEV;
4292 }
4293
4294 get_flash_size:
4295 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4296 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4297 if (val)
4298 bp->flash_size = val;
4299 else
4300 bp->flash_size = bp->flash_info->total_size;
4301
4302 return rc;
4303 }
4304
4305 static int
4306 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4307 int buf_size)
4308 {
4309 int rc = 0;
4310 u32 cmd_flags, offset32, len32, extra;
4311
4312 if (buf_size == 0)
4313 return 0;
4314
4315 /* Request access to the flash interface. */
4316 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4317 return rc;
4318
4319 /* Enable access to flash interface */
4320 bnx2_enable_nvram_access(bp);
4321
4322 len32 = buf_size;
4323 offset32 = offset;
4324 extra = 0;
4325
4326 cmd_flags = 0;
4327
4328 if (offset32 & 3) {
4329 u8 buf[4];
4330 u32 pre_len;
4331
4332 offset32 &= ~3;
4333 pre_len = 4 - (offset & 3);
4334
4335 if (pre_len >= len32) {
4336 pre_len = len32;
4337 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4338 BNX2_NVM_COMMAND_LAST;
4339 }
4340 else {
4341 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4342 }
4343
4344 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4345
4346 if (rc)
4347 return rc;
4348
4349 memcpy(ret_buf, buf + (offset & 3), pre_len);
4350
4351 offset32 += 4;
4352 ret_buf += pre_len;
4353 len32 -= pre_len;
4354 }
4355 if (len32 & 3) {
4356 extra = 4 - (len32 & 3);
4357 len32 = (len32 + 4) & ~3;
4358 }
4359
4360 if (len32 == 4) {
4361 u8 buf[4];
4362
4363 if (cmd_flags)
4364 cmd_flags = BNX2_NVM_COMMAND_LAST;
4365 else
4366 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4367 BNX2_NVM_COMMAND_LAST;
4368
4369 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4370
4371 memcpy(ret_buf, buf, 4 - extra);
4372 }
4373 else if (len32 > 0) {
4374 u8 buf[4];
4375
4376 /* Read the first word. */
4377 if (cmd_flags)
4378 cmd_flags = 0;
4379 else
4380 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4381
4382 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4383
4384 /* Advance to the next dword. */
4385 offset32 += 4;
4386 ret_buf += 4;
4387 len32 -= 4;
4388
4389 while (len32 > 4 && rc == 0) {
4390 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4391
4392 /* Advance to the next dword. */
4393 offset32 += 4;
4394 ret_buf += 4;
4395 len32 -= 4;
4396 }
4397
4398 if (rc)
4399 return rc;
4400
4401 cmd_flags = BNX2_NVM_COMMAND_LAST;
4402 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4403
4404 memcpy(ret_buf, buf, 4 - extra);
4405 }
4406
4407 /* Disable access to flash interface */
4408 bnx2_disable_nvram_access(bp);
4409
4410 bnx2_release_nvram_lock(bp);
4411
4412 return rc;
4413 }
4414
4415 static int
4416 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4417 int buf_size)
4418 {
4419 u32 written, offset32, len32;
4420 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4421 int rc = 0;
4422 int align_start, align_end;
4423
4424 buf = data_buf;
4425 offset32 = offset;
4426 len32 = buf_size;
4427 align_start = align_end = 0;
4428
4429 if ((align_start = (offset32 & 3))) {
4430 offset32 &= ~3;
4431 len32 += align_start;
4432 if (len32 < 4)
4433 len32 = 4;
4434 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4435 return rc;
4436 }
4437
4438 if (len32 & 3) {
4439 align_end = 4 - (len32 & 3);
4440 len32 += align_end;
4441 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4442 return rc;
4443 }
4444
4445 if (align_start || align_end) {
4446 align_buf = kmalloc(len32, GFP_KERNEL);
4447 if (align_buf == NULL)
4448 return -ENOMEM;
4449 if (align_start) {
4450 memcpy(align_buf, start, 4);
4451 }
4452 if (align_end) {
4453 memcpy(align_buf + len32 - 4, end, 4);
4454 }
4455 memcpy(align_buf + align_start, data_buf, buf_size);
4456 buf = align_buf;
4457 }
4458
4459 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4460 flash_buffer = kmalloc(264, GFP_KERNEL);
4461 if (flash_buffer == NULL) {
4462 rc = -ENOMEM;
4463 goto nvram_write_end;
4464 }
4465 }
4466
4467 written = 0;
4468 while ((written < len32) && (rc == 0)) {
4469 u32 page_start, page_end, data_start, data_end;
4470 u32 addr, cmd_flags;
4471 int i;
4472
4473 /* Find the page_start addr */
4474 page_start = offset32 + written;
4475 page_start -= (page_start % bp->flash_info->page_size);
4476 /* Find the page_end addr */
4477 page_end = page_start + bp->flash_info->page_size;
4478 /* Find the data_start addr */
4479 data_start = (written == 0) ? offset32 : page_start;
4480 /* Find the data_end addr */
4481 data_end = (page_end > offset32 + len32) ?
4482 (offset32 + len32) : page_end;
4483
4484 /* Request access to the flash interface. */
4485 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4486 goto nvram_write_end;
4487
4488 /* Enable access to flash interface */
4489 bnx2_enable_nvram_access(bp);
4490
4491 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4492 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4493 int j;
4494
4495 /* Read the whole page into the buffer
4496 * (non-buffer flash only) */
4497 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4498 if (j == (bp->flash_info->page_size - 4)) {
4499 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4500 }
4501 rc = bnx2_nvram_read_dword(bp,
4502 page_start + j,
4503 &flash_buffer[j],
4504 cmd_flags);
4505
4506 if (rc)
4507 goto nvram_write_end;
4508
4509 cmd_flags = 0;
4510 }
4511 }
4512
4513 /* Enable writes to flash interface (unlock write-protect) */
4514 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4515 goto nvram_write_end;
4516
4517 /* Loop to write back the buffer data from page_start to
4518 * data_start */
4519 i = 0;
4520 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4521 /* Erase the page */
4522 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4523 goto nvram_write_end;
4524
4525 /* Re-enable the write again for the actual write */
4526 bnx2_enable_nvram_write(bp);
4527
4528 for (addr = page_start; addr < data_start;
4529 addr += 4, i += 4) {
4530
4531 rc = bnx2_nvram_write_dword(bp, addr,
4532 &flash_buffer[i], cmd_flags);
4533
4534 if (rc != 0)
4535 goto nvram_write_end;
4536
4537 cmd_flags = 0;
4538 }
4539 }
4540
4541 /* Loop to write the new data from data_start to data_end */
4542 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4543 if ((addr == page_end - 4) ||
4544 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4545 (addr == data_end - 4))) {
4546
4547 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4548 }
4549 rc = bnx2_nvram_write_dword(bp, addr, buf,
4550 cmd_flags);
4551
4552 if (rc != 0)
4553 goto nvram_write_end;
4554
4555 cmd_flags = 0;
4556 buf += 4;
4557 }
4558
4559 /* Loop to write back the buffer data from data_end
4560 * to page_end */
4561 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4562 for (addr = data_end; addr < page_end;
4563 addr += 4, i += 4) {
4564
4565 if (addr == page_end-4) {
4566 cmd_flags = BNX2_NVM_COMMAND_LAST;
4567 }
4568 rc = bnx2_nvram_write_dword(bp, addr,
4569 &flash_buffer[i], cmd_flags);
4570
4571 if (rc != 0)
4572 goto nvram_write_end;
4573
4574 cmd_flags = 0;
4575 }
4576 }
4577
4578 /* Disable writes to flash interface (lock write-protect) */
4579 bnx2_disable_nvram_write(bp);
4580
4581 /* Disable access to flash interface */
4582 bnx2_disable_nvram_access(bp);
4583 bnx2_release_nvram_lock(bp);
4584
4585 /* Increment written */
4586 written += data_end - data_start;
4587 }
4588
4589 nvram_write_end:
4590 kfree(flash_buffer);
4591 kfree(align_buf);
4592 return rc;
4593 }
4594
4595 static void
4596 bnx2_init_fw_cap(struct bnx2 *bp)
4597 {
4598 u32 val, sig = 0;
4599
4600 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4601 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4602
4603 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4604 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4605
4606 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4607 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4608 return;
4609
4610 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4611 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4612 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4613 }
4614
4615 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4616 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4617 u32 link;
4618
4619 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4620
4621 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4622 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4623 bp->phy_port = PORT_FIBRE;
4624 else
4625 bp->phy_port = PORT_TP;
4626
4627 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4628 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4629 }
4630
4631 if (netif_running(bp->dev) && sig)
4632 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4633 }
4634
4635 static void
4636 bnx2_setup_msix_tbl(struct bnx2 *bp)
4637 {
4638 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4639
4640 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4641 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4642 }
4643
4644 static int
4645 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4646 {
4647 u32 val;
4648 int i, rc = 0;
4649 u8 old_port;
4650
4651 /* Wait for the current PCI transaction to complete before
4652 * issuing a reset. */
4653 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4654 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4655 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4656 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4657 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4658 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4659 udelay(5);
4660
4661 /* Wait for the firmware to tell us it is ok to issue a reset. */
4662 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4663
4664 /* Deposit a driver reset signature so the firmware knows that
4665 * this is a soft reset. */
4666 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4667 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4668
4669 /* Do a dummy read to force the chip to complete all current transaction
4670 * before we issue a reset. */
4671 val = REG_RD(bp, BNX2_MISC_ID);
4672
4673 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4674 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4675 REG_RD(bp, BNX2_MISC_COMMAND);
4676 udelay(5);
4677
4678 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4679 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4680
4681 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4682
4683 } else {
4684 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4685 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4686 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4687
4688 /* Chip reset. */
4689 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4690
4691 /* Reading back any register after chip reset will hang the
4692 * bus on 5706 A0 and A1. The msleep below provides plenty
4693 * of margin for write posting.
4694 */
4695 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4696 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4697 msleep(20);
4698
4699 /* Reset takes approximate 30 usec */
4700 for (i = 0; i < 10; i++) {
4701 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4702 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4703 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4704 break;
4705 udelay(10);
4706 }
4707
4708 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4709 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4710 printk(KERN_ERR PFX "Chip reset did not complete\n");
4711 return -EBUSY;
4712 }
4713 }
4714
4715 /* Make sure byte swapping is properly configured. */
4716 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4717 if (val != 0x01020304) {
4718 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4719 return -ENODEV;
4720 }
4721
4722 /* Wait for the firmware to finish its initialization. */
4723 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4724 if (rc)
4725 return rc;
4726
4727 spin_lock_bh(&bp->phy_lock);
4728 old_port = bp->phy_port;
4729 bnx2_init_fw_cap(bp);
4730 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4731 old_port != bp->phy_port)
4732 bnx2_set_default_remote_link(bp);
4733 spin_unlock_bh(&bp->phy_lock);
4734
4735 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4736 /* Adjust the voltage regular to two steps lower. The default
4737 * of this register is 0x0000000e. */
4738 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4739
4740 /* Remove bad rbuf memory from the free pool. */
4741 rc = bnx2_alloc_bad_rbuf(bp);
4742 }
4743
4744 if (bp->flags & BNX2_FLAG_USING_MSIX)
4745 bnx2_setup_msix_tbl(bp);
4746
4747 return rc;
4748 }
4749
4750 static int
4751 bnx2_init_chip(struct bnx2 *bp)
4752 {
4753 u32 val, mtu;
4754 int rc, i;
4755
4756 /* Make sure the interrupt is not active. */
4757 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4758
4759 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4760 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4761 #ifdef __BIG_ENDIAN
4762 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4763 #endif
4764 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4765 DMA_READ_CHANS << 12 |
4766 DMA_WRITE_CHANS << 16;
4767
4768 val |= (0x2 << 20) | (1 << 11);
4769
4770 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4771 val |= (1 << 23);
4772
4773 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4774 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4775 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4776
4777 REG_WR(bp, BNX2_DMA_CONFIG, val);
4778
4779 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4780 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4781 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4782 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4783 }
4784
4785 if (bp->flags & BNX2_FLAG_PCIX) {
4786 u16 val16;
4787
4788 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4789 &val16);
4790 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4791 val16 & ~PCI_X_CMD_ERO);
4792 }
4793
4794 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4795 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4796 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4797 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4798
4799 /* Initialize context mapping and zero out the quick contexts. The
4800 * context block must have already been enabled. */
4801 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4802 rc = bnx2_init_5709_context(bp);
4803 if (rc)
4804 return rc;
4805 } else
4806 bnx2_init_context(bp);
4807
4808 if ((rc = bnx2_init_cpus(bp)) != 0)
4809 return rc;
4810
4811 bnx2_init_nvram(bp);
4812
4813 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4814
4815 val = REG_RD(bp, BNX2_MQ_CONFIG);
4816 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4817 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4818 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4819 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4820 if (CHIP_REV(bp) == CHIP_REV_Ax)
4821 val |= BNX2_MQ_CONFIG_HALT_DIS;
4822 }
4823
4824 REG_WR(bp, BNX2_MQ_CONFIG, val);
4825
4826 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4827 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4828 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4829
4830 val = (BCM_PAGE_BITS - 8) << 24;
4831 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4832
4833 /* Configure page size. */
4834 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4835 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4836 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4837 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4838
4839 val = bp->mac_addr[0] +
4840 (bp->mac_addr[1] << 8) +
4841 (bp->mac_addr[2] << 16) +
4842 bp->mac_addr[3] +
4843 (bp->mac_addr[4] << 8) +
4844 (bp->mac_addr[5] << 16);
4845 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4846
4847 /* Program the MTU. Also include 4 bytes for CRC32. */
4848 mtu = bp->dev->mtu;
4849 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4850 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4851 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4852 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4853
4854 if (mtu < 1500)
4855 mtu = 1500;
4856
4857 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4858 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4859 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4860
4861 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4862 bp->bnx2_napi[i].last_status_idx = 0;
4863
4864 bp->idle_chk_status_idx = 0xffff;
4865
4866 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4867
4868 /* Set up how to generate a link change interrupt. */
4869 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4870
4871 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4872 (u64) bp->status_blk_mapping & 0xffffffff);
4873 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4874
4875 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4876 (u64) bp->stats_blk_mapping & 0xffffffff);
4877 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4878 (u64) bp->stats_blk_mapping >> 32);
4879
4880 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4881 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4882
4883 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4884 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4885
4886 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4887 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4888
4889 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4890
4891 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4892
4893 REG_WR(bp, BNX2_HC_COM_TICKS,
4894 (bp->com_ticks_int << 16) | bp->com_ticks);
4895
4896 REG_WR(bp, BNX2_HC_CMD_TICKS,
4897 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4898
4899 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4900 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4901 else
4902 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4903 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4904
4905 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4906 val = BNX2_HC_CONFIG_COLLECT_STATS;
4907 else {
4908 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4909 BNX2_HC_CONFIG_COLLECT_STATS;
4910 }
4911
4912 if (bp->irq_nvecs > 1) {
4913 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4914 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4915
4916 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4917 }
4918
4919 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4920 val |= BNX2_HC_CONFIG_ONE_SHOT;
4921
4922 REG_WR(bp, BNX2_HC_CONFIG, val);
4923
4924 for (i = 1; i < bp->irq_nvecs; i++) {
4925 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4926 BNX2_HC_SB_CONFIG_1;
4927
4928 REG_WR(bp, base,
4929 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4930 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4931 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4932
4933 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4934 (bp->tx_quick_cons_trip_int << 16) |
4935 bp->tx_quick_cons_trip);
4936
4937 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4938 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4939
4940 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4941 (bp->rx_quick_cons_trip_int << 16) |
4942 bp->rx_quick_cons_trip);
4943
4944 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4945 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4946 }
4947
4948 /* Clear internal stats counters. */
4949 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4950
4951 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4952
4953 /* Initialize the receive filter. */
4954 bnx2_set_rx_mode(bp->dev);
4955
4956 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4957 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4958 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4959 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4960 }
4961 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4962 1, 0);
4963
4964 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4965 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4966
4967 udelay(20);
4968
4969 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4970
4971 return rc;
4972 }
4973
4974 static void
4975 bnx2_clear_ring_states(struct bnx2 *bp)
4976 {
4977 struct bnx2_napi *bnapi;
4978 struct bnx2_tx_ring_info *txr;
4979 struct bnx2_rx_ring_info *rxr;
4980 int i;
4981
4982 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4983 bnapi = &bp->bnx2_napi[i];
4984 txr = &bnapi->tx_ring;
4985 rxr = &bnapi->rx_ring;
4986
4987 txr->tx_cons = 0;
4988 txr->hw_tx_cons = 0;
4989 rxr->rx_prod_bseq = 0;
4990 rxr->rx_prod = 0;
4991 rxr->rx_cons = 0;
4992 rxr->rx_pg_prod = 0;
4993 rxr->rx_pg_cons = 0;
4994 }
4995 }
4996
4997 static void
4998 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
4999 {
5000 u32 val, offset0, offset1, offset2, offset3;
5001 u32 cid_addr = GET_CID_ADDR(cid);
5002
5003 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5004 offset0 = BNX2_L2CTX_TYPE_XI;
5005 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5006 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5007 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5008 } else {
5009 offset0 = BNX2_L2CTX_TYPE;
5010 offset1 = BNX2_L2CTX_CMD_TYPE;
5011 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5012 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5013 }
5014 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5015 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5016
5017 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5018 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5019
5020 val = (u64) txr->tx_desc_mapping >> 32;
5021 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5022
5023 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5024 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5025 }
5026
5027 static void
5028 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5029 {
5030 struct tx_bd *txbd;
5031 u32 cid = TX_CID;
5032 struct bnx2_napi *bnapi;
5033 struct bnx2_tx_ring_info *txr;
5034
5035 bnapi = &bp->bnx2_napi[ring_num];
5036 txr = &bnapi->tx_ring;
5037
5038 if (ring_num == 0)
5039 cid = TX_CID;
5040 else
5041 cid = TX_TSS_CID + ring_num - 1;
5042
5043 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5044
5045 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5046
5047 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5048 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5049
5050 txr->tx_prod = 0;
5051 txr->tx_prod_bseq = 0;
5052
5053 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5054 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5055
5056 bnx2_init_tx_context(bp, cid, txr);
5057 }
5058
5059 static void
5060 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5061 int num_rings)
5062 {
5063 int i;
5064 struct rx_bd *rxbd;
5065
5066 for (i = 0; i < num_rings; i++) {
5067 int j;
5068
5069 rxbd = &rx_ring[i][0];
5070 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5071 rxbd->rx_bd_len = buf_size;
5072 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5073 }
5074 if (i == (num_rings - 1))
5075 j = 0;
5076 else
5077 j = i + 1;
5078 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5079 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5080 }
5081 }
5082
5083 static void
5084 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5085 {
5086 int i;
5087 u16 prod, ring_prod;
5088 u32 cid, rx_cid_addr, val;
5089 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5090 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5091
5092 if (ring_num == 0)
5093 cid = RX_CID;
5094 else
5095 cid = RX_RSS_CID + ring_num - 1;
5096
5097 rx_cid_addr = GET_CID_ADDR(cid);
5098
5099 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5100 bp->rx_buf_use_size, bp->rx_max_ring);
5101
5102 bnx2_init_rx_context(bp, cid);
5103
5104 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5105 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5106 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5107 }
5108
5109 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5110 if (bp->rx_pg_ring_size) {
5111 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5112 rxr->rx_pg_desc_mapping,
5113 PAGE_SIZE, bp->rx_max_pg_ring);
5114 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5115 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5116 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5117 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5118
5119 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5120 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5121
5122 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5123 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5124
5125 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5126 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5127 }
5128
5129 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5130 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5131
5132 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5133 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5134
5135 ring_prod = prod = rxr->rx_pg_prod;
5136 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5137 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5138 break;
5139 prod = NEXT_RX_BD(prod);
5140 ring_prod = RX_PG_RING_IDX(prod);
5141 }
5142 rxr->rx_pg_prod = prod;
5143
5144 ring_prod = prod = rxr->rx_prod;
5145 for (i = 0; i < bp->rx_ring_size; i++) {
5146 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5147 break;
5148 prod = NEXT_RX_BD(prod);
5149 ring_prod = RX_RING_IDX(prod);
5150 }
5151 rxr->rx_prod = prod;
5152
5153 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5154 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5155 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5156
5157 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5158 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5159
5160 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5161 }
5162
5163 static void
5164 bnx2_init_all_rings(struct bnx2 *bp)
5165 {
5166 int i;
5167 u32 val;
5168
5169 bnx2_clear_ring_states(bp);
5170
5171 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5172 for (i = 0; i < bp->num_tx_rings; i++)
5173 bnx2_init_tx_ring(bp, i);
5174
5175 if (bp->num_tx_rings > 1)
5176 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5177 (TX_TSS_CID << 7));
5178
5179 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5180 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5181
5182 for (i = 0; i < bp->num_rx_rings; i++)
5183 bnx2_init_rx_ring(bp, i);
5184
5185 if (bp->num_rx_rings > 1) {
5186 u32 tbl_32;
5187 u8 *tbl = (u8 *) &tbl_32;
5188
5189 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5190 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5191
5192 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5193 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5194 if ((i % 4) == 3)
5195 bnx2_reg_wr_ind(bp,
5196 BNX2_RXP_SCRATCH_RSS_TBL + i,
5197 cpu_to_be32(tbl_32));
5198 }
5199
5200 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5201 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5202
5203 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5204
5205 }
5206 }
5207
5208 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5209 {
5210 u32 max, num_rings = 1;
5211
5212 while (ring_size > MAX_RX_DESC_CNT) {
5213 ring_size -= MAX_RX_DESC_CNT;
5214 num_rings++;
5215 }
5216 /* round to next power of 2 */
5217 max = max_size;
5218 while ((max & num_rings) == 0)
5219 max >>= 1;
5220
5221 if (num_rings != max)
5222 max <<= 1;
5223
5224 return max;
5225 }
5226
5227 static void
5228 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5229 {
5230 u32 rx_size, rx_space, jumbo_size;
5231
5232 /* 8 for CRC and VLAN */
5233 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5234
5235 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5236 sizeof(struct skb_shared_info);
5237
5238 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5239 bp->rx_pg_ring_size = 0;
5240 bp->rx_max_pg_ring = 0;
5241 bp->rx_max_pg_ring_idx = 0;
5242 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5243 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5244
5245 jumbo_size = size * pages;
5246 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5247 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5248
5249 bp->rx_pg_ring_size = jumbo_size;
5250 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5251 MAX_RX_PG_RINGS);
5252 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5253 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5254 bp->rx_copy_thresh = 0;
5255 }
5256
5257 bp->rx_buf_use_size = rx_size;
5258 /* hw alignment */
5259 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5260 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5261 bp->rx_ring_size = size;
5262 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5263 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5264 }
5265
5266 static void
5267 bnx2_free_tx_skbs(struct bnx2 *bp)
5268 {
5269 int i;
5270
5271 for (i = 0; i < bp->num_tx_rings; i++) {
5272 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5273 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5274 int j;
5275
5276 if (txr->tx_buf_ring == NULL)
5277 continue;
5278
5279 for (j = 0; j < TX_DESC_CNT; ) {
5280 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5281 struct sk_buff *skb = tx_buf->skb;
5282
5283 if (skb == NULL) {
5284 j++;
5285 continue;
5286 }
5287
5288 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5289
5290 tx_buf->skb = NULL;
5291
5292 j += skb_shinfo(skb)->nr_frags + 1;
5293 dev_kfree_skb(skb);
5294 }
5295 }
5296 }
5297
5298 static void
5299 bnx2_free_rx_skbs(struct bnx2 *bp)
5300 {
5301 int i;
5302
5303 for (i = 0; i < bp->num_rx_rings; i++) {
5304 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5305 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5306 int j;
5307
5308 if (rxr->rx_buf_ring == NULL)
5309 return;
5310
5311 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5312 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5313 struct sk_buff *skb = rx_buf->skb;
5314
5315 if (skb == NULL)
5316 continue;
5317
5318 pci_unmap_single(bp->pdev,
5319 pci_unmap_addr(rx_buf, mapping),
5320 bp->rx_buf_use_size,
5321 PCI_DMA_FROMDEVICE);
5322
5323 rx_buf->skb = NULL;
5324
5325 dev_kfree_skb(skb);
5326 }
5327 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5328 bnx2_free_rx_page(bp, rxr, j);
5329 }
5330 }
5331
5332 static void
5333 bnx2_free_skbs(struct bnx2 *bp)
5334 {
5335 bnx2_free_tx_skbs(bp);
5336 bnx2_free_rx_skbs(bp);
5337 }
5338
5339 static int
5340 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5341 {
5342 int rc;
5343
5344 rc = bnx2_reset_chip(bp, reset_code);
5345 bnx2_free_skbs(bp);
5346 if (rc)
5347 return rc;
5348
5349 if ((rc = bnx2_init_chip(bp)) != 0)
5350 return rc;
5351
5352 bnx2_init_all_rings(bp);
5353 return 0;
5354 }
5355
5356 static int
5357 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5358 {
5359 int rc;
5360
5361 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5362 return rc;
5363
5364 spin_lock_bh(&bp->phy_lock);
5365 bnx2_init_phy(bp, reset_phy);
5366 bnx2_set_link(bp);
5367 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5368 bnx2_remote_phy_event(bp);
5369 spin_unlock_bh(&bp->phy_lock);
5370 return 0;
5371 }
5372
5373 static int
5374 bnx2_shutdown_chip(struct bnx2 *bp)
5375 {
5376 u32 reset_code;
5377
5378 if (bp->flags & BNX2_FLAG_NO_WOL)
5379 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5380 else if (bp->wol)
5381 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5382 else
5383 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5384
5385 return bnx2_reset_chip(bp, reset_code);
5386 }
5387
5388 static int
5389 bnx2_test_registers(struct bnx2 *bp)
5390 {
5391 int ret;
5392 int i, is_5709;
5393 static const struct {
5394 u16 offset;
5395 u16 flags;
5396 #define BNX2_FL_NOT_5709 1
5397 u32 rw_mask;
5398 u32 ro_mask;
5399 } reg_tbl[] = {
5400 { 0x006c, 0, 0x00000000, 0x0000003f },
5401 { 0x0090, 0, 0xffffffff, 0x00000000 },
5402 { 0x0094, 0, 0x00000000, 0x00000000 },
5403
5404 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5405 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5406 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5407 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5408 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5409 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5410 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5411 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5412 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5413
5414 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5415 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5416 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5417 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5418 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5419 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5420
5421 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5422 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5423 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5424
5425 { 0x1000, 0, 0x00000000, 0x00000001 },
5426 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5427
5428 { 0x1408, 0, 0x01c00800, 0x00000000 },
5429 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5430 { 0x14a8, 0, 0x00000000, 0x000001ff },
5431 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5432 { 0x14b0, 0, 0x00000002, 0x00000001 },
5433 { 0x14b8, 0, 0x00000000, 0x00000000 },
5434 { 0x14c0, 0, 0x00000000, 0x00000009 },
5435 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5436 { 0x14cc, 0, 0x00000000, 0x00000001 },
5437 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5438
5439 { 0x1800, 0, 0x00000000, 0x00000001 },
5440 { 0x1804, 0, 0x00000000, 0x00000003 },
5441
5442 { 0x2800, 0, 0x00000000, 0x00000001 },
5443 { 0x2804, 0, 0x00000000, 0x00003f01 },
5444 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5445 { 0x2810, 0, 0xffff0000, 0x00000000 },
5446 { 0x2814, 0, 0xffff0000, 0x00000000 },
5447 { 0x2818, 0, 0xffff0000, 0x00000000 },
5448 { 0x281c, 0, 0xffff0000, 0x00000000 },
5449 { 0x2834, 0, 0xffffffff, 0x00000000 },
5450 { 0x2840, 0, 0x00000000, 0xffffffff },
5451 { 0x2844, 0, 0x00000000, 0xffffffff },
5452 { 0x2848, 0, 0xffffffff, 0x00000000 },
5453 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5454
5455 { 0x2c00, 0, 0x00000000, 0x00000011 },
5456 { 0x2c04, 0, 0x00000000, 0x00030007 },
5457
5458 { 0x3c00, 0, 0x00000000, 0x00000001 },
5459 { 0x3c04, 0, 0x00000000, 0x00070000 },
5460 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5461 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5462 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5463 { 0x3c14, 0, 0x00000000, 0xffffffff },
5464 { 0x3c18, 0, 0x00000000, 0xffffffff },
5465 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5466 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5467
5468 { 0x5004, 0, 0x00000000, 0x0000007f },
5469 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5470
5471 { 0x5c00, 0, 0x00000000, 0x00000001 },
5472 { 0x5c04, 0, 0x00000000, 0x0003000f },
5473 { 0x5c08, 0, 0x00000003, 0x00000000 },
5474 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5475 { 0x5c10, 0, 0x00000000, 0xffffffff },
5476 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5477 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5478 { 0x5c88, 0, 0x00000000, 0x00077373 },
5479 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5480
5481 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5482 { 0x680c, 0, 0xffffffff, 0x00000000 },
5483 { 0x6810, 0, 0xffffffff, 0x00000000 },
5484 { 0x6814, 0, 0xffffffff, 0x00000000 },
5485 { 0x6818, 0, 0xffffffff, 0x00000000 },
5486 { 0x681c, 0, 0xffffffff, 0x00000000 },
5487 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5488 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5489 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5490 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5491 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5492 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5493 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5494 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5495 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5496 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5497 { 0x684c, 0, 0xffffffff, 0x00000000 },
5498 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5499 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5500 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5501 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5502 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5503 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5504
5505 { 0xffff, 0, 0x00000000, 0x00000000 },
5506 };
5507
5508 ret = 0;
5509 is_5709 = 0;
5510 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5511 is_5709 = 1;
5512
5513 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5514 u32 offset, rw_mask, ro_mask, save_val, val;
5515 u16 flags = reg_tbl[i].flags;
5516
5517 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5518 continue;
5519
5520 offset = (u32) reg_tbl[i].offset;
5521 rw_mask = reg_tbl[i].rw_mask;
5522 ro_mask = reg_tbl[i].ro_mask;
5523
5524 save_val = readl(bp->regview + offset);
5525
5526 writel(0, bp->regview + offset);
5527
5528 val = readl(bp->regview + offset);
5529 if ((val & rw_mask) != 0) {
5530 goto reg_test_err;
5531 }
5532
5533 if ((val & ro_mask) != (save_val & ro_mask)) {
5534 goto reg_test_err;
5535 }
5536
5537 writel(0xffffffff, bp->regview + offset);
5538
5539 val = readl(bp->regview + offset);
5540 if ((val & rw_mask) != rw_mask) {
5541 goto reg_test_err;
5542 }
5543
5544 if ((val & ro_mask) != (save_val & ro_mask)) {
5545 goto reg_test_err;
5546 }
5547
5548 writel(save_val, bp->regview + offset);
5549 continue;
5550
5551 reg_test_err:
5552 writel(save_val, bp->regview + offset);
5553 ret = -ENODEV;
5554 break;
5555 }
5556 return ret;
5557 }
5558
5559 static int
5560 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5561 {
5562 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5563 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5564 int i;
5565
5566 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5567 u32 offset;
5568
5569 for (offset = 0; offset < size; offset += 4) {
5570
5571 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5572
5573 if (bnx2_reg_rd_ind(bp, start + offset) !=
5574 test_pattern[i]) {
5575 return -ENODEV;
5576 }
5577 }
5578 }
5579 return 0;
5580 }
5581
5582 static int
5583 bnx2_test_memory(struct bnx2 *bp)
5584 {
5585 int ret = 0;
5586 int i;
5587 static struct mem_entry {
5588 u32 offset;
5589 u32 len;
5590 } mem_tbl_5706[] = {
5591 { 0x60000, 0x4000 },
5592 { 0xa0000, 0x3000 },
5593 { 0xe0000, 0x4000 },
5594 { 0x120000, 0x4000 },
5595 { 0x1a0000, 0x4000 },
5596 { 0x160000, 0x4000 },
5597 { 0xffffffff, 0 },
5598 },
5599 mem_tbl_5709[] = {
5600 { 0x60000, 0x4000 },
5601 { 0xa0000, 0x3000 },
5602 { 0xe0000, 0x4000 },
5603 { 0x120000, 0x4000 },
5604 { 0x1a0000, 0x4000 },
5605 { 0xffffffff, 0 },
5606 };
5607 struct mem_entry *mem_tbl;
5608
5609 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5610 mem_tbl = mem_tbl_5709;
5611 else
5612 mem_tbl = mem_tbl_5706;
5613
5614 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5615 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5616 mem_tbl[i].len)) != 0) {
5617 return ret;
5618 }
5619 }
5620
5621 return ret;
5622 }
5623
5624 #define BNX2_MAC_LOOPBACK 0
5625 #define BNX2_PHY_LOOPBACK 1
5626
5627 static int
5628 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5629 {
5630 unsigned int pkt_size, num_pkts, i;
5631 struct sk_buff *skb, *rx_skb;
5632 unsigned char *packet;
5633 u16 rx_start_idx, rx_idx;
5634 dma_addr_t map;
5635 struct tx_bd *txbd;
5636 struct sw_bd *rx_buf;
5637 struct l2_fhdr *rx_hdr;
5638 int ret = -ENODEV;
5639 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5640 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5641 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5642
5643 tx_napi = bnapi;
5644
5645 txr = &tx_napi->tx_ring;
5646 rxr = &bnapi->rx_ring;
5647 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5648 bp->loopback = MAC_LOOPBACK;
5649 bnx2_set_mac_loopback(bp);
5650 }
5651 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5652 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5653 return 0;
5654
5655 bp->loopback = PHY_LOOPBACK;
5656 bnx2_set_phy_loopback(bp);
5657 }
5658 else
5659 return -EINVAL;
5660
5661 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5662 skb = netdev_alloc_skb(bp->dev, pkt_size);
5663 if (!skb)
5664 return -ENOMEM;
5665 packet = skb_put(skb, pkt_size);
5666 memcpy(packet, bp->dev->dev_addr, 6);
5667 memset(packet + 6, 0x0, 8);
5668 for (i = 14; i < pkt_size; i++)
5669 packet[i] = (unsigned char) (i & 0xff);
5670
5671 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5672 dev_kfree_skb(skb);
5673 return -EIO;
5674 }
5675 map = skb_shinfo(skb)->dma_head;
5676
5677 REG_WR(bp, BNX2_HC_COMMAND,
5678 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5679
5680 REG_RD(bp, BNX2_HC_COMMAND);
5681
5682 udelay(5);
5683 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5684
5685 num_pkts = 0;
5686
5687 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5688
5689 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5690 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5691 txbd->tx_bd_mss_nbytes = pkt_size;
5692 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5693
5694 num_pkts++;
5695 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5696 txr->tx_prod_bseq += pkt_size;
5697
5698 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5699 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5700
5701 udelay(100);
5702
5703 REG_WR(bp, BNX2_HC_COMMAND,
5704 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5705
5706 REG_RD(bp, BNX2_HC_COMMAND);
5707
5708 udelay(5);
5709
5710 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5711 dev_kfree_skb(skb);
5712
5713 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5714 goto loopback_test_done;
5715
5716 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5717 if (rx_idx != rx_start_idx + num_pkts) {
5718 goto loopback_test_done;
5719 }
5720
5721 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5722 rx_skb = rx_buf->skb;
5723
5724 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5725 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5726
5727 pci_dma_sync_single_for_cpu(bp->pdev,
5728 pci_unmap_addr(rx_buf, mapping),
5729 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5730
5731 if (rx_hdr->l2_fhdr_status &
5732 (L2_FHDR_ERRORS_BAD_CRC |
5733 L2_FHDR_ERRORS_PHY_DECODE |
5734 L2_FHDR_ERRORS_ALIGNMENT |
5735 L2_FHDR_ERRORS_TOO_SHORT |
5736 L2_FHDR_ERRORS_GIANT_FRAME)) {
5737
5738 goto loopback_test_done;
5739 }
5740
5741 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5742 goto loopback_test_done;
5743 }
5744
5745 for (i = 14; i < pkt_size; i++) {
5746 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5747 goto loopback_test_done;
5748 }
5749 }
5750
5751 ret = 0;
5752
5753 loopback_test_done:
5754 bp->loopback = 0;
5755 return ret;
5756 }
5757
5758 #define BNX2_MAC_LOOPBACK_FAILED 1
5759 #define BNX2_PHY_LOOPBACK_FAILED 2
5760 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5761 BNX2_PHY_LOOPBACK_FAILED)
5762
5763 static int
5764 bnx2_test_loopback(struct bnx2 *bp)
5765 {
5766 int rc = 0;
5767
5768 if (!netif_running(bp->dev))
5769 return BNX2_LOOPBACK_FAILED;
5770
5771 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5772 spin_lock_bh(&bp->phy_lock);
5773 bnx2_init_phy(bp, 1);
5774 spin_unlock_bh(&bp->phy_lock);
5775 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5776 rc |= BNX2_MAC_LOOPBACK_FAILED;
5777 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5778 rc |= BNX2_PHY_LOOPBACK_FAILED;
5779 return rc;
5780 }
5781
5782 #define NVRAM_SIZE 0x200
5783 #define CRC32_RESIDUAL 0xdebb20e3
5784
5785 static int
5786 bnx2_test_nvram(struct bnx2 *bp)
5787 {
5788 __be32 buf[NVRAM_SIZE / 4];
5789 u8 *data = (u8 *) buf;
5790 int rc = 0;
5791 u32 magic, csum;
5792
5793 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5794 goto test_nvram_done;
5795
5796 magic = be32_to_cpu(buf[0]);
5797 if (magic != 0x669955aa) {
5798 rc = -ENODEV;
5799 goto test_nvram_done;
5800 }
5801
5802 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5803 goto test_nvram_done;
5804
5805 csum = ether_crc_le(0x100, data);
5806 if (csum != CRC32_RESIDUAL) {
5807 rc = -ENODEV;
5808 goto test_nvram_done;
5809 }
5810
5811 csum = ether_crc_le(0x100, data + 0x100);
5812 if (csum != CRC32_RESIDUAL) {
5813 rc = -ENODEV;
5814 }
5815
5816 test_nvram_done:
5817 return rc;
5818 }
5819
5820 static int
5821 bnx2_test_link(struct bnx2 *bp)
5822 {
5823 u32 bmsr;
5824
5825 if (!netif_running(bp->dev))
5826 return -ENODEV;
5827
5828 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5829 if (bp->link_up)
5830 return 0;
5831 return -ENODEV;
5832 }
5833 spin_lock_bh(&bp->phy_lock);
5834 bnx2_enable_bmsr1(bp);
5835 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5836 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5837 bnx2_disable_bmsr1(bp);
5838 spin_unlock_bh(&bp->phy_lock);
5839
5840 if (bmsr & BMSR_LSTATUS) {
5841 return 0;
5842 }
5843 return -ENODEV;
5844 }
5845
5846 static int
5847 bnx2_test_intr(struct bnx2 *bp)
5848 {
5849 int i;
5850 u16 status_idx;
5851
5852 if (!netif_running(bp->dev))
5853 return -ENODEV;
5854
5855 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5856
5857 /* This register is not touched during run-time. */
5858 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5859 REG_RD(bp, BNX2_HC_COMMAND);
5860
5861 for (i = 0; i < 10; i++) {
5862 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5863 status_idx) {
5864
5865 break;
5866 }
5867
5868 msleep_interruptible(10);
5869 }
5870 if (i < 10)
5871 return 0;
5872
5873 return -ENODEV;
5874 }
5875
5876 /* Determining link for parallel detection. */
5877 static int
5878 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5879 {
5880 u32 mode_ctl, an_dbg, exp;
5881
5882 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5883 return 0;
5884
5885 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5886 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5887
5888 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5889 return 0;
5890
5891 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5892 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5893 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5894
5895 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5896 return 0;
5897
5898 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5899 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5900 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5901
5902 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5903 return 0;
5904
5905 return 1;
5906 }
5907
5908 static void
5909 bnx2_5706_serdes_timer(struct bnx2 *bp)
5910 {
5911 int check_link = 1;
5912
5913 spin_lock(&bp->phy_lock);
5914 if (bp->serdes_an_pending) {
5915 bp->serdes_an_pending--;
5916 check_link = 0;
5917 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5918 u32 bmcr;
5919
5920 bp->current_interval = BNX2_TIMER_INTERVAL;
5921
5922 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5923
5924 if (bmcr & BMCR_ANENABLE) {
5925 if (bnx2_5706_serdes_has_link(bp)) {
5926 bmcr &= ~BMCR_ANENABLE;
5927 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5928 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5929 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5930 }
5931 }
5932 }
5933 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5934 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5935 u32 phy2;
5936
5937 bnx2_write_phy(bp, 0x17, 0x0f01);
5938 bnx2_read_phy(bp, 0x15, &phy2);
5939 if (phy2 & 0x20) {
5940 u32 bmcr;
5941
5942 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5943 bmcr |= BMCR_ANENABLE;
5944 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5945
5946 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5947 }
5948 } else
5949 bp->current_interval = BNX2_TIMER_INTERVAL;
5950
5951 if (check_link) {
5952 u32 val;
5953
5954 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5955 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5956 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5957
5958 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5959 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5960 bnx2_5706s_force_link_dn(bp, 1);
5961 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5962 } else
5963 bnx2_set_link(bp);
5964 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5965 bnx2_set_link(bp);
5966 }
5967 spin_unlock(&bp->phy_lock);
5968 }
5969
5970 static void
5971 bnx2_5708_serdes_timer(struct bnx2 *bp)
5972 {
5973 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5974 return;
5975
5976 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5977 bp->serdes_an_pending = 0;
5978 return;
5979 }
5980
5981 spin_lock(&bp->phy_lock);
5982 if (bp->serdes_an_pending)
5983 bp->serdes_an_pending--;
5984 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5985 u32 bmcr;
5986
5987 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5988 if (bmcr & BMCR_ANENABLE) {
5989 bnx2_enable_forced_2g5(bp);
5990 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5991 } else {
5992 bnx2_disable_forced_2g5(bp);
5993 bp->serdes_an_pending = 2;
5994 bp->current_interval = BNX2_TIMER_INTERVAL;
5995 }
5996
5997 } else
5998 bp->current_interval = BNX2_TIMER_INTERVAL;
5999
6000 spin_unlock(&bp->phy_lock);
6001 }
6002
6003 static void
6004 bnx2_timer(unsigned long data)
6005 {
6006 struct bnx2 *bp = (struct bnx2 *) data;
6007
6008 if (!netif_running(bp->dev))
6009 return;
6010
6011 if (atomic_read(&bp->intr_sem) != 0)
6012 goto bnx2_restart_timer;
6013
6014 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6015 BNX2_FLAG_USING_MSI)
6016 bnx2_chk_missed_msi(bp);
6017
6018 bnx2_send_heart_beat(bp);
6019
6020 bp->stats_blk->stat_FwRxDrop =
6021 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6022
6023 /* workaround occasional corrupted counters */
6024 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
6025 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6026 BNX2_HC_COMMAND_STATS_NOW);
6027
6028 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6029 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6030 bnx2_5706_serdes_timer(bp);
6031 else
6032 bnx2_5708_serdes_timer(bp);
6033 }
6034
6035 bnx2_restart_timer:
6036 mod_timer(&bp->timer, jiffies + bp->current_interval);
6037 }
6038
6039 static int
6040 bnx2_request_irq(struct bnx2 *bp)
6041 {
6042 unsigned long flags;
6043 struct bnx2_irq *irq;
6044 int rc = 0, i;
6045
6046 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6047 flags = 0;
6048 else
6049 flags = IRQF_SHARED;
6050
6051 for (i = 0; i < bp->irq_nvecs; i++) {
6052 irq = &bp->irq_tbl[i];
6053 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6054 &bp->bnx2_napi[i]);
6055 if (rc)
6056 break;
6057 irq->requested = 1;
6058 }
6059 return rc;
6060 }
6061
6062 static void
6063 bnx2_free_irq(struct bnx2 *bp)
6064 {
6065 struct bnx2_irq *irq;
6066 int i;
6067
6068 for (i = 0; i < bp->irq_nvecs; i++) {
6069 irq = &bp->irq_tbl[i];
6070 if (irq->requested)
6071 free_irq(irq->vector, &bp->bnx2_napi[i]);
6072 irq->requested = 0;
6073 }
6074 if (bp->flags & BNX2_FLAG_USING_MSI)
6075 pci_disable_msi(bp->pdev);
6076 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6077 pci_disable_msix(bp->pdev);
6078
6079 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6080 }
6081
6082 static void
6083 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6084 {
6085 int i, rc;
6086 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6087 struct net_device *dev = bp->dev;
6088 const int len = sizeof(bp->irq_tbl[0].name);
6089
6090 bnx2_setup_msix_tbl(bp);
6091 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6092 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6093 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6094
6095 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6096 msix_ent[i].entry = i;
6097 msix_ent[i].vector = 0;
6098 }
6099
6100 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6101 if (rc != 0)
6102 return;
6103
6104 bp->irq_nvecs = msix_vecs;
6105 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6106 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6107 bp->irq_tbl[i].vector = msix_ent[i].vector;
6108 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6109 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6110 }
6111 }
6112
6113 static void
6114 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6115 {
6116 int cpus = num_online_cpus();
6117 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6118
6119 bp->irq_tbl[0].handler = bnx2_interrupt;
6120 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6121 bp->irq_nvecs = 1;
6122 bp->irq_tbl[0].vector = bp->pdev->irq;
6123
6124 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6125 bnx2_enable_msix(bp, msix_vecs);
6126
6127 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6128 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6129 if (pci_enable_msi(bp->pdev) == 0) {
6130 bp->flags |= BNX2_FLAG_USING_MSI;
6131 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6132 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6133 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6134 } else
6135 bp->irq_tbl[0].handler = bnx2_msi;
6136
6137 bp->irq_tbl[0].vector = bp->pdev->irq;
6138 }
6139 }
6140
6141 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6142 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6143
6144 bp->num_rx_rings = bp->irq_nvecs;
6145 }
6146
6147 /* Called with rtnl_lock */
6148 static int
6149 bnx2_open(struct net_device *dev)
6150 {
6151 struct bnx2 *bp = netdev_priv(dev);
6152 int rc;
6153
6154 netif_carrier_off(dev);
6155
6156 bnx2_set_power_state(bp, PCI_D0);
6157 bnx2_disable_int(bp);
6158
6159 bnx2_setup_int_mode(bp, disable_msi);
6160 bnx2_napi_enable(bp);
6161 rc = bnx2_alloc_mem(bp);
6162 if (rc)
6163 goto open_err;
6164
6165 rc = bnx2_request_irq(bp);
6166 if (rc)
6167 goto open_err;
6168
6169 rc = bnx2_init_nic(bp, 1);
6170 if (rc)
6171 goto open_err;
6172
6173 mod_timer(&bp->timer, jiffies + bp->current_interval);
6174
6175 atomic_set(&bp->intr_sem, 0);
6176
6177 bnx2_enable_int(bp);
6178
6179 if (bp->flags & BNX2_FLAG_USING_MSI) {
6180 /* Test MSI to make sure it is working
6181 * If MSI test fails, go back to INTx mode
6182 */
6183 if (bnx2_test_intr(bp) != 0) {
6184 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6185 " using MSI, switching to INTx mode. Please"
6186 " report this failure to the PCI maintainer"
6187 " and include system chipset information.\n",
6188 bp->dev->name);
6189
6190 bnx2_disable_int(bp);
6191 bnx2_free_irq(bp);
6192
6193 bnx2_setup_int_mode(bp, 1);
6194
6195 rc = bnx2_init_nic(bp, 0);
6196
6197 if (!rc)
6198 rc = bnx2_request_irq(bp);
6199
6200 if (rc) {
6201 del_timer_sync(&bp->timer);
6202 goto open_err;
6203 }
6204 bnx2_enable_int(bp);
6205 }
6206 }
6207 if (bp->flags & BNX2_FLAG_USING_MSI)
6208 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6209 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6210 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6211
6212 netif_tx_start_all_queues(dev);
6213
6214 return 0;
6215
6216 open_err:
6217 bnx2_napi_disable(bp);
6218 bnx2_free_skbs(bp);
6219 bnx2_free_irq(bp);
6220 bnx2_free_mem(bp);
6221 return rc;
6222 }
6223
6224 static void
6225 bnx2_reset_task(struct work_struct *work)
6226 {
6227 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6228
6229 if (!netif_running(bp->dev))
6230 return;
6231
6232 bnx2_netif_stop(bp);
6233
6234 bnx2_init_nic(bp, 1);
6235
6236 atomic_set(&bp->intr_sem, 1);
6237 bnx2_netif_start(bp);
6238 }
6239
6240 static void
6241 bnx2_tx_timeout(struct net_device *dev)
6242 {
6243 struct bnx2 *bp = netdev_priv(dev);
6244
6245 /* This allows the netif to be shutdown gracefully before resetting */
6246 schedule_work(&bp->reset_task);
6247 }
6248
6249 #ifdef BCM_VLAN
6250 /* Called with rtnl_lock */
6251 static void
6252 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6253 {
6254 struct bnx2 *bp = netdev_priv(dev);
6255
6256 bnx2_netif_stop(bp);
6257
6258 bp->vlgrp = vlgrp;
6259 bnx2_set_rx_mode(dev);
6260 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6261 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6262
6263 bnx2_netif_start(bp);
6264 }
6265 #endif
6266
6267 /* Called with netif_tx_lock.
6268 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6269 * netif_wake_queue().
6270 */
6271 static int
6272 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6273 {
6274 struct bnx2 *bp = netdev_priv(dev);
6275 dma_addr_t mapping;
6276 struct tx_bd *txbd;
6277 struct sw_tx_bd *tx_buf;
6278 u32 len, vlan_tag_flags, last_frag, mss;
6279 u16 prod, ring_prod;
6280 int i;
6281 struct bnx2_napi *bnapi;
6282 struct bnx2_tx_ring_info *txr;
6283 struct netdev_queue *txq;
6284 struct skb_shared_info *sp;
6285
6286 /* Determine which tx ring we will be placed on */
6287 i = skb_get_queue_mapping(skb);
6288 bnapi = &bp->bnx2_napi[i];
6289 txr = &bnapi->tx_ring;
6290 txq = netdev_get_tx_queue(dev, i);
6291
6292 if (unlikely(bnx2_tx_avail(bp, txr) <
6293 (skb_shinfo(skb)->nr_frags + 1))) {
6294 netif_tx_stop_queue(txq);
6295 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6296 dev->name);
6297
6298 return NETDEV_TX_BUSY;
6299 }
6300 len = skb_headlen(skb);
6301 prod = txr->tx_prod;
6302 ring_prod = TX_RING_IDX(prod);
6303
6304 vlan_tag_flags = 0;
6305 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6306 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6307 }
6308
6309 #ifdef BCM_VLAN
6310 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6311 vlan_tag_flags |=
6312 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6313 }
6314 #endif
6315 if ((mss = skb_shinfo(skb)->gso_size)) {
6316 u32 tcp_opt_len;
6317 struct iphdr *iph;
6318
6319 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6320
6321 tcp_opt_len = tcp_optlen(skb);
6322
6323 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6324 u32 tcp_off = skb_transport_offset(skb) -
6325 sizeof(struct ipv6hdr) - ETH_HLEN;
6326
6327 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6328 TX_BD_FLAGS_SW_FLAGS;
6329 if (likely(tcp_off == 0))
6330 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6331 else {
6332 tcp_off >>= 3;
6333 vlan_tag_flags |= ((tcp_off & 0x3) <<
6334 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6335 ((tcp_off & 0x10) <<
6336 TX_BD_FLAGS_TCP6_OFF4_SHL);
6337 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6338 }
6339 } else {
6340 iph = ip_hdr(skb);
6341 if (tcp_opt_len || (iph->ihl > 5)) {
6342 vlan_tag_flags |= ((iph->ihl - 5) +
6343 (tcp_opt_len >> 2)) << 8;
6344 }
6345 }
6346 } else
6347 mss = 0;
6348
6349 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6350 dev_kfree_skb(skb);
6351 return NETDEV_TX_OK;
6352 }
6353
6354 sp = skb_shinfo(skb);
6355 mapping = sp->dma_head;
6356
6357 tx_buf = &txr->tx_buf_ring[ring_prod];
6358 tx_buf->skb = skb;
6359
6360 txbd = &txr->tx_desc_ring[ring_prod];
6361
6362 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6363 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6364 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6365 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6366
6367 last_frag = skb_shinfo(skb)->nr_frags;
6368 tx_buf->nr_frags = last_frag;
6369 tx_buf->is_gso = skb_is_gso(skb);
6370
6371 for (i = 0; i < last_frag; i++) {
6372 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6373
6374 prod = NEXT_TX_BD(prod);
6375 ring_prod = TX_RING_IDX(prod);
6376 txbd = &txr->tx_desc_ring[ring_prod];
6377
6378 len = frag->size;
6379 mapping = sp->dma_maps[i];
6380
6381 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6382 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6383 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6384 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6385
6386 }
6387 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6388
6389 prod = NEXT_TX_BD(prod);
6390 txr->tx_prod_bseq += skb->len;
6391
6392 REG_WR16(bp, txr->tx_bidx_addr, prod);
6393 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6394
6395 mmiowb();
6396
6397 txr->tx_prod = prod;
6398
6399 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6400 netif_tx_stop_queue(txq);
6401 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6402 netif_tx_wake_queue(txq);
6403 }
6404
6405 return NETDEV_TX_OK;
6406 }
6407
6408 /* Called with rtnl_lock */
6409 static int
6410 bnx2_close(struct net_device *dev)
6411 {
6412 struct bnx2 *bp = netdev_priv(dev);
6413
6414 cancel_work_sync(&bp->reset_task);
6415
6416 bnx2_disable_int_sync(bp);
6417 bnx2_napi_disable(bp);
6418 del_timer_sync(&bp->timer);
6419 bnx2_shutdown_chip(bp);
6420 bnx2_free_irq(bp);
6421 bnx2_free_skbs(bp);
6422 bnx2_free_mem(bp);
6423 bp->link_up = 0;
6424 netif_carrier_off(bp->dev);
6425 bnx2_set_power_state(bp, PCI_D3hot);
6426 return 0;
6427 }
6428
6429 #define GET_NET_STATS64(ctr) \
6430 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6431 (unsigned long) (ctr##_lo)
6432
6433 #define GET_NET_STATS32(ctr) \
6434 (ctr##_lo)
6435
6436 #if (BITS_PER_LONG == 64)
6437 #define GET_NET_STATS GET_NET_STATS64
6438 #else
6439 #define GET_NET_STATS GET_NET_STATS32
6440 #endif
6441
6442 static struct net_device_stats *
6443 bnx2_get_stats(struct net_device *dev)
6444 {
6445 struct bnx2 *bp = netdev_priv(dev);
6446 struct statistics_block *stats_blk = bp->stats_blk;
6447 struct net_device_stats *net_stats = &dev->stats;
6448
6449 if (bp->stats_blk == NULL) {
6450 return net_stats;
6451 }
6452 net_stats->rx_packets =
6453 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6454 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6455 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6456
6457 net_stats->tx_packets =
6458 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6459 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6460 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6461
6462 net_stats->rx_bytes =
6463 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6464
6465 net_stats->tx_bytes =
6466 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6467
6468 net_stats->multicast =
6469 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6470
6471 net_stats->collisions =
6472 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6473
6474 net_stats->rx_length_errors =
6475 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6476 stats_blk->stat_EtherStatsOverrsizePkts);
6477
6478 net_stats->rx_over_errors =
6479 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6480
6481 net_stats->rx_frame_errors =
6482 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6483
6484 net_stats->rx_crc_errors =
6485 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6486
6487 net_stats->rx_errors = net_stats->rx_length_errors +
6488 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6489 net_stats->rx_crc_errors;
6490
6491 net_stats->tx_aborted_errors =
6492 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6493 stats_blk->stat_Dot3StatsLateCollisions);
6494
6495 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6496 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6497 net_stats->tx_carrier_errors = 0;
6498 else {
6499 net_stats->tx_carrier_errors =
6500 (unsigned long)
6501 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6502 }
6503
6504 net_stats->tx_errors =
6505 (unsigned long)
6506 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6507 +
6508 net_stats->tx_aborted_errors +
6509 net_stats->tx_carrier_errors;
6510
6511 net_stats->rx_missed_errors =
6512 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6513 stats_blk->stat_FwRxDrop);
6514
6515 return net_stats;
6516 }
6517
6518 /* All ethtool functions called with rtnl_lock */
6519
6520 static int
6521 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6522 {
6523 struct bnx2 *bp = netdev_priv(dev);
6524 int support_serdes = 0, support_copper = 0;
6525
6526 cmd->supported = SUPPORTED_Autoneg;
6527 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6528 support_serdes = 1;
6529 support_copper = 1;
6530 } else if (bp->phy_port == PORT_FIBRE)
6531 support_serdes = 1;
6532 else
6533 support_copper = 1;
6534
6535 if (support_serdes) {
6536 cmd->supported |= SUPPORTED_1000baseT_Full |
6537 SUPPORTED_FIBRE;
6538 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6539 cmd->supported |= SUPPORTED_2500baseX_Full;
6540
6541 }
6542 if (support_copper) {
6543 cmd->supported |= SUPPORTED_10baseT_Half |
6544 SUPPORTED_10baseT_Full |
6545 SUPPORTED_100baseT_Half |
6546 SUPPORTED_100baseT_Full |
6547 SUPPORTED_1000baseT_Full |
6548 SUPPORTED_TP;
6549
6550 }
6551
6552 spin_lock_bh(&bp->phy_lock);
6553 cmd->port = bp->phy_port;
6554 cmd->advertising = bp->advertising;
6555
6556 if (bp->autoneg & AUTONEG_SPEED) {
6557 cmd->autoneg = AUTONEG_ENABLE;
6558 }
6559 else {
6560 cmd->autoneg = AUTONEG_DISABLE;
6561 }
6562
6563 if (netif_carrier_ok(dev)) {
6564 cmd->speed = bp->line_speed;
6565 cmd->duplex = bp->duplex;
6566 }
6567 else {
6568 cmd->speed = -1;
6569 cmd->duplex = -1;
6570 }
6571 spin_unlock_bh(&bp->phy_lock);
6572
6573 cmd->transceiver = XCVR_INTERNAL;
6574 cmd->phy_address = bp->phy_addr;
6575
6576 return 0;
6577 }
6578
6579 static int
6580 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6581 {
6582 struct bnx2 *bp = netdev_priv(dev);
6583 u8 autoneg = bp->autoneg;
6584 u8 req_duplex = bp->req_duplex;
6585 u16 req_line_speed = bp->req_line_speed;
6586 u32 advertising = bp->advertising;
6587 int err = -EINVAL;
6588
6589 spin_lock_bh(&bp->phy_lock);
6590
6591 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6592 goto err_out_unlock;
6593
6594 if (cmd->port != bp->phy_port &&
6595 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6596 goto err_out_unlock;
6597
6598 /* If device is down, we can store the settings only if the user
6599 * is setting the currently active port.
6600 */
6601 if (!netif_running(dev) && cmd->port != bp->phy_port)
6602 goto err_out_unlock;
6603
6604 if (cmd->autoneg == AUTONEG_ENABLE) {
6605 autoneg |= AUTONEG_SPEED;
6606
6607 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6608
6609 /* allow advertising 1 speed */
6610 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6611 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6612 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6613 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6614
6615 if (cmd->port == PORT_FIBRE)
6616 goto err_out_unlock;
6617
6618 advertising = cmd->advertising;
6619
6620 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6621 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6622 (cmd->port == PORT_TP))
6623 goto err_out_unlock;
6624 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6625 advertising = cmd->advertising;
6626 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6627 goto err_out_unlock;
6628 else {
6629 if (cmd->port == PORT_FIBRE)
6630 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6631 else
6632 advertising = ETHTOOL_ALL_COPPER_SPEED;
6633 }
6634 advertising |= ADVERTISED_Autoneg;
6635 }
6636 else {
6637 if (cmd->port == PORT_FIBRE) {
6638 if ((cmd->speed != SPEED_1000 &&
6639 cmd->speed != SPEED_2500) ||
6640 (cmd->duplex != DUPLEX_FULL))
6641 goto err_out_unlock;
6642
6643 if (cmd->speed == SPEED_2500 &&
6644 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6645 goto err_out_unlock;
6646 }
6647 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6648 goto err_out_unlock;
6649
6650 autoneg &= ~AUTONEG_SPEED;
6651 req_line_speed = cmd->speed;
6652 req_duplex = cmd->duplex;
6653 advertising = 0;
6654 }
6655
6656 bp->autoneg = autoneg;
6657 bp->advertising = advertising;
6658 bp->req_line_speed = req_line_speed;
6659 bp->req_duplex = req_duplex;
6660
6661 err = 0;
6662 /* If device is down, the new settings will be picked up when it is
6663 * brought up.
6664 */
6665 if (netif_running(dev))
6666 err = bnx2_setup_phy(bp, cmd->port);
6667
6668 err_out_unlock:
6669 spin_unlock_bh(&bp->phy_lock);
6670
6671 return err;
6672 }
6673
6674 static void
6675 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6676 {
6677 struct bnx2 *bp = netdev_priv(dev);
6678
6679 strcpy(info->driver, DRV_MODULE_NAME);
6680 strcpy(info->version, DRV_MODULE_VERSION);
6681 strcpy(info->bus_info, pci_name(bp->pdev));
6682 strcpy(info->fw_version, bp->fw_version);
6683 }
6684
6685 #define BNX2_REGDUMP_LEN (32 * 1024)
6686
6687 static int
6688 bnx2_get_regs_len(struct net_device *dev)
6689 {
6690 return BNX2_REGDUMP_LEN;
6691 }
6692
6693 static void
6694 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6695 {
6696 u32 *p = _p, i, offset;
6697 u8 *orig_p = _p;
6698 struct bnx2 *bp = netdev_priv(dev);
6699 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6700 0x0800, 0x0880, 0x0c00, 0x0c10,
6701 0x0c30, 0x0d08, 0x1000, 0x101c,
6702 0x1040, 0x1048, 0x1080, 0x10a4,
6703 0x1400, 0x1490, 0x1498, 0x14f0,
6704 0x1500, 0x155c, 0x1580, 0x15dc,
6705 0x1600, 0x1658, 0x1680, 0x16d8,
6706 0x1800, 0x1820, 0x1840, 0x1854,
6707 0x1880, 0x1894, 0x1900, 0x1984,
6708 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6709 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6710 0x2000, 0x2030, 0x23c0, 0x2400,
6711 0x2800, 0x2820, 0x2830, 0x2850,
6712 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6713 0x3c00, 0x3c94, 0x4000, 0x4010,
6714 0x4080, 0x4090, 0x43c0, 0x4458,
6715 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6716 0x4fc0, 0x5010, 0x53c0, 0x5444,
6717 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6718 0x5fc0, 0x6000, 0x6400, 0x6428,
6719 0x6800, 0x6848, 0x684c, 0x6860,
6720 0x6888, 0x6910, 0x8000 };
6721
6722 regs->version = 0;
6723
6724 memset(p, 0, BNX2_REGDUMP_LEN);
6725
6726 if (!netif_running(bp->dev))
6727 return;
6728
6729 i = 0;
6730 offset = reg_boundaries[0];
6731 p += offset;
6732 while (offset < BNX2_REGDUMP_LEN) {
6733 *p++ = REG_RD(bp, offset);
6734 offset += 4;
6735 if (offset == reg_boundaries[i + 1]) {
6736 offset = reg_boundaries[i + 2];
6737 p = (u32 *) (orig_p + offset);
6738 i += 2;
6739 }
6740 }
6741 }
6742
6743 static void
6744 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6745 {
6746 struct bnx2 *bp = netdev_priv(dev);
6747
6748 if (bp->flags & BNX2_FLAG_NO_WOL) {
6749 wol->supported = 0;
6750 wol->wolopts = 0;
6751 }
6752 else {
6753 wol->supported = WAKE_MAGIC;
6754 if (bp->wol)
6755 wol->wolopts = WAKE_MAGIC;
6756 else
6757 wol->wolopts = 0;
6758 }
6759 memset(&wol->sopass, 0, sizeof(wol->sopass));
6760 }
6761
6762 static int
6763 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6764 {
6765 struct bnx2 *bp = netdev_priv(dev);
6766
6767 if (wol->wolopts & ~WAKE_MAGIC)
6768 return -EINVAL;
6769
6770 if (wol->wolopts & WAKE_MAGIC) {
6771 if (bp->flags & BNX2_FLAG_NO_WOL)
6772 return -EINVAL;
6773
6774 bp->wol = 1;
6775 }
6776 else {
6777 bp->wol = 0;
6778 }
6779 return 0;
6780 }
6781
6782 static int
6783 bnx2_nway_reset(struct net_device *dev)
6784 {
6785 struct bnx2 *bp = netdev_priv(dev);
6786 u32 bmcr;
6787
6788 if (!netif_running(dev))
6789 return -EAGAIN;
6790
6791 if (!(bp->autoneg & AUTONEG_SPEED)) {
6792 return -EINVAL;
6793 }
6794
6795 spin_lock_bh(&bp->phy_lock);
6796
6797 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6798 int rc;
6799
6800 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6801 spin_unlock_bh(&bp->phy_lock);
6802 return rc;
6803 }
6804
6805 /* Force a link down visible on the other side */
6806 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6807 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6808 spin_unlock_bh(&bp->phy_lock);
6809
6810 msleep(20);
6811
6812 spin_lock_bh(&bp->phy_lock);
6813
6814 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6815 bp->serdes_an_pending = 1;
6816 mod_timer(&bp->timer, jiffies + bp->current_interval);
6817 }
6818
6819 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6820 bmcr &= ~BMCR_LOOPBACK;
6821 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6822
6823 spin_unlock_bh(&bp->phy_lock);
6824
6825 return 0;
6826 }
6827
6828 static u32
6829 bnx2_get_link(struct net_device *dev)
6830 {
6831 struct bnx2 *bp = netdev_priv(dev);
6832
6833 return bp->link_up;
6834 }
6835
6836 static int
6837 bnx2_get_eeprom_len(struct net_device *dev)
6838 {
6839 struct bnx2 *bp = netdev_priv(dev);
6840
6841 if (bp->flash_info == NULL)
6842 return 0;
6843
6844 return (int) bp->flash_size;
6845 }
6846
6847 static int
6848 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6849 u8 *eebuf)
6850 {
6851 struct bnx2 *bp = netdev_priv(dev);
6852 int rc;
6853
6854 if (!netif_running(dev))
6855 return -EAGAIN;
6856
6857 /* parameters already validated in ethtool_get_eeprom */
6858
6859 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6860
6861 return rc;
6862 }
6863
6864 static int
6865 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6866 u8 *eebuf)
6867 {
6868 struct bnx2 *bp = netdev_priv(dev);
6869 int rc;
6870
6871 if (!netif_running(dev))
6872 return -EAGAIN;
6873
6874 /* parameters already validated in ethtool_set_eeprom */
6875
6876 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6877
6878 return rc;
6879 }
6880
6881 static int
6882 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6883 {
6884 struct bnx2 *bp = netdev_priv(dev);
6885
6886 memset(coal, 0, sizeof(struct ethtool_coalesce));
6887
6888 coal->rx_coalesce_usecs = bp->rx_ticks;
6889 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6890 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6891 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6892
6893 coal->tx_coalesce_usecs = bp->tx_ticks;
6894 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6895 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6896 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6897
6898 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6899
6900 return 0;
6901 }
6902
6903 static int
6904 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6905 {
6906 struct bnx2 *bp = netdev_priv(dev);
6907
6908 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6909 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6910
6911 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6912 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6913
6914 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6915 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6916
6917 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6918 if (bp->rx_quick_cons_trip_int > 0xff)
6919 bp->rx_quick_cons_trip_int = 0xff;
6920
6921 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6922 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6923
6924 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6925 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6926
6927 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6928 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6929
6930 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6931 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6932 0xff;
6933
6934 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6935 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6936 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6937 bp->stats_ticks = USEC_PER_SEC;
6938 }
6939 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6940 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6941 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6942
6943 if (netif_running(bp->dev)) {
6944 bnx2_netif_stop(bp);
6945 bnx2_init_nic(bp, 0);
6946 bnx2_netif_start(bp);
6947 }
6948
6949 return 0;
6950 }
6951
6952 static void
6953 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6954 {
6955 struct bnx2 *bp = netdev_priv(dev);
6956
6957 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6958 ering->rx_mini_max_pending = 0;
6959 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6960
6961 ering->rx_pending = bp->rx_ring_size;
6962 ering->rx_mini_pending = 0;
6963 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6964
6965 ering->tx_max_pending = MAX_TX_DESC_CNT;
6966 ering->tx_pending = bp->tx_ring_size;
6967 }
6968
6969 static int
6970 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6971 {
6972 if (netif_running(bp->dev)) {
6973 bnx2_netif_stop(bp);
6974 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6975 bnx2_free_skbs(bp);
6976 bnx2_free_mem(bp);
6977 }
6978
6979 bnx2_set_rx_ring_size(bp, rx);
6980 bp->tx_ring_size = tx;
6981
6982 if (netif_running(bp->dev)) {
6983 int rc;
6984
6985 rc = bnx2_alloc_mem(bp);
6986 if (rc)
6987 return rc;
6988 bnx2_init_nic(bp, 0);
6989 bnx2_netif_start(bp);
6990 }
6991 return 0;
6992 }
6993
6994 static int
6995 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6996 {
6997 struct bnx2 *bp = netdev_priv(dev);
6998 int rc;
6999
7000 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7001 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7002 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7003
7004 return -EINVAL;
7005 }
7006 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7007 return rc;
7008 }
7009
7010 static void
7011 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7012 {
7013 struct bnx2 *bp = netdev_priv(dev);
7014
7015 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7016 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7017 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7018 }
7019
7020 static int
7021 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7022 {
7023 struct bnx2 *bp = netdev_priv(dev);
7024
7025 bp->req_flow_ctrl = 0;
7026 if (epause->rx_pause)
7027 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7028 if (epause->tx_pause)
7029 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7030
7031 if (epause->autoneg) {
7032 bp->autoneg |= AUTONEG_FLOW_CTRL;
7033 }
7034 else {
7035 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7036 }
7037
7038 if (netif_running(dev)) {
7039 spin_lock_bh(&bp->phy_lock);
7040 bnx2_setup_phy(bp, bp->phy_port);
7041 spin_unlock_bh(&bp->phy_lock);
7042 }
7043
7044 return 0;
7045 }
7046
7047 static u32
7048 bnx2_get_rx_csum(struct net_device *dev)
7049 {
7050 struct bnx2 *bp = netdev_priv(dev);
7051
7052 return bp->rx_csum;
7053 }
7054
7055 static int
7056 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7057 {
7058 struct bnx2 *bp = netdev_priv(dev);
7059
7060 bp->rx_csum = data;
7061 return 0;
7062 }
7063
7064 static int
7065 bnx2_set_tso(struct net_device *dev, u32 data)
7066 {
7067 struct bnx2 *bp = netdev_priv(dev);
7068
7069 if (data) {
7070 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7071 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7072 dev->features |= NETIF_F_TSO6;
7073 } else
7074 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7075 NETIF_F_TSO_ECN);
7076 return 0;
7077 }
7078
7079 #define BNX2_NUM_STATS 46
7080
7081 static struct {
7082 char string[ETH_GSTRING_LEN];
7083 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
7084 { "rx_bytes" },
7085 { "rx_error_bytes" },
7086 { "tx_bytes" },
7087 { "tx_error_bytes" },
7088 { "rx_ucast_packets" },
7089 { "rx_mcast_packets" },
7090 { "rx_bcast_packets" },
7091 { "tx_ucast_packets" },
7092 { "tx_mcast_packets" },
7093 { "tx_bcast_packets" },
7094 { "tx_mac_errors" },
7095 { "tx_carrier_errors" },
7096 { "rx_crc_errors" },
7097 { "rx_align_errors" },
7098 { "tx_single_collisions" },
7099 { "tx_multi_collisions" },
7100 { "tx_deferred" },
7101 { "tx_excess_collisions" },
7102 { "tx_late_collisions" },
7103 { "tx_total_collisions" },
7104 { "rx_fragments" },
7105 { "rx_jabbers" },
7106 { "rx_undersize_packets" },
7107 { "rx_oversize_packets" },
7108 { "rx_64_byte_packets" },
7109 { "rx_65_to_127_byte_packets" },
7110 { "rx_128_to_255_byte_packets" },
7111 { "rx_256_to_511_byte_packets" },
7112 { "rx_512_to_1023_byte_packets" },
7113 { "rx_1024_to_1522_byte_packets" },
7114 { "rx_1523_to_9022_byte_packets" },
7115 { "tx_64_byte_packets" },
7116 { "tx_65_to_127_byte_packets" },
7117 { "tx_128_to_255_byte_packets" },
7118 { "tx_256_to_511_byte_packets" },
7119 { "tx_512_to_1023_byte_packets" },
7120 { "tx_1024_to_1522_byte_packets" },
7121 { "tx_1523_to_9022_byte_packets" },
7122 { "rx_xon_frames" },
7123 { "rx_xoff_frames" },
7124 { "tx_xon_frames" },
7125 { "tx_xoff_frames" },
7126 { "rx_mac_ctrl_frames" },
7127 { "rx_filtered_packets" },
7128 { "rx_discards" },
7129 { "rx_fw_discards" },
7130 };
7131
7132 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7133
7134 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7135 STATS_OFFSET32(stat_IfHCInOctets_hi),
7136 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7137 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7138 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7139 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7140 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7141 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7142 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7143 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7144 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7145 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7146 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7147 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7148 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7149 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7150 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7151 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7152 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7153 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7154 STATS_OFFSET32(stat_EtherStatsCollisions),
7155 STATS_OFFSET32(stat_EtherStatsFragments),
7156 STATS_OFFSET32(stat_EtherStatsJabbers),
7157 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7158 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7159 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7160 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7161 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7162 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7163 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7164 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7165 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7166 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7167 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7168 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7169 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7170 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7171 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7172 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7173 STATS_OFFSET32(stat_XonPauseFramesReceived),
7174 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7175 STATS_OFFSET32(stat_OutXonSent),
7176 STATS_OFFSET32(stat_OutXoffSent),
7177 STATS_OFFSET32(stat_MacControlFramesReceived),
7178 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7179 STATS_OFFSET32(stat_IfInMBUFDiscards),
7180 STATS_OFFSET32(stat_FwRxDrop),
7181 };
7182
7183 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7184 * skipped because of errata.
7185 */
7186 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7187 8,0,8,8,8,8,8,8,8,8,
7188 4,0,4,4,4,4,4,4,4,4,
7189 4,4,4,4,4,4,4,4,4,4,
7190 4,4,4,4,4,4,4,4,4,4,
7191 4,4,4,4,4,4,
7192 };
7193
7194 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7195 8,0,8,8,8,8,8,8,8,8,
7196 4,4,4,4,4,4,4,4,4,4,
7197 4,4,4,4,4,4,4,4,4,4,
7198 4,4,4,4,4,4,4,4,4,4,
7199 4,4,4,4,4,4,
7200 };
7201
7202 #define BNX2_NUM_TESTS 6
7203
7204 static struct {
7205 char string[ETH_GSTRING_LEN];
7206 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7207 { "register_test (offline)" },
7208 { "memory_test (offline)" },
7209 { "loopback_test (offline)" },
7210 { "nvram_test (online)" },
7211 { "interrupt_test (online)" },
7212 { "link_test (online)" },
7213 };
7214
7215 static int
7216 bnx2_get_sset_count(struct net_device *dev, int sset)
7217 {
7218 switch (sset) {
7219 case ETH_SS_TEST:
7220 return BNX2_NUM_TESTS;
7221 case ETH_SS_STATS:
7222 return BNX2_NUM_STATS;
7223 default:
7224 return -EOPNOTSUPP;
7225 }
7226 }
7227
7228 static void
7229 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7230 {
7231 struct bnx2 *bp = netdev_priv(dev);
7232
7233 bnx2_set_power_state(bp, PCI_D0);
7234
7235 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7236 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7237 int i;
7238
7239 bnx2_netif_stop(bp);
7240 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7241 bnx2_free_skbs(bp);
7242
7243 if (bnx2_test_registers(bp) != 0) {
7244 buf[0] = 1;
7245 etest->flags |= ETH_TEST_FL_FAILED;
7246 }
7247 if (bnx2_test_memory(bp) != 0) {
7248 buf[1] = 1;
7249 etest->flags |= ETH_TEST_FL_FAILED;
7250 }
7251 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7252 etest->flags |= ETH_TEST_FL_FAILED;
7253
7254 if (!netif_running(bp->dev))
7255 bnx2_shutdown_chip(bp);
7256 else {
7257 bnx2_init_nic(bp, 1);
7258 bnx2_netif_start(bp);
7259 }
7260
7261 /* wait for link up */
7262 for (i = 0; i < 7; i++) {
7263 if (bp->link_up)
7264 break;
7265 msleep_interruptible(1000);
7266 }
7267 }
7268
7269 if (bnx2_test_nvram(bp) != 0) {
7270 buf[3] = 1;
7271 etest->flags |= ETH_TEST_FL_FAILED;
7272 }
7273 if (bnx2_test_intr(bp) != 0) {
7274 buf[4] = 1;
7275 etest->flags |= ETH_TEST_FL_FAILED;
7276 }
7277
7278 if (bnx2_test_link(bp) != 0) {
7279 buf[5] = 1;
7280 etest->flags |= ETH_TEST_FL_FAILED;
7281
7282 }
7283 if (!netif_running(bp->dev))
7284 bnx2_set_power_state(bp, PCI_D3hot);
7285 }
7286
7287 static void
7288 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7289 {
7290 switch (stringset) {
7291 case ETH_SS_STATS:
7292 memcpy(buf, bnx2_stats_str_arr,
7293 sizeof(bnx2_stats_str_arr));
7294 break;
7295 case ETH_SS_TEST:
7296 memcpy(buf, bnx2_tests_str_arr,
7297 sizeof(bnx2_tests_str_arr));
7298 break;
7299 }
7300 }
7301
7302 static void
7303 bnx2_get_ethtool_stats(struct net_device *dev,
7304 struct ethtool_stats *stats, u64 *buf)
7305 {
7306 struct bnx2 *bp = netdev_priv(dev);
7307 int i;
7308 u32 *hw_stats = (u32 *) bp->stats_blk;
7309 u8 *stats_len_arr = NULL;
7310
7311 if (hw_stats == NULL) {
7312 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7313 return;
7314 }
7315
7316 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7317 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7318 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7319 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7320 stats_len_arr = bnx2_5706_stats_len_arr;
7321 else
7322 stats_len_arr = bnx2_5708_stats_len_arr;
7323
7324 for (i = 0; i < BNX2_NUM_STATS; i++) {
7325 if (stats_len_arr[i] == 0) {
7326 /* skip this counter */
7327 buf[i] = 0;
7328 continue;
7329 }
7330 if (stats_len_arr[i] == 4) {
7331 /* 4-byte counter */
7332 buf[i] = (u64)
7333 *(hw_stats + bnx2_stats_offset_arr[i]);
7334 continue;
7335 }
7336 /* 8-byte counter */
7337 buf[i] = (((u64) *(hw_stats +
7338 bnx2_stats_offset_arr[i])) << 32) +
7339 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7340 }
7341 }
7342
7343 static int
7344 bnx2_phys_id(struct net_device *dev, u32 data)
7345 {
7346 struct bnx2 *bp = netdev_priv(dev);
7347 int i;
7348 u32 save;
7349
7350 bnx2_set_power_state(bp, PCI_D0);
7351
7352 if (data == 0)
7353 data = 2;
7354
7355 save = REG_RD(bp, BNX2_MISC_CFG);
7356 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7357
7358 for (i = 0; i < (data * 2); i++) {
7359 if ((i % 2) == 0) {
7360 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7361 }
7362 else {
7363 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7364 BNX2_EMAC_LED_1000MB_OVERRIDE |
7365 BNX2_EMAC_LED_100MB_OVERRIDE |
7366 BNX2_EMAC_LED_10MB_OVERRIDE |
7367 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7368 BNX2_EMAC_LED_TRAFFIC);
7369 }
7370 msleep_interruptible(500);
7371 if (signal_pending(current))
7372 break;
7373 }
7374 REG_WR(bp, BNX2_EMAC_LED, 0);
7375 REG_WR(bp, BNX2_MISC_CFG, save);
7376
7377 if (!netif_running(dev))
7378 bnx2_set_power_state(bp, PCI_D3hot);
7379
7380 return 0;
7381 }
7382
7383 static int
7384 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7385 {
7386 struct bnx2 *bp = netdev_priv(dev);
7387
7388 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7389 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7390 else
7391 return (ethtool_op_set_tx_csum(dev, data));
7392 }
7393
7394 static const struct ethtool_ops bnx2_ethtool_ops = {
7395 .get_settings = bnx2_get_settings,
7396 .set_settings = bnx2_set_settings,
7397 .get_drvinfo = bnx2_get_drvinfo,
7398 .get_regs_len = bnx2_get_regs_len,
7399 .get_regs = bnx2_get_regs,
7400 .get_wol = bnx2_get_wol,
7401 .set_wol = bnx2_set_wol,
7402 .nway_reset = bnx2_nway_reset,
7403 .get_link = bnx2_get_link,
7404 .get_eeprom_len = bnx2_get_eeprom_len,
7405 .get_eeprom = bnx2_get_eeprom,
7406 .set_eeprom = bnx2_set_eeprom,
7407 .get_coalesce = bnx2_get_coalesce,
7408 .set_coalesce = bnx2_set_coalesce,
7409 .get_ringparam = bnx2_get_ringparam,
7410 .set_ringparam = bnx2_set_ringparam,
7411 .get_pauseparam = bnx2_get_pauseparam,
7412 .set_pauseparam = bnx2_set_pauseparam,
7413 .get_rx_csum = bnx2_get_rx_csum,
7414 .set_rx_csum = bnx2_set_rx_csum,
7415 .set_tx_csum = bnx2_set_tx_csum,
7416 .set_sg = ethtool_op_set_sg,
7417 .set_tso = bnx2_set_tso,
7418 .self_test = bnx2_self_test,
7419 .get_strings = bnx2_get_strings,
7420 .phys_id = bnx2_phys_id,
7421 .get_ethtool_stats = bnx2_get_ethtool_stats,
7422 .get_sset_count = bnx2_get_sset_count,
7423 };
7424
7425 /* Called with rtnl_lock */
7426 static int
7427 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7428 {
7429 struct mii_ioctl_data *data = if_mii(ifr);
7430 struct bnx2 *bp = netdev_priv(dev);
7431 int err;
7432
7433 switch(cmd) {
7434 case SIOCGMIIPHY:
7435 data->phy_id = bp->phy_addr;
7436
7437 /* fallthru */
7438 case SIOCGMIIREG: {
7439 u32 mii_regval;
7440
7441 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7442 return -EOPNOTSUPP;
7443
7444 if (!netif_running(dev))
7445 return -EAGAIN;
7446
7447 spin_lock_bh(&bp->phy_lock);
7448 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7449 spin_unlock_bh(&bp->phy_lock);
7450
7451 data->val_out = mii_regval;
7452
7453 return err;
7454 }
7455
7456 case SIOCSMIIREG:
7457 if (!capable(CAP_NET_ADMIN))
7458 return -EPERM;
7459
7460 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7461 return -EOPNOTSUPP;
7462
7463 if (!netif_running(dev))
7464 return -EAGAIN;
7465
7466 spin_lock_bh(&bp->phy_lock);
7467 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7468 spin_unlock_bh(&bp->phy_lock);
7469
7470 return err;
7471
7472 default:
7473 /* do nothing */
7474 break;
7475 }
7476 return -EOPNOTSUPP;
7477 }
7478
7479 /* Called with rtnl_lock */
7480 static int
7481 bnx2_change_mac_addr(struct net_device *dev, void *p)
7482 {
7483 struct sockaddr *addr = p;
7484 struct bnx2 *bp = netdev_priv(dev);
7485
7486 if (!is_valid_ether_addr(addr->sa_data))
7487 return -EINVAL;
7488
7489 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7490 if (netif_running(dev))
7491 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7492
7493 return 0;
7494 }
7495
7496 /* Called with rtnl_lock */
7497 static int
7498 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7499 {
7500 struct bnx2 *bp = netdev_priv(dev);
7501
7502 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7503 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7504 return -EINVAL;
7505
7506 dev->mtu = new_mtu;
7507 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7508 }
7509
7510 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7511 static void
7512 poll_bnx2(struct net_device *dev)
7513 {
7514 struct bnx2 *bp = netdev_priv(dev);
7515 int i;
7516
7517 for (i = 0; i < bp->irq_nvecs; i++) {
7518 disable_irq(bp->irq_tbl[i].vector);
7519 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7520 enable_irq(bp->irq_tbl[i].vector);
7521 }
7522 }
7523 #endif
7524
7525 static void __devinit
7526 bnx2_get_5709_media(struct bnx2 *bp)
7527 {
7528 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7529 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7530 u32 strap;
7531
7532 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7533 return;
7534 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7535 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7536 return;
7537 }
7538
7539 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7540 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7541 else
7542 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7543
7544 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7545 switch (strap) {
7546 case 0x4:
7547 case 0x5:
7548 case 0x6:
7549 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7550 return;
7551 }
7552 } else {
7553 switch (strap) {
7554 case 0x1:
7555 case 0x2:
7556 case 0x4:
7557 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7558 return;
7559 }
7560 }
7561 }
7562
7563 static void __devinit
7564 bnx2_get_pci_speed(struct bnx2 *bp)
7565 {
7566 u32 reg;
7567
7568 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7569 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7570 u32 clkreg;
7571
7572 bp->flags |= BNX2_FLAG_PCIX;
7573
7574 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7575
7576 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7577 switch (clkreg) {
7578 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7579 bp->bus_speed_mhz = 133;
7580 break;
7581
7582 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7583 bp->bus_speed_mhz = 100;
7584 break;
7585
7586 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7587 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7588 bp->bus_speed_mhz = 66;
7589 break;
7590
7591 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7592 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7593 bp->bus_speed_mhz = 50;
7594 break;
7595
7596 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7597 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7598 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7599 bp->bus_speed_mhz = 33;
7600 break;
7601 }
7602 }
7603 else {
7604 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7605 bp->bus_speed_mhz = 66;
7606 else
7607 bp->bus_speed_mhz = 33;
7608 }
7609
7610 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7611 bp->flags |= BNX2_FLAG_PCI_32BIT;
7612
7613 }
7614
7615 static int __devinit
7616 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7617 {
7618 struct bnx2 *bp;
7619 unsigned long mem_len;
7620 int rc, i, j;
7621 u32 reg;
7622 u64 dma_mask, persist_dma_mask;
7623
7624 SET_NETDEV_DEV(dev, &pdev->dev);
7625 bp = netdev_priv(dev);
7626
7627 bp->flags = 0;
7628 bp->phy_flags = 0;
7629
7630 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7631 rc = pci_enable_device(pdev);
7632 if (rc) {
7633 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7634 goto err_out;
7635 }
7636
7637 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7638 dev_err(&pdev->dev,
7639 "Cannot find PCI device base address, aborting.\n");
7640 rc = -ENODEV;
7641 goto err_out_disable;
7642 }
7643
7644 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7645 if (rc) {
7646 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7647 goto err_out_disable;
7648 }
7649
7650 pci_set_master(pdev);
7651 pci_save_state(pdev);
7652
7653 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7654 if (bp->pm_cap == 0) {
7655 dev_err(&pdev->dev,
7656 "Cannot find power management capability, aborting.\n");
7657 rc = -EIO;
7658 goto err_out_release;
7659 }
7660
7661 bp->dev = dev;
7662 bp->pdev = pdev;
7663
7664 spin_lock_init(&bp->phy_lock);
7665 spin_lock_init(&bp->indirect_lock);
7666 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7667
7668 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7669 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7670 dev->mem_end = dev->mem_start + mem_len;
7671 dev->irq = pdev->irq;
7672
7673 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7674
7675 if (!bp->regview) {
7676 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7677 rc = -ENOMEM;
7678 goto err_out_release;
7679 }
7680
7681 /* Configure byte swap and enable write to the reg_window registers.
7682 * Rely on CPU to do target byte swapping on big endian systems
7683 * The chip's target access swapping will not swap all accesses
7684 */
7685 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7686 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7687 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7688
7689 bnx2_set_power_state(bp, PCI_D0);
7690
7691 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7692
7693 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7694 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7695 dev_err(&pdev->dev,
7696 "Cannot find PCIE capability, aborting.\n");
7697 rc = -EIO;
7698 goto err_out_unmap;
7699 }
7700 bp->flags |= BNX2_FLAG_PCIE;
7701 if (CHIP_REV(bp) == CHIP_REV_Ax)
7702 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7703 } else {
7704 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7705 if (bp->pcix_cap == 0) {
7706 dev_err(&pdev->dev,
7707 "Cannot find PCIX capability, aborting.\n");
7708 rc = -EIO;
7709 goto err_out_unmap;
7710 }
7711 }
7712
7713 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7714 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7715 bp->flags |= BNX2_FLAG_MSIX_CAP;
7716 }
7717
7718 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7719 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7720 bp->flags |= BNX2_FLAG_MSI_CAP;
7721 }
7722
7723 /* 5708 cannot support DMA addresses > 40-bit. */
7724 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7725 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7726 else
7727 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7728
7729 /* Configure DMA attributes. */
7730 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7731 dev->features |= NETIF_F_HIGHDMA;
7732 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7733 if (rc) {
7734 dev_err(&pdev->dev,
7735 "pci_set_consistent_dma_mask failed, aborting.\n");
7736 goto err_out_unmap;
7737 }
7738 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7739 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7740 goto err_out_unmap;
7741 }
7742
7743 if (!(bp->flags & BNX2_FLAG_PCIE))
7744 bnx2_get_pci_speed(bp);
7745
7746 /* 5706A0 may falsely detect SERR and PERR. */
7747 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7748 reg = REG_RD(bp, PCI_COMMAND);
7749 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7750 REG_WR(bp, PCI_COMMAND, reg);
7751 }
7752 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7753 !(bp->flags & BNX2_FLAG_PCIX)) {
7754
7755 dev_err(&pdev->dev,
7756 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7757 goto err_out_unmap;
7758 }
7759
7760 bnx2_init_nvram(bp);
7761
7762 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7763
7764 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7765 BNX2_SHM_HDR_SIGNATURE_SIG) {
7766 u32 off = PCI_FUNC(pdev->devfn) << 2;
7767
7768 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7769 } else
7770 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7771
7772 /* Get the permanent MAC address. First we need to make sure the
7773 * firmware is actually running.
7774 */
7775 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7776
7777 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7778 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7779 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7780 rc = -ENODEV;
7781 goto err_out_unmap;
7782 }
7783
7784 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7785 for (i = 0, j = 0; i < 3; i++) {
7786 u8 num, k, skip0;
7787
7788 num = (u8) (reg >> (24 - (i * 8)));
7789 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7790 if (num >= k || !skip0 || k == 1) {
7791 bp->fw_version[j++] = (num / k) + '0';
7792 skip0 = 0;
7793 }
7794 }
7795 if (i != 2)
7796 bp->fw_version[j++] = '.';
7797 }
7798 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7799 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7800 bp->wol = 1;
7801
7802 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7803 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7804
7805 for (i = 0; i < 30; i++) {
7806 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7807 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7808 break;
7809 msleep(10);
7810 }
7811 }
7812 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7813 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7814 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7815 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7816 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7817
7818 bp->fw_version[j++] = ' ';
7819 for (i = 0; i < 3; i++) {
7820 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7821 reg = swab32(reg);
7822 memcpy(&bp->fw_version[j], &reg, 4);
7823 j += 4;
7824 }
7825 }
7826
7827 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7828 bp->mac_addr[0] = (u8) (reg >> 8);
7829 bp->mac_addr[1] = (u8) reg;
7830
7831 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7832 bp->mac_addr[2] = (u8) (reg >> 24);
7833 bp->mac_addr[3] = (u8) (reg >> 16);
7834 bp->mac_addr[4] = (u8) (reg >> 8);
7835 bp->mac_addr[5] = (u8) reg;
7836
7837 bp->tx_ring_size = MAX_TX_DESC_CNT;
7838 bnx2_set_rx_ring_size(bp, 255);
7839
7840 bp->rx_csum = 1;
7841
7842 bp->tx_quick_cons_trip_int = 20;
7843 bp->tx_quick_cons_trip = 20;
7844 bp->tx_ticks_int = 80;
7845 bp->tx_ticks = 80;
7846
7847 bp->rx_quick_cons_trip_int = 6;
7848 bp->rx_quick_cons_trip = 6;
7849 bp->rx_ticks_int = 18;
7850 bp->rx_ticks = 18;
7851
7852 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7853
7854 bp->current_interval = BNX2_TIMER_INTERVAL;
7855
7856 bp->phy_addr = 1;
7857
7858 /* Disable WOL support if we are running on a SERDES chip. */
7859 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7860 bnx2_get_5709_media(bp);
7861 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7862 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7863
7864 bp->phy_port = PORT_TP;
7865 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7866 bp->phy_port = PORT_FIBRE;
7867 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7868 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7869 bp->flags |= BNX2_FLAG_NO_WOL;
7870 bp->wol = 0;
7871 }
7872 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7873 /* Don't do parallel detect on this board because of
7874 * some board problems. The link will not go down
7875 * if we do parallel detect.
7876 */
7877 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7878 pdev->subsystem_device == 0x310c)
7879 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7880 } else {
7881 bp->phy_addr = 2;
7882 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7883 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7884 }
7885 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7886 CHIP_NUM(bp) == CHIP_NUM_5708)
7887 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7888 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7889 (CHIP_REV(bp) == CHIP_REV_Ax ||
7890 CHIP_REV(bp) == CHIP_REV_Bx))
7891 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7892
7893 bnx2_init_fw_cap(bp);
7894
7895 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7896 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7897 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7898 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7899 bp->flags |= BNX2_FLAG_NO_WOL;
7900 bp->wol = 0;
7901 }
7902
7903 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7904 bp->tx_quick_cons_trip_int =
7905 bp->tx_quick_cons_trip;
7906 bp->tx_ticks_int = bp->tx_ticks;
7907 bp->rx_quick_cons_trip_int =
7908 bp->rx_quick_cons_trip;
7909 bp->rx_ticks_int = bp->rx_ticks;
7910 bp->comp_prod_trip_int = bp->comp_prod_trip;
7911 bp->com_ticks_int = bp->com_ticks;
7912 bp->cmd_ticks_int = bp->cmd_ticks;
7913 }
7914
7915 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7916 *
7917 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7918 * with byte enables disabled on the unused 32-bit word. This is legal
7919 * but causes problems on the AMD 8132 which will eventually stop
7920 * responding after a while.
7921 *
7922 * AMD believes this incompatibility is unique to the 5706, and
7923 * prefers to locally disable MSI rather than globally disabling it.
7924 */
7925 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7926 struct pci_dev *amd_8132 = NULL;
7927
7928 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7929 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7930 amd_8132))) {
7931
7932 if (amd_8132->revision >= 0x10 &&
7933 amd_8132->revision <= 0x13) {
7934 disable_msi = 1;
7935 pci_dev_put(amd_8132);
7936 break;
7937 }
7938 }
7939 }
7940
7941 bnx2_set_default_link(bp);
7942 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7943
7944 init_timer(&bp->timer);
7945 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7946 bp->timer.data = (unsigned long) bp;
7947 bp->timer.function = bnx2_timer;
7948
7949 return 0;
7950
7951 err_out_unmap:
7952 if (bp->regview) {
7953 iounmap(bp->regview);
7954 bp->regview = NULL;
7955 }
7956
7957 err_out_release:
7958 pci_release_regions(pdev);
7959
7960 err_out_disable:
7961 pci_disable_device(pdev);
7962 pci_set_drvdata(pdev, NULL);
7963
7964 err_out:
7965 return rc;
7966 }
7967
7968 static char * __devinit
7969 bnx2_bus_string(struct bnx2 *bp, char *str)
7970 {
7971 char *s = str;
7972
7973 if (bp->flags & BNX2_FLAG_PCIE) {
7974 s += sprintf(s, "PCI Express");
7975 } else {
7976 s += sprintf(s, "PCI");
7977 if (bp->flags & BNX2_FLAG_PCIX)
7978 s += sprintf(s, "-X");
7979 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7980 s += sprintf(s, " 32-bit");
7981 else
7982 s += sprintf(s, " 64-bit");
7983 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7984 }
7985 return str;
7986 }
7987
7988 static void __devinit
7989 bnx2_init_napi(struct bnx2 *bp)
7990 {
7991 int i;
7992
7993 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7994 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7995 int (*poll)(struct napi_struct *, int);
7996
7997 if (i == 0)
7998 poll = bnx2_poll;
7999 else
8000 poll = bnx2_poll_msix;
8001
8002 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8003 bnapi->bp = bp;
8004 }
8005 }
8006
8007 static const struct net_device_ops bnx2_netdev_ops = {
8008 .ndo_open = bnx2_open,
8009 .ndo_start_xmit = bnx2_start_xmit,
8010 .ndo_stop = bnx2_close,
8011 .ndo_get_stats = bnx2_get_stats,
8012 .ndo_set_rx_mode = bnx2_set_rx_mode,
8013 .ndo_do_ioctl = bnx2_ioctl,
8014 .ndo_validate_addr = eth_validate_addr,
8015 .ndo_set_mac_address = bnx2_change_mac_addr,
8016 .ndo_change_mtu = bnx2_change_mtu,
8017 .ndo_tx_timeout = bnx2_tx_timeout,
8018 #ifdef BCM_VLAN
8019 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8020 #endif
8021 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8022 .ndo_poll_controller = poll_bnx2,
8023 #endif
8024 };
8025
8026 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8027 {
8028 #ifdef BCM_VLAN
8029 dev->vlan_features |= flags;
8030 #endif
8031 }
8032
8033 static int __devinit
8034 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8035 {
8036 static int version_printed = 0;
8037 struct net_device *dev = NULL;
8038 struct bnx2 *bp;
8039 int rc;
8040 char str[40];
8041
8042 if (version_printed++ == 0)
8043 printk(KERN_INFO "%s", version);
8044
8045 /* dev zeroed in init_etherdev */
8046 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8047
8048 if (!dev)
8049 return -ENOMEM;
8050
8051 rc = bnx2_init_board(pdev, dev);
8052 if (rc < 0) {
8053 free_netdev(dev);
8054 return rc;
8055 }
8056
8057 dev->netdev_ops = &bnx2_netdev_ops;
8058 dev->watchdog_timeo = TX_TIMEOUT;
8059 dev->ethtool_ops = &bnx2_ethtool_ops;
8060
8061 bp = netdev_priv(dev);
8062 bnx2_init_napi(bp);
8063
8064 pci_set_drvdata(pdev, dev);
8065
8066 rc = bnx2_request_firmware(bp);
8067 if (rc)
8068 goto error;
8069
8070 memcpy(dev->dev_addr, bp->mac_addr, 6);
8071 memcpy(dev->perm_addr, bp->mac_addr, 6);
8072
8073 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8074 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8075 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8076 dev->features |= NETIF_F_IPV6_CSUM;
8077 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8078 }
8079 #ifdef BCM_VLAN
8080 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8081 #endif
8082 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8083 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8084 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8085 dev->features |= NETIF_F_TSO6;
8086 vlan_features_add(dev, NETIF_F_TSO6);
8087 }
8088 if ((rc = register_netdev(dev))) {
8089 dev_err(&pdev->dev, "Cannot register net device\n");
8090 goto error;
8091 }
8092
8093 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8094 "IRQ %d, node addr %pM\n",
8095 dev->name,
8096 board_info[ent->driver_data].name,
8097 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8098 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8099 bnx2_bus_string(bp, str),
8100 dev->base_addr,
8101 bp->pdev->irq, dev->dev_addr);
8102
8103 return 0;
8104
8105 error:
8106 if (bp->mips_firmware)
8107 release_firmware(bp->mips_firmware);
8108 if (bp->rv2p_firmware)
8109 release_firmware(bp->rv2p_firmware);
8110
8111 if (bp->regview)
8112 iounmap(bp->regview);
8113 pci_release_regions(pdev);
8114 pci_disable_device(pdev);
8115 pci_set_drvdata(pdev, NULL);
8116 free_netdev(dev);
8117 return rc;
8118 }
8119
8120 static void __devexit
8121 bnx2_remove_one(struct pci_dev *pdev)
8122 {
8123 struct net_device *dev = pci_get_drvdata(pdev);
8124 struct bnx2 *bp = netdev_priv(dev);
8125
8126 flush_scheduled_work();
8127
8128 unregister_netdev(dev);
8129
8130 if (bp->mips_firmware)
8131 release_firmware(bp->mips_firmware);
8132 if (bp->rv2p_firmware)
8133 release_firmware(bp->rv2p_firmware);
8134
8135 if (bp->regview)
8136 iounmap(bp->regview);
8137
8138 free_netdev(dev);
8139 pci_release_regions(pdev);
8140 pci_disable_device(pdev);
8141 pci_set_drvdata(pdev, NULL);
8142 }
8143
8144 static int
8145 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8146 {
8147 struct net_device *dev = pci_get_drvdata(pdev);
8148 struct bnx2 *bp = netdev_priv(dev);
8149
8150 /* PCI register 4 needs to be saved whether netif_running() or not.
8151 * MSI address and data need to be saved if using MSI and
8152 * netif_running().
8153 */
8154 pci_save_state(pdev);
8155 if (!netif_running(dev))
8156 return 0;
8157
8158 flush_scheduled_work();
8159 bnx2_netif_stop(bp);
8160 netif_device_detach(dev);
8161 del_timer_sync(&bp->timer);
8162 bnx2_shutdown_chip(bp);
8163 bnx2_free_skbs(bp);
8164 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8165 return 0;
8166 }
8167
8168 static int
8169 bnx2_resume(struct pci_dev *pdev)
8170 {
8171 struct net_device *dev = pci_get_drvdata(pdev);
8172 struct bnx2 *bp = netdev_priv(dev);
8173
8174 pci_restore_state(pdev);
8175 if (!netif_running(dev))
8176 return 0;
8177
8178 bnx2_set_power_state(bp, PCI_D0);
8179 netif_device_attach(dev);
8180 bnx2_init_nic(bp, 1);
8181 bnx2_netif_start(bp);
8182 return 0;
8183 }
8184
8185 /**
8186 * bnx2_io_error_detected - called when PCI error is detected
8187 * @pdev: Pointer to PCI device
8188 * @state: The current pci connection state
8189 *
8190 * This function is called after a PCI bus error affecting
8191 * this device has been detected.
8192 */
8193 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8194 pci_channel_state_t state)
8195 {
8196 struct net_device *dev = pci_get_drvdata(pdev);
8197 struct bnx2 *bp = netdev_priv(dev);
8198
8199 rtnl_lock();
8200 netif_device_detach(dev);
8201
8202 if (netif_running(dev)) {
8203 bnx2_netif_stop(bp);
8204 del_timer_sync(&bp->timer);
8205 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8206 }
8207
8208 pci_disable_device(pdev);
8209 rtnl_unlock();
8210
8211 /* Request a slot slot reset. */
8212 return PCI_ERS_RESULT_NEED_RESET;
8213 }
8214
8215 /**
8216 * bnx2_io_slot_reset - called after the pci bus has been reset.
8217 * @pdev: Pointer to PCI device
8218 *
8219 * Restart the card from scratch, as if from a cold-boot.
8220 */
8221 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8222 {
8223 struct net_device *dev = pci_get_drvdata(pdev);
8224 struct bnx2 *bp = netdev_priv(dev);
8225
8226 rtnl_lock();
8227 if (pci_enable_device(pdev)) {
8228 dev_err(&pdev->dev,
8229 "Cannot re-enable PCI device after reset.\n");
8230 rtnl_unlock();
8231 return PCI_ERS_RESULT_DISCONNECT;
8232 }
8233 pci_set_master(pdev);
8234 pci_restore_state(pdev);
8235
8236 if (netif_running(dev)) {
8237 bnx2_set_power_state(bp, PCI_D0);
8238 bnx2_init_nic(bp, 1);
8239 }
8240
8241 rtnl_unlock();
8242 return PCI_ERS_RESULT_RECOVERED;
8243 }
8244
8245 /**
8246 * bnx2_io_resume - called when traffic can start flowing again.
8247 * @pdev: Pointer to PCI device
8248 *
8249 * This callback is called when the error recovery driver tells us that
8250 * its OK to resume normal operation.
8251 */
8252 static void bnx2_io_resume(struct pci_dev *pdev)
8253 {
8254 struct net_device *dev = pci_get_drvdata(pdev);
8255 struct bnx2 *bp = netdev_priv(dev);
8256
8257 rtnl_lock();
8258 if (netif_running(dev))
8259 bnx2_netif_start(bp);
8260
8261 netif_device_attach(dev);
8262 rtnl_unlock();
8263 }
8264
8265 static struct pci_error_handlers bnx2_err_handler = {
8266 .error_detected = bnx2_io_error_detected,
8267 .slot_reset = bnx2_io_slot_reset,
8268 .resume = bnx2_io_resume,
8269 };
8270
8271 static struct pci_driver bnx2_pci_driver = {
8272 .name = DRV_MODULE_NAME,
8273 .id_table = bnx2_pci_tbl,
8274 .probe = bnx2_init_one,
8275 .remove = __devexit_p(bnx2_remove_one),
8276 .suspend = bnx2_suspend,
8277 .resume = bnx2_resume,
8278 .err_handler = &bnx2_err_handler,
8279 };
8280
8281 static int __init bnx2_init(void)
8282 {
8283 return pci_register_driver(&bnx2_pci_driver);
8284 }
8285
8286 static void __exit bnx2_cleanup(void)
8287 {
8288 pci_unregister_driver(&bnx2_pci_driver);
8289 }
8290
8291 module_init(bnx2_init);
8292 module_exit(bnx2_cleanup);
8293
8294
8295