]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/bnx2x/bnx2x_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / net / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/kernel.h>
21 #include <linux/device.h> /* for dev_info() */
22 #include <linux/timer.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/bitops.h>
34 #include <linux/irq.h>
35 #include <linux/delay.h>
36 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
41 #include <net/ip.h>
42 #include <net/ipv6.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/crc32c.h>
49 #include <linux/prefetch.h>
50 #include <linux/zlib.h>
51 #include <linux/io.h>
52 #include <linux/stringify.h>
53 #include <linux/vmalloc.h>
54
55 #include "bnx2x.h"
56 #include "bnx2x_init.h"
57 #include "bnx2x_init_ops.h"
58 #include "bnx2x_cmn.h"
59 #include "bnx2x_dcb.h"
60 #include "bnx2x_sp.h"
61
62 #include <linux/firmware.h>
63 #include "bnx2x_fw_file_hdr.h"
64 /* FW files */
65 #define FW_FILE_VERSION \
66 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
67 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
68 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
69 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
70 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
71 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
72 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
73
74 /* Time in jiffies before concluding the transmitter is hung */
75 #define TX_TIMEOUT (5*HZ)
76
77 static char version[] __devinitdata =
78 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
79 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
80
81 MODULE_AUTHOR("Eliezer Tamir");
82 MODULE_DESCRIPTION("Broadcom NetXtreme II "
83 "BCM57710/57711/57711E/"
84 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
85 "57840/57840_MF Driver");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_MODULE_VERSION);
88 MODULE_FIRMWARE(FW_FILE_NAME_E1);
89 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
90 MODULE_FIRMWARE(FW_FILE_NAME_E2);
91
92 static int multi_mode = 1;
93 module_param(multi_mode, int, 0);
94 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
95 "(0 Disable; 1 Enable (default))");
96
97 int num_queues;
98 module_param(num_queues, int, 0);
99 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
100 " (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 #define INT_MODE_INTx 1
107 #define INT_MODE_MSI 2
108 static int int_mode;
109 module_param(int_mode, int, 0);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int poll;
118 module_param(poll, int, 0);
119 MODULE_PARM_DESC(poll, " Use polling (for debug)");
120
121 static int mrrs = -1;
122 module_param(mrrs, int, 0);
123 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
124
125 static int debug;
126 module_param(debug, int, 0);
127 MODULE_PARM_DESC(debug, " Default debug msglevel");
128
129
130
131 struct workqueue_struct *bnx2x_wq;
132
133 enum bnx2x_board_type {
134 BCM57710 = 0,
135 BCM57711,
136 BCM57711E,
137 BCM57712,
138 BCM57712_MF,
139 BCM57800,
140 BCM57800_MF,
141 BCM57810,
142 BCM57810_MF,
143 BCM57840,
144 BCM57840_MF
145 };
146
147 /* indexed by board_type, above */
148 static struct {
149 char *name;
150 } board_info[] __devinitdata = {
151 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162 "Ethernet Multi Function"}
163 };
164
165 #ifndef PCI_DEVICE_ID_NX2_57710
166 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
167 #endif
168 #ifndef PCI_DEVICE_ID_NX2_57711
169 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711E
172 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57712
175 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712_MF
178 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57800
181 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800_MF
184 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57810
187 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810_MF
190 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57840
193 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840_MF
196 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
197 #endif
198 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
199 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
200 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
201 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
210 { 0 }
211 };
212
213 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
214
215 /****************************************************************************
216 * General service functions
217 ****************************************************************************/
218
219 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
220 u32 addr, dma_addr_t mapping)
221 {
222 REG_WR(bp, addr, U64_LO(mapping));
223 REG_WR(bp, addr + 4, U64_HI(mapping));
224 }
225
226 static inline void storm_memset_spq_addr(struct bnx2x *bp,
227 dma_addr_t mapping, u16 abs_fid)
228 {
229 u32 addr = XSEM_REG_FAST_MEMORY +
230 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
231
232 __storm_memset_dma_mapping(bp, addr, mapping);
233 }
234
235 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
236 u16 pf_id)
237 {
238 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
239 pf_id);
240 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
241 pf_id);
242 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
243 pf_id);
244 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
245 pf_id);
246 }
247
248 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
249 u8 enable)
250 {
251 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
252 enable);
253 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
254 enable);
255 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
256 enable);
257 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
258 enable);
259 }
260
261 static inline void storm_memset_eq_data(struct bnx2x *bp,
262 struct event_ring_data *eq_data,
263 u16 pfid)
264 {
265 size_t size = sizeof(struct event_ring_data);
266
267 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
268
269 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
270 }
271
272 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
273 u16 pfid)
274 {
275 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
276 REG_WR16(bp, addr, eq_prod);
277 }
278
279 /* used only at init
280 * locking is done by mcp
281 */
282 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
283 {
284 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
285 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
286 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
287 PCICFG_VENDOR_ID_OFFSET);
288 }
289
290 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
291 {
292 u32 val;
293
294 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
295 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
296 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
297 PCICFG_VENDOR_ID_OFFSET);
298
299 return val;
300 }
301
302 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
303 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
304 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
305 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
306 #define DMAE_DP_DST_NONE "dst_addr [none]"
307
308 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
309 int msglvl)
310 {
311 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
312
313 switch (dmae->opcode & DMAE_COMMAND_DST) {
314 case DMAE_CMD_DST_PCI:
315 if (src_type == DMAE_CMD_SRC_PCI)
316 DP(msglvl, "DMAE: opcode 0x%08x\n"
317 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
318 "comp_addr [%x:%08x], comp_val 0x%08x\n",
319 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
320 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
321 dmae->comp_addr_hi, dmae->comp_addr_lo,
322 dmae->comp_val);
323 else
324 DP(msglvl, "DMAE: opcode 0x%08x\n"
325 "src [%08x], len [%d*4], dst [%x:%08x]\n"
326 "comp_addr [%x:%08x], comp_val 0x%08x\n",
327 dmae->opcode, dmae->src_addr_lo >> 2,
328 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
329 dmae->comp_addr_hi, dmae->comp_addr_lo,
330 dmae->comp_val);
331 break;
332 case DMAE_CMD_DST_GRC:
333 if (src_type == DMAE_CMD_SRC_PCI)
334 DP(msglvl, "DMAE: opcode 0x%08x\n"
335 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
336 "comp_addr [%x:%08x], comp_val 0x%08x\n",
337 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
338 dmae->len, dmae->dst_addr_lo >> 2,
339 dmae->comp_addr_hi, dmae->comp_addr_lo,
340 dmae->comp_val);
341 else
342 DP(msglvl, "DMAE: opcode 0x%08x\n"
343 "src [%08x], len [%d*4], dst [%08x]\n"
344 "comp_addr [%x:%08x], comp_val 0x%08x\n",
345 dmae->opcode, dmae->src_addr_lo >> 2,
346 dmae->len, dmae->dst_addr_lo >> 2,
347 dmae->comp_addr_hi, dmae->comp_addr_lo,
348 dmae->comp_val);
349 break;
350 default:
351 if (src_type == DMAE_CMD_SRC_PCI)
352 DP(msglvl, "DMAE: opcode 0x%08x\n"
353 DP_LEVEL "src_addr [%x:%08x] len [%d * 4] "
354 "dst_addr [none]\n"
355 DP_LEVEL "comp_addr [%x:%08x] comp_val 0x%08x\n",
356 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
357 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
358 dmae->comp_val);
359 else
360 DP(msglvl, "DMAE: opcode 0x%08x\n"
361 DP_LEVEL "src_addr [%08x] len [%d * 4] "
362 "dst_addr [none]\n"
363 DP_LEVEL "comp_addr [%x:%08x] comp_val 0x%08x\n",
364 dmae->opcode, dmae->src_addr_lo >> 2,
365 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
366 dmae->comp_val);
367 break;
368 }
369
370 }
371
372 /* copy command into DMAE command memory and set DMAE command go */
373 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
374 {
375 u32 cmd_offset;
376 int i;
377
378 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
379 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
380 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
381
382 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
383 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
384 }
385 REG_WR(bp, dmae_reg_go_c[idx], 1);
386 }
387
388 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
389 {
390 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
391 DMAE_CMD_C_ENABLE);
392 }
393
394 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
395 {
396 return opcode & ~DMAE_CMD_SRC_RESET;
397 }
398
399 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
400 bool with_comp, u8 comp_type)
401 {
402 u32 opcode = 0;
403
404 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
405 (dst_type << DMAE_COMMAND_DST_SHIFT));
406
407 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
408
409 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
410 opcode |= ((BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT) |
411 (BP_E1HVN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
412 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
413
414 #ifdef __BIG_ENDIAN
415 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
416 #else
417 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
418 #endif
419 if (with_comp)
420 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
421 return opcode;
422 }
423
424 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
425 struct dmae_command *dmae,
426 u8 src_type, u8 dst_type)
427 {
428 memset(dmae, 0, sizeof(struct dmae_command));
429
430 /* set the opcode */
431 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
432 true, DMAE_COMP_PCI);
433
434 /* fill in the completion parameters */
435 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
436 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_val = DMAE_COMP_VAL;
438 }
439
440 /* issue a dmae command over the init-channel and wailt for completion */
441 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
442 struct dmae_command *dmae)
443 {
444 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
445 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
446 int rc = 0;
447
448 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
449 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
450 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
451
452 /*
453 * Lock the dmae channel. Disable BHs to prevent a dead-lock
454 * as long as this code is called both from syscall context and
455 * from ndo_set_rx_mode() flow that may be called from BH.
456 */
457 spin_lock_bh(&bp->dmae_lock);
458
459 /* reset completion */
460 *wb_comp = 0;
461
462 /* post the command on the channel used for initializations */
463 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
464
465 /* wait for completion */
466 udelay(5);
467 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
468 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
469
470 if (!cnt) {
471 BNX2X_ERR("DMAE timeout!\n");
472 rc = DMAE_TIMEOUT;
473 goto unlock;
474 }
475 cnt--;
476 udelay(50);
477 }
478 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
479 BNX2X_ERR("DMAE PCI error!\n");
480 rc = DMAE_PCI_ERROR;
481 }
482
483 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
484 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
485 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
486
487 unlock:
488 spin_unlock_bh(&bp->dmae_lock);
489 return rc;
490 }
491
492 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
493 u32 len32)
494 {
495 struct dmae_command dmae;
496
497 if (!bp->dmae_ready) {
498 u32 *data = bnx2x_sp(bp, wb_data[0]);
499
500 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
501 " using indirect\n", dst_addr, len32);
502 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
503 return;
504 }
505
506 /* set opcode and fixed command fields */
507 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
508
509 /* fill in addresses and len */
510 dmae.src_addr_lo = U64_LO(dma_addr);
511 dmae.src_addr_hi = U64_HI(dma_addr);
512 dmae.dst_addr_lo = dst_addr >> 2;
513 dmae.dst_addr_hi = 0;
514 dmae.len = len32;
515
516 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
517
518 /* issue the command and wait for completion */
519 bnx2x_issue_dmae_with_comp(bp, &dmae);
520 }
521
522 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
523 {
524 struct dmae_command dmae;
525
526 if (!bp->dmae_ready) {
527 u32 *data = bnx2x_sp(bp, wb_data[0]);
528 int i;
529
530 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
531 " using indirect\n", src_addr, len32);
532 for (i = 0; i < len32; i++)
533 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
534 return;
535 }
536
537 /* set opcode and fixed command fields */
538 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
539
540 /* fill in addresses and len */
541 dmae.src_addr_lo = src_addr >> 2;
542 dmae.src_addr_hi = 0;
543 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
544 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
545 dmae.len = len32;
546
547 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
548
549 /* issue the command and wait for completion */
550 bnx2x_issue_dmae_with_comp(bp, &dmae);
551 }
552
553 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
554 u32 addr, u32 len)
555 {
556 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
557 int offset = 0;
558
559 while (len > dmae_wr_max) {
560 bnx2x_write_dmae(bp, phys_addr + offset,
561 addr + offset, dmae_wr_max);
562 offset += dmae_wr_max * 4;
563 len -= dmae_wr_max;
564 }
565
566 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
567 }
568
569 /* used only for slowpath so not inlined */
570 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
571 {
572 u32 wb_write[2];
573
574 wb_write[0] = val_hi;
575 wb_write[1] = val_lo;
576 REG_WR_DMAE(bp, reg, wb_write, 2);
577 }
578
579 #ifdef USE_WB_RD
580 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
581 {
582 u32 wb_data[2];
583
584 REG_RD_DMAE(bp, reg, wb_data, 2);
585
586 return HILO_U64(wb_data[0], wb_data[1]);
587 }
588 #endif
589
590 static int bnx2x_mc_assert(struct bnx2x *bp)
591 {
592 char last_idx;
593 int i, rc = 0;
594 u32 row0, row1, row2, row3;
595
596 /* XSTORM */
597 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
598 XSTORM_ASSERT_LIST_INDEX_OFFSET);
599 if (last_idx)
600 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
601
602 /* print the asserts */
603 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
604
605 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
606 XSTORM_ASSERT_LIST_OFFSET(i));
607 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
608 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
609 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
610 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
611 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
612 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
613
614 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
615 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
616 " 0x%08x 0x%08x 0x%08x\n",
617 i, row3, row2, row1, row0);
618 rc++;
619 } else {
620 break;
621 }
622 }
623
624 /* TSTORM */
625 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
626 TSTORM_ASSERT_LIST_INDEX_OFFSET);
627 if (last_idx)
628 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
629
630 /* print the asserts */
631 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
632
633 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
634 TSTORM_ASSERT_LIST_OFFSET(i));
635 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
636 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
637 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
638 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
639 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
640 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
641
642 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
643 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
644 " 0x%08x 0x%08x 0x%08x\n",
645 i, row3, row2, row1, row0);
646 rc++;
647 } else {
648 break;
649 }
650 }
651
652 /* CSTORM */
653 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
654 CSTORM_ASSERT_LIST_INDEX_OFFSET);
655 if (last_idx)
656 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
657
658 /* print the asserts */
659 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
660
661 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
662 CSTORM_ASSERT_LIST_OFFSET(i));
663 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
664 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
665 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
666 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
667 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
668 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
669
670 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
671 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
672 " 0x%08x 0x%08x 0x%08x\n",
673 i, row3, row2, row1, row0);
674 rc++;
675 } else {
676 break;
677 }
678 }
679
680 /* USTORM */
681 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
682 USTORM_ASSERT_LIST_INDEX_OFFSET);
683 if (last_idx)
684 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
685
686 /* print the asserts */
687 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
688
689 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
690 USTORM_ASSERT_LIST_OFFSET(i));
691 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
692 USTORM_ASSERT_LIST_OFFSET(i) + 4);
693 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
694 USTORM_ASSERT_LIST_OFFSET(i) + 8);
695 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
696 USTORM_ASSERT_LIST_OFFSET(i) + 12);
697
698 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
699 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
700 " 0x%08x 0x%08x 0x%08x\n",
701 i, row3, row2, row1, row0);
702 rc++;
703 } else {
704 break;
705 }
706 }
707
708 return rc;
709 }
710
711 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
712 {
713 u32 addr, val;
714 u32 mark, offset;
715 __be32 data[9];
716 int word;
717 u32 trace_shmem_base;
718 if (BP_NOMCP(bp)) {
719 BNX2X_ERR("NO MCP - can not dump\n");
720 return;
721 }
722 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
723 (bp->common.bc_ver & 0xff0000) >> 16,
724 (bp->common.bc_ver & 0xff00) >> 8,
725 (bp->common.bc_ver & 0xff));
726
727 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
728 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
729 printk("%s" "MCP PC at 0x%x\n", lvl, val);
730
731 if (BP_PATH(bp) == 0)
732 trace_shmem_base = bp->common.shmem_base;
733 else
734 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
735 addr = trace_shmem_base - 0x0800 + 4;
736 mark = REG_RD(bp, addr);
737 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
738 + ((mark + 0x3) & ~0x3) - 0x08000000;
739 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
740
741 printk("%s", lvl);
742 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
743 for (word = 0; word < 8; word++)
744 data[word] = htonl(REG_RD(bp, offset + 4*word));
745 data[8] = 0x0;
746 pr_cont("%s", (char *)data);
747 }
748 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
749 for (word = 0; word < 8; word++)
750 data[word] = htonl(REG_RD(bp, offset + 4*word));
751 data[8] = 0x0;
752 pr_cont("%s", (char *)data);
753 }
754 printk("%s" "end of fw dump\n", lvl);
755 }
756
757 static inline void bnx2x_fw_dump(struct bnx2x *bp)
758 {
759 bnx2x_fw_dump_lvl(bp, KERN_ERR);
760 }
761
762 void bnx2x_panic_dump(struct bnx2x *bp)
763 {
764 int i;
765 u16 j;
766 struct hc_sp_status_block_data sp_sb_data;
767 int func = BP_FUNC(bp);
768 #ifdef BNX2X_STOP_ON_ERROR
769 u16 start = 0, end = 0;
770 u8 cos;
771 #endif
772
773 bp->stats_state = STATS_STATE_DISABLED;
774 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
775
776 BNX2X_ERR("begin crash dump -----------------\n");
777
778 /* Indices */
779 /* Common */
780 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
781 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
782 bp->def_idx, bp->def_att_idx, bp->attn_state,
783 bp->spq_prod_idx, bp->stats_counter);
784 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
785 bp->def_status_blk->atten_status_block.attn_bits,
786 bp->def_status_blk->atten_status_block.attn_bits_ack,
787 bp->def_status_blk->atten_status_block.status_block_id,
788 bp->def_status_blk->atten_status_block.attn_bits_index);
789 BNX2X_ERR(" def (");
790 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
791 pr_cont("0x%x%s",
792 bp->def_status_blk->sp_sb.index_values[i],
793 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
794
795 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
796 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
797 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
798 i*sizeof(u32));
799
800 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) "
801 "pf_id(0x%x) vnic_id(0x%x) "
802 "vf_id(0x%x) vf_valid (0x%x) "
803 "state(0x%x)\n",
804 sp_sb_data.igu_sb_id,
805 sp_sb_data.igu_seg_id,
806 sp_sb_data.p_func.pf_id,
807 sp_sb_data.p_func.vnic_id,
808 sp_sb_data.p_func.vf_id,
809 sp_sb_data.p_func.vf_valid,
810 sp_sb_data.state);
811
812
813 for_each_eth_queue(bp, i) {
814 struct bnx2x_fastpath *fp = &bp->fp[i];
815 int loop;
816 struct hc_status_block_data_e2 sb_data_e2;
817 struct hc_status_block_data_e1x sb_data_e1x;
818 struct hc_status_block_sm *hc_sm_p =
819 CHIP_IS_E1x(bp) ?
820 sb_data_e1x.common.state_machine :
821 sb_data_e2.common.state_machine;
822 struct hc_index_data *hc_index_p =
823 CHIP_IS_E1x(bp) ?
824 sb_data_e1x.index_data :
825 sb_data_e2.index_data;
826 u8 data_size, cos;
827 u32 *sb_data_p;
828 struct bnx2x_fp_txdata txdata;
829
830 /* Rx */
831 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
832 " rx_comp_prod(0x%x)"
833 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
834 i, fp->rx_bd_prod, fp->rx_bd_cons,
835 fp->rx_comp_prod,
836 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
837 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
838 " fp_hc_idx(0x%x)\n",
839 fp->rx_sge_prod, fp->last_max_sge,
840 le16_to_cpu(fp->fp_hc_idx));
841
842 /* Tx */
843 for_each_cos_in_tx_queue(fp, cos)
844 {
845 txdata = fp->txdata[cos];
846 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
847 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
848 " *tx_cons_sb(0x%x)\n",
849 i, txdata.tx_pkt_prod,
850 txdata.tx_pkt_cons, txdata.tx_bd_prod,
851 txdata.tx_bd_cons,
852 le16_to_cpu(*txdata.tx_cons_sb));
853 }
854
855 loop = CHIP_IS_E1x(bp) ?
856 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
857
858 /* host sb data */
859
860 #ifdef BCM_CNIC
861 if (IS_FCOE_FP(fp))
862 continue;
863 #endif
864 BNX2X_ERR(" run indexes (");
865 for (j = 0; j < HC_SB_MAX_SM; j++)
866 pr_cont("0x%x%s",
867 fp->sb_running_index[j],
868 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
869
870 BNX2X_ERR(" indexes (");
871 for (j = 0; j < loop; j++)
872 pr_cont("0x%x%s",
873 fp->sb_index_values[j],
874 (j == loop - 1) ? ")" : " ");
875 /* fw sb data */
876 data_size = CHIP_IS_E1x(bp) ?
877 sizeof(struct hc_status_block_data_e1x) :
878 sizeof(struct hc_status_block_data_e2);
879 data_size /= sizeof(u32);
880 sb_data_p = CHIP_IS_E1x(bp) ?
881 (u32 *)&sb_data_e1x :
882 (u32 *)&sb_data_e2;
883 /* copy sb data in here */
884 for (j = 0; j < data_size; j++)
885 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
886 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
887 j * sizeof(u32));
888
889 if (!CHIP_IS_E1x(bp)) {
890 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
891 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
892 "state(0x%x)\n",
893 sb_data_e2.common.p_func.pf_id,
894 sb_data_e2.common.p_func.vf_id,
895 sb_data_e2.common.p_func.vf_valid,
896 sb_data_e2.common.p_func.vnic_id,
897 sb_data_e2.common.same_igu_sb_1b,
898 sb_data_e2.common.state);
899 } else {
900 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
901 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
902 "state(0x%x)\n",
903 sb_data_e1x.common.p_func.pf_id,
904 sb_data_e1x.common.p_func.vf_id,
905 sb_data_e1x.common.p_func.vf_valid,
906 sb_data_e1x.common.p_func.vnic_id,
907 sb_data_e1x.common.same_igu_sb_1b,
908 sb_data_e1x.common.state);
909 }
910
911 /* SB_SMs data */
912 for (j = 0; j < HC_SB_MAX_SM; j++) {
913 pr_cont("SM[%d] __flags (0x%x) "
914 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
915 "time_to_expire (0x%x) "
916 "timer_value(0x%x)\n", j,
917 hc_sm_p[j].__flags,
918 hc_sm_p[j].igu_sb_id,
919 hc_sm_p[j].igu_seg_id,
920 hc_sm_p[j].time_to_expire,
921 hc_sm_p[j].timer_value);
922 }
923
924 /* Indecies data */
925 for (j = 0; j < loop; j++) {
926 pr_cont("INDEX[%d] flags (0x%x) "
927 "timeout (0x%x)\n", j,
928 hc_index_p[j].flags,
929 hc_index_p[j].timeout);
930 }
931 }
932
933 #ifdef BNX2X_STOP_ON_ERROR
934 /* Rings */
935 /* Rx */
936 for_each_rx_queue(bp, i) {
937 struct bnx2x_fastpath *fp = &bp->fp[i];
938
939 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
940 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
941 for (j = start; j != end; j = RX_BD(j + 1)) {
942 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
943 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
944
945 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
946 i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
947 }
948
949 start = RX_SGE(fp->rx_sge_prod);
950 end = RX_SGE(fp->last_max_sge);
951 for (j = start; j != end; j = RX_SGE(j + 1)) {
952 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
953 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
954
955 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
956 i, j, rx_sge[1], rx_sge[0], sw_page->page);
957 }
958
959 start = RCQ_BD(fp->rx_comp_cons - 10);
960 end = RCQ_BD(fp->rx_comp_cons + 503);
961 for (j = start; j != end; j = RCQ_BD(j + 1)) {
962 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
963
964 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
965 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
966 }
967 }
968
969 /* Tx */
970 for_each_tx_queue(bp, i) {
971 struct bnx2x_fastpath *fp = &bp->fp[i];
972 for_each_cos_in_tx_queue(fp, cos) {
973 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
974
975 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
976 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
977 for (j = start; j != end; j = TX_BD(j + 1)) {
978 struct sw_tx_bd *sw_bd =
979 &txdata->tx_buf_ring[j];
980
981 BNX2X_ERR("fp%d: txdata %d, "
982 "packet[%x]=[%p,%x]\n",
983 i, cos, j, sw_bd->skb,
984 sw_bd->first_bd);
985 }
986
987 start = TX_BD(txdata->tx_bd_cons - 10);
988 end = TX_BD(txdata->tx_bd_cons + 254);
989 for (j = start; j != end; j = TX_BD(j + 1)) {
990 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
991
992 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
993 "[%x:%x:%x:%x]\n",
994 i, cos, j, tx_bd[0], tx_bd[1],
995 tx_bd[2], tx_bd[3]);
996 }
997 }
998 }
999 #endif
1000 bnx2x_fw_dump(bp);
1001 bnx2x_mc_assert(bp);
1002 BNX2X_ERR("end crash dump -----------------\n");
1003 }
1004
1005 /*
1006 * FLR Support for E2
1007 *
1008 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1009 * initialization.
1010 */
1011 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1012 #define FLR_WAIT_INTERAVAL 50 /* usec */
1013 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1014
1015 struct pbf_pN_buf_regs {
1016 int pN;
1017 u32 init_crd;
1018 u32 crd;
1019 u32 crd_freed;
1020 };
1021
1022 struct pbf_pN_cmd_regs {
1023 int pN;
1024 u32 lines_occup;
1025 u32 lines_freed;
1026 };
1027
1028 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1029 struct pbf_pN_buf_regs *regs,
1030 u32 poll_count)
1031 {
1032 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1033 u32 cur_cnt = poll_count;
1034
1035 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1036 crd = crd_start = REG_RD(bp, regs->crd);
1037 init_crd = REG_RD(bp, regs->init_crd);
1038
1039 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1040 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1041 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1042
1043 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1044 (init_crd - crd_start))) {
1045 if (cur_cnt--) {
1046 udelay(FLR_WAIT_INTERAVAL);
1047 crd = REG_RD(bp, regs->crd);
1048 crd_freed = REG_RD(bp, regs->crd_freed);
1049 } else {
1050 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1051 regs->pN);
1052 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1053 regs->pN, crd);
1054 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1055 regs->pN, crd_freed);
1056 break;
1057 }
1058 }
1059 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1060 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1061 }
1062
1063 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1064 struct pbf_pN_cmd_regs *regs,
1065 u32 poll_count)
1066 {
1067 u32 occup, to_free, freed, freed_start;
1068 u32 cur_cnt = poll_count;
1069
1070 occup = to_free = REG_RD(bp, regs->lines_occup);
1071 freed = freed_start = REG_RD(bp, regs->lines_freed);
1072
1073 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1074 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1075
1076 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1077 if (cur_cnt--) {
1078 udelay(FLR_WAIT_INTERAVAL);
1079 occup = REG_RD(bp, regs->lines_occup);
1080 freed = REG_RD(bp, regs->lines_freed);
1081 } else {
1082 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1083 regs->pN);
1084 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1085 regs->pN, occup);
1086 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1087 regs->pN, freed);
1088 break;
1089 }
1090 }
1091 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1092 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1093 }
1094
1095 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1096 u32 expected, u32 poll_count)
1097 {
1098 u32 cur_cnt = poll_count;
1099 u32 val;
1100
1101 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1102 udelay(FLR_WAIT_INTERAVAL);
1103
1104 return val;
1105 }
1106
1107 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1108 char *msg, u32 poll_cnt)
1109 {
1110 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1111 if (val != 0) {
1112 BNX2X_ERR("%s usage count=%d\n", msg, val);
1113 return 1;
1114 }
1115 return 0;
1116 }
1117
1118 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1119 {
1120 /* adjust polling timeout */
1121 if (CHIP_REV_IS_EMUL(bp))
1122 return FLR_POLL_CNT * 2000;
1123
1124 if (CHIP_REV_IS_FPGA(bp))
1125 return FLR_POLL_CNT * 120;
1126
1127 return FLR_POLL_CNT;
1128 }
1129
1130 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1131 {
1132 struct pbf_pN_cmd_regs cmd_regs[] = {
1133 {0, (CHIP_IS_E3B0(bp)) ?
1134 PBF_REG_TQ_OCCUPANCY_Q0 :
1135 PBF_REG_P0_TQ_OCCUPANCY,
1136 (CHIP_IS_E3B0(bp)) ?
1137 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1138 PBF_REG_P0_TQ_LINES_FREED_CNT},
1139 {1, (CHIP_IS_E3B0(bp)) ?
1140 PBF_REG_TQ_OCCUPANCY_Q1 :
1141 PBF_REG_P1_TQ_OCCUPANCY,
1142 (CHIP_IS_E3B0(bp)) ?
1143 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1144 PBF_REG_P1_TQ_LINES_FREED_CNT},
1145 {4, (CHIP_IS_E3B0(bp)) ?
1146 PBF_REG_TQ_OCCUPANCY_LB_Q :
1147 PBF_REG_P4_TQ_OCCUPANCY,
1148 (CHIP_IS_E3B0(bp)) ?
1149 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1150 PBF_REG_P4_TQ_LINES_FREED_CNT}
1151 };
1152
1153 struct pbf_pN_buf_regs buf_regs[] = {
1154 {0, (CHIP_IS_E3B0(bp)) ?
1155 PBF_REG_INIT_CRD_Q0 :
1156 PBF_REG_P0_INIT_CRD ,
1157 (CHIP_IS_E3B0(bp)) ?
1158 PBF_REG_CREDIT_Q0 :
1159 PBF_REG_P0_CREDIT,
1160 (CHIP_IS_E3B0(bp)) ?
1161 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1162 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1163 {1, (CHIP_IS_E3B0(bp)) ?
1164 PBF_REG_INIT_CRD_Q1 :
1165 PBF_REG_P1_INIT_CRD,
1166 (CHIP_IS_E3B0(bp)) ?
1167 PBF_REG_CREDIT_Q1 :
1168 PBF_REG_P1_CREDIT,
1169 (CHIP_IS_E3B0(bp)) ?
1170 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1171 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1172 {4, (CHIP_IS_E3B0(bp)) ?
1173 PBF_REG_INIT_CRD_LB_Q :
1174 PBF_REG_P4_INIT_CRD,
1175 (CHIP_IS_E3B0(bp)) ?
1176 PBF_REG_CREDIT_LB_Q :
1177 PBF_REG_P4_CREDIT,
1178 (CHIP_IS_E3B0(bp)) ?
1179 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1180 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1181 };
1182
1183 int i;
1184
1185 /* Verify the command queues are flushed P0, P1, P4 */
1186 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1187 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1188
1189
1190 /* Verify the transmission buffers are flushed P0, P1, P4 */
1191 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1192 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1193 }
1194
1195 #define OP_GEN_PARAM(param) \
1196 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1197
1198 #define OP_GEN_TYPE(type) \
1199 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1200
1201 #define OP_GEN_AGG_VECT(index) \
1202 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1203
1204
1205 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1206 u32 poll_cnt)
1207 {
1208 struct sdm_op_gen op_gen = {0};
1209
1210 u32 comp_addr = BAR_CSTRORM_INTMEM +
1211 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1212 int ret = 0;
1213
1214 if (REG_RD(bp, comp_addr)) {
1215 BNX2X_ERR("Cleanup complete is not 0\n");
1216 return 1;
1217 }
1218
1219 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1220 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1221 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1222 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1223
1224 DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1225 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1226
1227 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1228 BNX2X_ERR("FW final cleanup did not succeed\n");
1229 ret = 1;
1230 }
1231 /* Zero completion for nxt FLR */
1232 REG_WR(bp, comp_addr, 0);
1233
1234 return ret;
1235 }
1236
1237 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1238 {
1239 int pos;
1240 u16 status;
1241
1242 pos = pci_pcie_cap(dev);
1243 if (!pos)
1244 return false;
1245
1246 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1247 return status & PCI_EXP_DEVSTA_TRPND;
1248 }
1249
1250 /* PF FLR specific routines
1251 */
1252 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1253 {
1254
1255 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1256 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1257 CFC_REG_NUM_LCIDS_INSIDE_PF,
1258 "CFC PF usage counter timed out",
1259 poll_cnt))
1260 return 1;
1261
1262
1263 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1264 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 DORQ_REG_PF_USAGE_CNT,
1266 "DQ PF usage counter timed out",
1267 poll_cnt))
1268 return 1;
1269
1270 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1271 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1272 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1273 "QM PF usage counter timed out",
1274 poll_cnt))
1275 return 1;
1276
1277 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1278 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1279 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1280 "Timers VNIC usage counter timed out",
1281 poll_cnt))
1282 return 1;
1283 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1284 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1285 "Timers NUM_SCANS usage counter timed out",
1286 poll_cnt))
1287 return 1;
1288
1289 /* Wait DMAE PF usage counter to zero */
1290 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1291 dmae_reg_go_c[INIT_DMAE_C(bp)],
1292 "DMAE dommand register timed out",
1293 poll_cnt))
1294 return 1;
1295
1296 return 0;
1297 }
1298
1299 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1300 {
1301 u32 val;
1302
1303 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1304 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1305
1306 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1307 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1308
1309 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1310 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1311
1312 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1313 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1314
1315 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1316 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1317
1318 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1319 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1320
1321 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1322 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1323
1324 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1325 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1326 val);
1327 }
1328
1329 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1330 {
1331 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1332
1333 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1334
1335 /* Re-enable PF target read access */
1336 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1337
1338 /* Poll HW usage counters */
1339 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1340 return -EBUSY;
1341
1342 /* Zero the igu 'trailing edge' and 'leading edge' */
1343
1344 /* Send the FW cleanup command */
1345 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1346 return -EBUSY;
1347
1348 /* ATC cleanup */
1349
1350 /* Verify TX hw is flushed */
1351 bnx2x_tx_hw_flushed(bp, poll_cnt);
1352
1353 /* Wait 100ms (not adjusted according to platform) */
1354 msleep(100);
1355
1356 /* Verify no pending pci transactions */
1357 if (bnx2x_is_pcie_pending(bp->pdev))
1358 BNX2X_ERR("PCIE Transactions still pending\n");
1359
1360 /* Debug */
1361 bnx2x_hw_enable_status(bp);
1362
1363 /*
1364 * Master enable - Due to WB DMAE writes performed before this
1365 * register is re-initialized as part of the regular function init
1366 */
1367 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1368
1369 return 0;
1370 }
1371
1372 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1373 {
1374 int port = BP_PORT(bp);
1375 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1376 u32 val = REG_RD(bp, addr);
1377 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1378 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1379
1380 if (msix) {
1381 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1382 HC_CONFIG_0_REG_INT_LINE_EN_0);
1383 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1384 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1385 } else if (msi) {
1386 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1387 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1388 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1389 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1390 } else {
1391 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1392 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1393 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1394 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1395
1396 if (!CHIP_IS_E1(bp)) {
1397 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1398 val, port, addr);
1399
1400 REG_WR(bp, addr, val);
1401
1402 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1403 }
1404 }
1405
1406 if (CHIP_IS_E1(bp))
1407 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1408
1409 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1410 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1411
1412 REG_WR(bp, addr, val);
1413 /*
1414 * Ensure that HC_CONFIG is written before leading/trailing edge config
1415 */
1416 mmiowb();
1417 barrier();
1418
1419 if (!CHIP_IS_E1(bp)) {
1420 /* init leading/trailing edge */
1421 if (IS_MF(bp)) {
1422 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1423 if (bp->port.pmf)
1424 /* enable nig and gpio3 attention */
1425 val |= 0x1100;
1426 } else
1427 val = 0xffff;
1428
1429 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1430 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1431 }
1432
1433 /* Make sure that interrupts are indeed enabled from here on */
1434 mmiowb();
1435 }
1436
1437 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1438 {
1439 u32 val;
1440 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1441 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1442
1443 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1444
1445 if (msix) {
1446 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1447 IGU_PF_CONF_SINGLE_ISR_EN);
1448 val |= (IGU_PF_CONF_FUNC_EN |
1449 IGU_PF_CONF_MSI_MSIX_EN |
1450 IGU_PF_CONF_ATTN_BIT_EN);
1451 } else if (msi) {
1452 val &= ~IGU_PF_CONF_INT_LINE_EN;
1453 val |= (IGU_PF_CONF_FUNC_EN |
1454 IGU_PF_CONF_MSI_MSIX_EN |
1455 IGU_PF_CONF_ATTN_BIT_EN |
1456 IGU_PF_CONF_SINGLE_ISR_EN);
1457 } else {
1458 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1459 val |= (IGU_PF_CONF_FUNC_EN |
1460 IGU_PF_CONF_INT_LINE_EN |
1461 IGU_PF_CONF_ATTN_BIT_EN |
1462 IGU_PF_CONF_SINGLE_ISR_EN);
1463 }
1464
1465 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1466 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1467
1468 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1469
1470 barrier();
1471
1472 /* init leading/trailing edge */
1473 if (IS_MF(bp)) {
1474 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1475 if (bp->port.pmf)
1476 /* enable nig and gpio3 attention */
1477 val |= 0x1100;
1478 } else
1479 val = 0xffff;
1480
1481 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1482 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1483
1484 /* Make sure that interrupts are indeed enabled from here on */
1485 mmiowb();
1486 }
1487
1488 void bnx2x_int_enable(struct bnx2x *bp)
1489 {
1490 if (bp->common.int_block == INT_BLOCK_HC)
1491 bnx2x_hc_int_enable(bp);
1492 else
1493 bnx2x_igu_int_enable(bp);
1494 }
1495
1496 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1497 {
1498 int port = BP_PORT(bp);
1499 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1500 u32 val = REG_RD(bp, addr);
1501
1502 /*
1503 * in E1 we must use only PCI configuration space to disable
1504 * MSI/MSIX capablility
1505 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1506 */
1507 if (CHIP_IS_E1(bp)) {
1508 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1509 * Use mask register to prevent from HC sending interrupts
1510 * after we exit the function
1511 */
1512 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1513
1514 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1515 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1516 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1517 } else
1518 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1519 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1520 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1521 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1522
1523 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1524 val, port, addr);
1525
1526 /* flush all outstanding writes */
1527 mmiowb();
1528
1529 REG_WR(bp, addr, val);
1530 if (REG_RD(bp, addr) != val)
1531 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1532 }
1533
1534 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1535 {
1536 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1537
1538 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1539 IGU_PF_CONF_INT_LINE_EN |
1540 IGU_PF_CONF_ATTN_BIT_EN);
1541
1542 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1543
1544 /* flush all outstanding writes */
1545 mmiowb();
1546
1547 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1548 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1549 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1550 }
1551
1552 void bnx2x_int_disable(struct bnx2x *bp)
1553 {
1554 if (bp->common.int_block == INT_BLOCK_HC)
1555 bnx2x_hc_int_disable(bp);
1556 else
1557 bnx2x_igu_int_disable(bp);
1558 }
1559
1560 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1561 {
1562 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1563 int i, offset;
1564
1565 if (disable_hw)
1566 /* prevent the HW from sending interrupts */
1567 bnx2x_int_disable(bp);
1568
1569 /* make sure all ISRs are done */
1570 if (msix) {
1571 synchronize_irq(bp->msix_table[0].vector);
1572 offset = 1;
1573 #ifdef BCM_CNIC
1574 offset++;
1575 #endif
1576 for_each_eth_queue(bp, i)
1577 synchronize_irq(bp->msix_table[offset++].vector);
1578 } else
1579 synchronize_irq(bp->pdev->irq);
1580
1581 /* make sure sp_task is not running */
1582 cancel_delayed_work(&bp->sp_task);
1583 cancel_delayed_work(&bp->period_task);
1584 flush_workqueue(bnx2x_wq);
1585 }
1586
1587 /* fast path */
1588
1589 /*
1590 * General service functions
1591 */
1592
1593 /* Return true if succeeded to acquire the lock */
1594 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1595 {
1596 u32 lock_status;
1597 u32 resource_bit = (1 << resource);
1598 int func = BP_FUNC(bp);
1599 u32 hw_lock_control_reg;
1600
1601 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1602
1603 /* Validating that the resource is within range */
1604 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1605 DP(NETIF_MSG_HW,
1606 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1607 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1608 return false;
1609 }
1610
1611 if (func <= 5)
1612 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1613 else
1614 hw_lock_control_reg =
1615 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1616
1617 /* Try to acquire the lock */
1618 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1619 lock_status = REG_RD(bp, hw_lock_control_reg);
1620 if (lock_status & resource_bit)
1621 return true;
1622
1623 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1624 return false;
1625 }
1626
1627 /**
1628 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1629 *
1630 * @bp: driver handle
1631 *
1632 * Returns the recovery leader resource id according to the engine this function
1633 * belongs to. Currently only only 2 engines is supported.
1634 */
1635 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1636 {
1637 if (BP_PATH(bp))
1638 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1639 else
1640 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1641 }
1642
1643 /**
1644 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1645 *
1646 * @bp: driver handle
1647 *
1648 * Tries to aquire a leader lock for cuurent engine.
1649 */
1650 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1651 {
1652 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1653 }
1654
1655 #ifdef BCM_CNIC
1656 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1657 #endif
1658
1659 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1660 {
1661 struct bnx2x *bp = fp->bp;
1662 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1663 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1664 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1665 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1666
1667 DP(BNX2X_MSG_SP,
1668 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1669 fp->index, cid, command, bp->state,
1670 rr_cqe->ramrod_cqe.ramrod_type);
1671
1672 switch (command) {
1673 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1674 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1675 drv_cmd = BNX2X_Q_CMD_UPDATE;
1676 break;
1677
1678 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1679 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1680 drv_cmd = BNX2X_Q_CMD_SETUP;
1681 break;
1682
1683 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1684 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1685 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1686 break;
1687
1688 case (RAMROD_CMD_ID_ETH_HALT):
1689 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1690 drv_cmd = BNX2X_Q_CMD_HALT;
1691 break;
1692
1693 case (RAMROD_CMD_ID_ETH_TERMINATE):
1694 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1695 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1696 break;
1697
1698 case (RAMROD_CMD_ID_ETH_EMPTY):
1699 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1700 drv_cmd = BNX2X_Q_CMD_EMPTY;
1701 break;
1702
1703 default:
1704 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1705 command, fp->index);
1706 return;
1707 }
1708
1709 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1710 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1711 /* q_obj->complete_cmd() failure means that this was
1712 * an unexpected completion.
1713 *
1714 * In this case we don't want to increase the bp->spq_left
1715 * because apparently we haven't sent this command the first
1716 * place.
1717 */
1718 #ifdef BNX2X_STOP_ON_ERROR
1719 bnx2x_panic();
1720 #else
1721 return;
1722 #endif
1723
1724 smp_mb__before_atomic_inc();
1725 atomic_inc(&bp->cq_spq_left);
1726 /* push the change in bp->spq_left and towards the memory */
1727 smp_mb__after_atomic_inc();
1728
1729 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1730
1731 return;
1732 }
1733
1734 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1735 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1736 {
1737 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1738
1739 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1740 start);
1741 }
1742
1743 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1744 {
1745 struct bnx2x *bp = netdev_priv(dev_instance);
1746 u16 status = bnx2x_ack_int(bp);
1747 u16 mask;
1748 int i;
1749 u8 cos;
1750
1751 /* Return here if interrupt is shared and it's not for us */
1752 if (unlikely(status == 0)) {
1753 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1754 return IRQ_NONE;
1755 }
1756 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1757
1758 #ifdef BNX2X_STOP_ON_ERROR
1759 if (unlikely(bp->panic))
1760 return IRQ_HANDLED;
1761 #endif
1762
1763 for_each_eth_queue(bp, i) {
1764 struct bnx2x_fastpath *fp = &bp->fp[i];
1765
1766 mask = 0x2 << (fp->index + CNIC_PRESENT);
1767 if (status & mask) {
1768 /* Handle Rx or Tx according to SB id */
1769 prefetch(fp->rx_cons_sb);
1770 for_each_cos_in_tx_queue(fp, cos)
1771 prefetch(fp->txdata[cos].tx_cons_sb);
1772 prefetch(&fp->sb_running_index[SM_RX_ID]);
1773 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1774 status &= ~mask;
1775 }
1776 }
1777
1778 #ifdef BCM_CNIC
1779 mask = 0x2;
1780 if (status & (mask | 0x1)) {
1781 struct cnic_ops *c_ops = NULL;
1782
1783 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1784 rcu_read_lock();
1785 c_ops = rcu_dereference(bp->cnic_ops);
1786 if (c_ops)
1787 c_ops->cnic_handler(bp->cnic_data, NULL);
1788 rcu_read_unlock();
1789 }
1790
1791 status &= ~mask;
1792 }
1793 #endif
1794
1795 if (unlikely(status & 0x1)) {
1796 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1797
1798 status &= ~0x1;
1799 if (!status)
1800 return IRQ_HANDLED;
1801 }
1802
1803 if (unlikely(status))
1804 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1805 status);
1806
1807 return IRQ_HANDLED;
1808 }
1809
1810 /* Link */
1811
1812 /*
1813 * General service functions
1814 */
1815
1816 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1817 {
1818 u32 lock_status;
1819 u32 resource_bit = (1 << resource);
1820 int func = BP_FUNC(bp);
1821 u32 hw_lock_control_reg;
1822 int cnt;
1823
1824 /* Validating that the resource is within range */
1825 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1826 DP(NETIF_MSG_HW,
1827 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1828 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1829 return -EINVAL;
1830 }
1831
1832 if (func <= 5) {
1833 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1834 } else {
1835 hw_lock_control_reg =
1836 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1837 }
1838
1839 /* Validating that the resource is not already taken */
1840 lock_status = REG_RD(bp, hw_lock_control_reg);
1841 if (lock_status & resource_bit) {
1842 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1843 lock_status, resource_bit);
1844 return -EEXIST;
1845 }
1846
1847 /* Try for 5 second every 5ms */
1848 for (cnt = 0; cnt < 1000; cnt++) {
1849 /* Try to acquire the lock */
1850 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1851 lock_status = REG_RD(bp, hw_lock_control_reg);
1852 if (lock_status & resource_bit)
1853 return 0;
1854
1855 msleep(5);
1856 }
1857 DP(NETIF_MSG_HW, "Timeout\n");
1858 return -EAGAIN;
1859 }
1860
1861 int bnx2x_release_leader_lock(struct bnx2x *bp)
1862 {
1863 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1864 }
1865
1866 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1867 {
1868 u32 lock_status;
1869 u32 resource_bit = (1 << resource);
1870 int func = BP_FUNC(bp);
1871 u32 hw_lock_control_reg;
1872
1873 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1874
1875 /* Validating that the resource is within range */
1876 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1877 DP(NETIF_MSG_HW,
1878 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1879 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1880 return -EINVAL;
1881 }
1882
1883 if (func <= 5) {
1884 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1885 } else {
1886 hw_lock_control_reg =
1887 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1888 }
1889
1890 /* Validating that the resource is currently taken */
1891 lock_status = REG_RD(bp, hw_lock_control_reg);
1892 if (!(lock_status & resource_bit)) {
1893 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1894 lock_status, resource_bit);
1895 return -EFAULT;
1896 }
1897
1898 REG_WR(bp, hw_lock_control_reg, resource_bit);
1899 return 0;
1900 }
1901
1902
1903 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1904 {
1905 /* The GPIO should be swapped if swap register is set and active */
1906 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1907 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1908 int gpio_shift = gpio_num +
1909 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1910 u32 gpio_mask = (1 << gpio_shift);
1911 u32 gpio_reg;
1912 int value;
1913
1914 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1915 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1916 return -EINVAL;
1917 }
1918
1919 /* read GPIO value */
1920 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1921
1922 /* get the requested pin value */
1923 if ((gpio_reg & gpio_mask) == gpio_mask)
1924 value = 1;
1925 else
1926 value = 0;
1927
1928 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1929
1930 return value;
1931 }
1932
1933 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1934 {
1935 /* The GPIO should be swapped if swap register is set and active */
1936 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1937 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1938 int gpio_shift = gpio_num +
1939 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1940 u32 gpio_mask = (1 << gpio_shift);
1941 u32 gpio_reg;
1942
1943 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1945 return -EINVAL;
1946 }
1947
1948 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1949 /* read GPIO and mask except the float bits */
1950 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1951
1952 switch (mode) {
1953 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1954 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1955 gpio_num, gpio_shift);
1956 /* clear FLOAT and set CLR */
1957 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1958 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1959 break;
1960
1961 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1962 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1963 gpio_num, gpio_shift);
1964 /* clear FLOAT and set SET */
1965 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1966 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1967 break;
1968
1969 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1970 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1971 gpio_num, gpio_shift);
1972 /* set FLOAT */
1973 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1974 break;
1975
1976 default:
1977 break;
1978 }
1979
1980 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1981 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1982
1983 return 0;
1984 }
1985
1986 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1987 {
1988 u32 gpio_reg = 0;
1989 int rc = 0;
1990
1991 /* Any port swapping should be handled by caller. */
1992
1993 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994 /* read GPIO and mask except the float bits */
1995 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1996 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1997 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1998 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1999
2000 switch (mode) {
2001 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2002 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2003 /* set CLR */
2004 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2005 break;
2006
2007 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2008 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2009 /* set SET */
2010 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2011 break;
2012
2013 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2014 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2015 /* set FLOAT */
2016 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2017 break;
2018
2019 default:
2020 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2021 rc = -EINVAL;
2022 break;
2023 }
2024
2025 if (rc == 0)
2026 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2027
2028 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2029
2030 return rc;
2031 }
2032
2033 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2034 {
2035 /* The GPIO should be swapped if swap register is set and active */
2036 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2037 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2038 int gpio_shift = gpio_num +
2039 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2040 u32 gpio_mask = (1 << gpio_shift);
2041 u32 gpio_reg;
2042
2043 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2044 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2045 return -EINVAL;
2046 }
2047
2048 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2049 /* read GPIO int */
2050 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2051
2052 switch (mode) {
2053 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2054 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2055 "output low\n", gpio_num, gpio_shift);
2056 /* clear SET and set CLR */
2057 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2058 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2059 break;
2060
2061 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2062 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2063 "output high\n", gpio_num, gpio_shift);
2064 /* clear CLR and set SET */
2065 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2066 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2067 break;
2068
2069 default:
2070 break;
2071 }
2072
2073 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2074 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2075
2076 return 0;
2077 }
2078
2079 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2080 {
2081 u32 spio_mask = (1 << spio_num);
2082 u32 spio_reg;
2083
2084 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2085 (spio_num > MISC_REGISTERS_SPIO_7)) {
2086 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2087 return -EINVAL;
2088 }
2089
2090 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2091 /* read SPIO and mask except the float bits */
2092 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2093
2094 switch (mode) {
2095 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2096 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2097 /* clear FLOAT and set CLR */
2098 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2099 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2100 break;
2101
2102 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2103 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2104 /* clear FLOAT and set SET */
2105 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2106 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2107 break;
2108
2109 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2110 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2111 /* set FLOAT */
2112 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2113 break;
2114
2115 default:
2116 break;
2117 }
2118
2119 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2120 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2121
2122 return 0;
2123 }
2124
2125 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2126 {
2127 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2128 switch (bp->link_vars.ieee_fc &
2129 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2130 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2131 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2132 ADVERTISED_Pause);
2133 break;
2134
2135 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2136 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2137 ADVERTISED_Pause);
2138 break;
2139
2140 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2141 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2142 break;
2143
2144 default:
2145 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2146 ADVERTISED_Pause);
2147 break;
2148 }
2149 }
2150
2151 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2152 {
2153 if (!BP_NOMCP(bp)) {
2154 u8 rc;
2155 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2156 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2157 /*
2158 * Initialize link parameters structure variables
2159 * It is recommended to turn off RX FC for jumbo frames
2160 * for better performance
2161 */
2162 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2163 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2164 else
2165 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2166
2167 bnx2x_acquire_phy_lock(bp);
2168
2169 if (load_mode == LOAD_DIAG) {
2170 struct link_params *lp = &bp->link_params;
2171 lp->loopback_mode = LOOPBACK_XGXS;
2172 /* do PHY loopback at 10G speed, if possible */
2173 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2174 if (lp->speed_cap_mask[cfx_idx] &
2175 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2176 lp->req_line_speed[cfx_idx] =
2177 SPEED_10000;
2178 else
2179 lp->req_line_speed[cfx_idx] =
2180 SPEED_1000;
2181 }
2182 }
2183
2184 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2185
2186 bnx2x_release_phy_lock(bp);
2187
2188 bnx2x_calc_fc_adv(bp);
2189
2190 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2191 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2192 bnx2x_link_report(bp);
2193 } else
2194 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2195 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2196 return rc;
2197 }
2198 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2199 return -EINVAL;
2200 }
2201
2202 void bnx2x_link_set(struct bnx2x *bp)
2203 {
2204 if (!BP_NOMCP(bp)) {
2205 bnx2x_acquire_phy_lock(bp);
2206 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2207 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2208 bnx2x_release_phy_lock(bp);
2209
2210 bnx2x_calc_fc_adv(bp);
2211 } else
2212 BNX2X_ERR("Bootcode is missing - can not set link\n");
2213 }
2214
2215 static void bnx2x__link_reset(struct bnx2x *bp)
2216 {
2217 if (!BP_NOMCP(bp)) {
2218 bnx2x_acquire_phy_lock(bp);
2219 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2220 bnx2x_release_phy_lock(bp);
2221 } else
2222 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2223 }
2224
2225 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2226 {
2227 u8 rc = 0;
2228
2229 if (!BP_NOMCP(bp)) {
2230 bnx2x_acquire_phy_lock(bp);
2231 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2232 is_serdes);
2233 bnx2x_release_phy_lock(bp);
2234 } else
2235 BNX2X_ERR("Bootcode is missing - can not test link\n");
2236
2237 return rc;
2238 }
2239
2240 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2241 {
2242 u32 r_param = bp->link_vars.line_speed / 8;
2243 u32 fair_periodic_timeout_usec;
2244 u32 t_fair;
2245
2246 memset(&(bp->cmng.rs_vars), 0,
2247 sizeof(struct rate_shaping_vars_per_port));
2248 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2249
2250 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2251 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2252
2253 /* this is the threshold below which no timer arming will occur
2254 1.25 coefficient is for the threshold to be a little bigger
2255 than the real time, to compensate for timer in-accuracy */
2256 bp->cmng.rs_vars.rs_threshold =
2257 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2258
2259 /* resolution of fairness timer */
2260 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2261 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2262 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2263
2264 /* this is the threshold below which we won't arm the timer anymore */
2265 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2266
2267 /* we multiply by 1e3/8 to get bytes/msec.
2268 We don't want the credits to pass a credit
2269 of the t_fair*FAIR_MEM (algorithm resolution) */
2270 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2271 /* since each tick is 4 usec */
2272 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2273 }
2274
2275 /* Calculates the sum of vn_min_rates.
2276 It's needed for further normalizing of the min_rates.
2277 Returns:
2278 sum of vn_min_rates.
2279 or
2280 0 - if all the min_rates are 0.
2281 In the later case fainess algorithm should be deactivated.
2282 If not all min_rates are zero then those that are zeroes will be set to 1.
2283 */
2284 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2285 {
2286 int all_zero = 1;
2287 int vn;
2288
2289 bp->vn_weight_sum = 0;
2290 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2291 u32 vn_cfg = bp->mf_config[vn];
2292 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2293 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2294
2295 /* Skip hidden vns */
2296 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2297 continue;
2298
2299 /* If min rate is zero - set it to 1 */
2300 if (!vn_min_rate)
2301 vn_min_rate = DEF_MIN_RATE;
2302 else
2303 all_zero = 0;
2304
2305 bp->vn_weight_sum += vn_min_rate;
2306 }
2307
2308 /* if ETS or all min rates are zeros - disable fairness */
2309 if (BNX2X_IS_ETS_ENABLED(bp)) {
2310 bp->cmng.flags.cmng_enables &=
2311 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2312 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2313 } else if (all_zero) {
2314 bp->cmng.flags.cmng_enables &=
2315 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2316 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2317 " fairness will be disabled\n");
2318 } else
2319 bp->cmng.flags.cmng_enables |=
2320 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2321 }
2322
2323 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2324 {
2325 struct rate_shaping_vars_per_vn m_rs_vn;
2326 struct fairness_vars_per_vn m_fair_vn;
2327 u32 vn_cfg = bp->mf_config[vn];
2328 int func = 2*vn + BP_PORT(bp);
2329 u16 vn_min_rate, vn_max_rate;
2330 int i;
2331
2332 /* If function is hidden - set min and max to zeroes */
2333 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2334 vn_min_rate = 0;
2335 vn_max_rate = 0;
2336
2337 } else {
2338 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2339
2340 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2341 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2342 /* If fairness is enabled (not all min rates are zeroes) and
2343 if current min rate is zero - set it to 1.
2344 This is a requirement of the algorithm. */
2345 if (bp->vn_weight_sum && (vn_min_rate == 0))
2346 vn_min_rate = DEF_MIN_RATE;
2347
2348 if (IS_MF_SI(bp))
2349 /* maxCfg in percents of linkspeed */
2350 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2351 else
2352 /* maxCfg is absolute in 100Mb units */
2353 vn_max_rate = maxCfg * 100;
2354 }
2355
2356 DP(NETIF_MSG_IFUP,
2357 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2358 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2359
2360 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2361 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2362
2363 /* global vn counter - maximal Mbps for this vn */
2364 m_rs_vn.vn_counter.rate = vn_max_rate;
2365
2366 /* quota - number of bytes transmitted in this period */
2367 m_rs_vn.vn_counter.quota =
2368 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2369
2370 if (bp->vn_weight_sum) {
2371 /* credit for each period of the fairness algorithm:
2372 number of bytes in T_FAIR (the vn share the port rate).
2373 vn_weight_sum should not be larger than 10000, thus
2374 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2375 than zero */
2376 m_fair_vn.vn_credit_delta =
2377 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2378 (8 * bp->vn_weight_sum))),
2379 (bp->cmng.fair_vars.fair_threshold +
2380 MIN_ABOVE_THRESH));
2381 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2382 m_fair_vn.vn_credit_delta);
2383 }
2384
2385 /* Store it to internal memory */
2386 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2387 REG_WR(bp, BAR_XSTRORM_INTMEM +
2388 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2389 ((u32 *)(&m_rs_vn))[i]);
2390
2391 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2392 REG_WR(bp, BAR_XSTRORM_INTMEM +
2393 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2394 ((u32 *)(&m_fair_vn))[i]);
2395 }
2396
2397 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2398 {
2399 if (CHIP_REV_IS_SLOW(bp))
2400 return CMNG_FNS_NONE;
2401 if (IS_MF(bp))
2402 return CMNG_FNS_MINMAX;
2403
2404 return CMNG_FNS_NONE;
2405 }
2406
2407 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2408 {
2409 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2410
2411 if (BP_NOMCP(bp))
2412 return; /* what should be the default bvalue in this case */
2413
2414 /* For 2 port configuration the absolute function number formula
2415 * is:
2416 * abs_func = 2 * vn + BP_PORT + BP_PATH
2417 *
2418 * and there are 4 functions per port
2419 *
2420 * For 4 port configuration it is
2421 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2422 *
2423 * and there are 2 functions per port
2424 */
2425 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2426 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2427
2428 if (func >= E1H_FUNC_MAX)
2429 break;
2430
2431 bp->mf_config[vn] =
2432 MF_CFG_RD(bp, func_mf_config[func].config);
2433 }
2434 }
2435
2436 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2437 {
2438
2439 if (cmng_type == CMNG_FNS_MINMAX) {
2440 int vn;
2441
2442 /* clear cmng_enables */
2443 bp->cmng.flags.cmng_enables = 0;
2444
2445 /* read mf conf from shmem */
2446 if (read_cfg)
2447 bnx2x_read_mf_cfg(bp);
2448
2449 /* Init rate shaping and fairness contexts */
2450 bnx2x_init_port_minmax(bp);
2451
2452 /* vn_weight_sum and enable fairness if not 0 */
2453 bnx2x_calc_vn_weight_sum(bp);
2454
2455 /* calculate and set min-max rate for each vn */
2456 if (bp->port.pmf)
2457 for (vn = VN_0; vn < E1HVN_MAX; vn++)
2458 bnx2x_init_vn_minmax(bp, vn);
2459
2460 /* always enable rate shaping and fairness */
2461 bp->cmng.flags.cmng_enables |=
2462 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2463 if (!bp->vn_weight_sum)
2464 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2465 " fairness will be disabled\n");
2466 return;
2467 }
2468
2469 /* rate shaping and fairness are disabled */
2470 DP(NETIF_MSG_IFUP,
2471 "rate shaping and fairness are disabled\n");
2472 }
2473
2474 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2475 {
2476 int port = BP_PORT(bp);
2477 int func;
2478 int vn;
2479
2480 /* Set the attention towards other drivers on the same port */
2481 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2482 if (vn == BP_E1HVN(bp))
2483 continue;
2484
2485 func = ((vn << 1) | port);
2486 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2487 (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2488 }
2489 }
2490
2491 /* This function is called upon link interrupt */
2492 static void bnx2x_link_attn(struct bnx2x *bp)
2493 {
2494 /* Make sure that we are synced with the current statistics */
2495 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2496
2497 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2498
2499 if (bp->link_vars.link_up) {
2500
2501 /* dropless flow control */
2502 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2503 int port = BP_PORT(bp);
2504 u32 pause_enabled = 0;
2505
2506 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2507 pause_enabled = 1;
2508
2509 REG_WR(bp, BAR_USTRORM_INTMEM +
2510 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2511 pause_enabled);
2512 }
2513
2514 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2515 struct host_port_stats *pstats;
2516
2517 pstats = bnx2x_sp(bp, port_stats);
2518 /* reset old mac stats */
2519 memset(&(pstats->mac_stx[0]), 0,
2520 sizeof(struct mac_stx));
2521 }
2522 if (bp->state == BNX2X_STATE_OPEN)
2523 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2524 }
2525
2526 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2527 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2528
2529 if (cmng_fns != CMNG_FNS_NONE) {
2530 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2531 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2532 } else
2533 /* rate shaping and fairness are disabled */
2534 DP(NETIF_MSG_IFUP,
2535 "single function mode without fairness\n");
2536 }
2537
2538 __bnx2x_link_report(bp);
2539
2540 if (IS_MF(bp))
2541 bnx2x_link_sync_notify(bp);
2542 }
2543
2544 void bnx2x__link_status_update(struct bnx2x *bp)
2545 {
2546 if (bp->state != BNX2X_STATE_OPEN)
2547 return;
2548
2549 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2550
2551 if (bp->link_vars.link_up)
2552 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2553 else
2554 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2555
2556 /* indicate link status */
2557 bnx2x_link_report(bp);
2558 }
2559
2560 static void bnx2x_pmf_update(struct bnx2x *bp)
2561 {
2562 int port = BP_PORT(bp);
2563 u32 val;
2564
2565 bp->port.pmf = 1;
2566 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2567
2568 /*
2569 * We need the mb() to ensure the ordering between the writing to
2570 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2571 */
2572 smp_mb();
2573
2574 /* queue a periodic task */
2575 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2576
2577 bnx2x_dcbx_pmf_update(bp);
2578
2579 /* enable nig attention */
2580 val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
2581 if (bp->common.int_block == INT_BLOCK_HC) {
2582 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2583 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2584 } else if (!CHIP_IS_E1x(bp)) {
2585 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2586 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2587 }
2588
2589 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2590 }
2591
2592 /* end of Link */
2593
2594 /* slow path */
2595
2596 /*
2597 * General service functions
2598 */
2599
2600 /* send the MCP a request, block until there is a reply */
2601 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2602 {
2603 int mb_idx = BP_FW_MB_IDX(bp);
2604 u32 seq;
2605 u32 rc = 0;
2606 u32 cnt = 1;
2607 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2608
2609 mutex_lock(&bp->fw_mb_mutex);
2610 seq = ++bp->fw_seq;
2611 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2612 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2613
2614 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2615 (command | seq), param);
2616
2617 do {
2618 /* let the FW do it's magic ... */
2619 msleep(delay);
2620
2621 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2622
2623 /* Give the FW up to 5 second (500*10ms) */
2624 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2625
2626 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2627 cnt*delay, rc, seq);
2628
2629 /* is this a reply to our command? */
2630 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2631 rc &= FW_MSG_CODE_MASK;
2632 else {
2633 /* FW BUG! */
2634 BNX2X_ERR("FW failed to respond!\n");
2635 bnx2x_fw_dump(bp);
2636 rc = 0;
2637 }
2638 mutex_unlock(&bp->fw_mb_mutex);
2639
2640 return rc;
2641 }
2642
2643 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2644 {
2645 #ifdef BCM_CNIC
2646 /* Statistics are not supported for CNIC Clients at the moment */
2647 if (IS_FCOE_FP(fp))
2648 return false;
2649 #endif
2650 return true;
2651 }
2652
2653 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2654 {
2655 if (CHIP_IS_E1x(bp)) {
2656 struct tstorm_eth_function_common_config tcfg = {0};
2657
2658 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2659 }
2660
2661 /* Enable the function in the FW */
2662 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2663 storm_memset_func_en(bp, p->func_id, 1);
2664
2665 /* spq */
2666 if (p->func_flgs & FUNC_FLG_SPQ) {
2667 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2668 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2669 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2670 }
2671 }
2672
2673 /**
2674 * bnx2x_get_tx_only_flags - Return common flags
2675 *
2676 * @bp device handle
2677 * @fp queue handle
2678 * @zero_stats TRUE if statistics zeroing is needed
2679 *
2680 * Return the flags that are common for the Tx-only and not normal connections.
2681 */
2682 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2683 struct bnx2x_fastpath *fp,
2684 bool zero_stats)
2685 {
2686 unsigned long flags = 0;
2687
2688 /* PF driver will always initialize the Queue to an ACTIVE state */
2689 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2690
2691 /* tx only connections collect statistics (on the same index as the
2692 * parent connection). The statistics are zeroed when the parent
2693 * connection is initialized.
2694 */
2695 if (stat_counter_valid(bp, fp)) {
2696 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2697 if (zero_stats)
2698 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2699 }
2700
2701 return flags;
2702 }
2703
2704 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2705 struct bnx2x_fastpath *fp,
2706 bool leading)
2707 {
2708 unsigned long flags = 0;
2709
2710 /* calculate other queue flags */
2711 if (IS_MF_SD(bp))
2712 __set_bit(BNX2X_Q_FLG_OV, &flags);
2713
2714 if (IS_FCOE_FP(fp))
2715 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2716
2717 if (!fp->disable_tpa) {
2718 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2719 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2720 }
2721
2722 if (leading) {
2723 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2724 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2725 }
2726
2727 /* Always set HW VLAN stripping */
2728 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2729
2730
2731 return flags | bnx2x_get_common_flags(bp, fp, true);
2732 }
2733
2734 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2735 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2736 u8 cos)
2737 {
2738 gen_init->stat_id = bnx2x_stats_id(fp);
2739 gen_init->spcl_id = fp->cl_id;
2740
2741 /* Always use mini-jumbo MTU for FCoE L2 ring */
2742 if (IS_FCOE_FP(fp))
2743 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2744 else
2745 gen_init->mtu = bp->dev->mtu;
2746
2747 gen_init->cos = cos;
2748 }
2749
2750 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2751 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2752 struct bnx2x_rxq_setup_params *rxq_init)
2753 {
2754 u8 max_sge = 0;
2755 u16 sge_sz = 0;
2756 u16 tpa_agg_size = 0;
2757
2758 if (!fp->disable_tpa) {
2759 pause->sge_th_hi = 250;
2760 pause->sge_th_lo = 150;
2761 tpa_agg_size = min_t(u32,
2762 (min_t(u32, 8, MAX_SKB_FRAGS) *
2763 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2764 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2765 SGE_PAGE_SHIFT;
2766 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2767 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2768 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2769 0xffff);
2770 }
2771
2772 /* pause - not for e1 */
2773 if (!CHIP_IS_E1(bp)) {
2774 pause->bd_th_hi = 350;
2775 pause->bd_th_lo = 250;
2776 pause->rcq_th_hi = 350;
2777 pause->rcq_th_lo = 250;
2778
2779 pause->pri_map = 1;
2780 }
2781
2782 /* rxq setup */
2783 rxq_init->dscr_map = fp->rx_desc_mapping;
2784 rxq_init->sge_map = fp->rx_sge_mapping;
2785 rxq_init->rcq_map = fp->rx_comp_mapping;
2786 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2787
2788 /* This should be a maximum number of data bytes that may be
2789 * placed on the BD (not including paddings).
2790 */
2791 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN -
2792 IP_HEADER_ALIGNMENT_PADDING;
2793
2794 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2795 rxq_init->tpa_agg_sz = tpa_agg_size;
2796 rxq_init->sge_buf_sz = sge_sz;
2797 rxq_init->max_sges_pkt = max_sge;
2798 rxq_init->rss_engine_id = BP_FUNC(bp);
2799
2800 /* Maximum number or simultaneous TPA aggregation for this Queue.
2801 *
2802 * For PF Clients it should be the maximum avaliable number.
2803 * VF driver(s) may want to define it to a smaller value.
2804 */
2805 rxq_init->max_tpa_queues =
2806 (CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
2807 ETH_MAX_AGGREGATION_QUEUES_E1H_E2);
2808
2809 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2810 rxq_init->fw_sb_id = fp->fw_sb_id;
2811
2812 if (IS_FCOE_FP(fp))
2813 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2814 else
2815 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2816 }
2817
2818 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2819 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2820 u8 cos)
2821 {
2822 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2823 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2824 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2825 txq_init->fw_sb_id = fp->fw_sb_id;
2826
2827 /*
2828 * set the tss leading client id for TX classfication ==
2829 * leading RSS client id
2830 */
2831 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2832
2833 if (IS_FCOE_FP(fp)) {
2834 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2835 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2836 }
2837 }
2838
2839 static void bnx2x_pf_init(struct bnx2x *bp)
2840 {
2841 struct bnx2x_func_init_params func_init = {0};
2842 struct event_ring_data eq_data = { {0} };
2843 u16 flags;
2844
2845 if (!CHIP_IS_E1x(bp)) {
2846 /* reset IGU PF statistics: MSIX + ATTN */
2847 /* PF */
2848 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2849 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2850 (CHIP_MODE_IS_4_PORT(bp) ?
2851 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2852 /* ATTN */
2853 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2854 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2855 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2856 (CHIP_MODE_IS_4_PORT(bp) ?
2857 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2858 }
2859
2860 /* function setup flags */
2861 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2862
2863 /* This flag is relevant for E1x only.
2864 * E2 doesn't have a TPA configuration in a function level.
2865 */
2866 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2867
2868 func_init.func_flgs = flags;
2869 func_init.pf_id = BP_FUNC(bp);
2870 func_init.func_id = BP_FUNC(bp);
2871 func_init.spq_map = bp->spq_mapping;
2872 func_init.spq_prod = bp->spq_prod_idx;
2873
2874 bnx2x_func_init(bp, &func_init);
2875
2876 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2877
2878 /*
2879 * Congestion management values depend on the link rate
2880 * There is no active link so initial link rate is set to 10 Gbps.
2881 * When the link comes up The congestion management values are
2882 * re-calculated according to the actual link rate.
2883 */
2884 bp->link_vars.line_speed = SPEED_10000;
2885 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2886
2887 /* Only the PMF sets the HW */
2888 if (bp->port.pmf)
2889 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2890
2891 /* init Event Queue */
2892 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2893 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2894 eq_data.producer = bp->eq_prod;
2895 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2896 eq_data.sb_id = DEF_SB_ID;
2897 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2898 }
2899
2900
2901 static void bnx2x_e1h_disable(struct bnx2x *bp)
2902 {
2903 int port = BP_PORT(bp);
2904
2905 bnx2x_tx_disable(bp);
2906
2907 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2908 }
2909
2910 static void bnx2x_e1h_enable(struct bnx2x *bp)
2911 {
2912 int port = BP_PORT(bp);
2913
2914 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2915
2916 /* Tx queue should be only reenabled */
2917 netif_tx_wake_all_queues(bp->dev);
2918
2919 /*
2920 * Should not call netif_carrier_on since it will be called if the link
2921 * is up when checking for link state
2922 */
2923 }
2924
2925 /* called due to MCP event (on pmf):
2926 * reread new bandwidth configuration
2927 * configure FW
2928 * notify others function about the change
2929 */
2930 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2931 {
2932 if (bp->link_vars.link_up) {
2933 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2934 bnx2x_link_sync_notify(bp);
2935 }
2936 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2937 }
2938
2939 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2940 {
2941 bnx2x_config_mf_bw(bp);
2942 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2943 }
2944
2945 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2946 {
2947 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2948
2949 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2950
2951 /*
2952 * This is the only place besides the function initialization
2953 * where the bp->flags can change so it is done without any
2954 * locks
2955 */
2956 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2957 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2958 bp->flags |= MF_FUNC_DIS;
2959
2960 bnx2x_e1h_disable(bp);
2961 } else {
2962 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2963 bp->flags &= ~MF_FUNC_DIS;
2964
2965 bnx2x_e1h_enable(bp);
2966 }
2967 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2968 }
2969 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2970 bnx2x_config_mf_bw(bp);
2971 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2972 }
2973
2974 /* Report results to MCP */
2975 if (dcc_event)
2976 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2977 else
2978 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2979 }
2980
2981 /* must be called under the spq lock */
2982 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2983 {
2984 struct eth_spe *next_spe = bp->spq_prod_bd;
2985
2986 if (bp->spq_prod_bd == bp->spq_last_bd) {
2987 bp->spq_prod_bd = bp->spq;
2988 bp->spq_prod_idx = 0;
2989 DP(NETIF_MSG_TIMER, "end of spq\n");
2990 } else {
2991 bp->spq_prod_bd++;
2992 bp->spq_prod_idx++;
2993 }
2994 return next_spe;
2995 }
2996
2997 /* must be called under the spq lock */
2998 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2999 {
3000 int func = BP_FUNC(bp);
3001
3002 /*
3003 * Make sure that BD data is updated before writing the producer:
3004 * BD data is written to the memory, the producer is read from the
3005 * memory, thus we need a full memory barrier to ensure the ordering.
3006 */
3007 mb();
3008
3009 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3010 bp->spq_prod_idx);
3011 mmiowb();
3012 }
3013
3014 /**
3015 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3016 *
3017 * @cmd: command to check
3018 * @cmd_type: command type
3019 */
3020 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3021 {
3022 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3023 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3024 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3025 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3026 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3027 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3028 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3029 return true;
3030 else
3031 return false;
3032
3033 }
3034
3035
3036 /**
3037 * bnx2x_sp_post - place a single command on an SP ring
3038 *
3039 * @bp: driver handle
3040 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3041 * @cid: SW CID the command is related to
3042 * @data_hi: command private data address (high 32 bits)
3043 * @data_lo: command private data address (low 32 bits)
3044 * @cmd_type: command type (e.g. NONE, ETH)
3045 *
3046 * SP data is handled as if it's always an address pair, thus data fields are
3047 * not swapped to little endian in upper functions. Instead this function swaps
3048 * data as if it's two u32 fields.
3049 */
3050 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3051 u32 data_hi, u32 data_lo, int cmd_type)
3052 {
3053 struct eth_spe *spe;
3054 u16 type;
3055 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3056
3057 #ifdef BNX2X_STOP_ON_ERROR
3058 if (unlikely(bp->panic))
3059 return -EIO;
3060 #endif
3061
3062 spin_lock_bh(&bp->spq_lock);
3063
3064 if (common) {
3065 if (!atomic_read(&bp->eq_spq_left)) {
3066 BNX2X_ERR("BUG! EQ ring full!\n");
3067 spin_unlock_bh(&bp->spq_lock);
3068 bnx2x_panic();
3069 return -EBUSY;
3070 }
3071 } else if (!atomic_read(&bp->cq_spq_left)) {
3072 BNX2X_ERR("BUG! SPQ ring full!\n");
3073 spin_unlock_bh(&bp->spq_lock);
3074 bnx2x_panic();
3075 return -EBUSY;
3076 }
3077
3078 spe = bnx2x_sp_get_next(bp);
3079
3080 /* CID needs port number to be encoded int it */
3081 spe->hdr.conn_and_cmd_data =
3082 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3083 HW_CID(bp, cid));
3084
3085 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3086
3087 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3088 SPE_HDR_FUNCTION_ID);
3089
3090 spe->hdr.type = cpu_to_le16(type);
3091
3092 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3093 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3094
3095 /*
3096 * It's ok if the actual decrement is issued towards the memory
3097 * somewhere between the spin_lock and spin_unlock. Thus no
3098 * more explict memory barrier is needed.
3099 */
3100 if (common)
3101 atomic_dec(&bp->eq_spq_left);
3102 else
3103 atomic_dec(&bp->cq_spq_left);
3104
3105
3106 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3107 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3108 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3109 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3110 (u32)(U64_LO(bp->spq_mapping) +
3111 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3112 HW_CID(bp, cid), data_hi, data_lo, type,
3113 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3114
3115 bnx2x_sp_prod_update(bp);
3116 spin_unlock_bh(&bp->spq_lock);
3117 return 0;
3118 }
3119
3120 /* acquire split MCP access lock register */
3121 static int bnx2x_acquire_alr(struct bnx2x *bp)
3122 {
3123 u32 j, val;
3124 int rc = 0;
3125
3126 might_sleep();
3127 for (j = 0; j < 1000; j++) {
3128 val = (1UL << 31);
3129 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3130 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3131 if (val & (1L << 31))
3132 break;
3133
3134 msleep(5);
3135 }
3136 if (!(val & (1L << 31))) {
3137 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3138 rc = -EBUSY;
3139 }
3140
3141 return rc;
3142 }
3143
3144 /* release split MCP access lock register */
3145 static void bnx2x_release_alr(struct bnx2x *bp)
3146 {
3147 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3148 }
3149
3150 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3151 #define BNX2X_DEF_SB_IDX 0x0002
3152
3153 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3154 {
3155 struct host_sp_status_block *def_sb = bp->def_status_blk;
3156 u16 rc = 0;
3157
3158 barrier(); /* status block is written to by the chip */
3159 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3160 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3161 rc |= BNX2X_DEF_SB_ATT_IDX;
3162 }
3163
3164 if (bp->def_idx != def_sb->sp_sb.running_index) {
3165 bp->def_idx = def_sb->sp_sb.running_index;
3166 rc |= BNX2X_DEF_SB_IDX;
3167 }
3168
3169 /* Do not reorder: indecies reading should complete before handling */
3170 barrier();
3171 return rc;
3172 }
3173
3174 /*
3175 * slow path service functions
3176 */
3177
3178 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3179 {
3180 int port = BP_PORT(bp);
3181 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3182 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3183 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3184 NIG_REG_MASK_INTERRUPT_PORT0;
3185 u32 aeu_mask;
3186 u32 nig_mask = 0;
3187 u32 reg_addr;
3188
3189 if (bp->attn_state & asserted)
3190 BNX2X_ERR("IGU ERROR\n");
3191
3192 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3193 aeu_mask = REG_RD(bp, aeu_addr);
3194
3195 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3196 aeu_mask, asserted);
3197 aeu_mask &= ~(asserted & 0x3ff);
3198 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3199
3200 REG_WR(bp, aeu_addr, aeu_mask);
3201 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3202
3203 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3204 bp->attn_state |= asserted;
3205 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3206
3207 if (asserted & ATTN_HARD_WIRED_MASK) {
3208 if (asserted & ATTN_NIG_FOR_FUNC) {
3209
3210 bnx2x_acquire_phy_lock(bp);
3211
3212 /* save nig interrupt mask */
3213 nig_mask = REG_RD(bp, nig_int_mask_addr);
3214
3215 /* If nig_mask is not set, no need to call the update
3216 * function.
3217 */
3218 if (nig_mask) {
3219 REG_WR(bp, nig_int_mask_addr, 0);
3220
3221 bnx2x_link_attn(bp);
3222 }
3223
3224 /* handle unicore attn? */
3225 }
3226 if (asserted & ATTN_SW_TIMER_4_FUNC)
3227 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3228
3229 if (asserted & GPIO_2_FUNC)
3230 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3231
3232 if (asserted & GPIO_3_FUNC)
3233 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3234
3235 if (asserted & GPIO_4_FUNC)
3236 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3237
3238 if (port == 0) {
3239 if (asserted & ATTN_GENERAL_ATTN_1) {
3240 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3241 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3242 }
3243 if (asserted & ATTN_GENERAL_ATTN_2) {
3244 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3245 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3246 }
3247 if (asserted & ATTN_GENERAL_ATTN_3) {
3248 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3249 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3250 }
3251 } else {
3252 if (asserted & ATTN_GENERAL_ATTN_4) {
3253 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3254 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3255 }
3256 if (asserted & ATTN_GENERAL_ATTN_5) {
3257 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3258 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3259 }
3260 if (asserted & ATTN_GENERAL_ATTN_6) {
3261 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3262 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3263 }
3264 }
3265
3266 } /* if hardwired */
3267
3268 if (bp->common.int_block == INT_BLOCK_HC)
3269 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3270 COMMAND_REG_ATTN_BITS_SET);
3271 else
3272 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3273
3274 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3275 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3276 REG_WR(bp, reg_addr, asserted);
3277
3278 /* now set back the mask */
3279 if (asserted & ATTN_NIG_FOR_FUNC) {
3280 REG_WR(bp, nig_int_mask_addr, nig_mask);
3281 bnx2x_release_phy_lock(bp);
3282 }
3283 }
3284
3285 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3286 {
3287 int port = BP_PORT(bp);
3288 u32 ext_phy_config;
3289 /* mark the failure */
3290 ext_phy_config =
3291 SHMEM_RD(bp,
3292 dev_info.port_hw_config[port].external_phy_config);
3293
3294 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3295 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3296 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3297 ext_phy_config);
3298
3299 /* log the failure */
3300 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3301 " the driver to shutdown the card to prevent permanent"
3302 " damage. Please contact OEM Support for assistance\n");
3303 }
3304
3305 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3306 {
3307 int port = BP_PORT(bp);
3308 int reg_offset;
3309 u32 val;
3310
3311 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3312 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3313
3314 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3315
3316 val = REG_RD(bp, reg_offset);
3317 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3318 REG_WR(bp, reg_offset, val);
3319
3320 BNX2X_ERR("SPIO5 hw attention\n");
3321
3322 /* Fan failure attention */
3323 bnx2x_hw_reset_phy(&bp->link_params);
3324 bnx2x_fan_failure(bp);
3325 }
3326
3327 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3328 bnx2x_acquire_phy_lock(bp);
3329 bnx2x_handle_module_detect_int(&bp->link_params);
3330 bnx2x_release_phy_lock(bp);
3331 }
3332
3333 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3334
3335 val = REG_RD(bp, reg_offset);
3336 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3337 REG_WR(bp, reg_offset, val);
3338
3339 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3340 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3341 bnx2x_panic();
3342 }
3343 }
3344
3345 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3346 {
3347 u32 val;
3348
3349 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3350
3351 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3352 BNX2X_ERR("DB hw attention 0x%x\n", val);
3353 /* DORQ discard attention */
3354 if (val & 0x2)
3355 BNX2X_ERR("FATAL error from DORQ\n");
3356 }
3357
3358 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3359
3360 int port = BP_PORT(bp);
3361 int reg_offset;
3362
3363 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3364 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3365
3366 val = REG_RD(bp, reg_offset);
3367 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3368 REG_WR(bp, reg_offset, val);
3369
3370 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3371 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3372 bnx2x_panic();
3373 }
3374 }
3375
3376 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3377 {
3378 u32 val;
3379
3380 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3381
3382 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3383 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3384 /* CFC error attention */
3385 if (val & 0x2)
3386 BNX2X_ERR("FATAL error from CFC\n");
3387 }
3388
3389 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3390 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3391 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3392 /* RQ_USDMDP_FIFO_OVERFLOW */
3393 if (val & 0x18000)
3394 BNX2X_ERR("FATAL error from PXP\n");
3395
3396 if (!CHIP_IS_E1x(bp)) {
3397 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3398 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3399 }
3400 }
3401
3402 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3403
3404 int port = BP_PORT(bp);
3405 int reg_offset;
3406
3407 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3408 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3409
3410 val = REG_RD(bp, reg_offset);
3411 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3412 REG_WR(bp, reg_offset, val);
3413
3414 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3415 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3416 bnx2x_panic();
3417 }
3418 }
3419
3420 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3421 {
3422 u32 val;
3423
3424 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3425
3426 if (attn & BNX2X_PMF_LINK_ASSERT) {
3427 int func = BP_FUNC(bp);
3428
3429 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3430 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3431 func_mf_config[BP_ABS_FUNC(bp)].config);
3432 val = SHMEM_RD(bp,
3433 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3434 if (val & DRV_STATUS_DCC_EVENT_MASK)
3435 bnx2x_dcc_event(bp,
3436 (val & DRV_STATUS_DCC_EVENT_MASK));
3437
3438 if (val & DRV_STATUS_SET_MF_BW)
3439 bnx2x_set_mf_bw(bp);
3440
3441 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3442 bnx2x_pmf_update(bp);
3443
3444 if (bp->port.pmf &&
3445 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3446 bp->dcbx_enabled > 0)
3447 /* start dcbx state machine */
3448 bnx2x_dcbx_set_params(bp,
3449 BNX2X_DCBX_STATE_NEG_RECEIVED);
3450 if (bp->link_vars.periodic_flags &
3451 PERIODIC_FLAGS_LINK_EVENT) {
3452 /* sync with link */
3453 bnx2x_acquire_phy_lock(bp);
3454 bp->link_vars.periodic_flags &=
3455 ~PERIODIC_FLAGS_LINK_EVENT;
3456 bnx2x_release_phy_lock(bp);
3457 if (IS_MF(bp))
3458 bnx2x_link_sync_notify(bp);
3459 bnx2x_link_report(bp);
3460 }
3461 /* Always call it here: bnx2x_link_report() will
3462 * prevent the link indication duplication.
3463 */
3464 bnx2x__link_status_update(bp);
3465 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3466
3467 BNX2X_ERR("MC assert!\n");
3468 bnx2x_mc_assert(bp);
3469 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3470 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3471 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3472 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3473 bnx2x_panic();
3474
3475 } else if (attn & BNX2X_MCP_ASSERT) {
3476
3477 BNX2X_ERR("MCP assert!\n");
3478 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3479 bnx2x_fw_dump(bp);
3480
3481 } else
3482 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3483 }
3484
3485 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3486 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3487 if (attn & BNX2X_GRC_TIMEOUT) {
3488 val = CHIP_IS_E1(bp) ? 0 :
3489 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3490 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3491 }
3492 if (attn & BNX2X_GRC_RSV) {
3493 val = CHIP_IS_E1(bp) ? 0 :
3494 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3495 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3496 }
3497 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3498 }
3499 }
3500
3501 /*
3502 * Bits map:
3503 * 0-7 - Engine0 load counter.
3504 * 8-15 - Engine1 load counter.
3505 * 16 - Engine0 RESET_IN_PROGRESS bit.
3506 * 17 - Engine1 RESET_IN_PROGRESS bit.
3507 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3508 * on the engine
3509 * 19 - Engine1 ONE_IS_LOADED.
3510 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3511 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3512 * just the one belonging to its engine).
3513 *
3514 */
3515 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3516
3517 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3518 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3519 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3520 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3521 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3522 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3523 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3524
3525 /*
3526 * Set the GLOBAL_RESET bit.
3527 *
3528 * Should be run under rtnl lock
3529 */
3530 void bnx2x_set_reset_global(struct bnx2x *bp)
3531 {
3532 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3533
3534 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3535 barrier();
3536 mmiowb();
3537 }
3538
3539 /*
3540 * Clear the GLOBAL_RESET bit.
3541 *
3542 * Should be run under rtnl lock
3543 */
3544 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3545 {
3546 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3547
3548 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3549 barrier();
3550 mmiowb();
3551 }
3552
3553 /*
3554 * Checks the GLOBAL_RESET bit.
3555 *
3556 * should be run under rtnl lock
3557 */
3558 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3559 {
3560 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3561
3562 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3563 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3564 }
3565
3566 /*
3567 * Clear RESET_IN_PROGRESS bit for the current engine.
3568 *
3569 * Should be run under rtnl lock
3570 */
3571 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3572 {
3573 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3574 u32 bit = BP_PATH(bp) ?
3575 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3576
3577 /* Clear the bit */
3578 val &= ~bit;
3579 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3580 barrier();
3581 mmiowb();
3582 }
3583
3584 /*
3585 * Set RESET_IN_PROGRESS for the current engine.
3586 *
3587 * should be run under rtnl lock
3588 */
3589 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3590 {
3591 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3592 u32 bit = BP_PATH(bp) ?
3593 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3594
3595 /* Set the bit */
3596 val |= bit;
3597 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3598 barrier();
3599 mmiowb();
3600 }
3601
3602 /*
3603 * Checks the RESET_IN_PROGRESS bit for the given engine.
3604 * should be run under rtnl lock
3605 */
3606 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3607 {
3608 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3609 u32 bit = engine ?
3610 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3611
3612 /* return false if bit is set */
3613 return (val & bit) ? false : true;
3614 }
3615
3616 /*
3617 * Increment the load counter for the current engine.
3618 *
3619 * should be run under rtnl lock
3620 */
3621 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3622 {
3623 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3624 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3625 BNX2X_PATH0_LOAD_CNT_MASK;
3626 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3627 BNX2X_PATH0_LOAD_CNT_SHIFT;
3628
3629 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3630
3631 /* get the current counter value */
3632 val1 = (val & mask) >> shift;
3633
3634 /* increment... */
3635 val1++;
3636
3637 /* clear the old value */
3638 val &= ~mask;
3639
3640 /* set the new one */
3641 val |= ((val1 << shift) & mask);
3642
3643 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3644 barrier();
3645 mmiowb();
3646 }
3647
3648 /**
3649 * bnx2x_dec_load_cnt - decrement the load counter
3650 *
3651 * @bp: driver handle
3652 *
3653 * Should be run under rtnl lock.
3654 * Decrements the load counter for the current engine. Returns
3655 * the new counter value.
3656 */
3657 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3658 {
3659 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3660 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3661 BNX2X_PATH0_LOAD_CNT_MASK;
3662 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3663 BNX2X_PATH0_LOAD_CNT_SHIFT;
3664
3665 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3666
3667 /* get the current counter value */
3668 val1 = (val & mask) >> shift;
3669
3670 /* decrement... */
3671 val1--;
3672
3673 /* clear the old value */
3674 val &= ~mask;
3675
3676 /* set the new one */
3677 val |= ((val1 << shift) & mask);
3678
3679 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3680 barrier();
3681 mmiowb();
3682
3683 return val1;
3684 }
3685
3686 /*
3687 * Read the load counter for the current engine.
3688 *
3689 * should be run under rtnl lock
3690 */
3691 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3692 {
3693 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3694 BNX2X_PATH0_LOAD_CNT_MASK);
3695 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3696 BNX2X_PATH0_LOAD_CNT_SHIFT);
3697 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3698
3699 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3700
3701 val = (val & mask) >> shift;
3702
3703 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3704
3705 return val;
3706 }
3707
3708 /*
3709 * Reset the load counter for the current engine.
3710 *
3711 * should be run under rtnl lock
3712 */
3713 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3714 {
3715 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3717 BNX2X_PATH0_LOAD_CNT_MASK);
3718
3719 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3720 }
3721
3722 static inline void _print_next_block(int idx, const char *blk)
3723 {
3724 if (idx)
3725 pr_cont(", ");
3726 pr_cont("%s", blk);
3727 }
3728
3729 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3730 bool print)
3731 {
3732 int i = 0;
3733 u32 cur_bit = 0;
3734 for (i = 0; sig; i++) {
3735 cur_bit = ((u32)0x1 << i);
3736 if (sig & cur_bit) {
3737 switch (cur_bit) {
3738 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3739 if (print)
3740 _print_next_block(par_num++, "BRB");
3741 break;
3742 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3743 if (print)
3744 _print_next_block(par_num++, "PARSER");
3745 break;
3746 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3747 if (print)
3748 _print_next_block(par_num++, "TSDM");
3749 break;
3750 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3751 if (print)
3752 _print_next_block(par_num++,
3753 "SEARCHER");
3754 break;
3755 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3756 if (print)
3757 _print_next_block(par_num++, "TCM");
3758 break;
3759 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3760 if (print)
3761 _print_next_block(par_num++, "TSEMI");
3762 break;
3763 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3764 if (print)
3765 _print_next_block(par_num++, "XPB");
3766 break;
3767 }
3768
3769 /* Clear the bit */
3770 sig &= ~cur_bit;
3771 }
3772 }
3773
3774 return par_num;
3775 }
3776
3777 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3778 bool *global, bool print)
3779 {
3780 int i = 0;
3781 u32 cur_bit = 0;
3782 for (i = 0; sig; i++) {
3783 cur_bit = ((u32)0x1 << i);
3784 if (sig & cur_bit) {
3785 switch (cur_bit) {
3786 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3787 if (print)
3788 _print_next_block(par_num++, "PBF");
3789 break;
3790 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3791 if (print)
3792 _print_next_block(par_num++, "QM");
3793 break;
3794 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3795 if (print)
3796 _print_next_block(par_num++, "TM");
3797 break;
3798 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3799 if (print)
3800 _print_next_block(par_num++, "XSDM");
3801 break;
3802 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3803 if (print)
3804 _print_next_block(par_num++, "XCM");
3805 break;
3806 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3807 if (print)
3808 _print_next_block(par_num++, "XSEMI");
3809 break;
3810 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3811 if (print)
3812 _print_next_block(par_num++,
3813 "DOORBELLQ");
3814 break;
3815 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3816 if (print)
3817 _print_next_block(par_num++, "NIG");
3818 break;
3819 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3820 if (print)
3821 _print_next_block(par_num++,
3822 "VAUX PCI CORE");
3823 *global = true;
3824 break;
3825 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3826 if (print)
3827 _print_next_block(par_num++, "DEBUG");
3828 break;
3829 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3830 if (print)
3831 _print_next_block(par_num++, "USDM");
3832 break;
3833 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3834 if (print)
3835 _print_next_block(par_num++, "UCM");
3836 break;
3837 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3838 if (print)
3839 _print_next_block(par_num++, "USEMI");
3840 break;
3841 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3842 if (print)
3843 _print_next_block(par_num++, "UPB");
3844 break;
3845 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3846 if (print)
3847 _print_next_block(par_num++, "CSDM");
3848 break;
3849 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3850 if (print)
3851 _print_next_block(par_num++, "CCM");
3852 break;
3853 }
3854
3855 /* Clear the bit */
3856 sig &= ~cur_bit;
3857 }
3858 }
3859
3860 return par_num;
3861 }
3862
3863 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3864 bool print)
3865 {
3866 int i = 0;
3867 u32 cur_bit = 0;
3868 for (i = 0; sig; i++) {
3869 cur_bit = ((u32)0x1 << i);
3870 if (sig & cur_bit) {
3871 switch (cur_bit) {
3872 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3873 if (print)
3874 _print_next_block(par_num++, "CSEMI");
3875 break;
3876 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3877 if (print)
3878 _print_next_block(par_num++, "PXP");
3879 break;
3880 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3881 if (print)
3882 _print_next_block(par_num++,
3883 "PXPPCICLOCKCLIENT");
3884 break;
3885 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3886 if (print)
3887 _print_next_block(par_num++, "CFC");
3888 break;
3889 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3890 if (print)
3891 _print_next_block(par_num++, "CDU");
3892 break;
3893 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3894 if (print)
3895 _print_next_block(par_num++, "DMAE");
3896 break;
3897 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3898 if (print)
3899 _print_next_block(par_num++, "IGU");
3900 break;
3901 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3902 if (print)
3903 _print_next_block(par_num++, "MISC");
3904 break;
3905 }
3906
3907 /* Clear the bit */
3908 sig &= ~cur_bit;
3909 }
3910 }
3911
3912 return par_num;
3913 }
3914
3915 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3916 bool *global, bool print)
3917 {
3918 int i = 0;
3919 u32 cur_bit = 0;
3920 for (i = 0; sig; i++) {
3921 cur_bit = ((u32)0x1 << i);
3922 if (sig & cur_bit) {
3923 switch (cur_bit) {
3924 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3925 if (print)
3926 _print_next_block(par_num++, "MCP ROM");
3927 *global = true;
3928 break;
3929 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3930 if (print)
3931 _print_next_block(par_num++,
3932 "MCP UMP RX");
3933 *global = true;
3934 break;
3935 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3936 if (print)
3937 _print_next_block(par_num++,
3938 "MCP UMP TX");
3939 *global = true;
3940 break;
3941 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3942 if (print)
3943 _print_next_block(par_num++,
3944 "MCP SCPAD");
3945 *global = true;
3946 break;
3947 }
3948
3949 /* Clear the bit */
3950 sig &= ~cur_bit;
3951 }
3952 }
3953
3954 return par_num;
3955 }
3956
3957 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3958 bool print)
3959 {
3960 int i = 0;
3961 u32 cur_bit = 0;
3962 for (i = 0; sig; i++) {
3963 cur_bit = ((u32)0x1 << i);
3964 if (sig & cur_bit) {
3965 switch (cur_bit) {
3966 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3967 if (print)
3968 _print_next_block(par_num++, "PGLUE_B");
3969 break;
3970 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3971 if (print)
3972 _print_next_block(par_num++, "ATC");
3973 break;
3974 }
3975
3976 /* Clear the bit */
3977 sig &= ~cur_bit;
3978 }
3979 }
3980
3981 return par_num;
3982 }
3983
3984 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3985 u32 *sig)
3986 {
3987 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3988 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3989 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3990 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3991 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3992 int par_num = 0;
3993 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3994 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
3995 "[4]:0x%08x\n",
3996 sig[0] & HW_PRTY_ASSERT_SET_0,
3997 sig[1] & HW_PRTY_ASSERT_SET_1,
3998 sig[2] & HW_PRTY_ASSERT_SET_2,
3999 sig[3] & HW_PRTY_ASSERT_SET_3,
4000 sig[4] & HW_PRTY_ASSERT_SET_4);
4001 if (print)
4002 netdev_err(bp->dev,
4003 "Parity errors detected in blocks: ");
4004 par_num = bnx2x_check_blocks_with_parity0(
4005 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4006 par_num = bnx2x_check_blocks_with_parity1(
4007 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4008 par_num = bnx2x_check_blocks_with_parity2(
4009 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4010 par_num = bnx2x_check_blocks_with_parity3(
4011 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4012 par_num = bnx2x_check_blocks_with_parity4(
4013 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4014
4015 if (print)
4016 pr_cont("\n");
4017
4018 return true;
4019 } else
4020 return false;
4021 }
4022
4023 /**
4024 * bnx2x_chk_parity_attn - checks for parity attentions.
4025 *
4026 * @bp: driver handle
4027 * @global: true if there was a global attention
4028 * @print: show parity attention in syslog
4029 */
4030 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4031 {
4032 struct attn_route attn = { {0} };
4033 int port = BP_PORT(bp);
4034
4035 attn.sig[0] = REG_RD(bp,
4036 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4037 port*4);
4038 attn.sig[1] = REG_RD(bp,
4039 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4040 port*4);
4041 attn.sig[2] = REG_RD(bp,
4042 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4043 port*4);
4044 attn.sig[3] = REG_RD(bp,
4045 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4046 port*4);
4047
4048 if (!CHIP_IS_E1x(bp))
4049 attn.sig[4] = REG_RD(bp,
4050 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4051 port*4);
4052
4053 return bnx2x_parity_attn(bp, global, print, attn.sig);
4054 }
4055
4056
4057 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4058 {
4059 u32 val;
4060 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4061
4062 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4063 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4064 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4065 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4066 "ADDRESS_ERROR\n");
4067 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4068 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4069 "INCORRECT_RCV_BEHAVIOR\n");
4070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4072 "WAS_ERROR_ATTN\n");
4073 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4075 "VF_LENGTH_VIOLATION_ATTN\n");
4076 if (val &
4077 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4079 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4080 if (val &
4081 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4082 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4083 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4084 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4085 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4086 "TCPL_ERROR_ATTN\n");
4087 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4088 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4089 "TCPL_IN_TWO_RCBS_ATTN\n");
4090 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4091 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4092 "CSSNOOP_FIFO_OVERFLOW\n");
4093 }
4094 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4095 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4096 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4097 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4098 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4099 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4100 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4101 "_ATC_TCPL_TO_NOT_PEND\n");
4102 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4103 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4104 "ATC_GPA_MULTIPLE_HITS\n");
4105 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4106 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4107 "ATC_RCPL_TO_EMPTY_CNT\n");
4108 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4109 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4110 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4111 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4112 "ATC_IREQ_LESS_THAN_STU\n");
4113 }
4114
4115 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4116 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4117 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4118 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4119 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4120 }
4121
4122 }
4123
4124 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4125 {
4126 struct attn_route attn, *group_mask;
4127 int port = BP_PORT(bp);
4128 int index;
4129 u32 reg_addr;
4130 u32 val;
4131 u32 aeu_mask;
4132 bool global = false;
4133
4134 /* need to take HW lock because MCP or other port might also
4135 try to handle this event */
4136 bnx2x_acquire_alr(bp);
4137
4138 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4139 #ifndef BNX2X_STOP_ON_ERROR
4140 bp->recovery_state = BNX2X_RECOVERY_INIT;
4141 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4142 /* Disable HW interrupts */
4143 bnx2x_int_disable(bp);
4144 /* In case of parity errors don't handle attentions so that
4145 * other function would "see" parity errors.
4146 */
4147 #else
4148 bnx2x_panic();
4149 #endif
4150 bnx2x_release_alr(bp);
4151 return;
4152 }
4153
4154 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4155 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4156 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4157 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4158 if (!CHIP_IS_E1x(bp))
4159 attn.sig[4] =
4160 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4161 else
4162 attn.sig[4] = 0;
4163
4164 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4165 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4166
4167 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4168 if (deasserted & (1 << index)) {
4169 group_mask = &bp->attn_group[index];
4170
4171 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4172 "%08x %08x %08x\n",
4173 index,
4174 group_mask->sig[0], group_mask->sig[1],
4175 group_mask->sig[2], group_mask->sig[3],
4176 group_mask->sig[4]);
4177
4178 bnx2x_attn_int_deasserted4(bp,
4179 attn.sig[4] & group_mask->sig[4]);
4180 bnx2x_attn_int_deasserted3(bp,
4181 attn.sig[3] & group_mask->sig[3]);
4182 bnx2x_attn_int_deasserted1(bp,
4183 attn.sig[1] & group_mask->sig[1]);
4184 bnx2x_attn_int_deasserted2(bp,
4185 attn.sig[2] & group_mask->sig[2]);
4186 bnx2x_attn_int_deasserted0(bp,
4187 attn.sig[0] & group_mask->sig[0]);
4188 }
4189 }
4190
4191 bnx2x_release_alr(bp);
4192
4193 if (bp->common.int_block == INT_BLOCK_HC)
4194 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4195 COMMAND_REG_ATTN_BITS_CLR);
4196 else
4197 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4198
4199 val = ~deasserted;
4200 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4201 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4202 REG_WR(bp, reg_addr, val);
4203
4204 if (~bp->attn_state & deasserted)
4205 BNX2X_ERR("IGU ERROR\n");
4206
4207 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4208 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4209
4210 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4211 aeu_mask = REG_RD(bp, reg_addr);
4212
4213 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4214 aeu_mask, deasserted);
4215 aeu_mask |= (deasserted & 0x3ff);
4216 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4217
4218 REG_WR(bp, reg_addr, aeu_mask);
4219 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4220
4221 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4222 bp->attn_state &= ~deasserted;
4223 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4224 }
4225
4226 static void bnx2x_attn_int(struct bnx2x *bp)
4227 {
4228 /* read local copy of bits */
4229 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4230 attn_bits);
4231 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4232 attn_bits_ack);
4233 u32 attn_state = bp->attn_state;
4234
4235 /* look for changed bits */
4236 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4237 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4238
4239 DP(NETIF_MSG_HW,
4240 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4241 attn_bits, attn_ack, asserted, deasserted);
4242
4243 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4244 BNX2X_ERR("BAD attention state\n");
4245
4246 /* handle bits that were raised */
4247 if (asserted)
4248 bnx2x_attn_int_asserted(bp, asserted);
4249
4250 if (deasserted)
4251 bnx2x_attn_int_deasserted(bp, deasserted);
4252 }
4253
4254 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4255 u16 index, u8 op, u8 update)
4256 {
4257 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4258
4259 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4260 igu_addr);
4261 }
4262
4263 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4264 {
4265 /* No memory barriers */
4266 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4267 mmiowb(); /* keep prod updates ordered */
4268 }
4269
4270 #ifdef BCM_CNIC
4271 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4272 union event_ring_elem *elem)
4273 {
4274 u8 err = elem->message.error;
4275
4276 if (!bp->cnic_eth_dev.starting_cid ||
4277 (cid < bp->cnic_eth_dev.starting_cid &&
4278 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4279 return 1;
4280
4281 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4282
4283 if (unlikely(err)) {
4284
4285 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4286 cid);
4287 bnx2x_panic_dump(bp);
4288 }
4289 bnx2x_cnic_cfc_comp(bp, cid, err);
4290 return 0;
4291 }
4292 #endif
4293
4294 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4295 {
4296 struct bnx2x_mcast_ramrod_params rparam;
4297 int rc;
4298
4299 memset(&rparam, 0, sizeof(rparam));
4300
4301 rparam.mcast_obj = &bp->mcast_obj;
4302
4303 netif_addr_lock_bh(bp->dev);
4304
4305 /* Clear pending state for the last command */
4306 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4307
4308 /* If there are pending mcast commands - send them */
4309 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4310 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4311 if (rc < 0)
4312 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4313 rc);
4314 }
4315
4316 netif_addr_unlock_bh(bp->dev);
4317 }
4318
4319 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4320 union event_ring_elem *elem)
4321 {
4322 unsigned long ramrod_flags = 0;
4323 int rc = 0;
4324 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4325 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4326
4327 /* Always push next commands out, don't wait here */
4328 __set_bit(RAMROD_CONT, &ramrod_flags);
4329
4330 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4331 case BNX2X_FILTER_MAC_PENDING:
4332 #ifdef BCM_CNIC
4333 if (cid == BNX2X_ISCSI_ETH_CID)
4334 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4335 else
4336 #endif
4337 vlan_mac_obj = &bp->fp[cid].mac_obj;
4338
4339 break;
4340 vlan_mac_obj = &bp->fp[cid].mac_obj;
4341
4342 case BNX2X_FILTER_MCAST_PENDING:
4343 /* This is only relevant for 57710 where multicast MACs are
4344 * configured as unicast MACs using the same ramrod.
4345 */
4346 bnx2x_handle_mcast_eqe(bp);
4347 return;
4348 default:
4349 BNX2X_ERR("Unsupported classification command: %d\n",
4350 elem->message.data.eth_event.echo);
4351 return;
4352 }
4353
4354 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4355
4356 if (rc < 0)
4357 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4358 else if (rc > 0)
4359 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4360
4361 }
4362
4363 #ifdef BCM_CNIC
4364 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4365 #endif
4366
4367 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4368 {
4369 netif_addr_lock_bh(bp->dev);
4370
4371 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4372
4373 /* Send rx_mode command again if was requested */
4374 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4375 bnx2x_set_storm_rx_mode(bp);
4376 #ifdef BCM_CNIC
4377 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4378 &bp->sp_state))
4379 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4380 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4381 &bp->sp_state))
4382 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4383 #endif
4384
4385 netif_addr_unlock_bh(bp->dev);
4386 }
4387
4388 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4389 struct bnx2x *bp, u32 cid)
4390 {
4391 DP(BNX2X_MSG_SP, "retrieving fp from cid %d", cid);
4392 #ifdef BCM_CNIC
4393 if (cid == BNX2X_FCOE_ETH_CID)
4394 return &bnx2x_fcoe(bp, q_obj);
4395 else
4396 #endif
4397 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4398 }
4399
4400 static void bnx2x_eq_int(struct bnx2x *bp)
4401 {
4402 u16 hw_cons, sw_cons, sw_prod;
4403 union event_ring_elem *elem;
4404 u32 cid;
4405 u8 opcode;
4406 int spqe_cnt = 0;
4407 struct bnx2x_queue_sp_obj *q_obj;
4408 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4409 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4410
4411 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4412
4413 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4414 * when we get the the next-page we nned to adjust so the loop
4415 * condition below will be met. The next element is the size of a
4416 * regular element and hence incrementing by 1
4417 */
4418 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4419 hw_cons++;
4420
4421 /* This function may never run in parallel with itself for a
4422 * specific bp, thus there is no need in "paired" read memory
4423 * barrier here.
4424 */
4425 sw_cons = bp->eq_cons;
4426 sw_prod = bp->eq_prod;
4427
4428 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4429 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4430
4431 for (; sw_cons != hw_cons;
4432 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4433
4434
4435 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4436
4437 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4438 opcode = elem->message.opcode;
4439
4440
4441 /* handle eq element */
4442 switch (opcode) {
4443 case EVENT_RING_OPCODE_STAT_QUERY:
4444 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4445 bp->stats_comp++);
4446 /* nothing to do with stats comp */
4447 goto next_spqe;
4448
4449 case EVENT_RING_OPCODE_CFC_DEL:
4450 /* handle according to cid range */
4451 /*
4452 * we may want to verify here that the bp state is
4453 * HALTING
4454 */
4455 DP(BNX2X_MSG_SP,
4456 "got delete ramrod for MULTI[%d]\n", cid);
4457 #ifdef BCM_CNIC
4458 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4459 goto next_spqe;
4460 #endif
4461 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4462
4463 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4464 break;
4465
4466
4467
4468 goto next_spqe;
4469
4470 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4471 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4472 if (f_obj->complete_cmd(bp, f_obj,
4473 BNX2X_F_CMD_TX_STOP))
4474 break;
4475 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4476 goto next_spqe;
4477
4478 case EVENT_RING_OPCODE_START_TRAFFIC:
4479 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4480 if (f_obj->complete_cmd(bp, f_obj,
4481 BNX2X_F_CMD_TX_START))
4482 break;
4483 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4484 goto next_spqe;
4485 case EVENT_RING_OPCODE_FUNCTION_START:
4486 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4487 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4488 break;
4489
4490 goto next_spqe;
4491
4492 case EVENT_RING_OPCODE_FUNCTION_STOP:
4493 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4494 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4495 break;
4496
4497 goto next_spqe;
4498 }
4499
4500 switch (opcode | bp->state) {
4501 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4502 BNX2X_STATE_OPEN):
4503 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4504 BNX2X_STATE_OPENING_WAIT4_PORT):
4505 cid = elem->message.data.eth_event.echo &
4506 BNX2X_SWCID_MASK;
4507 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4508 cid);
4509 rss_raw->clear_pending(rss_raw);
4510 break;
4511
4512 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4513 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4514 case (EVENT_RING_OPCODE_SET_MAC |
4515 BNX2X_STATE_CLOSING_WAIT4_HALT):
4516 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4517 BNX2X_STATE_OPEN):
4518 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4519 BNX2X_STATE_DIAG):
4520 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4521 BNX2X_STATE_CLOSING_WAIT4_HALT):
4522 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4523 bnx2x_handle_classification_eqe(bp, elem);
4524 break;
4525
4526 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4527 BNX2X_STATE_OPEN):
4528 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4529 BNX2X_STATE_DIAG):
4530 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4531 BNX2X_STATE_CLOSING_WAIT4_HALT):
4532 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4533 bnx2x_handle_mcast_eqe(bp);
4534 break;
4535
4536 case (EVENT_RING_OPCODE_FILTERS_RULES |
4537 BNX2X_STATE_OPEN):
4538 case (EVENT_RING_OPCODE_FILTERS_RULES |
4539 BNX2X_STATE_DIAG):
4540 case (EVENT_RING_OPCODE_FILTERS_RULES |
4541 BNX2X_STATE_CLOSING_WAIT4_HALT):
4542 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4543 bnx2x_handle_rx_mode_eqe(bp);
4544 break;
4545 default:
4546 /* unknown event log error and continue */
4547 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4548 elem->message.opcode, bp->state);
4549 }
4550 next_spqe:
4551 spqe_cnt++;
4552 } /* for */
4553
4554 smp_mb__before_atomic_inc();
4555 atomic_add(spqe_cnt, &bp->eq_spq_left);
4556
4557 bp->eq_cons = sw_cons;
4558 bp->eq_prod = sw_prod;
4559 /* Make sure that above mem writes were issued towards the memory */
4560 smp_wmb();
4561
4562 /* update producer */
4563 bnx2x_update_eq_prod(bp, bp->eq_prod);
4564 }
4565
4566 static void bnx2x_sp_task(struct work_struct *work)
4567 {
4568 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4569 u16 status;
4570
4571 status = bnx2x_update_dsb_idx(bp);
4572 /* if (status == 0) */
4573 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4574
4575 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4576
4577 /* HW attentions */
4578 if (status & BNX2X_DEF_SB_ATT_IDX) {
4579 bnx2x_attn_int(bp);
4580 status &= ~BNX2X_DEF_SB_ATT_IDX;
4581 }
4582
4583 /* SP events: STAT_QUERY and others */
4584 if (status & BNX2X_DEF_SB_IDX) {
4585 #ifdef BCM_CNIC
4586 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4587
4588 if ((!NO_FCOE(bp)) &&
4589 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4590 /*
4591 * Prevent local bottom-halves from running as
4592 * we are going to change the local NAPI list.
4593 */
4594 local_bh_disable();
4595 napi_schedule(&bnx2x_fcoe(bp, napi));
4596 local_bh_enable();
4597 }
4598 #endif
4599 /* Handle EQ completions */
4600 bnx2x_eq_int(bp);
4601
4602 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4603 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4604
4605 status &= ~BNX2X_DEF_SB_IDX;
4606 }
4607
4608 if (unlikely(status))
4609 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4610 status);
4611
4612 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4613 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4614 }
4615
4616 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4617 {
4618 struct net_device *dev = dev_instance;
4619 struct bnx2x *bp = netdev_priv(dev);
4620
4621 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4622 IGU_INT_DISABLE, 0);
4623
4624 #ifdef BNX2X_STOP_ON_ERROR
4625 if (unlikely(bp->panic))
4626 return IRQ_HANDLED;
4627 #endif
4628
4629 #ifdef BCM_CNIC
4630 {
4631 struct cnic_ops *c_ops;
4632
4633 rcu_read_lock();
4634 c_ops = rcu_dereference(bp->cnic_ops);
4635 if (c_ops)
4636 c_ops->cnic_handler(bp->cnic_data, NULL);
4637 rcu_read_unlock();
4638 }
4639 #endif
4640 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4641
4642 return IRQ_HANDLED;
4643 }
4644
4645 /* end of slow path */
4646
4647
4648 void bnx2x_drv_pulse(struct bnx2x *bp)
4649 {
4650 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4651 bp->fw_drv_pulse_wr_seq);
4652 }
4653
4654
4655 static void bnx2x_timer(unsigned long data)
4656 {
4657 u8 cos;
4658 struct bnx2x *bp = (struct bnx2x *) data;
4659
4660 if (!netif_running(bp->dev))
4661 return;
4662
4663 if (poll) {
4664 struct bnx2x_fastpath *fp = &bp->fp[0];
4665
4666 for_each_cos_in_tx_queue(fp, cos)
4667 bnx2x_tx_int(bp, &fp->txdata[cos]);
4668 bnx2x_rx_int(fp, 1000);
4669 }
4670
4671 if (!BP_NOMCP(bp)) {
4672 int mb_idx = BP_FW_MB_IDX(bp);
4673 u32 drv_pulse;
4674 u32 mcp_pulse;
4675
4676 ++bp->fw_drv_pulse_wr_seq;
4677 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4678 /* TBD - add SYSTEM_TIME */
4679 drv_pulse = bp->fw_drv_pulse_wr_seq;
4680 bnx2x_drv_pulse(bp);
4681
4682 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4683 MCP_PULSE_SEQ_MASK);
4684 /* The delta between driver pulse and mcp response
4685 * should be 1 (before mcp response) or 0 (after mcp response)
4686 */
4687 if ((drv_pulse != mcp_pulse) &&
4688 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4689 /* someone lost a heartbeat... */
4690 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4691 drv_pulse, mcp_pulse);
4692 }
4693 }
4694
4695 if (bp->state == BNX2X_STATE_OPEN)
4696 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4697
4698 mod_timer(&bp->timer, jiffies + bp->current_interval);
4699 }
4700
4701 /* end of Statistics */
4702
4703 /* nic init */
4704
4705 /*
4706 * nic init service functions
4707 */
4708
4709 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4710 {
4711 u32 i;
4712 if (!(len%4) && !(addr%4))
4713 for (i = 0; i < len; i += 4)
4714 REG_WR(bp, addr + i, fill);
4715 else
4716 for (i = 0; i < len; i++)
4717 REG_WR8(bp, addr + i, fill);
4718
4719 }
4720
4721 /* helper: writes FP SP data to FW - data_size in dwords */
4722 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4723 int fw_sb_id,
4724 u32 *sb_data_p,
4725 u32 data_size)
4726 {
4727 int index;
4728 for (index = 0; index < data_size; index++)
4729 REG_WR(bp, BAR_CSTRORM_INTMEM +
4730 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4731 sizeof(u32)*index,
4732 *(sb_data_p + index));
4733 }
4734
4735 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4736 {
4737 u32 *sb_data_p;
4738 u32 data_size = 0;
4739 struct hc_status_block_data_e2 sb_data_e2;
4740 struct hc_status_block_data_e1x sb_data_e1x;
4741
4742 /* disable the function first */
4743 if (!CHIP_IS_E1x(bp)) {
4744 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4745 sb_data_e2.common.state = SB_DISABLED;
4746 sb_data_e2.common.p_func.vf_valid = false;
4747 sb_data_p = (u32 *)&sb_data_e2;
4748 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4749 } else {
4750 memset(&sb_data_e1x, 0,
4751 sizeof(struct hc_status_block_data_e1x));
4752 sb_data_e1x.common.state = SB_DISABLED;
4753 sb_data_e1x.common.p_func.vf_valid = false;
4754 sb_data_p = (u32 *)&sb_data_e1x;
4755 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4756 }
4757 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4758
4759 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4760 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4761 CSTORM_STATUS_BLOCK_SIZE);
4762 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4763 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4764 CSTORM_SYNC_BLOCK_SIZE);
4765 }
4766
4767 /* helper: writes SP SB data to FW */
4768 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4769 struct hc_sp_status_block_data *sp_sb_data)
4770 {
4771 int func = BP_FUNC(bp);
4772 int i;
4773 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4774 REG_WR(bp, BAR_CSTRORM_INTMEM +
4775 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4776 i*sizeof(u32),
4777 *((u32 *)sp_sb_data + i));
4778 }
4779
4780 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4781 {
4782 int func = BP_FUNC(bp);
4783 struct hc_sp_status_block_data sp_sb_data;
4784 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4785
4786 sp_sb_data.state = SB_DISABLED;
4787 sp_sb_data.p_func.vf_valid = false;
4788
4789 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4790
4791 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4792 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4793 CSTORM_SP_STATUS_BLOCK_SIZE);
4794 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4795 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4796 CSTORM_SP_SYNC_BLOCK_SIZE);
4797
4798 }
4799
4800
4801 static inline
4802 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4803 int igu_sb_id, int igu_seg_id)
4804 {
4805 hc_sm->igu_sb_id = igu_sb_id;
4806 hc_sm->igu_seg_id = igu_seg_id;
4807 hc_sm->timer_value = 0xFF;
4808 hc_sm->time_to_expire = 0xFFFFFFFF;
4809 }
4810
4811 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4812 u8 vf_valid, int fw_sb_id, int igu_sb_id)
4813 {
4814 int igu_seg_id;
4815
4816 struct hc_status_block_data_e2 sb_data_e2;
4817 struct hc_status_block_data_e1x sb_data_e1x;
4818 struct hc_status_block_sm *hc_sm_p;
4819 int data_size;
4820 u32 *sb_data_p;
4821
4822 if (CHIP_INT_MODE_IS_BC(bp))
4823 igu_seg_id = HC_SEG_ACCESS_NORM;
4824 else
4825 igu_seg_id = IGU_SEG_ACCESS_NORM;
4826
4827 bnx2x_zero_fp_sb(bp, fw_sb_id);
4828
4829 if (!CHIP_IS_E1x(bp)) {
4830 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4831 sb_data_e2.common.state = SB_ENABLED;
4832 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4833 sb_data_e2.common.p_func.vf_id = vfid;
4834 sb_data_e2.common.p_func.vf_valid = vf_valid;
4835 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4836 sb_data_e2.common.same_igu_sb_1b = true;
4837 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4838 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4839 hc_sm_p = sb_data_e2.common.state_machine;
4840 sb_data_p = (u32 *)&sb_data_e2;
4841 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4842 } else {
4843 memset(&sb_data_e1x, 0,
4844 sizeof(struct hc_status_block_data_e1x));
4845 sb_data_e1x.common.state = SB_ENABLED;
4846 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4847 sb_data_e1x.common.p_func.vf_id = 0xff;
4848 sb_data_e1x.common.p_func.vf_valid = false;
4849 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4850 sb_data_e1x.common.same_igu_sb_1b = true;
4851 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4852 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4853 hc_sm_p = sb_data_e1x.common.state_machine;
4854 sb_data_p = (u32 *)&sb_data_e1x;
4855 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4856 }
4857
4858 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4859 igu_sb_id, igu_seg_id);
4860 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4861 igu_sb_id, igu_seg_id);
4862
4863 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4864
4865 /* write indecies to HW */
4866 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4867 }
4868
4869 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4870 u16 tx_usec, u16 rx_usec)
4871 {
4872 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4873 false, rx_usec);
4874 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4875 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4876 tx_usec);
4877 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4878 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4879 tx_usec);
4880 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4881 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4882 tx_usec);
4883 }
4884
4885 static void bnx2x_init_def_sb(struct bnx2x *bp)
4886 {
4887 struct host_sp_status_block *def_sb = bp->def_status_blk;
4888 dma_addr_t mapping = bp->def_status_blk_mapping;
4889 int igu_sp_sb_index;
4890 int igu_seg_id;
4891 int port = BP_PORT(bp);
4892 int func = BP_FUNC(bp);
4893 int reg_offset;
4894 u64 section;
4895 int index;
4896 struct hc_sp_status_block_data sp_sb_data;
4897 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4898
4899 if (CHIP_INT_MODE_IS_BC(bp)) {
4900 igu_sp_sb_index = DEF_SB_IGU_ID;
4901 igu_seg_id = HC_SEG_ACCESS_DEF;
4902 } else {
4903 igu_sp_sb_index = bp->igu_dsb_id;
4904 igu_seg_id = IGU_SEG_ACCESS_DEF;
4905 }
4906
4907 /* ATTN */
4908 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4909 atten_status_block);
4910 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4911
4912 bp->attn_state = 0;
4913
4914 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4915 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4916 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4917 int sindex;
4918 /* take care of sig[0]..sig[4] */
4919 for (sindex = 0; sindex < 4; sindex++)
4920 bp->attn_group[index].sig[sindex] =
4921 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4922
4923 if (!CHIP_IS_E1x(bp))
4924 /*
4925 * enable5 is separate from the rest of the registers,
4926 * and therefore the address skip is 4
4927 * and not 16 between the different groups
4928 */
4929 bp->attn_group[index].sig[4] = REG_RD(bp,
4930 reg_offset + 0x10 + 0x4*index);
4931 else
4932 bp->attn_group[index].sig[4] = 0;
4933 }
4934
4935 if (bp->common.int_block == INT_BLOCK_HC) {
4936 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4937 HC_REG_ATTN_MSG0_ADDR_L);
4938
4939 REG_WR(bp, reg_offset, U64_LO(section));
4940 REG_WR(bp, reg_offset + 4, U64_HI(section));
4941 } else if (!CHIP_IS_E1x(bp)) {
4942 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4943 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4944 }
4945
4946 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4947 sp_sb);
4948
4949 bnx2x_zero_sp_sb(bp);
4950
4951 sp_sb_data.state = SB_ENABLED;
4952 sp_sb_data.host_sb_addr.lo = U64_LO(section);
4953 sp_sb_data.host_sb_addr.hi = U64_HI(section);
4954 sp_sb_data.igu_sb_id = igu_sp_sb_index;
4955 sp_sb_data.igu_seg_id = igu_seg_id;
4956 sp_sb_data.p_func.pf_id = func;
4957 sp_sb_data.p_func.vnic_id = BP_VN(bp);
4958 sp_sb_data.p_func.vf_id = 0xff;
4959
4960 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4961
4962 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4963 }
4964
4965 void bnx2x_update_coalesce(struct bnx2x *bp)
4966 {
4967 int i;
4968
4969 for_each_eth_queue(bp, i)
4970 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
4971 bp->tx_ticks, bp->rx_ticks);
4972 }
4973
4974 static void bnx2x_init_sp_ring(struct bnx2x *bp)
4975 {
4976 spin_lock_init(&bp->spq_lock);
4977 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
4978
4979 bp->spq_prod_idx = 0;
4980 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
4981 bp->spq_prod_bd = bp->spq;
4982 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
4983 }
4984
4985 static void bnx2x_init_eq_ring(struct bnx2x *bp)
4986 {
4987 int i;
4988 for (i = 1; i <= NUM_EQ_PAGES; i++) {
4989 union event_ring_elem *elem =
4990 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
4991
4992 elem->next_page.addr.hi =
4993 cpu_to_le32(U64_HI(bp->eq_mapping +
4994 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
4995 elem->next_page.addr.lo =
4996 cpu_to_le32(U64_LO(bp->eq_mapping +
4997 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
4998 }
4999 bp->eq_cons = 0;
5000 bp->eq_prod = NUM_EQ_DESC;
5001 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5002 /* we want a warning message before it gets rought... */
5003 atomic_set(&bp->eq_spq_left,
5004 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5005 }
5006
5007
5008 /* called with netif_addr_lock_bh() */
5009 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5010 unsigned long rx_mode_flags,
5011 unsigned long rx_accept_flags,
5012 unsigned long tx_accept_flags,
5013 unsigned long ramrod_flags)
5014 {
5015 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5016 int rc;
5017
5018 memset(&ramrod_param, 0, sizeof(ramrod_param));
5019
5020 /* Prepare ramrod parameters */
5021 ramrod_param.cid = 0;
5022 ramrod_param.cl_id = cl_id;
5023 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5024 ramrod_param.func_id = BP_FUNC(bp);
5025
5026 ramrod_param.pstate = &bp->sp_state;
5027 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5028
5029 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5030 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5031
5032 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5033
5034 ramrod_param.ramrod_flags = ramrod_flags;
5035 ramrod_param.rx_mode_flags = rx_mode_flags;
5036
5037 ramrod_param.rx_accept_flags = rx_accept_flags;
5038 ramrod_param.tx_accept_flags = tx_accept_flags;
5039
5040 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5041 if (rc < 0) {
5042 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5043 return;
5044 }
5045 }
5046
5047 /* called with netif_addr_lock_bh() */
5048 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5049 {
5050 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5051 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5052
5053 #ifdef BCM_CNIC
5054 if (!NO_FCOE(bp))
5055
5056 /* Configure rx_mode of FCoE Queue */
5057 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5058 #endif
5059
5060 switch (bp->rx_mode) {
5061 case BNX2X_RX_MODE_NONE:
5062 /*
5063 * 'drop all' supersedes any accept flags that may have been
5064 * passed to the function.
5065 */
5066 break;
5067 case BNX2X_RX_MODE_NORMAL:
5068 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5069 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5070 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5071
5072 /* internal switching mode */
5073 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5074 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5075 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5076
5077 break;
5078 case BNX2X_RX_MODE_ALLMULTI:
5079 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5080 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5081 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5082
5083 /* internal switching mode */
5084 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5085 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5086 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5087
5088 break;
5089 case BNX2X_RX_MODE_PROMISC:
5090 /* According to deffinition of SI mode, iface in promisc mode
5091 * should receive matched and unmatched (in resolution of port)
5092 * unicast packets.
5093 */
5094 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5095 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5096 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5097 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5098
5099 /* internal switching mode */
5100 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5101 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5102
5103 if (IS_MF_SI(bp))
5104 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5105 else
5106 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5107
5108 break;
5109 default:
5110 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5111 return;
5112 }
5113
5114 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5115 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5116 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5117 }
5118
5119 __set_bit(RAMROD_RX, &ramrod_flags);
5120 __set_bit(RAMROD_TX, &ramrod_flags);
5121
5122 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5123 tx_accept_flags, ramrod_flags);
5124 }
5125
5126 static void bnx2x_init_internal_common(struct bnx2x *bp)
5127 {
5128 int i;
5129
5130 if (IS_MF_SI(bp))
5131 /*
5132 * In switch independent mode, the TSTORM needs to accept
5133 * packets that failed classification, since approximate match
5134 * mac addresses aren't written to NIG LLH
5135 */
5136 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5137 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5138 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5139 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5140 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5141
5142 /* Zero this manually as its initialization is
5143 currently missing in the initTool */
5144 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5145 REG_WR(bp, BAR_USTRORM_INTMEM +
5146 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5147 if (!CHIP_IS_E1x(bp)) {
5148 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5149 CHIP_INT_MODE_IS_BC(bp) ?
5150 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5151 }
5152 }
5153
5154 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5155 {
5156 switch (load_code) {
5157 case FW_MSG_CODE_DRV_LOAD_COMMON:
5158 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5159 bnx2x_init_internal_common(bp);
5160 /* no break */
5161
5162 case FW_MSG_CODE_DRV_LOAD_PORT:
5163 /* nothing to do */
5164 /* no break */
5165
5166 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5167 /* internal memory per function is
5168 initialized inside bnx2x_pf_init */
5169 break;
5170
5171 default:
5172 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5173 break;
5174 }
5175 }
5176
5177 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5178 {
5179 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5180 }
5181
5182 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5183 {
5184 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5185 }
5186
5187 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5188 {
5189 if (CHIP_IS_E1x(fp->bp))
5190 return BP_L_ID(fp->bp) + fp->index;
5191 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5192 return bnx2x_fp_igu_sb_id(fp);
5193 }
5194
5195 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5196 {
5197 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5198 u8 cos;
5199 unsigned long q_type = 0;
5200 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5201
5202 fp->cid = fp_idx;
5203 fp->cl_id = bnx2x_fp_cl_id(fp);
5204 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5205 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5206 /* qZone id equals to FW (per path) client id */
5207 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5208
5209 /* init shortcut */
5210 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5211 /* Setup SB indicies */
5212 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5213
5214 /* Configure Queue State object */
5215 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5216 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5217
5218 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5219
5220 /* init tx data */
5221 for_each_cos_in_tx_queue(fp, cos) {
5222 bnx2x_init_txdata(bp, &fp->txdata[cos],
5223 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5224 FP_COS_TO_TXQ(fp, cos),
5225 BNX2X_TX_SB_INDEX_BASE + cos);
5226 cids[cos] = fp->txdata[cos].cid;
5227 }
5228
5229 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5230 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5231 bnx2x_sp_mapping(bp, q_rdata), q_type);
5232
5233 /**
5234 * Configure classification DBs: Always enable Tx switching
5235 */
5236 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5237
5238 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5239 "cl_id %d fw_sb %d igu_sb %d\n",
5240 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5241 fp->igu_sb_id);
5242 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5243 fp->fw_sb_id, fp->igu_sb_id);
5244
5245 bnx2x_update_fpsb_idx(fp);
5246 }
5247
5248 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5249 {
5250 int i;
5251
5252 for_each_eth_queue(bp, i)
5253 bnx2x_init_eth_fp(bp, i);
5254 #ifdef BCM_CNIC
5255 if (!NO_FCOE(bp))
5256 bnx2x_init_fcoe_fp(bp);
5257
5258 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5259 BNX2X_VF_ID_INVALID, false,
5260 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5261
5262 #endif
5263
5264 /* Initialize MOD_ABS interrupts */
5265 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5266 bp->common.shmem_base, bp->common.shmem2_base,
5267 BP_PORT(bp));
5268 /* ensure status block indices were read */
5269 rmb();
5270
5271 bnx2x_init_def_sb(bp);
5272 bnx2x_update_dsb_idx(bp);
5273 bnx2x_init_rx_rings(bp);
5274 bnx2x_init_tx_rings(bp);
5275 bnx2x_init_sp_ring(bp);
5276 bnx2x_init_eq_ring(bp);
5277 bnx2x_init_internal(bp, load_code);
5278 bnx2x_pf_init(bp);
5279 bnx2x_stats_init(bp);
5280
5281 /* flush all before enabling interrupts */
5282 mb();
5283 mmiowb();
5284
5285 bnx2x_int_enable(bp);
5286
5287 /* Check for SPIO5 */
5288 bnx2x_attn_int_deasserted0(bp,
5289 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5290 AEU_INPUTS_ATTN_BITS_SPIO5);
5291 }
5292
5293 /* end of nic init */
5294
5295 /*
5296 * gzip service functions
5297 */
5298
5299 static int bnx2x_gunzip_init(struct bnx2x *bp)
5300 {
5301 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5302 &bp->gunzip_mapping, GFP_KERNEL);
5303 if (bp->gunzip_buf == NULL)
5304 goto gunzip_nomem1;
5305
5306 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5307 if (bp->strm == NULL)
5308 goto gunzip_nomem2;
5309
5310 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5311 if (bp->strm->workspace == NULL)
5312 goto gunzip_nomem3;
5313
5314 return 0;
5315
5316 gunzip_nomem3:
5317 kfree(bp->strm);
5318 bp->strm = NULL;
5319
5320 gunzip_nomem2:
5321 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5322 bp->gunzip_mapping);
5323 bp->gunzip_buf = NULL;
5324
5325 gunzip_nomem1:
5326 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5327 " un-compression\n");
5328 return -ENOMEM;
5329 }
5330
5331 static void bnx2x_gunzip_end(struct bnx2x *bp)
5332 {
5333 if (bp->strm) {
5334 vfree(bp->strm->workspace);
5335 kfree(bp->strm);
5336 bp->strm = NULL;
5337 }
5338
5339 if (bp->gunzip_buf) {
5340 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5341 bp->gunzip_mapping);
5342 bp->gunzip_buf = NULL;
5343 }
5344 }
5345
5346 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5347 {
5348 int n, rc;
5349
5350 /* check gzip header */
5351 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5352 BNX2X_ERR("Bad gzip header\n");
5353 return -EINVAL;
5354 }
5355
5356 n = 10;
5357
5358 #define FNAME 0x8
5359
5360 if (zbuf[3] & FNAME)
5361 while ((zbuf[n++] != 0) && (n < len));
5362
5363 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5364 bp->strm->avail_in = len - n;
5365 bp->strm->next_out = bp->gunzip_buf;
5366 bp->strm->avail_out = FW_BUF_SIZE;
5367
5368 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5369 if (rc != Z_OK)
5370 return rc;
5371
5372 rc = zlib_inflate(bp->strm, Z_FINISH);
5373 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5374 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5375 bp->strm->msg);
5376
5377 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5378 if (bp->gunzip_outlen & 0x3)
5379 netdev_err(bp->dev, "Firmware decompression error:"
5380 " gunzip_outlen (%d) not aligned\n",
5381 bp->gunzip_outlen);
5382 bp->gunzip_outlen >>= 2;
5383
5384 zlib_inflateEnd(bp->strm);
5385
5386 if (rc == Z_STREAM_END)
5387 return 0;
5388
5389 return rc;
5390 }
5391
5392 /* nic load/unload */
5393
5394 /*
5395 * General service functions
5396 */
5397
5398 /* send a NIG loopback debug packet */
5399 static void bnx2x_lb_pckt(struct bnx2x *bp)
5400 {
5401 u32 wb_write[3];
5402
5403 /* Ethernet source and destination addresses */
5404 wb_write[0] = 0x55555555;
5405 wb_write[1] = 0x55555555;
5406 wb_write[2] = 0x20; /* SOP */
5407 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5408
5409 /* NON-IP protocol */
5410 wb_write[0] = 0x09000000;
5411 wb_write[1] = 0x55555555;
5412 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5413 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5414 }
5415
5416 /* some of the internal memories
5417 * are not directly readable from the driver
5418 * to test them we send debug packets
5419 */
5420 static int bnx2x_int_mem_test(struct bnx2x *bp)
5421 {
5422 int factor;
5423 int count, i;
5424 u32 val = 0;
5425
5426 if (CHIP_REV_IS_FPGA(bp))
5427 factor = 120;
5428 else if (CHIP_REV_IS_EMUL(bp))
5429 factor = 200;
5430 else
5431 factor = 1;
5432
5433 /* Disable inputs of parser neighbor blocks */
5434 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5435 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5436 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5437 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5438
5439 /* Write 0 to parser credits for CFC search request */
5440 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5441
5442 /* send Ethernet packet */
5443 bnx2x_lb_pckt(bp);
5444
5445 /* TODO do i reset NIG statistic? */
5446 /* Wait until NIG register shows 1 packet of size 0x10 */
5447 count = 1000 * factor;
5448 while (count) {
5449
5450 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5451 val = *bnx2x_sp(bp, wb_data[0]);
5452 if (val == 0x10)
5453 break;
5454
5455 msleep(10);
5456 count--;
5457 }
5458 if (val != 0x10) {
5459 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5460 return -1;
5461 }
5462
5463 /* Wait until PRS register shows 1 packet */
5464 count = 1000 * factor;
5465 while (count) {
5466 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5467 if (val == 1)
5468 break;
5469
5470 msleep(10);
5471 count--;
5472 }
5473 if (val != 0x1) {
5474 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5475 return -2;
5476 }
5477
5478 /* Reset and init BRB, PRS */
5479 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5480 msleep(50);
5481 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5482 msleep(50);
5483 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5484 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5485
5486 DP(NETIF_MSG_HW, "part2\n");
5487
5488 /* Disable inputs of parser neighbor blocks */
5489 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5490 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5491 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5492 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5493
5494 /* Write 0 to parser credits for CFC search request */
5495 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5496
5497 /* send 10 Ethernet packets */
5498 for (i = 0; i < 10; i++)
5499 bnx2x_lb_pckt(bp);
5500
5501 /* Wait until NIG register shows 10 + 1
5502 packets of size 11*0x10 = 0xb0 */
5503 count = 1000 * factor;
5504 while (count) {
5505
5506 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5507 val = *bnx2x_sp(bp, wb_data[0]);
5508 if (val == 0xb0)
5509 break;
5510
5511 msleep(10);
5512 count--;
5513 }
5514 if (val != 0xb0) {
5515 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5516 return -3;
5517 }
5518
5519 /* Wait until PRS register shows 2 packets */
5520 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5521 if (val != 2)
5522 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5523
5524 /* Write 1 to parser credits for CFC search request */
5525 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5526
5527 /* Wait until PRS register shows 3 packets */
5528 msleep(10 * factor);
5529 /* Wait until NIG register shows 1 packet of size 0x10 */
5530 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5531 if (val != 3)
5532 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5533
5534 /* clear NIG EOP FIFO */
5535 for (i = 0; i < 11; i++)
5536 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5537 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5538 if (val != 1) {
5539 BNX2X_ERR("clear of NIG failed\n");
5540 return -4;
5541 }
5542
5543 /* Reset and init BRB, PRS, NIG */
5544 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5545 msleep(50);
5546 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5547 msleep(50);
5548 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5549 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5550 #ifndef BCM_CNIC
5551 /* set NIC mode */
5552 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5553 #endif
5554
5555 /* Enable inputs of parser neighbor blocks */
5556 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5557 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5558 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5559 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5560
5561 DP(NETIF_MSG_HW, "done\n");
5562
5563 return 0; /* OK */
5564 }
5565
5566 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5567 {
5568 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5569 if (!CHIP_IS_E1x(bp))
5570 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5571 else
5572 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5573 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5574 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5575 /*
5576 * mask read length error interrupts in brb for parser
5577 * (parsing unit and 'checksum and crc' unit)
5578 * these errors are legal (PU reads fixed length and CAC can cause
5579 * read length error on truncated packets)
5580 */
5581 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5582 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5583 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5584 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5585 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5586 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5587 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5588 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5589 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5590 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5591 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5592 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5593 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5594 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5595 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5596 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5597 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5598 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5599 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5600
5601 if (CHIP_REV_IS_FPGA(bp))
5602 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5603 else if (!CHIP_IS_E1x(bp))
5604 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5605 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5606 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5607 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5608 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5609 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5610 else
5611 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5612 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5613 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5614 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5615 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5616
5617 if (!CHIP_IS_E1x(bp))
5618 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5619 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5620
5621 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5622 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5623 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5624 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5625 }
5626
5627 static void bnx2x_reset_common(struct bnx2x *bp)
5628 {
5629 u32 val = 0x1400;
5630
5631 /* reset_common */
5632 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5633 0xd3ffff7f);
5634
5635 if (CHIP_IS_E3(bp)) {
5636 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5637 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5638 }
5639
5640 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5641 }
5642
5643 static void bnx2x_setup_dmae(struct bnx2x *bp)
5644 {
5645 bp->dmae_ready = 0;
5646 spin_lock_init(&bp->dmae_lock);
5647 }
5648
5649 static void bnx2x_init_pxp(struct bnx2x *bp)
5650 {
5651 u16 devctl;
5652 int r_order, w_order;
5653
5654 pci_read_config_word(bp->pdev,
5655 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5656 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5657 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5658 if (bp->mrrs == -1)
5659 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5660 else {
5661 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5662 r_order = bp->mrrs;
5663 }
5664
5665 bnx2x_init_pxp_arb(bp, r_order, w_order);
5666 }
5667
5668 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5669 {
5670 int is_required;
5671 u32 val;
5672 int port;
5673
5674 if (BP_NOMCP(bp))
5675 return;
5676
5677 is_required = 0;
5678 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5679 SHARED_HW_CFG_FAN_FAILURE_MASK;
5680
5681 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5682 is_required = 1;
5683
5684 /*
5685 * The fan failure mechanism is usually related to the PHY type since
5686 * the power consumption of the board is affected by the PHY. Currently,
5687 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5688 */
5689 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5690 for (port = PORT_0; port < PORT_MAX; port++) {
5691 is_required |=
5692 bnx2x_fan_failure_det_req(
5693 bp,
5694 bp->common.shmem_base,
5695 bp->common.shmem2_base,
5696 port);
5697 }
5698
5699 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5700
5701 if (is_required == 0)
5702 return;
5703
5704 /* Fan failure is indicated by SPIO 5 */
5705 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5706 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5707
5708 /* set to active low mode */
5709 val = REG_RD(bp, MISC_REG_SPIO_INT);
5710 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5711 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5712 REG_WR(bp, MISC_REG_SPIO_INT, val);
5713
5714 /* enable interrupt to signal the IGU */
5715 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5716 val |= (1 << MISC_REGISTERS_SPIO_5);
5717 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5718 }
5719
5720 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5721 {
5722 u32 offset = 0;
5723
5724 if (CHIP_IS_E1(bp))
5725 return;
5726 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5727 return;
5728
5729 switch (BP_ABS_FUNC(bp)) {
5730 case 0:
5731 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5732 break;
5733 case 1:
5734 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5735 break;
5736 case 2:
5737 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5738 break;
5739 case 3:
5740 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5741 break;
5742 case 4:
5743 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5744 break;
5745 case 5:
5746 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5747 break;
5748 case 6:
5749 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5750 break;
5751 case 7:
5752 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5753 break;
5754 default:
5755 return;
5756 }
5757
5758 REG_WR(bp, offset, pretend_func_num);
5759 REG_RD(bp, offset);
5760 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5761 }
5762
5763 void bnx2x_pf_disable(struct bnx2x *bp)
5764 {
5765 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5766 val &= ~IGU_PF_CONF_FUNC_EN;
5767
5768 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5769 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5770 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5771 }
5772
5773 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5774 {
5775 u32 shmem_base[2], shmem2_base[2];
5776 shmem_base[0] = bp->common.shmem_base;
5777 shmem2_base[0] = bp->common.shmem2_base;
5778 if (!CHIP_IS_E1x(bp)) {
5779 shmem_base[1] =
5780 SHMEM2_RD(bp, other_shmem_base_addr);
5781 shmem2_base[1] =
5782 SHMEM2_RD(bp, other_shmem2_base_addr);
5783 }
5784 bnx2x_acquire_phy_lock(bp);
5785 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5786 bp->common.chip_id);
5787 bnx2x_release_phy_lock(bp);
5788 }
5789
5790 /**
5791 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5792 *
5793 * @bp: driver handle
5794 */
5795 static int bnx2x_init_hw_common(struct bnx2x *bp)
5796 {
5797 u32 val;
5798
5799 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
5800
5801 bnx2x_reset_common(bp);
5802 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5803
5804 val = 0xfffc;
5805 if (CHIP_IS_E3(bp)) {
5806 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5807 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5808 }
5809 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5810
5811 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5812
5813 if (!CHIP_IS_E1x(bp)) {
5814 u8 abs_func_id;
5815
5816 /**
5817 * 4-port mode or 2-port mode we need to turn of master-enable
5818 * for everyone, after that, turn it back on for self.
5819 * so, we disregard multi-function or not, and always disable
5820 * for all functions on the given path, this means 0,2,4,6 for
5821 * path 0 and 1,3,5,7 for path 1
5822 */
5823 for (abs_func_id = BP_PATH(bp);
5824 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5825 if (abs_func_id == BP_ABS_FUNC(bp)) {
5826 REG_WR(bp,
5827 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5828 1);
5829 continue;
5830 }
5831
5832 bnx2x_pretend_func(bp, abs_func_id);
5833 /* clear pf enable */
5834 bnx2x_pf_disable(bp);
5835 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5836 }
5837 }
5838
5839 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5840 if (CHIP_IS_E1(bp)) {
5841 /* enable HW interrupt from PXP on USDM overflow
5842 bit 16 on INT_MASK_0 */
5843 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5844 }
5845
5846 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5847 bnx2x_init_pxp(bp);
5848
5849 #ifdef __BIG_ENDIAN
5850 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5851 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5852 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5853 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5854 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5855 /* make sure this value is 0 */
5856 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5857
5858 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5859 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5860 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5861 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5862 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5863 #endif
5864
5865 bnx2x_ilt_init_page_size(bp, INITOP_SET);
5866
5867 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5868 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5869
5870 /* let the HW do it's magic ... */
5871 msleep(100);
5872 /* finish PXP init */
5873 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5874 if (val != 1) {
5875 BNX2X_ERR("PXP2 CFG failed\n");
5876 return -EBUSY;
5877 }
5878 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5879 if (val != 1) {
5880 BNX2X_ERR("PXP2 RD_INIT failed\n");
5881 return -EBUSY;
5882 }
5883
5884 /* Timers bug workaround E2 only. We need to set the entire ILT to
5885 * have entries with value "0" and valid bit on.
5886 * This needs to be done by the first PF that is loaded in a path
5887 * (i.e. common phase)
5888 */
5889 if (!CHIP_IS_E1x(bp)) {
5890 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5891 * (i.e. vnic3) to start even if it is marked as "scan-off".
5892 * This occurs when a different function (func2,3) is being marked
5893 * as "scan-off". Real-life scenario for example: if a driver is being
5894 * load-unloaded while func6,7 are down. This will cause the timer to access
5895 * the ilt, translate to a logical address and send a request to read/write.
5896 * Since the ilt for the function that is down is not valid, this will cause
5897 * a translation error which is unrecoverable.
5898 * The Workaround is intended to make sure that when this happens nothing fatal
5899 * will occur. The workaround:
5900 * 1. First PF driver which loads on a path will:
5901 * a. After taking the chip out of reset, by using pretend,
5902 * it will write "0" to the following registers of
5903 * the other vnics.
5904 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5905 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5906 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5907 * And for itself it will write '1' to
5908 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5909 * dmae-operations (writing to pram for example.)
5910 * note: can be done for only function 6,7 but cleaner this
5911 * way.
5912 * b. Write zero+valid to the entire ILT.
5913 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
5914 * VNIC3 (of that port). The range allocated will be the
5915 * entire ILT. This is needed to prevent ILT range error.
5916 * 2. Any PF driver load flow:
5917 * a. ILT update with the physical addresses of the allocated
5918 * logical pages.
5919 * b. Wait 20msec. - note that this timeout is needed to make
5920 * sure there are no requests in one of the PXP internal
5921 * queues with "old" ILT addresses.
5922 * c. PF enable in the PGLC.
5923 * d. Clear the was_error of the PF in the PGLC. (could have
5924 * occured while driver was down)
5925 * e. PF enable in the CFC (WEAK + STRONG)
5926 * f. Timers scan enable
5927 * 3. PF driver unload flow:
5928 * a. Clear the Timers scan_en.
5929 * b. Polling for scan_on=0 for that PF.
5930 * c. Clear the PF enable bit in the PXP.
5931 * d. Clear the PF enable in the CFC (WEAK + STRONG)
5932 * e. Write zero+valid to all ILT entries (The valid bit must
5933 * stay set)
5934 * f. If this is VNIC 3 of a port then also init
5935 * first_timers_ilt_entry to zero and last_timers_ilt_entry
5936 * to the last enrty in the ILT.
5937 *
5938 * Notes:
5939 * Currently the PF error in the PGLC is non recoverable.
5940 * In the future the there will be a recovery routine for this error.
5941 * Currently attention is masked.
5942 * Having an MCP lock on the load/unload process does not guarantee that
5943 * there is no Timer disable during Func6/7 enable. This is because the
5944 * Timers scan is currently being cleared by the MCP on FLR.
5945 * Step 2.d can be done only for PF6/7 and the driver can also check if
5946 * there is error before clearing it. But the flow above is simpler and
5947 * more general.
5948 * All ILT entries are written by zero+valid and not just PF6/7
5949 * ILT entries since in the future the ILT entries allocation for
5950 * PF-s might be dynamic.
5951 */
5952 struct ilt_client_info ilt_cli;
5953 struct bnx2x_ilt ilt;
5954 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5955 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5956
5957 /* initialize dummy TM client */
5958 ilt_cli.start = 0;
5959 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
5960 ilt_cli.client_num = ILT_CLIENT_TM;
5961
5962 /* Step 1: set zeroes to all ilt page entries with valid bit on
5963 * Step 2: set the timers first/last ilt entry to point
5964 * to the entire range to prevent ILT range error for 3rd/4th
5965 * vnic (this code assumes existance of the vnic)
5966 *
5967 * both steps performed by call to bnx2x_ilt_client_init_op()
5968 * with dummy TM client
5969 *
5970 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5971 * and his brother are split registers
5972 */
5973 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
5974 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
5975 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5976
5977 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
5978 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
5979 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
5980 }
5981
5982
5983 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
5984 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
5985
5986 if (!CHIP_IS_E1x(bp)) {
5987 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
5988 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
5989 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
5990
5991 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
5992
5993 /* let the HW do it's magic ... */
5994 do {
5995 msleep(200);
5996 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
5997 } while (factor-- && (val != 1));
5998
5999 if (val != 1) {
6000 BNX2X_ERR("ATC_INIT failed\n");
6001 return -EBUSY;
6002 }
6003 }
6004
6005 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6006
6007 /* clean the DMAE memory */
6008 bp->dmae_ready = 1;
6009 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6010
6011 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6012
6013 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6014
6015 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6016
6017 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6018
6019 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6020 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6021 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6022 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6023
6024 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6025
6026
6027 /* QM queues pointers table */
6028 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6029
6030 /* soft reset pulse */
6031 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6032 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6033
6034 #ifdef BCM_CNIC
6035 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6036 #endif
6037
6038 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6039 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6040 if (!CHIP_REV_IS_SLOW(bp))
6041 /* enable hw interrupt from doorbell Q */
6042 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6043
6044 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6045
6046 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6047 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6048
6049 if (!CHIP_IS_E1(bp))
6050 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6051
6052 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6053 /* Bit-map indicating which L2 hdrs may appear
6054 * after the basic Ethernet header
6055 */
6056 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6057 bp->path_has_ovlan ? 7 : 6);
6058
6059 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6060 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6061 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6062 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6063
6064 if (!CHIP_IS_E1x(bp)) {
6065 /* reset VFC memories */
6066 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6067 VFC_MEMORIES_RST_REG_CAM_RST |
6068 VFC_MEMORIES_RST_REG_RAM_RST);
6069 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6070 VFC_MEMORIES_RST_REG_CAM_RST |
6071 VFC_MEMORIES_RST_REG_RAM_RST);
6072
6073 msleep(20);
6074 }
6075
6076 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6077 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6078 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6079 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6080
6081 /* sync semi rtc */
6082 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6083 0x80000000);
6084 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6085 0x80000000);
6086
6087 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6088 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6089 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6090
6091 if (!CHIP_IS_E1x(bp))
6092 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6093 bp->path_has_ovlan ? 7 : 6);
6094
6095 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6096
6097 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6098
6099 #ifdef BCM_CNIC
6100 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6101 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6102 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6103 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6104 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6105 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6106 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6107 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6108 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6109 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6110 #endif
6111 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6112
6113 if (sizeof(union cdu_context) != 1024)
6114 /* we currently assume that a context is 1024 bytes */
6115 dev_alert(&bp->pdev->dev, "please adjust the size "
6116 "of cdu_context(%ld)\n",
6117 (long)sizeof(union cdu_context));
6118
6119 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6120 val = (4 << 24) + (0 << 12) + 1024;
6121 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6122
6123 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6124 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6125 /* enable context validation interrupt from CFC */
6126 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6127
6128 /* set the thresholds to prevent CFC/CDU race */
6129 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6130
6131 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6132
6133 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6134 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6135
6136 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6137 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6138
6139 /* Reset PCIE errors for debug */
6140 REG_WR(bp, 0x2814, 0xffffffff);
6141 REG_WR(bp, 0x3820, 0xffffffff);
6142
6143 if (!CHIP_IS_E1x(bp)) {
6144 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6145 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6146 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6147 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6148 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6149 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6150 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6151 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6152 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6153 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6154 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6155 }
6156
6157 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6158 if (!CHIP_IS_E1(bp)) {
6159 /* in E3 this done in per-port section */
6160 if (!CHIP_IS_E3(bp))
6161 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6162 }
6163 if (CHIP_IS_E1H(bp))
6164 /* not applicable for E2 (and above ...) */
6165 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6166
6167 if (CHIP_REV_IS_SLOW(bp))
6168 msleep(200);
6169
6170 /* finish CFC init */
6171 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6172 if (val != 1) {
6173 BNX2X_ERR("CFC LL_INIT failed\n");
6174 return -EBUSY;
6175 }
6176 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6177 if (val != 1) {
6178 BNX2X_ERR("CFC AC_INIT failed\n");
6179 return -EBUSY;
6180 }
6181 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6182 if (val != 1) {
6183 BNX2X_ERR("CFC CAM_INIT failed\n");
6184 return -EBUSY;
6185 }
6186 REG_WR(bp, CFC_REG_DEBUG0, 0);
6187
6188 if (CHIP_IS_E1(bp)) {
6189 /* read NIG statistic
6190 to see if this is our first up since powerup */
6191 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6192 val = *bnx2x_sp(bp, wb_data[0]);
6193
6194 /* do internal memory self test */
6195 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6196 BNX2X_ERR("internal mem self test failed\n");
6197 return -EBUSY;
6198 }
6199 }
6200
6201 bnx2x_setup_fan_failure_detection(bp);
6202
6203 /* clear PXP2 attentions */
6204 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6205
6206 bnx2x_enable_blocks_attention(bp);
6207 bnx2x_enable_blocks_parity(bp);
6208
6209 if (!BP_NOMCP(bp)) {
6210 if (CHIP_IS_E1x(bp))
6211 bnx2x__common_init_phy(bp);
6212 } else
6213 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6214
6215 return 0;
6216 }
6217
6218 /**
6219 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6220 *
6221 * @bp: driver handle
6222 */
6223 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6224 {
6225 int rc = bnx2x_init_hw_common(bp);
6226
6227 if (rc)
6228 return rc;
6229
6230 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6231 if (!BP_NOMCP(bp))
6232 bnx2x__common_init_phy(bp);
6233
6234 return 0;
6235 }
6236
6237 static int bnx2x_init_hw_port(struct bnx2x *bp)
6238 {
6239 int port = BP_PORT(bp);
6240 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6241 u32 low, high;
6242 u32 val;
6243
6244 bnx2x__link_reset(bp);
6245
6246 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6247
6248 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6249
6250 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6251 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6252 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6253
6254 /* Timers bug workaround: disables the pf_master bit in pglue at
6255 * common phase, we need to enable it here before any dmae access are
6256 * attempted. Therefore we manually added the enable-master to the
6257 * port phase (it also happens in the function phase)
6258 */
6259 if (!CHIP_IS_E1x(bp))
6260 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6261
6262 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6263 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6264 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6265 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6266
6267 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6268 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6269 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6270 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6271
6272 /* QM cid (connection) count */
6273 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6274
6275 #ifdef BCM_CNIC
6276 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6277 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6278 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6279 #endif
6280
6281 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6282
6283 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6284 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6285
6286 if (IS_MF(bp))
6287 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6288 else if (bp->dev->mtu > 4096) {
6289 if (bp->flags & ONE_PORT_FLAG)
6290 low = 160;
6291 else {
6292 val = bp->dev->mtu;
6293 /* (24*1024 + val*4)/256 */
6294 low = 96 + (val/64) +
6295 ((val % 64) ? 1 : 0);
6296 }
6297 } else
6298 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6299 high = low + 56; /* 14*1024/256 */
6300 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6301 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6302 }
6303
6304 if (CHIP_MODE_IS_4_PORT(bp))
6305 REG_WR(bp, (BP_PORT(bp) ?
6306 BRB1_REG_MAC_GUARANTIED_1 :
6307 BRB1_REG_MAC_GUARANTIED_0), 40);
6308
6309
6310 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6311 if (CHIP_IS_E3B0(bp))
6312 /* Ovlan exists only if we are in multi-function +
6313 * switch-dependent mode, in switch-independent there
6314 * is no ovlan headers
6315 */
6316 REG_WR(bp, BP_PORT(bp) ?
6317 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6318 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6319 (bp->path_has_ovlan ? 7 : 6));
6320
6321 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6322 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6323 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6324 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6325
6326 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6327 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6328 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6329 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6330
6331 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6332 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6333
6334 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6335
6336 if (CHIP_IS_E1x(bp)) {
6337 /* configure PBF to work without PAUSE mtu 9000 */
6338 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6339
6340 /* update threshold */
6341 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6342 /* update init credit */
6343 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6344
6345 /* probe changes */
6346 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6347 udelay(50);
6348 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6349 }
6350
6351 #ifdef BCM_CNIC
6352 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6353 #endif
6354 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6355 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6356
6357 if (CHIP_IS_E1(bp)) {
6358 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6359 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6360 }
6361 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6362
6363 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6364
6365 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6366 /* init aeu_mask_attn_func_0/1:
6367 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6368 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6369 * bits 4-7 are used for "per vn group attention" */
6370 val = IS_MF(bp) ? 0xF7 : 0x7;
6371 /* Enable DCBX attention for all but E1 */
6372 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6373 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6374
6375 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6376
6377 if (!CHIP_IS_E1x(bp)) {
6378 /* Bit-map indicating which L2 hdrs may appear after the
6379 * basic Ethernet header
6380 */
6381 REG_WR(bp, BP_PORT(bp) ?
6382 NIG_REG_P1_HDRS_AFTER_BASIC :
6383 NIG_REG_P0_HDRS_AFTER_BASIC,
6384 IS_MF_SD(bp) ? 7 : 6);
6385
6386 if (CHIP_IS_E3(bp))
6387 REG_WR(bp, BP_PORT(bp) ?
6388 NIG_REG_LLH1_MF_MODE :
6389 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6390 }
6391 if (!CHIP_IS_E3(bp))
6392 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6393
6394 if (!CHIP_IS_E1(bp)) {
6395 /* 0x2 disable mf_ov, 0x1 enable */
6396 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6397 (IS_MF_SD(bp) ? 0x1 : 0x2));
6398
6399 if (!CHIP_IS_E1x(bp)) {
6400 val = 0;
6401 switch (bp->mf_mode) {
6402 case MULTI_FUNCTION_SD:
6403 val = 1;
6404 break;
6405 case MULTI_FUNCTION_SI:
6406 val = 2;
6407 break;
6408 }
6409
6410 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6411 NIG_REG_LLH0_CLS_TYPE), val);
6412 }
6413 {
6414 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6415 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6416 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6417 }
6418 }
6419
6420
6421 /* If SPIO5 is set to generate interrupts, enable it for this port */
6422 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6423 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6424 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6425 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6426 val = REG_RD(bp, reg_addr);
6427 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6428 REG_WR(bp, reg_addr, val);
6429 }
6430
6431 return 0;
6432 }
6433
6434 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6435 {
6436 int reg;
6437
6438 if (CHIP_IS_E1(bp))
6439 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6440 else
6441 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6442
6443 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6444 }
6445
6446 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6447 {
6448 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6449 }
6450
6451 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6452 {
6453 u32 i, base = FUNC_ILT_BASE(func);
6454 for (i = base; i < base + ILT_PER_FUNC; i++)
6455 bnx2x_ilt_wr(bp, i, 0);
6456 }
6457
6458 static int bnx2x_init_hw_func(struct bnx2x *bp)
6459 {
6460 int port = BP_PORT(bp);
6461 int func = BP_FUNC(bp);
6462 int init_phase = PHASE_PF0 + func;
6463 struct bnx2x_ilt *ilt = BP_ILT(bp);
6464 u16 cdu_ilt_start;
6465 u32 addr, val;
6466 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6467 int i, main_mem_width;
6468
6469 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6470
6471 /* FLR cleanup - hmmm */
6472 if (!CHIP_IS_E1x(bp))
6473 bnx2x_pf_flr_clnup(bp);
6474
6475 /* set MSI reconfigure capability */
6476 if (bp->common.int_block == INT_BLOCK_HC) {
6477 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6478 val = REG_RD(bp, addr);
6479 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6480 REG_WR(bp, addr, val);
6481 }
6482
6483 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6484 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6485
6486 ilt = BP_ILT(bp);
6487 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6488
6489 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6490 ilt->lines[cdu_ilt_start + i].page =
6491 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6492 ilt->lines[cdu_ilt_start + i].page_mapping =
6493 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6494 /* cdu ilt pages are allocated manually so there's no need to
6495 set the size */
6496 }
6497 bnx2x_ilt_init_op(bp, INITOP_SET);
6498
6499 #ifdef BCM_CNIC
6500 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6501
6502 /* T1 hash bits value determines the T1 number of entries */
6503 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6504 #endif
6505
6506 #ifndef BCM_CNIC
6507 /* set NIC mode */
6508 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6509 #endif /* BCM_CNIC */
6510
6511 if (!CHIP_IS_E1x(bp)) {
6512 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6513
6514 /* Turn on a single ISR mode in IGU if driver is going to use
6515 * INT#x or MSI
6516 */
6517 if (!(bp->flags & USING_MSIX_FLAG))
6518 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6519 /*
6520 * Timers workaround bug: function init part.
6521 * Need to wait 20msec after initializing ILT,
6522 * needed to make sure there are no requests in
6523 * one of the PXP internal queues with "old" ILT addresses
6524 */
6525 msleep(20);
6526 /*
6527 * Master enable - Due to WB DMAE writes performed before this
6528 * register is re-initialized as part of the regular function
6529 * init
6530 */
6531 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6532 /* Enable the function in IGU */
6533 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6534 }
6535
6536 bp->dmae_ready = 1;
6537
6538 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6539
6540 if (!CHIP_IS_E1x(bp))
6541 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6542
6543 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6544 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6545 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6546 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6547 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6548 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6549 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6550 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6551 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6552 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6553 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6554 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6555 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6556
6557 if (!CHIP_IS_E1x(bp))
6558 REG_WR(bp, QM_REG_PF_EN, 1);
6559
6560 if (!CHIP_IS_E1x(bp)) {
6561 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6562 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6563 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6564 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6565 }
6566 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6567
6568 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6569 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6570 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6571 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6572 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6573 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6574 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6575 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6576 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6577 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6578 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6579 if (!CHIP_IS_E1x(bp))
6580 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6581
6582 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6583
6584 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6585
6586 if (!CHIP_IS_E1x(bp))
6587 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6588
6589 if (IS_MF(bp)) {
6590 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6591 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6592 }
6593
6594 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6595
6596 /* HC init per function */
6597 if (bp->common.int_block == INT_BLOCK_HC) {
6598 if (CHIP_IS_E1H(bp)) {
6599 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6600
6601 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6602 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6603 }
6604 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6605
6606 } else {
6607 int num_segs, sb_idx, prod_offset;
6608
6609 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6610
6611 if (!CHIP_IS_E1x(bp)) {
6612 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6613 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6614 }
6615
6616 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6617
6618 if (!CHIP_IS_E1x(bp)) {
6619 int dsb_idx = 0;
6620 /**
6621 * Producer memory:
6622 * E2 mode: address 0-135 match to the mapping memory;
6623 * 136 - PF0 default prod; 137 - PF1 default prod;
6624 * 138 - PF2 default prod; 139 - PF3 default prod;
6625 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6626 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6627 * 144-147 reserved.
6628 *
6629 * E1.5 mode - In backward compatible mode;
6630 * for non default SB; each even line in the memory
6631 * holds the U producer and each odd line hold
6632 * the C producer. The first 128 producers are for
6633 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6634 * producers are for the DSB for each PF.
6635 * Each PF has five segments: (the order inside each
6636 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6637 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6638 * 144-147 attn prods;
6639 */
6640 /* non-default-status-blocks */
6641 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6642 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6643 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6644 prod_offset = (bp->igu_base_sb + sb_idx) *
6645 num_segs;
6646
6647 for (i = 0; i < num_segs; i++) {
6648 addr = IGU_REG_PROD_CONS_MEMORY +
6649 (prod_offset + i) * 4;
6650 REG_WR(bp, addr, 0);
6651 }
6652 /* send consumer update with value 0 */
6653 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6654 USTORM_ID, 0, IGU_INT_NOP, 1);
6655 bnx2x_igu_clear_sb(bp,
6656 bp->igu_base_sb + sb_idx);
6657 }
6658
6659 /* default-status-blocks */
6660 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6661 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6662
6663 if (CHIP_MODE_IS_4_PORT(bp))
6664 dsb_idx = BP_FUNC(bp);
6665 else
6666 dsb_idx = BP_E1HVN(bp);
6667
6668 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6669 IGU_BC_BASE_DSB_PROD + dsb_idx :
6670 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6671
6672 for (i = 0; i < (num_segs * E1HVN_MAX);
6673 i += E1HVN_MAX) {
6674 addr = IGU_REG_PROD_CONS_MEMORY +
6675 (prod_offset + i)*4;
6676 REG_WR(bp, addr, 0);
6677 }
6678 /* send consumer update with 0 */
6679 if (CHIP_INT_MODE_IS_BC(bp)) {
6680 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6681 USTORM_ID, 0, IGU_INT_NOP, 1);
6682 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6683 CSTORM_ID, 0, IGU_INT_NOP, 1);
6684 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6685 XSTORM_ID, 0, IGU_INT_NOP, 1);
6686 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6687 TSTORM_ID, 0, IGU_INT_NOP, 1);
6688 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6689 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6690 } else {
6691 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6692 USTORM_ID, 0, IGU_INT_NOP, 1);
6693 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6694 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6695 }
6696 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6697
6698 /* !!! these should become driver const once
6699 rf-tool supports split-68 const */
6700 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6701 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6702 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6703 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6704 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6705 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6706 }
6707 }
6708
6709 /* Reset PCIE errors for debug */
6710 REG_WR(bp, 0x2114, 0xffffffff);
6711 REG_WR(bp, 0x2120, 0xffffffff);
6712
6713 if (CHIP_IS_E1x(bp)) {
6714 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6715 main_mem_base = HC_REG_MAIN_MEMORY +
6716 BP_PORT(bp) * (main_mem_size * 4);
6717 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6718 main_mem_width = 8;
6719
6720 val = REG_RD(bp, main_mem_prty_clr);
6721 if (val)
6722 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6723 "block during "
6724 "function init (0x%x)!\n", val);
6725
6726 /* Clear "false" parity errors in MSI-X table */
6727 for (i = main_mem_base;
6728 i < main_mem_base + main_mem_size * 4;
6729 i += main_mem_width) {
6730 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6731 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6732 i, main_mem_width / 4);
6733 }
6734 /* Clear HC parity attention */
6735 REG_RD(bp, main_mem_prty_clr);
6736 }
6737
6738 #ifdef BNX2X_STOP_ON_ERROR
6739 /* Enable STORMs SP logging */
6740 REG_WR8(bp, BAR_USTRORM_INTMEM +
6741 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6742 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6743 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6744 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6745 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6746 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6747 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6748 #endif
6749
6750 bnx2x_phy_probe(&bp->link_params);
6751
6752 return 0;
6753 }
6754
6755
6756 void bnx2x_free_mem(struct bnx2x *bp)
6757 {
6758 /* fastpath */
6759 bnx2x_free_fp_mem(bp);
6760 /* end of fastpath */
6761
6762 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6763 sizeof(struct host_sp_status_block));
6764
6765 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6766 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6767
6768 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6769 sizeof(struct bnx2x_slowpath));
6770
6771 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6772 bp->context.size);
6773
6774 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6775
6776 BNX2X_FREE(bp->ilt->lines);
6777
6778 #ifdef BCM_CNIC
6779 if (!CHIP_IS_E1x(bp))
6780 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6781 sizeof(struct host_hc_status_block_e2));
6782 else
6783 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6784 sizeof(struct host_hc_status_block_e1x));
6785
6786 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6787 #endif
6788
6789 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6790
6791 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6792 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6793 }
6794
6795 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6796 {
6797 int num_groups;
6798
6799 /* number of eth_queues */
6800 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6801
6802 /* Total number of FW statistics requests =
6803 * 1 for port stats + 1 for PF stats + num_eth_queues */
6804 bp->fw_stats_num = 2 + num_queue_stats;
6805
6806
6807 /* Request is built from stats_query_header and an array of
6808 * stats_query_cmd_group each of which contains
6809 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6810 * configured in the stats_query_header.
6811 */
6812 num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6813 (((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6814
6815 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6816 num_groups * sizeof(struct stats_query_cmd_group);
6817
6818 /* Data for statistics requests + stats_conter
6819 *
6820 * stats_counter holds per-STORM counters that are incremented
6821 * when STORM has finished with the current request.
6822 */
6823 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6824 sizeof(struct per_pf_stats) +
6825 sizeof(struct per_queue_stats) * num_queue_stats +
6826 sizeof(struct stats_counter);
6827
6828 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6829 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6830
6831 /* Set shortcuts */
6832 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6833 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6834
6835 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6836 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6837
6838 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6839 bp->fw_stats_req_sz;
6840 return 0;
6841
6842 alloc_mem_err:
6843 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6844 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6845 return -ENOMEM;
6846 }
6847
6848
6849 int bnx2x_alloc_mem(struct bnx2x *bp)
6850 {
6851 #ifdef BCM_CNIC
6852 if (!CHIP_IS_E1x(bp))
6853 /* size = the status block + ramrod buffers */
6854 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6855 sizeof(struct host_hc_status_block_e2));
6856 else
6857 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6858 sizeof(struct host_hc_status_block_e1x));
6859
6860 /* allocate searcher T2 table */
6861 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6862 #endif
6863
6864
6865 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6866 sizeof(struct host_sp_status_block));
6867
6868 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6869 sizeof(struct bnx2x_slowpath));
6870
6871 /* Allocated memory for FW statistics */
6872 if (bnx2x_alloc_fw_stats_mem(bp))
6873 goto alloc_mem_err;
6874
6875 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6876
6877 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6878 bp->context.size);
6879
6880 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6881
6882 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6883 goto alloc_mem_err;
6884
6885 /* Slow path ring */
6886 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6887
6888 /* EQ */
6889 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6890 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6891
6892
6893 /* fastpath */
6894 /* need to be done at the end, since it's self adjusting to amount
6895 * of memory available for RSS queues
6896 */
6897 if (bnx2x_alloc_fp_mem(bp))
6898 goto alloc_mem_err;
6899 return 0;
6900
6901 alloc_mem_err:
6902 bnx2x_free_mem(bp);
6903 return -ENOMEM;
6904 }
6905
6906 /*
6907 * Init service functions
6908 */
6909
6910 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6911 struct bnx2x_vlan_mac_obj *obj, bool set,
6912 int mac_type, unsigned long *ramrod_flags)
6913 {
6914 int rc;
6915 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6916
6917 memset(&ramrod_param, 0, sizeof(ramrod_param));
6918
6919 /* Fill general parameters */
6920 ramrod_param.vlan_mac_obj = obj;
6921 ramrod_param.ramrod_flags = *ramrod_flags;
6922
6923 /* Fill a user request section if needed */
6924 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6925 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6926
6927 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6928
6929 /* Set the command: ADD or DEL */
6930 if (set)
6931 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6932 else
6933 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6934 }
6935
6936 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6937 if (rc < 0)
6938 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6939 return rc;
6940 }
6941
6942 int bnx2x_del_all_macs(struct bnx2x *bp,
6943 struct bnx2x_vlan_mac_obj *mac_obj,
6944 int mac_type, bool wait_for_comp)
6945 {
6946 int rc;
6947 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
6948
6949 /* Wait for completion of requested */
6950 if (wait_for_comp)
6951 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6952
6953 /* Set the mac type of addresses we want to clear */
6954 __set_bit(mac_type, &vlan_mac_flags);
6955
6956 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
6957 if (rc < 0)
6958 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
6959
6960 return rc;
6961 }
6962
6963 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
6964 {
6965 unsigned long ramrod_flags = 0;
6966
6967 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
6968
6969 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6970 /* Eth MAC is set on RSS leading client (fp[0]) */
6971 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
6972 BNX2X_ETH_MAC, &ramrod_flags);
6973 }
6974
6975 int bnx2x_setup_leading(struct bnx2x *bp)
6976 {
6977 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
6978 }
6979
6980 /**
6981 * bnx2x_set_int_mode - configure interrupt mode
6982 *
6983 * @bp: driver handle
6984 *
6985 * In case of MSI-X it will also try to enable MSI-X.
6986 */
6987 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
6988 {
6989 switch (int_mode) {
6990 case INT_MODE_MSI:
6991 bnx2x_enable_msi(bp);
6992 /* falling through... */
6993 case INT_MODE_INTx:
6994 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
6995 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
6996 break;
6997 default:
6998 /* Set number of queues according to bp->multi_mode value */
6999 bnx2x_set_num_queues(bp);
7000
7001 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7002 bp->num_queues);
7003
7004 /* if we can't use MSI-X we only need one fp,
7005 * so try to enable MSI-X with the requested number of fp's
7006 * and fallback to MSI or legacy INTx with one fp
7007 */
7008 if (bnx2x_enable_msix(bp)) {
7009 /* failed to enable MSI-X */
7010 if (bp->multi_mode)
7011 DP(NETIF_MSG_IFUP,
7012 "Multi requested but failed to "
7013 "enable MSI-X (%d), "
7014 "set number of queues to %d\n",
7015 bp->num_queues,
7016 1 + NON_ETH_CONTEXT_USE);
7017 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7018
7019 /* Try to enable MSI */
7020 if (!(bp->flags & DISABLE_MSI_FLAG))
7021 bnx2x_enable_msi(bp);
7022 }
7023 break;
7024 }
7025 }
7026
7027 /* must be called prioir to any HW initializations */
7028 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7029 {
7030 return L2_ILT_LINES(bp);
7031 }
7032
7033 void bnx2x_ilt_set_info(struct bnx2x *bp)
7034 {
7035 struct ilt_client_info *ilt_client;
7036 struct bnx2x_ilt *ilt = BP_ILT(bp);
7037 u16 line = 0;
7038
7039 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7040 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7041
7042 /* CDU */
7043 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7044 ilt_client->client_num = ILT_CLIENT_CDU;
7045 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7046 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7047 ilt_client->start = line;
7048 line += bnx2x_cid_ilt_lines(bp);
7049 #ifdef BCM_CNIC
7050 line += CNIC_ILT_LINES;
7051 #endif
7052 ilt_client->end = line - 1;
7053
7054 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7055 "flags 0x%x, hw psz %d\n",
7056 ilt_client->start,
7057 ilt_client->end,
7058 ilt_client->page_size,
7059 ilt_client->flags,
7060 ilog2(ilt_client->page_size >> 12));
7061
7062 /* QM */
7063 if (QM_INIT(bp->qm_cid_count)) {
7064 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7065 ilt_client->client_num = ILT_CLIENT_QM;
7066 ilt_client->page_size = QM_ILT_PAGE_SZ;
7067 ilt_client->flags = 0;
7068 ilt_client->start = line;
7069
7070 /* 4 bytes for each cid */
7071 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7072 QM_ILT_PAGE_SZ);
7073
7074 ilt_client->end = line - 1;
7075
7076 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7077 "flags 0x%x, hw psz %d\n",
7078 ilt_client->start,
7079 ilt_client->end,
7080 ilt_client->page_size,
7081 ilt_client->flags,
7082 ilog2(ilt_client->page_size >> 12));
7083
7084 }
7085 /* SRC */
7086 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7087 #ifdef BCM_CNIC
7088 ilt_client->client_num = ILT_CLIENT_SRC;
7089 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7090 ilt_client->flags = 0;
7091 ilt_client->start = line;
7092 line += SRC_ILT_LINES;
7093 ilt_client->end = line - 1;
7094
7095 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7096 "flags 0x%x, hw psz %d\n",
7097 ilt_client->start,
7098 ilt_client->end,
7099 ilt_client->page_size,
7100 ilt_client->flags,
7101 ilog2(ilt_client->page_size >> 12));
7102
7103 #else
7104 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7105 #endif
7106
7107 /* TM */
7108 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7109 #ifdef BCM_CNIC
7110 ilt_client->client_num = ILT_CLIENT_TM;
7111 ilt_client->page_size = TM_ILT_PAGE_SZ;
7112 ilt_client->flags = 0;
7113 ilt_client->start = line;
7114 line += TM_ILT_LINES;
7115 ilt_client->end = line - 1;
7116
7117 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7118 "flags 0x%x, hw psz %d\n",
7119 ilt_client->start,
7120 ilt_client->end,
7121 ilt_client->page_size,
7122 ilt_client->flags,
7123 ilog2(ilt_client->page_size >> 12));
7124
7125 #else
7126 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7127 #endif
7128 BUG_ON(line > ILT_MAX_LINES);
7129 }
7130
7131 /**
7132 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7133 *
7134 * @bp: driver handle
7135 * @fp: pointer to fastpath
7136 * @init_params: pointer to parameters structure
7137 *
7138 * parameters configured:
7139 * - HC configuration
7140 * - Queue's CDU context
7141 */
7142 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7143 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7144 {
7145
7146 u8 cos;
7147 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7148 if (!IS_FCOE_FP(fp)) {
7149 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7150 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7151
7152 /* If HC is supporterd, enable host coalescing in the transition
7153 * to INIT state.
7154 */
7155 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7156 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7157
7158 /* HC rate */
7159 init_params->rx.hc_rate = bp->rx_ticks ?
7160 (1000000 / bp->rx_ticks) : 0;
7161 init_params->tx.hc_rate = bp->tx_ticks ?
7162 (1000000 / bp->tx_ticks) : 0;
7163
7164 /* FW SB ID */
7165 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7166 fp->fw_sb_id;
7167
7168 /*
7169 * CQ index among the SB indices: FCoE clients uses the default
7170 * SB, therefore it's different.
7171 */
7172 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7173 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7174 }
7175
7176 /* set maximum number of COSs supported by this queue */
7177 init_params->max_cos = fp->max_cos;
7178
7179 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d",
7180 fp->index, init_params->max_cos);
7181
7182 /* set the context pointers queue object */
7183 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7184 init_params->cxts[cos] =
7185 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7186 }
7187
7188 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7189 struct bnx2x_queue_state_params *q_params,
7190 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7191 int tx_index, bool leading)
7192 {
7193 memset(tx_only_params, 0, sizeof(*tx_only_params));
7194
7195 /* Set the command */
7196 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7197
7198 /* Set tx-only QUEUE flags: don't zero statistics */
7199 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7200
7201 /* choose the index of the cid to send the slow path on */
7202 tx_only_params->cid_index = tx_index;
7203
7204 /* Set general TX_ONLY_SETUP parameters */
7205 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7206
7207 /* Set Tx TX_ONLY_SETUP parameters */
7208 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7209
7210 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7211 "cos %d, primary cid %d, cid %d, "
7212 "client id %d, sp-client id %d, flags %lx",
7213 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7214 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7215 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7216
7217 /* send the ramrod */
7218 return bnx2x_queue_state_change(bp, q_params);
7219 }
7220
7221
7222 /**
7223 * bnx2x_setup_queue - setup queue
7224 *
7225 * @bp: driver handle
7226 * @fp: pointer to fastpath
7227 * @leading: is leading
7228 *
7229 * This function performs 2 steps in a Queue state machine
7230 * actually: 1) RESET->INIT 2) INIT->SETUP
7231 */
7232
7233 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7234 bool leading)
7235 {
7236 struct bnx2x_queue_state_params q_params = {0};
7237 struct bnx2x_queue_setup_params *setup_params =
7238 &q_params.params.setup;
7239 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7240 &q_params.params.tx_only;
7241 int rc;
7242 u8 tx_index;
7243
7244 DP(BNX2X_MSG_SP, "setting up queue %d", fp->index);
7245
7246 /* reset IGU state skip FCoE L2 queue */
7247 if (!IS_FCOE_FP(fp))
7248 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7249 IGU_INT_ENABLE, 0);
7250
7251 q_params.q_obj = &fp->q_obj;
7252 /* We want to wait for completion in this context */
7253 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7254
7255 /* Prepare the INIT parameters */
7256 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7257
7258 /* Set the command */
7259 q_params.cmd = BNX2X_Q_CMD_INIT;
7260
7261 /* Change the state to INIT */
7262 rc = bnx2x_queue_state_change(bp, &q_params);
7263 if (rc) {
7264 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7265 return rc;
7266 }
7267
7268 DP(BNX2X_MSG_SP, "init complete");
7269
7270
7271 /* Now move the Queue to the SETUP state... */
7272 memset(setup_params, 0, sizeof(*setup_params));
7273
7274 /* Set QUEUE flags */
7275 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7276
7277 /* Set general SETUP parameters */
7278 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7279 FIRST_TX_COS_INDEX);
7280
7281 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7282 &setup_params->rxq_params);
7283
7284 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7285 FIRST_TX_COS_INDEX);
7286
7287 /* Set the command */
7288 q_params.cmd = BNX2X_Q_CMD_SETUP;
7289
7290 /* Change the state to SETUP */
7291 rc = bnx2x_queue_state_change(bp, &q_params);
7292 if (rc) {
7293 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7294 return rc;
7295 }
7296
7297 /* loop through the relevant tx-only indices */
7298 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7299 tx_index < fp->max_cos;
7300 tx_index++) {
7301
7302 /* prepare and send tx-only ramrod*/
7303 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7304 tx_only_params, tx_index, leading);
7305 if (rc) {
7306 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7307 fp->index, tx_index);
7308 return rc;
7309 }
7310 }
7311
7312 return rc;
7313 }
7314
7315 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7316 {
7317 struct bnx2x_fastpath *fp = &bp->fp[index];
7318 struct bnx2x_fp_txdata *txdata;
7319 struct bnx2x_queue_state_params q_params = {0};
7320 int rc, tx_index;
7321
7322 DP(BNX2X_MSG_SP, "stopping queue %d cid %d", index, fp->cid);
7323
7324 q_params.q_obj = &fp->q_obj;
7325 /* We want to wait for completion in this context */
7326 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7327
7328
7329 /* close tx-only connections */
7330 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7331 tx_index < fp->max_cos;
7332 tx_index++){
7333
7334 /* ascertain this is a normal queue*/
7335 txdata = &fp->txdata[tx_index];
7336
7337 DP(BNX2X_MSG_SP, "stopping tx-only queue %d",
7338 txdata->txq_index);
7339
7340 /* send halt terminate on tx-only connection */
7341 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7342 memset(&q_params.params.terminate, 0,
7343 sizeof(q_params.params.terminate));
7344 q_params.params.terminate.cid_index = tx_index;
7345
7346 rc = bnx2x_queue_state_change(bp, &q_params);
7347 if (rc)
7348 return rc;
7349
7350 /* send halt terminate on tx-only connection */
7351 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7352 memset(&q_params.params.cfc_del, 0,
7353 sizeof(q_params.params.cfc_del));
7354 q_params.params.cfc_del.cid_index = tx_index;
7355 rc = bnx2x_queue_state_change(bp, &q_params);
7356 if (rc)
7357 return rc;
7358 }
7359 /* Stop the primary connection: */
7360 /* ...halt the connection */
7361 q_params.cmd = BNX2X_Q_CMD_HALT;
7362 rc = bnx2x_queue_state_change(bp, &q_params);
7363 if (rc)
7364 return rc;
7365
7366 /* ...terminate the connection */
7367 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7368 memset(&q_params.params.terminate, 0,
7369 sizeof(q_params.params.terminate));
7370 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7371 rc = bnx2x_queue_state_change(bp, &q_params);
7372 if (rc)
7373 return rc;
7374 /* ...delete cfc entry */
7375 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7376 memset(&q_params.params.cfc_del, 0,
7377 sizeof(q_params.params.cfc_del));
7378 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7379 return bnx2x_queue_state_change(bp, &q_params);
7380 }
7381
7382
7383 static void bnx2x_reset_func(struct bnx2x *bp)
7384 {
7385 int port = BP_PORT(bp);
7386 int func = BP_FUNC(bp);
7387 int i;
7388
7389 /* Disable the function in the FW */
7390 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7391 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7392 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7393 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7394
7395 /* FP SBs */
7396 for_each_eth_queue(bp, i) {
7397 struct bnx2x_fastpath *fp = &bp->fp[i];
7398 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7399 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7400 SB_DISABLED);
7401 }
7402
7403 #ifdef BCM_CNIC
7404 /* CNIC SB */
7405 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7406 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7407 SB_DISABLED);
7408 #endif
7409 /* SP SB */
7410 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7411 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7412 SB_DISABLED);
7413
7414 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7415 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7416 0);
7417
7418 /* Configure IGU */
7419 if (bp->common.int_block == INT_BLOCK_HC) {
7420 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7421 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7422 } else {
7423 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7424 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7425 }
7426
7427 #ifdef BCM_CNIC
7428 /* Disable Timer scan */
7429 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7430 /*
7431 * Wait for at least 10ms and up to 2 second for the timers scan to
7432 * complete
7433 */
7434 for (i = 0; i < 200; i++) {
7435 msleep(10);
7436 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7437 break;
7438 }
7439 #endif
7440 /* Clear ILT */
7441 bnx2x_clear_func_ilt(bp, func);
7442
7443 /* Timers workaround bug for E2: if this is vnic-3,
7444 * we need to set the entire ilt range for this timers.
7445 */
7446 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7447 struct ilt_client_info ilt_cli;
7448 /* use dummy TM client */
7449 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7450 ilt_cli.start = 0;
7451 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7452 ilt_cli.client_num = ILT_CLIENT_TM;
7453
7454 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7455 }
7456
7457 /* this assumes that reset_port() called before reset_func()*/
7458 if (!CHIP_IS_E1x(bp))
7459 bnx2x_pf_disable(bp);
7460
7461 bp->dmae_ready = 0;
7462 }
7463
7464 static void bnx2x_reset_port(struct bnx2x *bp)
7465 {
7466 int port = BP_PORT(bp);
7467 u32 val;
7468
7469 /* Reset physical Link */
7470 bnx2x__link_reset(bp);
7471
7472 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7473
7474 /* Do not rcv packets to BRB */
7475 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7476 /* Do not direct rcv packets that are not for MCP to the BRB */
7477 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7478 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7479
7480 /* Configure AEU */
7481 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7482
7483 msleep(100);
7484 /* Check for BRB port occupancy */
7485 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7486 if (val)
7487 DP(NETIF_MSG_IFDOWN,
7488 "BRB1 is not empty %d blocks are occupied\n", val);
7489
7490 /* TODO: Close Doorbell port? */
7491 }
7492
7493 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7494 {
7495 struct bnx2x_func_state_params func_params = {0};
7496
7497 /* Prepare parameters for function state transitions */
7498 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7499
7500 func_params.f_obj = &bp->func_obj;
7501 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7502
7503 func_params.params.hw_init.load_phase = load_code;
7504
7505 return bnx2x_func_state_change(bp, &func_params);
7506 }
7507
7508 static inline int bnx2x_func_stop(struct bnx2x *bp)
7509 {
7510 struct bnx2x_func_state_params func_params = {0};
7511 int rc;
7512
7513 /* Prepare parameters for function state transitions */
7514 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7515 func_params.f_obj = &bp->func_obj;
7516 func_params.cmd = BNX2X_F_CMD_STOP;
7517
7518 /*
7519 * Try to stop the function the 'good way'. If fails (in case
7520 * of a parity error during bnx2x_chip_cleanup()) and we are
7521 * not in a debug mode, perform a state transaction in order to
7522 * enable further HW_RESET transaction.
7523 */
7524 rc = bnx2x_func_state_change(bp, &func_params);
7525 if (rc) {
7526 #ifdef BNX2X_STOP_ON_ERROR
7527 return rc;
7528 #else
7529 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7530 "transaction\n");
7531 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7532 return bnx2x_func_state_change(bp, &func_params);
7533 #endif
7534 }
7535
7536 return 0;
7537 }
7538
7539 /**
7540 * bnx2x_send_unload_req - request unload mode from the MCP.
7541 *
7542 * @bp: driver handle
7543 * @unload_mode: requested function's unload mode
7544 *
7545 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7546 */
7547 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7548 {
7549 u32 reset_code = 0;
7550 int port = BP_PORT(bp);
7551
7552 /* Select the UNLOAD request mode */
7553 if (unload_mode == UNLOAD_NORMAL)
7554 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7555
7556 else if (bp->flags & NO_WOL_FLAG)
7557 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7558
7559 else if (bp->wol) {
7560 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7561 u8 *mac_addr = bp->dev->dev_addr;
7562 u32 val;
7563 /* The mac address is written to entries 1-4 to
7564 preserve entry 0 which is used by the PMF */
7565 u8 entry = (BP_E1HVN(bp) + 1)*8;
7566
7567 val = (mac_addr[0] << 8) | mac_addr[1];
7568 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7569
7570 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7571 (mac_addr[4] << 8) | mac_addr[5];
7572 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7573
7574 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7575
7576 } else
7577 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7578
7579 /* Send the request to the MCP */
7580 if (!BP_NOMCP(bp))
7581 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7582 else {
7583 int path = BP_PATH(bp);
7584
7585 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7586 "%d, %d, %d\n",
7587 path, load_count[path][0], load_count[path][1],
7588 load_count[path][2]);
7589 load_count[path][0]--;
7590 load_count[path][1 + port]--;
7591 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7592 "%d, %d, %d\n",
7593 path, load_count[path][0], load_count[path][1],
7594 load_count[path][2]);
7595 if (load_count[path][0] == 0)
7596 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7597 else if (load_count[path][1 + port] == 0)
7598 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7599 else
7600 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7601 }
7602
7603 return reset_code;
7604 }
7605
7606 /**
7607 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7608 *
7609 * @bp: driver handle
7610 */
7611 void bnx2x_send_unload_done(struct bnx2x *bp)
7612 {
7613 /* Report UNLOAD_DONE to MCP */
7614 if (!BP_NOMCP(bp))
7615 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7616 }
7617
7618 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7619 {
7620 int tout = 50;
7621 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7622
7623 if (!bp->port.pmf)
7624 return 0;
7625
7626 /*
7627 * (assumption: No Attention from MCP at this stage)
7628 * PMF probably in the middle of TXdisable/enable transaction
7629 * 1. Sync IRS for default SB
7630 * 2. Sync SP queue - this guarantes us that attention handling started
7631 * 3. Wait, that TXdisable/enable transaction completes
7632 *
7633 * 1+2 guranty that if DCBx attention was scheduled it already changed
7634 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7635 * received complettion for the transaction the state is TX_STOPPED.
7636 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7637 * transaction.
7638 */
7639
7640 /* make sure default SB ISR is done */
7641 if (msix)
7642 synchronize_irq(bp->msix_table[0].vector);
7643 else
7644 synchronize_irq(bp->pdev->irq);
7645
7646 flush_workqueue(bnx2x_wq);
7647
7648 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7649 BNX2X_F_STATE_STARTED && tout--)
7650 msleep(20);
7651
7652 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7653 BNX2X_F_STATE_STARTED) {
7654 #ifdef BNX2X_STOP_ON_ERROR
7655 return -EBUSY;
7656 #else
7657 /*
7658 * Failed to complete the transaction in a "good way"
7659 * Force both transactions with CLR bit
7660 */
7661 struct bnx2x_func_state_params func_params = {0};
7662
7663 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7664 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7665
7666 func_params.f_obj = &bp->func_obj;
7667 __set_bit(RAMROD_DRV_CLR_ONLY,
7668 &func_params.ramrod_flags);
7669
7670 /* STARTED-->TX_ST0PPED */
7671 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7672 bnx2x_func_state_change(bp, &func_params);
7673
7674 /* TX_ST0PPED-->STARTED */
7675 func_params.cmd = BNX2X_F_CMD_TX_START;
7676 return bnx2x_func_state_change(bp, &func_params);
7677 #endif
7678 }
7679
7680 return 0;
7681 }
7682
7683 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7684 {
7685 int port = BP_PORT(bp);
7686 int i, rc = 0;
7687 u8 cos;
7688 struct bnx2x_mcast_ramrod_params rparam = {0};
7689 u32 reset_code;
7690
7691 /* Wait until tx fastpath tasks complete */
7692 for_each_tx_queue(bp, i) {
7693 struct bnx2x_fastpath *fp = &bp->fp[i];
7694
7695 for_each_cos_in_tx_queue(fp, cos)
7696 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7697 #ifdef BNX2X_STOP_ON_ERROR
7698 if (rc)
7699 return;
7700 #endif
7701 }
7702
7703 /* Give HW time to discard old tx messages */
7704 usleep_range(1000, 1000);
7705
7706 /* Clean all ETH MACs */
7707 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7708 if (rc < 0)
7709 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7710
7711 /* Clean up UC list */
7712 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7713 true);
7714 if (rc < 0)
7715 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7716 "%d\n", rc);
7717
7718 /* Disable LLH */
7719 if (!CHIP_IS_E1(bp))
7720 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7721
7722 /* Set "drop all" (stop Rx).
7723 * We need to take a netif_addr_lock() here in order to prevent
7724 * a race between the completion code and this code.
7725 */
7726 netif_addr_lock_bh(bp->dev);
7727 /* Schedule the rx_mode command */
7728 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7729 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7730 else
7731 bnx2x_set_storm_rx_mode(bp);
7732
7733 /* Cleanup multicast configuration */
7734 rparam.mcast_obj = &bp->mcast_obj;
7735 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7736 if (rc < 0)
7737 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7738
7739 netif_addr_unlock_bh(bp->dev);
7740
7741
7742
7743 /*
7744 * Send the UNLOAD_REQUEST to the MCP. This will return if
7745 * this function should perform FUNC, PORT or COMMON HW
7746 * reset.
7747 */
7748 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7749
7750 /*
7751 * (assumption: No Attention from MCP at this stage)
7752 * PMF probably in the middle of TXdisable/enable transaction
7753 */
7754 rc = bnx2x_func_wait_started(bp);
7755 if (rc) {
7756 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7757 #ifdef BNX2X_STOP_ON_ERROR
7758 return;
7759 #endif
7760 }
7761
7762 /* Close multi and leading connections
7763 * Completions for ramrods are collected in a synchronous way
7764 */
7765 for_each_queue(bp, i)
7766 if (bnx2x_stop_queue(bp, i))
7767 #ifdef BNX2X_STOP_ON_ERROR
7768 return;
7769 #else
7770 goto unload_error;
7771 #endif
7772 /* If SP settings didn't get completed so far - something
7773 * very wrong has happen.
7774 */
7775 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7776 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7777
7778 #ifndef BNX2X_STOP_ON_ERROR
7779 unload_error:
7780 #endif
7781 rc = bnx2x_func_stop(bp);
7782 if (rc) {
7783 BNX2X_ERR("Function stop failed!\n");
7784 #ifdef BNX2X_STOP_ON_ERROR
7785 return;
7786 #endif
7787 }
7788
7789 /* Disable HW interrupts, NAPI */
7790 bnx2x_netif_stop(bp, 1);
7791
7792 /* Release IRQs */
7793 bnx2x_free_irq(bp);
7794
7795 /* Reset the chip */
7796 rc = bnx2x_reset_hw(bp, reset_code);
7797 if (rc)
7798 BNX2X_ERR("HW_RESET failed\n");
7799
7800
7801 /* Report UNLOAD_DONE to MCP */
7802 bnx2x_send_unload_done(bp);
7803 }
7804
7805 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7806 {
7807 u32 val;
7808
7809 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7810
7811 if (CHIP_IS_E1(bp)) {
7812 int port = BP_PORT(bp);
7813 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7814 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7815
7816 val = REG_RD(bp, addr);
7817 val &= ~(0x300);
7818 REG_WR(bp, addr, val);
7819 } else {
7820 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7821 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7822 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7823 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7824 }
7825 }
7826
7827 /* Close gates #2, #3 and #4: */
7828 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7829 {
7830 u32 val;
7831
7832 /* Gates #2 and #4a are closed/opened for "not E1" only */
7833 if (!CHIP_IS_E1(bp)) {
7834 /* #4 */
7835 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7836 /* #2 */
7837 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7838 }
7839
7840 /* #3 */
7841 if (CHIP_IS_E1x(bp)) {
7842 /* Prevent interrupts from HC on both ports */
7843 val = REG_RD(bp, HC_REG_CONFIG_1);
7844 REG_WR(bp, HC_REG_CONFIG_1,
7845 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7846 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7847
7848 val = REG_RD(bp, HC_REG_CONFIG_0);
7849 REG_WR(bp, HC_REG_CONFIG_0,
7850 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7851 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7852 } else {
7853 /* Prevent incomming interrupts in IGU */
7854 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7855
7856 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7857 (!close) ?
7858 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7859 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7860 }
7861
7862 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7863 close ? "closing" : "opening");
7864 mmiowb();
7865 }
7866
7867 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
7868
7869 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7870 {
7871 /* Do some magic... */
7872 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7873 *magic_val = val & SHARED_MF_CLP_MAGIC;
7874 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7875 }
7876
7877 /**
7878 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7879 *
7880 * @bp: driver handle
7881 * @magic_val: old value of the `magic' bit.
7882 */
7883 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7884 {
7885 /* Restore the `magic' bit value... */
7886 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7887 MF_CFG_WR(bp, shared_mf_config.clp_mb,
7888 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7889 }
7890
7891 /**
7892 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7893 *
7894 * @bp: driver handle
7895 * @magic_val: old value of 'magic' bit.
7896 *
7897 * Takes care of CLP configurations.
7898 */
7899 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7900 {
7901 u32 shmem;
7902 u32 validity_offset;
7903
7904 DP(NETIF_MSG_HW, "Starting\n");
7905
7906 /* Set `magic' bit in order to save MF config */
7907 if (!CHIP_IS_E1(bp))
7908 bnx2x_clp_reset_prep(bp, magic_val);
7909
7910 /* Get shmem offset */
7911 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7912 validity_offset = offsetof(struct shmem_region, validity_map[0]);
7913
7914 /* Clear validity map flags */
7915 if (shmem > 0)
7916 REG_WR(bp, shmem + validity_offset, 0);
7917 }
7918
7919 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
7920 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
7921
7922 /**
7923 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7924 *
7925 * @bp: driver handle
7926 */
7927 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7928 {
7929 /* special handling for emulation and FPGA,
7930 wait 10 times longer */
7931 if (CHIP_REV_IS_SLOW(bp))
7932 msleep(MCP_ONE_TIMEOUT*10);
7933 else
7934 msleep(MCP_ONE_TIMEOUT);
7935 }
7936
7937 /*
7938 * initializes bp->common.shmem_base and waits for validity signature to appear
7939 */
7940 static int bnx2x_init_shmem(struct bnx2x *bp)
7941 {
7942 int cnt = 0;
7943 u32 val = 0;
7944
7945 do {
7946 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7947 if (bp->common.shmem_base) {
7948 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
7949 if (val & SHR_MEM_VALIDITY_MB)
7950 return 0;
7951 }
7952
7953 bnx2x_mcp_wait_one(bp);
7954
7955 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
7956
7957 BNX2X_ERR("BAD MCP validity signature\n");
7958
7959 return -ENODEV;
7960 }
7961
7962 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
7963 {
7964 int rc = bnx2x_init_shmem(bp);
7965
7966 /* Restore the `magic' bit value */
7967 if (!CHIP_IS_E1(bp))
7968 bnx2x_clp_reset_done(bp, magic_val);
7969
7970 return rc;
7971 }
7972
7973 static void bnx2x_pxp_prep(struct bnx2x *bp)
7974 {
7975 if (!CHIP_IS_E1(bp)) {
7976 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
7977 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
7978 mmiowb();
7979 }
7980 }
7981
7982 /*
7983 * Reset the whole chip except for:
7984 * - PCIE core
7985 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
7986 * one reset bit)
7987 * - IGU
7988 * - MISC (including AEU)
7989 * - GRC
7990 * - RBCN, RBCP
7991 */
7992 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
7993 {
7994 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
7995 u32 global_bits2, stay_reset2;
7996
7997 /*
7998 * Bits that have to be set in reset_mask2 if we want to reset 'global'
7999 * (per chip) blocks.
8000 */
8001 global_bits2 =
8002 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8003 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8004
8005 /* Don't reset the following blocks */
8006 not_reset_mask1 =
8007 MISC_REGISTERS_RESET_REG_1_RST_HC |
8008 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8009 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8010
8011 not_reset_mask2 =
8012 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8013 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8014 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8015 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8016 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8017 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8018 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8019 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8020 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8021 MISC_REGISTERS_RESET_REG_2_PGLC;
8022
8023 /*
8024 * Keep the following blocks in reset:
8025 * - all xxMACs are handled by the bnx2x_link code.
8026 */
8027 stay_reset2 =
8028 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8029 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8030 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8031 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8032 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8033 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8034 MISC_REGISTERS_RESET_REG_2_XMAC |
8035 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8036
8037 /* Full reset masks according to the chip */
8038 reset_mask1 = 0xffffffff;
8039
8040 if (CHIP_IS_E1(bp))
8041 reset_mask2 = 0xffff;
8042 else if (CHIP_IS_E1H(bp))
8043 reset_mask2 = 0x1ffff;
8044 else if (CHIP_IS_E2(bp))
8045 reset_mask2 = 0xfffff;
8046 else /* CHIP_IS_E3 */
8047 reset_mask2 = 0x3ffffff;
8048
8049 /* Don't reset global blocks unless we need to */
8050 if (!global)
8051 reset_mask2 &= ~global_bits2;
8052
8053 /*
8054 * In case of attention in the QM, we need to reset PXP
8055 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8056 * because otherwise QM reset would release 'close the gates' shortly
8057 * before resetting the PXP, then the PSWRQ would send a write
8058 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8059 * read the payload data from PSWWR, but PSWWR would not
8060 * respond. The write queue in PGLUE would stuck, dmae commands
8061 * would not return. Therefore it's important to reset the second
8062 * reset register (containing the
8063 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8064 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8065 * bit).
8066 */
8067 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8068 reset_mask2 & (~not_reset_mask2));
8069
8070 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8071 reset_mask1 & (~not_reset_mask1));
8072
8073 barrier();
8074 mmiowb();
8075
8076 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8077 reset_mask2 & (~stay_reset2));
8078
8079 barrier();
8080 mmiowb();
8081
8082 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8083 mmiowb();
8084 }
8085
8086 /**
8087 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8088 * It should get cleared in no more than 1s.
8089 *
8090 * @bp: driver handle
8091 *
8092 * It should get cleared in no more than 1s. Returns 0 if
8093 * pending writes bit gets cleared.
8094 */
8095 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8096 {
8097 u32 cnt = 1000;
8098 u32 pend_bits = 0;
8099
8100 do {
8101 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8102
8103 if (pend_bits == 0)
8104 break;
8105
8106 usleep_range(1000, 1000);
8107 } while (cnt-- > 0);
8108
8109 if (cnt <= 0) {
8110 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8111 pend_bits);
8112 return -EBUSY;
8113 }
8114
8115 return 0;
8116 }
8117
8118 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8119 {
8120 int cnt = 1000;
8121 u32 val = 0;
8122 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8123
8124
8125 /* Empty the Tetris buffer, wait for 1s */
8126 do {
8127 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8128 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8129 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8130 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8131 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8132 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8133 ((port_is_idle_0 & 0x1) == 0x1) &&
8134 ((port_is_idle_1 & 0x1) == 0x1) &&
8135 (pgl_exp_rom2 == 0xffffffff))
8136 break;
8137 usleep_range(1000, 1000);
8138 } while (cnt-- > 0);
8139
8140 if (cnt <= 0) {
8141 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8142 " are still"
8143 " outstanding read requests after 1s!\n");
8144 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8145 " port_is_idle_0=0x%08x,"
8146 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8147 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8148 pgl_exp_rom2);
8149 return -EAGAIN;
8150 }
8151
8152 barrier();
8153
8154 /* Close gates #2, #3 and #4 */
8155 bnx2x_set_234_gates(bp, true);
8156
8157 /* Poll for IGU VQs for 57712 and newer chips */
8158 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8159 return -EAGAIN;
8160
8161
8162 /* TBD: Indicate that "process kill" is in progress to MCP */
8163
8164 /* Clear "unprepared" bit */
8165 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8166 barrier();
8167
8168 /* Make sure all is written to the chip before the reset */
8169 mmiowb();
8170
8171 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8172 * PSWHST, GRC and PSWRD Tetris buffer.
8173 */
8174 usleep_range(1000, 1000);
8175
8176 /* Prepare to chip reset: */
8177 /* MCP */
8178 if (global)
8179 bnx2x_reset_mcp_prep(bp, &val);
8180
8181 /* PXP */
8182 bnx2x_pxp_prep(bp);
8183 barrier();
8184
8185 /* reset the chip */
8186 bnx2x_process_kill_chip_reset(bp, global);
8187 barrier();
8188
8189 /* Recover after reset: */
8190 /* MCP */
8191 if (global && bnx2x_reset_mcp_comp(bp, val))
8192 return -EAGAIN;
8193
8194 /* TBD: Add resetting the NO_MCP mode DB here */
8195
8196 /* PXP */
8197 bnx2x_pxp_prep(bp);
8198
8199 /* Open the gates #2, #3 and #4 */
8200 bnx2x_set_234_gates(bp, false);
8201
8202 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8203 * reset state, re-enable attentions. */
8204
8205 return 0;
8206 }
8207
8208 int bnx2x_leader_reset(struct bnx2x *bp)
8209 {
8210 int rc = 0;
8211 bool global = bnx2x_reset_is_global(bp);
8212
8213 /* Try to recover after the failure */
8214 if (bnx2x_process_kill(bp, global)) {
8215 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8216 "Aii!\n", BP_PATH(bp));
8217 rc = -EAGAIN;
8218 goto exit_leader_reset;
8219 }
8220
8221 /*
8222 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8223 * state.
8224 */
8225 bnx2x_set_reset_done(bp);
8226 if (global)
8227 bnx2x_clear_reset_global(bp);
8228
8229 exit_leader_reset:
8230 bp->is_leader = 0;
8231 bnx2x_release_leader_lock(bp);
8232 smp_mb();
8233 return rc;
8234 }
8235
8236 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8237 {
8238 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8239
8240 /* Disconnect this device */
8241 netif_device_detach(bp->dev);
8242
8243 /*
8244 * Block ifup for all function on this engine until "process kill"
8245 * or power cycle.
8246 */
8247 bnx2x_set_reset_in_progress(bp);
8248
8249 /* Shut down the power */
8250 bnx2x_set_power_state(bp, PCI_D3hot);
8251
8252 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8253
8254 smp_mb();
8255 }
8256
8257 /*
8258 * Assumption: runs under rtnl lock. This together with the fact
8259 * that it's called only from bnx2x_sp_rtnl() ensure that it
8260 * will never be called when netif_running(bp->dev) is false.
8261 */
8262 static void bnx2x_parity_recover(struct bnx2x *bp)
8263 {
8264 bool global = false;
8265
8266 DP(NETIF_MSG_HW, "Handling parity\n");
8267 while (1) {
8268 switch (bp->recovery_state) {
8269 case BNX2X_RECOVERY_INIT:
8270 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8271 bnx2x_chk_parity_attn(bp, &global, false);
8272
8273 /* Try to get a LEADER_LOCK HW lock */
8274 if (bnx2x_trylock_leader_lock(bp)) {
8275 bnx2x_set_reset_in_progress(bp);
8276 /*
8277 * Check if there is a global attention and if
8278 * there was a global attention, set the global
8279 * reset bit.
8280 */
8281
8282 if (global)
8283 bnx2x_set_reset_global(bp);
8284
8285 bp->is_leader = 1;
8286 }
8287
8288 /* Stop the driver */
8289 /* If interface has been removed - break */
8290 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8291 return;
8292
8293 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8294
8295 /*
8296 * Reset MCP command sequence number and MCP mail box
8297 * sequence as we are going to reset the MCP.
8298 */
8299 if (global) {
8300 bp->fw_seq = 0;
8301 bp->fw_drv_pulse_wr_seq = 0;
8302 }
8303
8304 /* Ensure "is_leader", MCP command sequence and
8305 * "recovery_state" update values are seen on other
8306 * CPUs.
8307 */
8308 smp_mb();
8309 break;
8310
8311 case BNX2X_RECOVERY_WAIT:
8312 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8313 if (bp->is_leader) {
8314 int other_engine = BP_PATH(bp) ? 0 : 1;
8315 u32 other_load_counter =
8316 bnx2x_get_load_cnt(bp, other_engine);
8317 u32 load_counter =
8318 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8319 global = bnx2x_reset_is_global(bp);
8320
8321 /*
8322 * In case of a parity in a global block, let
8323 * the first leader that performs a
8324 * leader_reset() reset the global blocks in
8325 * order to clear global attentions. Otherwise
8326 * the the gates will remain closed for that
8327 * engine.
8328 */
8329 if (load_counter ||
8330 (global && other_load_counter)) {
8331 /* Wait until all other functions get
8332 * down.
8333 */
8334 schedule_delayed_work(&bp->sp_rtnl_task,
8335 HZ/10);
8336 return;
8337 } else {
8338 /* If all other functions got down -
8339 * try to bring the chip back to
8340 * normal. In any case it's an exit
8341 * point for a leader.
8342 */
8343 if (bnx2x_leader_reset(bp)) {
8344 bnx2x_recovery_failed(bp);
8345 return;
8346 }
8347
8348 /* If we are here, means that the
8349 * leader has succeeded and doesn't
8350 * want to be a leader any more. Try
8351 * to continue as a none-leader.
8352 */
8353 break;
8354 }
8355 } else { /* non-leader */
8356 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8357 /* Try to get a LEADER_LOCK HW lock as
8358 * long as a former leader may have
8359 * been unloaded by the user or
8360 * released a leadership by another
8361 * reason.
8362 */
8363 if (bnx2x_trylock_leader_lock(bp)) {
8364 /* I'm a leader now! Restart a
8365 * switch case.
8366 */
8367 bp->is_leader = 1;
8368 break;
8369 }
8370
8371 schedule_delayed_work(&bp->sp_rtnl_task,
8372 HZ/10);
8373 return;
8374
8375 } else {
8376 /*
8377 * If there was a global attention, wait
8378 * for it to be cleared.
8379 */
8380 if (bnx2x_reset_is_global(bp)) {
8381 schedule_delayed_work(
8382 &bp->sp_rtnl_task,
8383 HZ/10);
8384 return;
8385 }
8386
8387 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8388 bnx2x_recovery_failed(bp);
8389 else {
8390 bp->recovery_state =
8391 BNX2X_RECOVERY_DONE;
8392 smp_mb();
8393 }
8394
8395 return;
8396 }
8397 }
8398 default:
8399 return;
8400 }
8401 }
8402 }
8403
8404 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8405 * scheduled on a general queue in order to prevent a dead lock.
8406 */
8407 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8408 {
8409 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8410
8411 rtnl_lock();
8412
8413 if (!netif_running(bp->dev))
8414 goto sp_rtnl_exit;
8415
8416 /* if stop on error is defined no recovery flows should be executed */
8417 #ifdef BNX2X_STOP_ON_ERROR
8418 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8419 "so reset not done to allow debug dump,\n"
8420 "you will need to reboot when done\n");
8421 goto sp_rtnl_not_reset;
8422 #endif
8423
8424 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8425 /*
8426 * Clear all pending SP commands as we are going to reset the
8427 * function anyway.
8428 */
8429 bp->sp_rtnl_state = 0;
8430 smp_mb();
8431
8432 bnx2x_parity_recover(bp);
8433
8434 goto sp_rtnl_exit;
8435 }
8436
8437 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8438 /*
8439 * Clear all pending SP commands as we are going to reset the
8440 * function anyway.
8441 */
8442 bp->sp_rtnl_state = 0;
8443 smp_mb();
8444
8445 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8446 bnx2x_nic_load(bp, LOAD_NORMAL);
8447
8448 goto sp_rtnl_exit;
8449 }
8450 #ifdef BNX2X_STOP_ON_ERROR
8451 sp_rtnl_not_reset:
8452 #endif
8453 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8454 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8455
8456 sp_rtnl_exit:
8457 rtnl_unlock();
8458 }
8459
8460 /* end of nic load/unload */
8461
8462 static void bnx2x_period_task(struct work_struct *work)
8463 {
8464 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8465
8466 if (!netif_running(bp->dev))
8467 goto period_task_exit;
8468
8469 if (CHIP_REV_IS_SLOW(bp)) {
8470 BNX2X_ERR("period task called on emulation, ignoring\n");
8471 goto period_task_exit;
8472 }
8473
8474 bnx2x_acquire_phy_lock(bp);
8475 /*
8476 * The barrier is needed to ensure the ordering between the writing to
8477 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8478 * the reading here.
8479 */
8480 smp_mb();
8481 if (bp->port.pmf) {
8482 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8483
8484 /* Re-queue task in 1 sec */
8485 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8486 }
8487
8488 bnx2x_release_phy_lock(bp);
8489 period_task_exit:
8490 return;
8491 }
8492
8493 /*
8494 * Init service functions
8495 */
8496
8497 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8498 {
8499 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8500 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8501 return base + (BP_ABS_FUNC(bp)) * stride;
8502 }
8503
8504 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8505 {
8506 u32 reg = bnx2x_get_pretend_reg(bp);
8507
8508 /* Flush all outstanding writes */
8509 mmiowb();
8510
8511 /* Pretend to be function 0 */
8512 REG_WR(bp, reg, 0);
8513 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8514
8515 /* From now we are in the "like-E1" mode */
8516 bnx2x_int_disable(bp);
8517
8518 /* Flush all outstanding writes */
8519 mmiowb();
8520
8521 /* Restore the original function */
8522 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8523 REG_RD(bp, reg);
8524 }
8525
8526 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8527 {
8528 if (CHIP_IS_E1(bp))
8529 bnx2x_int_disable(bp);
8530 else
8531 bnx2x_undi_int_disable_e1h(bp);
8532 }
8533
8534 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8535 {
8536 u32 val;
8537
8538 /* Check if there is any driver already loaded */
8539 val = REG_RD(bp, MISC_REG_UNPREPARED);
8540 if (val == 0x1) {
8541 /* Check if it is the UNDI driver
8542 * UNDI driver initializes CID offset for normal bell to 0x7
8543 */
8544 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8545 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8546 if (val == 0x7) {
8547 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8548 /* save our pf_num */
8549 int orig_pf_num = bp->pf_num;
8550 int port;
8551 u32 swap_en, swap_val, value;
8552
8553 /* clear the UNDI indication */
8554 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8555
8556 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8557
8558 /* try unload UNDI on port 0 */
8559 bp->pf_num = 0;
8560 bp->fw_seq =
8561 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8562 DRV_MSG_SEQ_NUMBER_MASK);
8563 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8564
8565 /* if UNDI is loaded on the other port */
8566 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8567
8568 /* send "DONE" for previous unload */
8569 bnx2x_fw_command(bp,
8570 DRV_MSG_CODE_UNLOAD_DONE, 0);
8571
8572 /* unload UNDI on port 1 */
8573 bp->pf_num = 1;
8574 bp->fw_seq =
8575 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8576 DRV_MSG_SEQ_NUMBER_MASK);
8577 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8578
8579 bnx2x_fw_command(bp, reset_code, 0);
8580 }
8581
8582 /* now it's safe to release the lock */
8583 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8584
8585 bnx2x_undi_int_disable(bp);
8586 port = BP_PORT(bp);
8587
8588 /* close input traffic and wait for it */
8589 /* Do not rcv packets to BRB */
8590 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8591 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8592 /* Do not direct rcv packets that are not for MCP to
8593 * the BRB */
8594 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8595 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8596 /* clear AEU */
8597 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8598 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8599 msleep(10);
8600
8601 /* save NIG port swap info */
8602 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8603 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8604 /* reset device */
8605 REG_WR(bp,
8606 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8607 0xd3ffffff);
8608
8609 value = 0x1400;
8610 if (CHIP_IS_E3(bp)) {
8611 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8612 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8613 }
8614
8615 REG_WR(bp,
8616 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8617 value);
8618
8619 /* take the NIG out of reset and restore swap values */
8620 REG_WR(bp,
8621 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8622 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8623 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8624 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8625
8626 /* send unload done to the MCP */
8627 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8628
8629 /* restore our func and fw_seq */
8630 bp->pf_num = orig_pf_num;
8631 bp->fw_seq =
8632 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8633 DRV_MSG_SEQ_NUMBER_MASK);
8634 } else
8635 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8636 }
8637 }
8638
8639 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8640 {
8641 u32 val, val2, val3, val4, id;
8642 u16 pmc;
8643
8644 /* Get the chip revision id and number. */
8645 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8646 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8647 id = ((val & 0xffff) << 16);
8648 val = REG_RD(bp, MISC_REG_CHIP_REV);
8649 id |= ((val & 0xf) << 12);
8650 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8651 id |= ((val & 0xff) << 4);
8652 val = REG_RD(bp, MISC_REG_BOND_ID);
8653 id |= (val & 0xf);
8654 bp->common.chip_id = id;
8655
8656 /* Set doorbell size */
8657 bp->db_size = (1 << BNX2X_DB_SHIFT);
8658
8659 if (!CHIP_IS_E1x(bp)) {
8660 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8661 if ((val & 1) == 0)
8662 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8663 else
8664 val = (val >> 1) & 1;
8665 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8666 "2_PORT_MODE");
8667 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8668 CHIP_2_PORT_MODE;
8669
8670 if (CHIP_MODE_IS_4_PORT(bp))
8671 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8672 else
8673 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8674 } else {
8675 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8676 bp->pfid = bp->pf_num; /* 0..7 */
8677 }
8678
8679 bp->link_params.chip_id = bp->common.chip_id;
8680 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8681
8682 val = (REG_RD(bp, 0x2874) & 0x55);
8683 if ((bp->common.chip_id & 0x1) ||
8684 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8685 bp->flags |= ONE_PORT_FLAG;
8686 BNX2X_DEV_INFO("single port device\n");
8687 }
8688
8689 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8690 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8691 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8692 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8693 bp->common.flash_size, bp->common.flash_size);
8694
8695 bnx2x_init_shmem(bp);
8696
8697
8698
8699 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8700 MISC_REG_GENERIC_CR_1 :
8701 MISC_REG_GENERIC_CR_0));
8702
8703 bp->link_params.shmem_base = bp->common.shmem_base;
8704 bp->link_params.shmem2_base = bp->common.shmem2_base;
8705 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8706 bp->common.shmem_base, bp->common.shmem2_base);
8707
8708 if (!bp->common.shmem_base) {
8709 BNX2X_DEV_INFO("MCP not active\n");
8710 bp->flags |= NO_MCP_FLAG;
8711 return;
8712 }
8713
8714 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8715 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8716
8717 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8718 SHARED_HW_CFG_LED_MODE_MASK) >>
8719 SHARED_HW_CFG_LED_MODE_SHIFT);
8720
8721 bp->link_params.feature_config_flags = 0;
8722 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8723 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8724 bp->link_params.feature_config_flags |=
8725 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8726 else
8727 bp->link_params.feature_config_flags &=
8728 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8729
8730 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8731 bp->common.bc_ver = val;
8732 BNX2X_DEV_INFO("bc_ver %X\n", val);
8733 if (val < BNX2X_BC_VER) {
8734 /* for now only warn
8735 * later we might need to enforce this */
8736 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8737 "please upgrade BC\n", BNX2X_BC_VER, val);
8738 }
8739 bp->link_params.feature_config_flags |=
8740 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8741 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8742
8743 bp->link_params.feature_config_flags |=
8744 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8745 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8746
8747 bp->link_params.feature_config_flags |=
8748 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8749 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8750
8751 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8752 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8753
8754 BNX2X_DEV_INFO("%sWoL capable\n",
8755 (bp->flags & NO_WOL_FLAG) ? "not " : "");
8756
8757 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8758 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8759 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8760 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8761
8762 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8763 val, val2, val3, val4);
8764 }
8765
8766 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8767 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8768
8769 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8770 {
8771 int pfid = BP_FUNC(bp);
8772 int vn = BP_E1HVN(bp);
8773 int igu_sb_id;
8774 u32 val;
8775 u8 fid, igu_sb_cnt = 0;
8776
8777 bp->igu_base_sb = 0xff;
8778 if (CHIP_INT_MODE_IS_BC(bp)) {
8779 igu_sb_cnt = bp->igu_sb_cnt;
8780 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8781 FP_SB_MAX_E1x;
8782
8783 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
8784 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8785
8786 return;
8787 }
8788
8789 /* IGU in normal mode - read CAM */
8790 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8791 igu_sb_id++) {
8792 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8793 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8794 continue;
8795 fid = IGU_FID(val);
8796 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8797 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8798 continue;
8799 if (IGU_VEC(val) == 0)
8800 /* default status block */
8801 bp->igu_dsb_id = igu_sb_id;
8802 else {
8803 if (bp->igu_base_sb == 0xff)
8804 bp->igu_base_sb = igu_sb_id;
8805 igu_sb_cnt++;
8806 }
8807 }
8808 }
8809
8810 #ifdef CONFIG_PCI_MSI
8811 /*
8812 * It's expected that number of CAM entries for this functions is equal
8813 * to the number evaluated based on the MSI-X table size. We want a
8814 * harsh warning if these values are different!
8815 */
8816 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8817 #endif
8818
8819 if (igu_sb_cnt == 0)
8820 BNX2X_ERR("CAM configuration error\n");
8821 }
8822
8823 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8824 u32 switch_cfg)
8825 {
8826 int cfg_size = 0, idx, port = BP_PORT(bp);
8827
8828 /* Aggregation of supported attributes of all external phys */
8829 bp->port.supported[0] = 0;
8830 bp->port.supported[1] = 0;
8831 switch (bp->link_params.num_phys) {
8832 case 1:
8833 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8834 cfg_size = 1;
8835 break;
8836 case 2:
8837 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8838 cfg_size = 1;
8839 break;
8840 case 3:
8841 if (bp->link_params.multi_phy_config &
8842 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8843 bp->port.supported[1] =
8844 bp->link_params.phy[EXT_PHY1].supported;
8845 bp->port.supported[0] =
8846 bp->link_params.phy[EXT_PHY2].supported;
8847 } else {
8848 bp->port.supported[0] =
8849 bp->link_params.phy[EXT_PHY1].supported;
8850 bp->port.supported[1] =
8851 bp->link_params.phy[EXT_PHY2].supported;
8852 }
8853 cfg_size = 2;
8854 break;
8855 }
8856
8857 if (!(bp->port.supported[0] || bp->port.supported[1])) {
8858 BNX2X_ERR("NVRAM config error. BAD phy config."
8859 "PHY1 config 0x%x, PHY2 config 0x%x\n",
8860 SHMEM_RD(bp,
8861 dev_info.port_hw_config[port].external_phy_config),
8862 SHMEM_RD(bp,
8863 dev_info.port_hw_config[port].external_phy_config2));
8864 return;
8865 }
8866
8867 if (CHIP_IS_E3(bp))
8868 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8869 else {
8870 switch (switch_cfg) {
8871 case SWITCH_CFG_1G:
8872 bp->port.phy_addr = REG_RD(
8873 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8874 break;
8875 case SWITCH_CFG_10G:
8876 bp->port.phy_addr = REG_RD(
8877 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8878 break;
8879 default:
8880 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8881 bp->port.link_config[0]);
8882 return;
8883 }
8884 }
8885 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8886 /* mask what we support according to speed_cap_mask per configuration */
8887 for (idx = 0; idx < cfg_size; idx++) {
8888 if (!(bp->link_params.speed_cap_mask[idx] &
8889 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8890 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8891
8892 if (!(bp->link_params.speed_cap_mask[idx] &
8893 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8894 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8895
8896 if (!(bp->link_params.speed_cap_mask[idx] &
8897 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8898 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8899
8900 if (!(bp->link_params.speed_cap_mask[idx] &
8901 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8902 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8903
8904 if (!(bp->link_params.speed_cap_mask[idx] &
8905 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8906 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8907 SUPPORTED_1000baseT_Full);
8908
8909 if (!(bp->link_params.speed_cap_mask[idx] &
8910 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8911 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8912
8913 if (!(bp->link_params.speed_cap_mask[idx] &
8914 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8915 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8916
8917 }
8918
8919 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
8920 bp->port.supported[1]);
8921 }
8922
8923 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
8924 {
8925 u32 link_config, idx, cfg_size = 0;
8926 bp->port.advertising[0] = 0;
8927 bp->port.advertising[1] = 0;
8928 switch (bp->link_params.num_phys) {
8929 case 1:
8930 case 2:
8931 cfg_size = 1;
8932 break;
8933 case 3:
8934 cfg_size = 2;
8935 break;
8936 }
8937 for (idx = 0; idx < cfg_size; idx++) {
8938 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
8939 link_config = bp->port.link_config[idx];
8940 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8941 case PORT_FEATURE_LINK_SPEED_AUTO:
8942 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
8943 bp->link_params.req_line_speed[idx] =
8944 SPEED_AUTO_NEG;
8945 bp->port.advertising[idx] |=
8946 bp->port.supported[idx];
8947 } else {
8948 /* force 10G, no AN */
8949 bp->link_params.req_line_speed[idx] =
8950 SPEED_10000;
8951 bp->port.advertising[idx] |=
8952 (ADVERTISED_10000baseT_Full |
8953 ADVERTISED_FIBRE);
8954 continue;
8955 }
8956 break;
8957
8958 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8959 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
8960 bp->link_params.req_line_speed[idx] =
8961 SPEED_10;
8962 bp->port.advertising[idx] |=
8963 (ADVERTISED_10baseT_Full |
8964 ADVERTISED_TP);
8965 } else {
8966 BNX2X_ERR("NVRAM config error. "
8967 "Invalid link_config 0x%x"
8968 " speed_cap_mask 0x%x\n",
8969 link_config,
8970 bp->link_params.speed_cap_mask[idx]);
8971 return;
8972 }
8973 break;
8974
8975 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8976 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
8977 bp->link_params.req_line_speed[idx] =
8978 SPEED_10;
8979 bp->link_params.req_duplex[idx] =
8980 DUPLEX_HALF;
8981 bp->port.advertising[idx] |=
8982 (ADVERTISED_10baseT_Half |
8983 ADVERTISED_TP);
8984 } else {
8985 BNX2X_ERR("NVRAM config error. "
8986 "Invalid link_config 0x%x"
8987 " speed_cap_mask 0x%x\n",
8988 link_config,
8989 bp->link_params.speed_cap_mask[idx]);
8990 return;
8991 }
8992 break;
8993
8994 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8995 if (bp->port.supported[idx] &
8996 SUPPORTED_100baseT_Full) {
8997 bp->link_params.req_line_speed[idx] =
8998 SPEED_100;
8999 bp->port.advertising[idx] |=
9000 (ADVERTISED_100baseT_Full |
9001 ADVERTISED_TP);
9002 } else {
9003 BNX2X_ERR("NVRAM config error. "
9004 "Invalid link_config 0x%x"
9005 " speed_cap_mask 0x%x\n",
9006 link_config,
9007 bp->link_params.speed_cap_mask[idx]);
9008 return;
9009 }
9010 break;
9011
9012 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9013 if (bp->port.supported[idx] &
9014 SUPPORTED_100baseT_Half) {
9015 bp->link_params.req_line_speed[idx] =
9016 SPEED_100;
9017 bp->link_params.req_duplex[idx] =
9018 DUPLEX_HALF;
9019 bp->port.advertising[idx] |=
9020 (ADVERTISED_100baseT_Half |
9021 ADVERTISED_TP);
9022 } else {
9023 BNX2X_ERR("NVRAM config error. "
9024 "Invalid link_config 0x%x"
9025 " speed_cap_mask 0x%x\n",
9026 link_config,
9027 bp->link_params.speed_cap_mask[idx]);
9028 return;
9029 }
9030 break;
9031
9032 case PORT_FEATURE_LINK_SPEED_1G:
9033 if (bp->port.supported[idx] &
9034 SUPPORTED_1000baseT_Full) {
9035 bp->link_params.req_line_speed[idx] =
9036 SPEED_1000;
9037 bp->port.advertising[idx] |=
9038 (ADVERTISED_1000baseT_Full |
9039 ADVERTISED_TP);
9040 } else {
9041 BNX2X_ERR("NVRAM config error. "
9042 "Invalid link_config 0x%x"
9043 " speed_cap_mask 0x%x\n",
9044 link_config,
9045 bp->link_params.speed_cap_mask[idx]);
9046 return;
9047 }
9048 break;
9049
9050 case PORT_FEATURE_LINK_SPEED_2_5G:
9051 if (bp->port.supported[idx] &
9052 SUPPORTED_2500baseX_Full) {
9053 bp->link_params.req_line_speed[idx] =
9054 SPEED_2500;
9055 bp->port.advertising[idx] |=
9056 (ADVERTISED_2500baseX_Full |
9057 ADVERTISED_TP);
9058 } else {
9059 BNX2X_ERR("NVRAM config error. "
9060 "Invalid link_config 0x%x"
9061 " speed_cap_mask 0x%x\n",
9062 link_config,
9063 bp->link_params.speed_cap_mask[idx]);
9064 return;
9065 }
9066 break;
9067
9068 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9069 if (bp->port.supported[idx] &
9070 SUPPORTED_10000baseT_Full) {
9071 bp->link_params.req_line_speed[idx] =
9072 SPEED_10000;
9073 bp->port.advertising[idx] |=
9074 (ADVERTISED_10000baseT_Full |
9075 ADVERTISED_FIBRE);
9076 } else {
9077 BNX2X_ERR("NVRAM config error. "
9078 "Invalid link_config 0x%x"
9079 " speed_cap_mask 0x%x\n",
9080 link_config,
9081 bp->link_params.speed_cap_mask[idx]);
9082 return;
9083 }
9084 break;
9085 case PORT_FEATURE_LINK_SPEED_20G:
9086 bp->link_params.req_line_speed[idx] = SPEED_20000;
9087
9088 break;
9089 default:
9090 BNX2X_ERR("NVRAM config error. "
9091 "BAD link speed link_config 0x%x\n",
9092 link_config);
9093 bp->link_params.req_line_speed[idx] =
9094 SPEED_AUTO_NEG;
9095 bp->port.advertising[idx] =
9096 bp->port.supported[idx];
9097 break;
9098 }
9099
9100 bp->link_params.req_flow_ctrl[idx] = (link_config &
9101 PORT_FEATURE_FLOW_CONTROL_MASK);
9102 if ((bp->link_params.req_flow_ctrl[idx] ==
9103 BNX2X_FLOW_CTRL_AUTO) &&
9104 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9105 bp->link_params.req_flow_ctrl[idx] =
9106 BNX2X_FLOW_CTRL_NONE;
9107 }
9108
9109 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9110 " 0x%x advertising 0x%x\n",
9111 bp->link_params.req_line_speed[idx],
9112 bp->link_params.req_duplex[idx],
9113 bp->link_params.req_flow_ctrl[idx],
9114 bp->port.advertising[idx]);
9115 }
9116 }
9117
9118 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9119 {
9120 mac_hi = cpu_to_be16(mac_hi);
9121 mac_lo = cpu_to_be32(mac_lo);
9122 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9123 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9124 }
9125
9126 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9127 {
9128 int port = BP_PORT(bp);
9129 u32 config;
9130 u32 ext_phy_type, ext_phy_config;
9131
9132 bp->link_params.bp = bp;
9133 bp->link_params.port = port;
9134
9135 bp->link_params.lane_config =
9136 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9137
9138 bp->link_params.speed_cap_mask[0] =
9139 SHMEM_RD(bp,
9140 dev_info.port_hw_config[port].speed_capability_mask);
9141 bp->link_params.speed_cap_mask[1] =
9142 SHMEM_RD(bp,
9143 dev_info.port_hw_config[port].speed_capability_mask2);
9144 bp->port.link_config[0] =
9145 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9146
9147 bp->port.link_config[1] =
9148 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9149
9150 bp->link_params.multi_phy_config =
9151 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9152 /* If the device is capable of WoL, set the default state according
9153 * to the HW
9154 */
9155 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9156 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9157 (config & PORT_FEATURE_WOL_ENABLED));
9158
9159 BNX2X_DEV_INFO("lane_config 0x%08x "
9160 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9161 bp->link_params.lane_config,
9162 bp->link_params.speed_cap_mask[0],
9163 bp->port.link_config[0]);
9164
9165 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9166 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9167 bnx2x_phy_probe(&bp->link_params);
9168 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9169
9170 bnx2x_link_settings_requested(bp);
9171
9172 /*
9173 * If connected directly, work with the internal PHY, otherwise, work
9174 * with the external PHY
9175 */
9176 ext_phy_config =
9177 SHMEM_RD(bp,
9178 dev_info.port_hw_config[port].external_phy_config);
9179 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9180 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9181 bp->mdio.prtad = bp->port.phy_addr;
9182
9183 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9184 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9185 bp->mdio.prtad =
9186 XGXS_EXT_PHY_ADDR(ext_phy_config);
9187
9188 /*
9189 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9190 * In MF mode, it is set to cover self test cases
9191 */
9192 if (IS_MF(bp))
9193 bp->port.need_hw_lock = 1;
9194 else
9195 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9196 bp->common.shmem_base,
9197 bp->common.shmem2_base);
9198 }
9199
9200 #ifdef BCM_CNIC
9201 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9202 {
9203 int port = BP_PORT(bp);
9204 int func = BP_ABS_FUNC(bp);
9205
9206 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9207 drv_lic_key[port].max_iscsi_conn);
9208 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9209 drv_lic_key[port].max_fcoe_conn);
9210
9211 /* Get the number of maximum allowed iSCSI and FCoE connections */
9212 bp->cnic_eth_dev.max_iscsi_conn =
9213 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9214 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9215
9216 bp->cnic_eth_dev.max_fcoe_conn =
9217 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9218 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9219
9220 /* Read the WWN: */
9221 if (!IS_MF(bp)) {
9222 /* Port info */
9223 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9224 SHMEM_RD(bp,
9225 dev_info.port_hw_config[port].
9226 fcoe_wwn_port_name_upper);
9227 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9228 SHMEM_RD(bp,
9229 dev_info.port_hw_config[port].
9230 fcoe_wwn_port_name_lower);
9231
9232 /* Node info */
9233 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9234 SHMEM_RD(bp,
9235 dev_info.port_hw_config[port].
9236 fcoe_wwn_node_name_upper);
9237 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9238 SHMEM_RD(bp,
9239 dev_info.port_hw_config[port].
9240 fcoe_wwn_node_name_lower);
9241 } else if (!IS_MF_SD(bp)) {
9242 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9243
9244 /*
9245 * Read the WWN info only if the FCoE feature is enabled for
9246 * this function.
9247 */
9248 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9249 /* Port info */
9250 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9251 MF_CFG_RD(bp, func_ext_config[func].
9252 fcoe_wwn_port_name_upper);
9253 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9254 MF_CFG_RD(bp, func_ext_config[func].
9255 fcoe_wwn_port_name_lower);
9256
9257 /* Node info */
9258 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9259 MF_CFG_RD(bp, func_ext_config[func].
9260 fcoe_wwn_node_name_upper);
9261 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9262 MF_CFG_RD(bp, func_ext_config[func].
9263 fcoe_wwn_node_name_lower);
9264 }
9265 }
9266
9267 BNX2X_DEV_INFO("max_iscsi_conn 0x%x max_fcoe_conn 0x%x\n",
9268 bp->cnic_eth_dev.max_iscsi_conn,
9269 bp->cnic_eth_dev.max_fcoe_conn);
9270
9271 /*
9272 * If maximum allowed number of connections is zero -
9273 * disable the feature.
9274 */
9275 if (!bp->cnic_eth_dev.max_iscsi_conn)
9276 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9277
9278 if (!bp->cnic_eth_dev.max_fcoe_conn)
9279 bp->flags |= NO_FCOE_FLAG;
9280 }
9281 #endif
9282
9283 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9284 {
9285 u32 val, val2;
9286 int func = BP_ABS_FUNC(bp);
9287 int port = BP_PORT(bp);
9288 #ifdef BCM_CNIC
9289 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9290 u8 *fip_mac = bp->fip_mac;
9291 #endif
9292
9293 /* Zero primary MAC configuration */
9294 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9295
9296 if (BP_NOMCP(bp)) {
9297 BNX2X_ERROR("warning: random MAC workaround active\n");
9298 random_ether_addr(bp->dev->dev_addr);
9299 } else if (IS_MF(bp)) {
9300 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9301 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9302 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9303 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9304 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9305
9306 #ifdef BCM_CNIC
9307 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9308 * FCoE MAC then the appropriate feature should be disabled.
9309 */
9310 if (IS_MF_SI(bp)) {
9311 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9312 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9313 val2 = MF_CFG_RD(bp, func_ext_config[func].
9314 iscsi_mac_addr_upper);
9315 val = MF_CFG_RD(bp, func_ext_config[func].
9316 iscsi_mac_addr_lower);
9317 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9318 BNX2X_DEV_INFO("Read iSCSI MAC: "
9319 BNX2X_MAC_FMT"\n",
9320 BNX2X_MAC_PRN_LIST(iscsi_mac));
9321 } else
9322 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9323
9324 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9325 val2 = MF_CFG_RD(bp, func_ext_config[func].
9326 fcoe_mac_addr_upper);
9327 val = MF_CFG_RD(bp, func_ext_config[func].
9328 fcoe_mac_addr_lower);
9329 bnx2x_set_mac_buf(fip_mac, val, val2);
9330 BNX2X_DEV_INFO("Read FCoE L2 MAC to "
9331 BNX2X_MAC_FMT"\n",
9332 BNX2X_MAC_PRN_LIST(fip_mac));
9333
9334 } else
9335 bp->flags |= NO_FCOE_FLAG;
9336 }
9337 #endif
9338 } else {
9339 /* in SF read MACs from port configuration */
9340 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9341 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9342 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9343
9344 #ifdef BCM_CNIC
9345 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9346 iscsi_mac_upper);
9347 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9348 iscsi_mac_lower);
9349 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9350
9351 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9352 fcoe_fip_mac_upper);
9353 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9354 fcoe_fip_mac_lower);
9355 bnx2x_set_mac_buf(fip_mac, val, val2);
9356 #endif
9357 }
9358
9359 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9360 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9361
9362 #ifdef BCM_CNIC
9363 /* Set the FCoE MAC in MF_SD mode */
9364 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9365 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9366
9367 /* Disable iSCSI if MAC configuration is
9368 * invalid.
9369 */
9370 if (!is_valid_ether_addr(iscsi_mac)) {
9371 bp->flags |= NO_ISCSI_FLAG;
9372 memset(iscsi_mac, 0, ETH_ALEN);
9373 }
9374
9375 /* Disable FCoE if MAC configuration is
9376 * invalid.
9377 */
9378 if (!is_valid_ether_addr(fip_mac)) {
9379 bp->flags |= NO_FCOE_FLAG;
9380 memset(bp->fip_mac, 0, ETH_ALEN);
9381 }
9382 #endif
9383
9384 if (!is_valid_ether_addr(bp->dev->dev_addr))
9385 dev_err(&bp->pdev->dev,
9386 "bad Ethernet MAC address configuration: "
9387 BNX2X_MAC_FMT", change it manually before bringing up "
9388 "the appropriate network interface\n",
9389 BNX2X_MAC_PRN_LIST(bp->dev->dev_addr));
9390 }
9391
9392 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9393 {
9394 int /*abs*/func = BP_ABS_FUNC(bp);
9395 int vn;
9396 u32 val = 0;
9397 int rc = 0;
9398
9399 bnx2x_get_common_hwinfo(bp);
9400
9401 /*
9402 * initialize IGU parameters
9403 */
9404 if (CHIP_IS_E1x(bp)) {
9405 bp->common.int_block = INT_BLOCK_HC;
9406
9407 bp->igu_dsb_id = DEF_SB_IGU_ID;
9408 bp->igu_base_sb = 0;
9409 } else {
9410 bp->common.int_block = INT_BLOCK_IGU;
9411 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9412
9413 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9414 int tout = 5000;
9415
9416 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9417
9418 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9419 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9420 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9421
9422 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9423 tout--;
9424 usleep_range(1000, 1000);
9425 }
9426
9427 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9428 dev_err(&bp->pdev->dev,
9429 "FORCING Normal Mode failed!!!\n");
9430 return -EPERM;
9431 }
9432 }
9433
9434 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9435 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9436 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9437 } else
9438 BNX2X_DEV_INFO("IGU Normal Mode\n");
9439
9440 bnx2x_get_igu_cam_info(bp);
9441
9442 }
9443
9444 /*
9445 * set base FW non-default (fast path) status block id, this value is
9446 * used to initialize the fw_sb_id saved on the fp/queue structure to
9447 * determine the id used by the FW.
9448 */
9449 if (CHIP_IS_E1x(bp))
9450 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9451 else /*
9452 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9453 * the same queue are indicated on the same IGU SB). So we prefer
9454 * FW and IGU SBs to be the same value.
9455 */
9456 bp->base_fw_ndsb = bp->igu_base_sb;
9457
9458 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9459 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9460 bp->igu_sb_cnt, bp->base_fw_ndsb);
9461
9462 /*
9463 * Initialize MF configuration
9464 */
9465
9466 bp->mf_ov = 0;
9467 bp->mf_mode = 0;
9468 vn = BP_E1HVN(bp);
9469
9470 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9471 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9472 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9473 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9474
9475 if (SHMEM2_HAS(bp, mf_cfg_addr))
9476 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9477 else
9478 bp->common.mf_cfg_base = bp->common.shmem_base +
9479 offsetof(struct shmem_region, func_mb) +
9480 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9481 /*
9482 * get mf configuration:
9483 * 1. existence of MF configuration
9484 * 2. MAC address must be legal (check only upper bytes)
9485 * for Switch-Independent mode;
9486 * OVLAN must be legal for Switch-Dependent mode
9487 * 3. SF_MODE configures specific MF mode
9488 */
9489 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9490 /* get mf configuration */
9491 val = SHMEM_RD(bp,
9492 dev_info.shared_feature_config.config);
9493 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9494
9495 switch (val) {
9496 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9497 val = MF_CFG_RD(bp, func_mf_config[func].
9498 mac_upper);
9499 /* check for legal mac (upper bytes)*/
9500 if (val != 0xffff) {
9501 bp->mf_mode = MULTI_FUNCTION_SI;
9502 bp->mf_config[vn] = MF_CFG_RD(bp,
9503 func_mf_config[func].config);
9504 } else
9505 BNX2X_DEV_INFO("illegal MAC address "
9506 "for SI\n");
9507 break;
9508 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9509 /* get OV configuration */
9510 val = MF_CFG_RD(bp,
9511 func_mf_config[FUNC_0].e1hov_tag);
9512 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9513
9514 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9515 bp->mf_mode = MULTI_FUNCTION_SD;
9516 bp->mf_config[vn] = MF_CFG_RD(bp,
9517 func_mf_config[func].config);
9518 } else
9519 BNX2X_DEV_INFO("illegal OV for SD\n");
9520 break;
9521 default:
9522 /* Unknown configuration: reset mf_config */
9523 bp->mf_config[vn] = 0;
9524 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9525 }
9526 }
9527
9528 BNX2X_DEV_INFO("%s function mode\n",
9529 IS_MF(bp) ? "multi" : "single");
9530
9531 switch (bp->mf_mode) {
9532 case MULTI_FUNCTION_SD:
9533 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9534 FUNC_MF_CFG_E1HOV_TAG_MASK;
9535 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9536 bp->mf_ov = val;
9537 bp->path_has_ovlan = true;
9538
9539 BNX2X_DEV_INFO("MF OV for func %d is %d "
9540 "(0x%04x)\n", func, bp->mf_ov,
9541 bp->mf_ov);
9542 } else {
9543 dev_err(&bp->pdev->dev,
9544 "No valid MF OV for func %d, "
9545 "aborting\n", func);
9546 return -EPERM;
9547 }
9548 break;
9549 case MULTI_FUNCTION_SI:
9550 BNX2X_DEV_INFO("func %d is in MF "
9551 "switch-independent mode\n", func);
9552 break;
9553 default:
9554 if (vn) {
9555 dev_err(&bp->pdev->dev,
9556 "VN %d is in a single function mode, "
9557 "aborting\n", vn);
9558 return -EPERM;
9559 }
9560 break;
9561 }
9562
9563 /* check if other port on the path needs ovlan:
9564 * Since MF configuration is shared between ports
9565 * Possible mixed modes are only
9566 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9567 */
9568 if (CHIP_MODE_IS_4_PORT(bp) &&
9569 !bp->path_has_ovlan &&
9570 !IS_MF(bp) &&
9571 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9572 u8 other_port = !BP_PORT(bp);
9573 u8 other_func = BP_PATH(bp) + 2*other_port;
9574 val = MF_CFG_RD(bp,
9575 func_mf_config[other_func].e1hov_tag);
9576 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9577 bp->path_has_ovlan = true;
9578 }
9579 }
9580
9581 /* adjust igu_sb_cnt to MF for E1x */
9582 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9583 bp->igu_sb_cnt /= E1HVN_MAX;
9584
9585 /* port info */
9586 bnx2x_get_port_hwinfo(bp);
9587
9588 if (!BP_NOMCP(bp)) {
9589 bp->fw_seq =
9590 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9591 DRV_MSG_SEQ_NUMBER_MASK);
9592 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9593 }
9594
9595 /* Get MAC addresses */
9596 bnx2x_get_mac_hwinfo(bp);
9597
9598 #ifdef BCM_CNIC
9599 bnx2x_get_cnic_info(bp);
9600 #endif
9601
9602 /* Get current FW pulse sequence */
9603 if (!BP_NOMCP(bp)) {
9604 int mb_idx = BP_FW_MB_IDX(bp);
9605
9606 bp->fw_drv_pulse_wr_seq =
9607 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9608 DRV_PULSE_SEQ_MASK);
9609 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9610 }
9611
9612 return rc;
9613 }
9614
9615 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9616 {
9617 int cnt, i, block_end, rodi;
9618 char vpd_data[BNX2X_VPD_LEN+1];
9619 char str_id_reg[VENDOR_ID_LEN+1];
9620 char str_id_cap[VENDOR_ID_LEN+1];
9621 u8 len;
9622
9623 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9624 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9625
9626 if (cnt < BNX2X_VPD_LEN)
9627 goto out_not_found;
9628
9629 i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9630 PCI_VPD_LRDT_RO_DATA);
9631 if (i < 0)
9632 goto out_not_found;
9633
9634
9635 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9636 pci_vpd_lrdt_size(&vpd_data[i]);
9637
9638 i += PCI_VPD_LRDT_TAG_SIZE;
9639
9640 if (block_end > BNX2X_VPD_LEN)
9641 goto out_not_found;
9642
9643 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9644 PCI_VPD_RO_KEYWORD_MFR_ID);
9645 if (rodi < 0)
9646 goto out_not_found;
9647
9648 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9649
9650 if (len != VENDOR_ID_LEN)
9651 goto out_not_found;
9652
9653 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9654
9655 /* vendor specific info */
9656 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9657 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9658 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9659 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9660
9661 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9662 PCI_VPD_RO_KEYWORD_VENDOR0);
9663 if (rodi >= 0) {
9664 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9665
9666 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9667
9668 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9669 memcpy(bp->fw_ver, &vpd_data[rodi], len);
9670 bp->fw_ver[len] = ' ';
9671 }
9672 }
9673 return;
9674 }
9675 out_not_found:
9676 return;
9677 }
9678
9679 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9680 {
9681 u32 flags = 0;
9682
9683 if (CHIP_REV_IS_FPGA(bp))
9684 SET_FLAGS(flags, MODE_FPGA);
9685 else if (CHIP_REV_IS_EMUL(bp))
9686 SET_FLAGS(flags, MODE_EMUL);
9687 else
9688 SET_FLAGS(flags, MODE_ASIC);
9689
9690 if (CHIP_MODE_IS_4_PORT(bp))
9691 SET_FLAGS(flags, MODE_PORT4);
9692 else
9693 SET_FLAGS(flags, MODE_PORT2);
9694
9695 if (CHIP_IS_E2(bp))
9696 SET_FLAGS(flags, MODE_E2);
9697 else if (CHIP_IS_E3(bp)) {
9698 SET_FLAGS(flags, MODE_E3);
9699 if (CHIP_REV(bp) == CHIP_REV_Ax)
9700 SET_FLAGS(flags, MODE_E3_A0);
9701 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9702 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9703 }
9704
9705 if (IS_MF(bp)) {
9706 SET_FLAGS(flags, MODE_MF);
9707 switch (bp->mf_mode) {
9708 case MULTI_FUNCTION_SD:
9709 SET_FLAGS(flags, MODE_MF_SD);
9710 break;
9711 case MULTI_FUNCTION_SI:
9712 SET_FLAGS(flags, MODE_MF_SI);
9713 break;
9714 }
9715 } else
9716 SET_FLAGS(flags, MODE_SF);
9717
9718 #if defined(__LITTLE_ENDIAN)
9719 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9720 #else /*(__BIG_ENDIAN)*/
9721 SET_FLAGS(flags, MODE_BIG_ENDIAN);
9722 #endif
9723 INIT_MODE_FLAGS(bp) = flags;
9724 }
9725
9726 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9727 {
9728 int func;
9729 int timer_interval;
9730 int rc;
9731
9732 mutex_init(&bp->port.phy_mutex);
9733 mutex_init(&bp->fw_mb_mutex);
9734 spin_lock_init(&bp->stats_lock);
9735 #ifdef BCM_CNIC
9736 mutex_init(&bp->cnic_mutex);
9737 #endif
9738
9739 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9740 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9741 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9742 rc = bnx2x_get_hwinfo(bp);
9743 if (rc)
9744 return rc;
9745
9746 bnx2x_set_modes_bitmap(bp);
9747
9748 rc = bnx2x_alloc_mem_bp(bp);
9749 if (rc)
9750 return rc;
9751
9752 bnx2x_read_fwinfo(bp);
9753
9754 func = BP_FUNC(bp);
9755
9756 /* need to reset chip if undi was active */
9757 if (!BP_NOMCP(bp))
9758 bnx2x_undi_unload(bp);
9759
9760 if (CHIP_REV_IS_FPGA(bp))
9761 dev_err(&bp->pdev->dev, "FPGA detected\n");
9762
9763 if (BP_NOMCP(bp) && (func == 0))
9764 dev_err(&bp->pdev->dev, "MCP disabled, "
9765 "must load devices in order!\n");
9766
9767 bp->multi_mode = multi_mode;
9768
9769 /* Set TPA flags */
9770 if (disable_tpa) {
9771 bp->flags &= ~TPA_ENABLE_FLAG;
9772 bp->dev->features &= ~NETIF_F_LRO;
9773 } else {
9774 bp->flags |= TPA_ENABLE_FLAG;
9775 bp->dev->features |= NETIF_F_LRO;
9776 }
9777 bp->disable_tpa = disable_tpa;
9778
9779 if (CHIP_IS_E1(bp))
9780 bp->dropless_fc = 0;
9781 else
9782 bp->dropless_fc = dropless_fc;
9783
9784 bp->mrrs = mrrs;
9785
9786 bp->tx_ring_size = MAX_TX_AVAIL;
9787
9788 /* make sure that the numbers are in the right granularity */
9789 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9790 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9791
9792 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9793 bp->current_interval = (poll ? poll : timer_interval);
9794
9795 init_timer(&bp->timer);
9796 bp->timer.expires = jiffies + bp->current_interval;
9797 bp->timer.data = (unsigned long) bp;
9798 bp->timer.function = bnx2x_timer;
9799
9800 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9801 bnx2x_dcbx_init_params(bp);
9802
9803 #ifdef BCM_CNIC
9804 if (CHIP_IS_E1x(bp))
9805 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9806 else
9807 bp->cnic_base_cl_id = FP_SB_MAX_E2;
9808 #endif
9809
9810 /* multiple tx priority */
9811 if (CHIP_IS_E1x(bp))
9812 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9813 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9814 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9815 if (CHIP_IS_E3B0(bp))
9816 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9817
9818 return rc;
9819 }
9820
9821
9822 /****************************************************************************
9823 * General service functions
9824 ****************************************************************************/
9825
9826 /*
9827 * net_device service functions
9828 */
9829
9830 /* called with rtnl_lock */
9831 static int bnx2x_open(struct net_device *dev)
9832 {
9833 struct bnx2x *bp = netdev_priv(dev);
9834 bool global = false;
9835 int other_engine = BP_PATH(bp) ? 0 : 1;
9836 u32 other_load_counter, load_counter;
9837
9838 netif_carrier_off(dev);
9839
9840 bnx2x_set_power_state(bp, PCI_D0);
9841
9842 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9843 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9844
9845 /*
9846 * If parity had happen during the unload, then attentions
9847 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9848 * want the first function loaded on the current engine to
9849 * complete the recovery.
9850 */
9851 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9852 bnx2x_chk_parity_attn(bp, &global, true))
9853 do {
9854 /*
9855 * If there are attentions and they are in a global
9856 * blocks, set the GLOBAL_RESET bit regardless whether
9857 * it will be this function that will complete the
9858 * recovery or not.
9859 */
9860 if (global)
9861 bnx2x_set_reset_global(bp);
9862
9863 /*
9864 * Only the first function on the current engine should
9865 * try to recover in open. In case of attentions in
9866 * global blocks only the first in the chip should try
9867 * to recover.
9868 */
9869 if ((!load_counter &&
9870 (!global || !other_load_counter)) &&
9871 bnx2x_trylock_leader_lock(bp) &&
9872 !bnx2x_leader_reset(bp)) {
9873 netdev_info(bp->dev, "Recovered in open\n");
9874 break;
9875 }
9876
9877 /* recovery has failed... */
9878 bnx2x_set_power_state(bp, PCI_D3hot);
9879 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9880
9881 netdev_err(bp->dev, "Recovery flow hasn't been properly"
9882 " completed yet. Try again later. If u still see this"
9883 " message after a few retries then power cycle is"
9884 " required.\n");
9885
9886 return -EAGAIN;
9887 } while (0);
9888
9889 bp->recovery_state = BNX2X_RECOVERY_DONE;
9890 return bnx2x_nic_load(bp, LOAD_OPEN);
9891 }
9892
9893 /* called with rtnl_lock */
9894 static int bnx2x_close(struct net_device *dev)
9895 {
9896 struct bnx2x *bp = netdev_priv(dev);
9897
9898 /* Unload the driver, release IRQs */
9899 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
9900
9901 /* Power off */
9902 bnx2x_set_power_state(bp, PCI_D3hot);
9903
9904 return 0;
9905 }
9906
9907 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
9908 struct bnx2x_mcast_ramrod_params *p)
9909 {
9910 int mc_count = netdev_mc_count(bp->dev);
9911 struct bnx2x_mcast_list_elem *mc_mac =
9912 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
9913 struct netdev_hw_addr *ha;
9914
9915 if (!mc_mac)
9916 return -ENOMEM;
9917
9918 INIT_LIST_HEAD(&p->mcast_list);
9919
9920 netdev_for_each_mc_addr(ha, bp->dev) {
9921 mc_mac->mac = bnx2x_mc_addr(ha);
9922 list_add_tail(&mc_mac->link, &p->mcast_list);
9923 mc_mac++;
9924 }
9925
9926 p->mcast_list_len = mc_count;
9927
9928 return 0;
9929 }
9930
9931 static inline void bnx2x_free_mcast_macs_list(
9932 struct bnx2x_mcast_ramrod_params *p)
9933 {
9934 struct bnx2x_mcast_list_elem *mc_mac =
9935 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
9936 link);
9937
9938 WARN_ON(!mc_mac);
9939 kfree(mc_mac);
9940 }
9941
9942 /**
9943 * bnx2x_set_uc_list - configure a new unicast MACs list.
9944 *
9945 * @bp: driver handle
9946 *
9947 * We will use zero (0) as a MAC type for these MACs.
9948 */
9949 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
9950 {
9951 int rc;
9952 struct net_device *dev = bp->dev;
9953 struct netdev_hw_addr *ha;
9954 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
9955 unsigned long ramrod_flags = 0;
9956
9957 /* First schedule a cleanup up of old configuration */
9958 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
9959 if (rc < 0) {
9960 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
9961 return rc;
9962 }
9963
9964 netdev_for_each_uc_addr(ha, dev) {
9965 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
9966 BNX2X_UC_LIST_MAC, &ramrod_flags);
9967 if (rc < 0) {
9968 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
9969 rc);
9970 return rc;
9971 }
9972 }
9973
9974 /* Execute the pending commands */
9975 __set_bit(RAMROD_CONT, &ramrod_flags);
9976 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
9977 BNX2X_UC_LIST_MAC, &ramrod_flags);
9978 }
9979
9980 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
9981 {
9982 struct net_device *dev = bp->dev;
9983 struct bnx2x_mcast_ramrod_params rparam = {0};
9984 int rc = 0;
9985
9986 rparam.mcast_obj = &bp->mcast_obj;
9987
9988 /* first, clear all configured multicast MACs */
9989 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9990 if (rc < 0) {
9991 BNX2X_ERR("Failed to clear multicast "
9992 "configuration: %d\n", rc);
9993 return rc;
9994 }
9995
9996 /* then, configure a new MACs list */
9997 if (netdev_mc_count(dev)) {
9998 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
9999 if (rc) {
10000 BNX2X_ERR("Failed to create multicast MACs "
10001 "list: %d\n", rc);
10002 return rc;
10003 }
10004
10005 /* Now add the new MACs */
10006 rc = bnx2x_config_mcast(bp, &rparam,
10007 BNX2X_MCAST_CMD_ADD);
10008 if (rc < 0)
10009 BNX2X_ERR("Failed to set a new multicast "
10010 "configuration: %d\n", rc);
10011
10012 bnx2x_free_mcast_macs_list(&rparam);
10013 }
10014
10015 return rc;
10016 }
10017
10018
10019 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10020 void bnx2x_set_rx_mode(struct net_device *dev)
10021 {
10022 struct bnx2x *bp = netdev_priv(dev);
10023 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10024
10025 if (bp->state != BNX2X_STATE_OPEN) {
10026 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10027 return;
10028 }
10029
10030 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10031
10032 if (dev->flags & IFF_PROMISC)
10033 rx_mode = BNX2X_RX_MODE_PROMISC;
10034 else if ((dev->flags & IFF_ALLMULTI) ||
10035 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10036 CHIP_IS_E1(bp)))
10037 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10038 else {
10039 /* some multicasts */
10040 if (bnx2x_set_mc_list(bp) < 0)
10041 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10042
10043 if (bnx2x_set_uc_list(bp) < 0)
10044 rx_mode = BNX2X_RX_MODE_PROMISC;
10045 }
10046
10047 bp->rx_mode = rx_mode;
10048
10049 /* Schedule the rx_mode command */
10050 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10051 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10052 return;
10053 }
10054
10055 bnx2x_set_storm_rx_mode(bp);
10056 }
10057
10058 /* called with rtnl_lock */
10059 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10060 int devad, u16 addr)
10061 {
10062 struct bnx2x *bp = netdev_priv(netdev);
10063 u16 value;
10064 int rc;
10065
10066 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10067 prtad, devad, addr);
10068
10069 /* The HW expects different devad if CL22 is used */
10070 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10071
10072 bnx2x_acquire_phy_lock(bp);
10073 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10074 bnx2x_release_phy_lock(bp);
10075 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10076
10077 if (!rc)
10078 rc = value;
10079 return rc;
10080 }
10081
10082 /* called with rtnl_lock */
10083 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10084 u16 addr, u16 value)
10085 {
10086 struct bnx2x *bp = netdev_priv(netdev);
10087 int rc;
10088
10089 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10090 " value 0x%x\n", prtad, devad, addr, value);
10091
10092 /* The HW expects different devad if CL22 is used */
10093 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10094
10095 bnx2x_acquire_phy_lock(bp);
10096 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10097 bnx2x_release_phy_lock(bp);
10098 return rc;
10099 }
10100
10101 /* called with rtnl_lock */
10102 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10103 {
10104 struct bnx2x *bp = netdev_priv(dev);
10105 struct mii_ioctl_data *mdio = if_mii(ifr);
10106
10107 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10108 mdio->phy_id, mdio->reg_num, mdio->val_in);
10109
10110 if (!netif_running(dev))
10111 return -EAGAIN;
10112
10113 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10114 }
10115
10116 #ifdef CONFIG_NET_POLL_CONTROLLER
10117 static void poll_bnx2x(struct net_device *dev)
10118 {
10119 struct bnx2x *bp = netdev_priv(dev);
10120
10121 disable_irq(bp->pdev->irq);
10122 bnx2x_interrupt(bp->pdev->irq, dev);
10123 enable_irq(bp->pdev->irq);
10124 }
10125 #endif
10126
10127 static const struct net_device_ops bnx2x_netdev_ops = {
10128 .ndo_open = bnx2x_open,
10129 .ndo_stop = bnx2x_close,
10130 .ndo_start_xmit = bnx2x_start_xmit,
10131 .ndo_select_queue = bnx2x_select_queue,
10132 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10133 .ndo_set_mac_address = bnx2x_change_mac_addr,
10134 .ndo_validate_addr = eth_validate_addr,
10135 .ndo_do_ioctl = bnx2x_ioctl,
10136 .ndo_change_mtu = bnx2x_change_mtu,
10137 .ndo_fix_features = bnx2x_fix_features,
10138 .ndo_set_features = bnx2x_set_features,
10139 .ndo_tx_timeout = bnx2x_tx_timeout,
10140 #ifdef CONFIG_NET_POLL_CONTROLLER
10141 .ndo_poll_controller = poll_bnx2x,
10142 #endif
10143 .ndo_setup_tc = bnx2x_setup_tc,
10144
10145 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10146 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10147 #endif
10148 };
10149
10150 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10151 {
10152 struct device *dev = &bp->pdev->dev;
10153
10154 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10155 bp->flags |= USING_DAC_FLAG;
10156 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10157 dev_err(dev, "dma_set_coherent_mask failed, "
10158 "aborting\n");
10159 return -EIO;
10160 }
10161 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10162 dev_err(dev, "System does not support DMA, aborting\n");
10163 return -EIO;
10164 }
10165
10166 return 0;
10167 }
10168
10169 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10170 struct net_device *dev,
10171 unsigned long board_type)
10172 {
10173 struct bnx2x *bp;
10174 int rc;
10175
10176 SET_NETDEV_DEV(dev, &pdev->dev);
10177 bp = netdev_priv(dev);
10178
10179 bp->dev = dev;
10180 bp->pdev = pdev;
10181 bp->flags = 0;
10182 bp->pf_num = PCI_FUNC(pdev->devfn);
10183
10184 rc = pci_enable_device(pdev);
10185 if (rc) {
10186 dev_err(&bp->pdev->dev,
10187 "Cannot enable PCI device, aborting\n");
10188 goto err_out;
10189 }
10190
10191 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10192 dev_err(&bp->pdev->dev,
10193 "Cannot find PCI device base address, aborting\n");
10194 rc = -ENODEV;
10195 goto err_out_disable;
10196 }
10197
10198 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10199 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10200 " base address, aborting\n");
10201 rc = -ENODEV;
10202 goto err_out_disable;
10203 }
10204
10205 if (atomic_read(&pdev->enable_cnt) == 1) {
10206 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10207 if (rc) {
10208 dev_err(&bp->pdev->dev,
10209 "Cannot obtain PCI resources, aborting\n");
10210 goto err_out_disable;
10211 }
10212
10213 pci_set_master(pdev);
10214 pci_save_state(pdev);
10215 }
10216
10217 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10218 if (bp->pm_cap == 0) {
10219 dev_err(&bp->pdev->dev,
10220 "Cannot find power management capability, aborting\n");
10221 rc = -EIO;
10222 goto err_out_release;
10223 }
10224
10225 if (!pci_is_pcie(pdev)) {
10226 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10227 rc = -EIO;
10228 goto err_out_release;
10229 }
10230
10231 rc = bnx2x_set_coherency_mask(bp);
10232 if (rc)
10233 goto err_out_release;
10234
10235 dev->mem_start = pci_resource_start(pdev, 0);
10236 dev->base_addr = dev->mem_start;
10237 dev->mem_end = pci_resource_end(pdev, 0);
10238
10239 dev->irq = pdev->irq;
10240
10241 bp->regview = pci_ioremap_bar(pdev, 0);
10242 if (!bp->regview) {
10243 dev_err(&bp->pdev->dev,
10244 "Cannot map register space, aborting\n");
10245 rc = -ENOMEM;
10246 goto err_out_release;
10247 }
10248
10249 bnx2x_set_power_state(bp, PCI_D0);
10250
10251 /* clean indirect addresses */
10252 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10253 PCICFG_VENDOR_ID_OFFSET);
10254 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0 + BP_PORT(bp)*16, 0);
10255 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0 + BP_PORT(bp)*16, 0);
10256 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0 + BP_PORT(bp)*16, 0);
10257 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0 + BP_PORT(bp)*16, 0);
10258
10259 /*
10260 * Enable internal target-read (in case we are probed after PF FLR).
10261 * Must be done prior to any BAR read access. Only for 57712 and up
10262 */
10263 if (board_type != BCM57710 &&
10264 board_type != BCM57711 &&
10265 board_type != BCM57711E)
10266 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10267
10268 /* Reset the load counter */
10269 bnx2x_clear_load_cnt(bp);
10270
10271 dev->watchdog_timeo = TX_TIMEOUT;
10272
10273 dev->netdev_ops = &bnx2x_netdev_ops;
10274 bnx2x_set_ethtool_ops(dev);
10275
10276 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10277 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10278 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_HW_VLAN_TX;
10279
10280 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10281 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10282
10283 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10284 if (bp->flags & USING_DAC_FLAG)
10285 dev->features |= NETIF_F_HIGHDMA;
10286
10287 /* Add Loopback capability to the device */
10288 dev->hw_features |= NETIF_F_LOOPBACK;
10289
10290 #ifdef BCM_DCBNL
10291 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10292 #endif
10293
10294 /* get_port_hwinfo() will set prtad and mmds properly */
10295 bp->mdio.prtad = MDIO_PRTAD_NONE;
10296 bp->mdio.mmds = 0;
10297 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10298 bp->mdio.dev = dev;
10299 bp->mdio.mdio_read = bnx2x_mdio_read;
10300 bp->mdio.mdio_write = bnx2x_mdio_write;
10301
10302 return 0;
10303
10304 err_out_release:
10305 if (atomic_read(&pdev->enable_cnt) == 1)
10306 pci_release_regions(pdev);
10307
10308 err_out_disable:
10309 pci_disable_device(pdev);
10310 pci_set_drvdata(pdev, NULL);
10311
10312 err_out:
10313 return rc;
10314 }
10315
10316 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10317 int *width, int *speed)
10318 {
10319 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10320
10321 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10322
10323 /* return value of 1=2.5GHz 2=5GHz */
10324 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10325 }
10326
10327 static int bnx2x_check_firmware(struct bnx2x *bp)
10328 {
10329 const struct firmware *firmware = bp->firmware;
10330 struct bnx2x_fw_file_hdr *fw_hdr;
10331 struct bnx2x_fw_file_section *sections;
10332 u32 offset, len, num_ops;
10333 u16 *ops_offsets;
10334 int i;
10335 const u8 *fw_ver;
10336
10337 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10338 return -EINVAL;
10339
10340 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10341 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10342
10343 /* Make sure none of the offsets and sizes make us read beyond
10344 * the end of the firmware data */
10345 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10346 offset = be32_to_cpu(sections[i].offset);
10347 len = be32_to_cpu(sections[i].len);
10348 if (offset + len > firmware->size) {
10349 dev_err(&bp->pdev->dev,
10350 "Section %d length is out of bounds\n", i);
10351 return -EINVAL;
10352 }
10353 }
10354
10355 /* Likewise for the init_ops offsets */
10356 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10357 ops_offsets = (u16 *)(firmware->data + offset);
10358 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10359
10360 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10361 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10362 dev_err(&bp->pdev->dev,
10363 "Section offset %d is out of bounds\n", i);
10364 return -EINVAL;
10365 }
10366 }
10367
10368 /* Check FW version */
10369 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10370 fw_ver = firmware->data + offset;
10371 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10372 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10373 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10374 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10375 dev_err(&bp->pdev->dev,
10376 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10377 fw_ver[0], fw_ver[1], fw_ver[2],
10378 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10379 BCM_5710_FW_MINOR_VERSION,
10380 BCM_5710_FW_REVISION_VERSION,
10381 BCM_5710_FW_ENGINEERING_VERSION);
10382 return -EINVAL;
10383 }
10384
10385 return 0;
10386 }
10387
10388 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10389 {
10390 const __be32 *source = (const __be32 *)_source;
10391 u32 *target = (u32 *)_target;
10392 u32 i;
10393
10394 for (i = 0; i < n/4; i++)
10395 target[i] = be32_to_cpu(source[i]);
10396 }
10397
10398 /*
10399 Ops array is stored in the following format:
10400 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10401 */
10402 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10403 {
10404 const __be32 *source = (const __be32 *)_source;
10405 struct raw_op *target = (struct raw_op *)_target;
10406 u32 i, j, tmp;
10407
10408 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10409 tmp = be32_to_cpu(source[j]);
10410 target[i].op = (tmp >> 24) & 0xff;
10411 target[i].offset = tmp & 0xffffff;
10412 target[i].raw_data = be32_to_cpu(source[j + 1]);
10413 }
10414 }
10415
10416 /**
10417 * IRO array is stored in the following format:
10418 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10419 */
10420 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10421 {
10422 const __be32 *source = (const __be32 *)_source;
10423 struct iro *target = (struct iro *)_target;
10424 u32 i, j, tmp;
10425
10426 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10427 target[i].base = be32_to_cpu(source[j]);
10428 j++;
10429 tmp = be32_to_cpu(source[j]);
10430 target[i].m1 = (tmp >> 16) & 0xffff;
10431 target[i].m2 = tmp & 0xffff;
10432 j++;
10433 tmp = be32_to_cpu(source[j]);
10434 target[i].m3 = (tmp >> 16) & 0xffff;
10435 target[i].size = tmp & 0xffff;
10436 j++;
10437 }
10438 }
10439
10440 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10441 {
10442 const __be16 *source = (const __be16 *)_source;
10443 u16 *target = (u16 *)_target;
10444 u32 i;
10445
10446 for (i = 0; i < n/2; i++)
10447 target[i] = be16_to_cpu(source[i]);
10448 }
10449
10450 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10451 do { \
10452 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10453 bp->arr = kmalloc(len, GFP_KERNEL); \
10454 if (!bp->arr) { \
10455 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10456 goto lbl; \
10457 } \
10458 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10459 (u8 *)bp->arr, len); \
10460 } while (0)
10461
10462 int bnx2x_init_firmware(struct bnx2x *bp)
10463 {
10464 const char *fw_file_name;
10465 struct bnx2x_fw_file_hdr *fw_hdr;
10466 int rc;
10467
10468 if (CHIP_IS_E1(bp))
10469 fw_file_name = FW_FILE_NAME_E1;
10470 else if (CHIP_IS_E1H(bp))
10471 fw_file_name = FW_FILE_NAME_E1H;
10472 else if (!CHIP_IS_E1x(bp))
10473 fw_file_name = FW_FILE_NAME_E2;
10474 else {
10475 BNX2X_ERR("Unsupported chip revision\n");
10476 return -EINVAL;
10477 }
10478
10479 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10480
10481 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10482 if (rc) {
10483 BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
10484 goto request_firmware_exit;
10485 }
10486
10487 rc = bnx2x_check_firmware(bp);
10488 if (rc) {
10489 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10490 goto request_firmware_exit;
10491 }
10492
10493 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10494
10495 /* Initialize the pointers to the init arrays */
10496 /* Blob */
10497 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10498
10499 /* Opcodes */
10500 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10501
10502 /* Offsets */
10503 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10504 be16_to_cpu_n);
10505
10506 /* STORMs firmware */
10507 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10508 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10509 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10510 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10511 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10512 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10513 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10514 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10515 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10516 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10517 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10518 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10519 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10520 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10521 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10522 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10523 /* IRO */
10524 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10525
10526 return 0;
10527
10528 iro_alloc_err:
10529 kfree(bp->init_ops_offsets);
10530 init_offsets_alloc_err:
10531 kfree(bp->init_ops);
10532 init_ops_alloc_err:
10533 kfree(bp->init_data);
10534 request_firmware_exit:
10535 release_firmware(bp->firmware);
10536
10537 return rc;
10538 }
10539
10540 static void bnx2x_release_firmware(struct bnx2x *bp)
10541 {
10542 kfree(bp->init_ops_offsets);
10543 kfree(bp->init_ops);
10544 kfree(bp->init_data);
10545 release_firmware(bp->firmware);
10546 }
10547
10548
10549 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10550 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10551 .init_hw_cmn = bnx2x_init_hw_common,
10552 .init_hw_port = bnx2x_init_hw_port,
10553 .init_hw_func = bnx2x_init_hw_func,
10554
10555 .reset_hw_cmn = bnx2x_reset_common,
10556 .reset_hw_port = bnx2x_reset_port,
10557 .reset_hw_func = bnx2x_reset_func,
10558
10559 .gunzip_init = bnx2x_gunzip_init,
10560 .gunzip_end = bnx2x_gunzip_end,
10561
10562 .init_fw = bnx2x_init_firmware,
10563 .release_fw = bnx2x_release_firmware,
10564 };
10565
10566 void bnx2x__init_func_obj(struct bnx2x *bp)
10567 {
10568 /* Prepare DMAE related driver resources */
10569 bnx2x_setup_dmae(bp);
10570
10571 bnx2x_init_func_obj(bp, &bp->func_obj,
10572 bnx2x_sp(bp, func_rdata),
10573 bnx2x_sp_mapping(bp, func_rdata),
10574 &bnx2x_func_sp_drv);
10575 }
10576
10577 /* must be called after sriov-enable */
10578 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10579 {
10580 int cid_count = BNX2X_L2_CID_COUNT(bp);
10581
10582 #ifdef BCM_CNIC
10583 cid_count += CNIC_CID_MAX;
10584 #endif
10585 return roundup(cid_count, QM_CID_ROUND);
10586 }
10587
10588 /**
10589 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10590 *
10591 * @dev: pci device
10592 *
10593 */
10594 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10595 {
10596 int pos;
10597 u16 control;
10598
10599 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10600
10601 /*
10602 * If MSI-X is not supported - return number of SBs needed to support
10603 * one fast path queue: one FP queue + SB for CNIC
10604 */
10605 if (!pos)
10606 return 1 + CNIC_PRESENT;
10607
10608 /*
10609 * The value in the PCI configuration space is the index of the last
10610 * entry, namely one less than the actual size of the table, which is
10611 * exactly what we want to return from this function: number of all SBs
10612 * without the default SB.
10613 */
10614 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
10615 return control & PCI_MSIX_FLAGS_QSIZE;
10616 }
10617
10618 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10619 const struct pci_device_id *ent)
10620 {
10621 struct net_device *dev = NULL;
10622 struct bnx2x *bp;
10623 int pcie_width, pcie_speed;
10624 int rc, max_non_def_sbs;
10625 int rx_count, tx_count, rss_count;
10626 /*
10627 * An estimated maximum supported CoS number according to the chip
10628 * version.
10629 * We will try to roughly estimate the maximum number of CoSes this chip
10630 * may support in order to minimize the memory allocated for Tx
10631 * netdev_queue's. This number will be accurately calculated during the
10632 * initialization of bp->max_cos based on the chip versions AND chip
10633 * revision in the bnx2x_init_bp().
10634 */
10635 u8 max_cos_est = 0;
10636
10637 switch (ent->driver_data) {
10638 case BCM57710:
10639 case BCM57711:
10640 case BCM57711E:
10641 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10642 break;
10643
10644 case BCM57712:
10645 case BCM57712_MF:
10646 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10647 break;
10648
10649 case BCM57800:
10650 case BCM57800_MF:
10651 case BCM57810:
10652 case BCM57810_MF:
10653 case BCM57840:
10654 case BCM57840_MF:
10655 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10656 break;
10657
10658 default:
10659 pr_err("Unknown board_type (%ld), aborting\n",
10660 ent->driver_data);
10661 return -ENODEV;
10662 }
10663
10664 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10665
10666 /* !!! FIXME !!!
10667 * Do not allow the maximum SB count to grow above 16
10668 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10669 * We will use the FP_SB_MAX_E1x macro for this matter.
10670 */
10671 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10672
10673 WARN_ON(!max_non_def_sbs);
10674
10675 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
10676 rss_count = max_non_def_sbs - CNIC_PRESENT;
10677
10678 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10679 rx_count = rss_count + FCOE_PRESENT;
10680
10681 /*
10682 * Maximum number of netdev Tx queues:
10683 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
10684 */
10685 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10686
10687 /* dev zeroed in init_etherdev */
10688 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10689 if (!dev) {
10690 dev_err(&pdev->dev, "Cannot allocate net device\n");
10691 return -ENOMEM;
10692 }
10693
10694 bp = netdev_priv(dev);
10695
10696 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10697 tx_count, rx_count);
10698
10699 bp->igu_sb_cnt = max_non_def_sbs;
10700 bp->msg_enable = debug;
10701 pci_set_drvdata(pdev, dev);
10702
10703 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10704 if (rc < 0) {
10705 free_netdev(dev);
10706 return rc;
10707 }
10708
10709 DP(NETIF_MSG_DRV, "max_non_def_sbs %d", max_non_def_sbs);
10710
10711 rc = bnx2x_init_bp(bp);
10712 if (rc)
10713 goto init_one_exit;
10714
10715 /*
10716 * Map doorbels here as we need the real value of bp->max_cos which
10717 * is initialized in bnx2x_init_bp().
10718 */
10719 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10720 min_t(u64, BNX2X_DB_SIZE(bp),
10721 pci_resource_len(pdev, 2)));
10722 if (!bp->doorbells) {
10723 dev_err(&bp->pdev->dev,
10724 "Cannot map doorbell space, aborting\n");
10725 rc = -ENOMEM;
10726 goto init_one_exit;
10727 }
10728
10729 /* calc qm_cid_count */
10730 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10731
10732 #ifdef BCM_CNIC
10733 /* disable FCOE L2 queue for E1x and E3*/
10734 if (CHIP_IS_E1x(bp) || CHIP_IS_E3(bp))
10735 bp->flags |= NO_FCOE_FLAG;
10736
10737 #endif
10738
10739 /* Configure interrupt mode: try to enable MSI-X/MSI if
10740 * needed, set bp->num_queues appropriately.
10741 */
10742 bnx2x_set_int_mode(bp);
10743
10744 /* Add all NAPI objects */
10745 bnx2x_add_all_napi(bp);
10746
10747 rc = register_netdev(dev);
10748 if (rc) {
10749 dev_err(&pdev->dev, "Cannot register net device\n");
10750 goto init_one_exit;
10751 }
10752
10753 #ifdef BCM_CNIC
10754 if (!NO_FCOE(bp)) {
10755 /* Add storage MAC address */
10756 rtnl_lock();
10757 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10758 rtnl_unlock();
10759 }
10760 #endif
10761
10762 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10763
10764 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx,"
10765 " IRQ %d, ", board_info[ent->driver_data].name,
10766 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10767 pcie_width,
10768 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10769 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10770 "5GHz (Gen2)" : "2.5GHz",
10771 dev->base_addr, bp->pdev->irq);
10772 pr_cont("node addr %pM\n", dev->dev_addr);
10773
10774 return 0;
10775
10776 init_one_exit:
10777 if (bp->regview)
10778 iounmap(bp->regview);
10779
10780 if (bp->doorbells)
10781 iounmap(bp->doorbells);
10782
10783 free_netdev(dev);
10784
10785 if (atomic_read(&pdev->enable_cnt) == 1)
10786 pci_release_regions(pdev);
10787
10788 pci_disable_device(pdev);
10789 pci_set_drvdata(pdev, NULL);
10790
10791 return rc;
10792 }
10793
10794 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10795 {
10796 struct net_device *dev = pci_get_drvdata(pdev);
10797 struct bnx2x *bp;
10798
10799 if (!dev) {
10800 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10801 return;
10802 }
10803 bp = netdev_priv(dev);
10804
10805 #ifdef BCM_CNIC
10806 /* Delete storage MAC address */
10807 if (!NO_FCOE(bp)) {
10808 rtnl_lock();
10809 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10810 rtnl_unlock();
10811 }
10812 #endif
10813
10814 #ifdef BCM_DCBNL
10815 /* Delete app tlvs from dcbnl */
10816 bnx2x_dcbnl_update_applist(bp, true);
10817 #endif
10818
10819 unregister_netdev(dev);
10820
10821 /* Delete all NAPI objects */
10822 bnx2x_del_all_napi(bp);
10823
10824 /* Power on: we can't let PCI layer write to us while we are in D3 */
10825 bnx2x_set_power_state(bp, PCI_D0);
10826
10827 /* Disable MSI/MSI-X */
10828 bnx2x_disable_msi(bp);
10829
10830 /* Power off */
10831 bnx2x_set_power_state(bp, PCI_D3hot);
10832
10833 /* Make sure RESET task is not scheduled before continuing */
10834 cancel_delayed_work_sync(&bp->sp_rtnl_task);
10835
10836 if (bp->regview)
10837 iounmap(bp->regview);
10838
10839 if (bp->doorbells)
10840 iounmap(bp->doorbells);
10841
10842 bnx2x_free_mem_bp(bp);
10843
10844 free_netdev(dev);
10845
10846 if (atomic_read(&pdev->enable_cnt) == 1)
10847 pci_release_regions(pdev);
10848
10849 pci_disable_device(pdev);
10850 pci_set_drvdata(pdev, NULL);
10851 }
10852
10853 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
10854 {
10855 int i;
10856
10857 bp->state = BNX2X_STATE_ERROR;
10858
10859 bp->rx_mode = BNX2X_RX_MODE_NONE;
10860
10861 #ifdef BCM_CNIC
10862 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
10863 #endif
10864 /* Stop Tx */
10865 bnx2x_tx_disable(bp);
10866
10867 bnx2x_netif_stop(bp, 0);
10868
10869 del_timer_sync(&bp->timer);
10870
10871 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
10872
10873 /* Release IRQs */
10874 bnx2x_free_irq(bp);
10875
10876 /* Free SKBs, SGEs, TPA pool and driver internals */
10877 bnx2x_free_skbs(bp);
10878
10879 for_each_rx_queue(bp, i)
10880 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
10881
10882 bnx2x_free_mem(bp);
10883
10884 bp->state = BNX2X_STATE_CLOSED;
10885
10886 netif_carrier_off(bp->dev);
10887
10888 return 0;
10889 }
10890
10891 static void bnx2x_eeh_recover(struct bnx2x *bp)
10892 {
10893 u32 val;
10894
10895 mutex_init(&bp->port.phy_mutex);
10896
10897 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
10898 bp->link_params.shmem_base = bp->common.shmem_base;
10899 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
10900
10901 if (!bp->common.shmem_base ||
10902 (bp->common.shmem_base < 0xA0000) ||
10903 (bp->common.shmem_base >= 0xC0000)) {
10904 BNX2X_DEV_INFO("MCP not active\n");
10905 bp->flags |= NO_MCP_FLAG;
10906 return;
10907 }
10908
10909 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
10910 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10911 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10912 BNX2X_ERR("BAD MCP validity signature\n");
10913
10914 if (!BP_NOMCP(bp)) {
10915 bp->fw_seq =
10916 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10917 DRV_MSG_SEQ_NUMBER_MASK);
10918 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10919 }
10920 }
10921
10922 /**
10923 * bnx2x_io_error_detected - called when PCI error is detected
10924 * @pdev: Pointer to PCI device
10925 * @state: The current pci connection state
10926 *
10927 * This function is called after a PCI bus error affecting
10928 * this device has been detected.
10929 */
10930 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
10931 pci_channel_state_t state)
10932 {
10933 struct net_device *dev = pci_get_drvdata(pdev);
10934 struct bnx2x *bp = netdev_priv(dev);
10935
10936 rtnl_lock();
10937
10938 netif_device_detach(dev);
10939
10940 if (state == pci_channel_io_perm_failure) {
10941 rtnl_unlock();
10942 return PCI_ERS_RESULT_DISCONNECT;
10943 }
10944
10945 if (netif_running(dev))
10946 bnx2x_eeh_nic_unload(bp);
10947
10948 pci_disable_device(pdev);
10949
10950 rtnl_unlock();
10951
10952 /* Request a slot reset */
10953 return PCI_ERS_RESULT_NEED_RESET;
10954 }
10955
10956 /**
10957 * bnx2x_io_slot_reset - called after the PCI bus has been reset
10958 * @pdev: Pointer to PCI device
10959 *
10960 * Restart the card from scratch, as if from a cold-boot.
10961 */
10962 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
10963 {
10964 struct net_device *dev = pci_get_drvdata(pdev);
10965 struct bnx2x *bp = netdev_priv(dev);
10966
10967 rtnl_lock();
10968
10969 if (pci_enable_device(pdev)) {
10970 dev_err(&pdev->dev,
10971 "Cannot re-enable PCI device after reset\n");
10972 rtnl_unlock();
10973 return PCI_ERS_RESULT_DISCONNECT;
10974 }
10975
10976 pci_set_master(pdev);
10977 pci_restore_state(pdev);
10978
10979 if (netif_running(dev))
10980 bnx2x_set_power_state(bp, PCI_D0);
10981
10982 rtnl_unlock();
10983
10984 return PCI_ERS_RESULT_RECOVERED;
10985 }
10986
10987 /**
10988 * bnx2x_io_resume - called when traffic can start flowing again
10989 * @pdev: Pointer to PCI device
10990 *
10991 * This callback is called when the error recovery driver tells us that
10992 * its OK to resume normal operation.
10993 */
10994 static void bnx2x_io_resume(struct pci_dev *pdev)
10995 {
10996 struct net_device *dev = pci_get_drvdata(pdev);
10997 struct bnx2x *bp = netdev_priv(dev);
10998
10999 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11000 netdev_err(bp->dev, "Handling parity error recovery. "
11001 "Try again later\n");
11002 return;
11003 }
11004
11005 rtnl_lock();
11006
11007 bnx2x_eeh_recover(bp);
11008
11009 if (netif_running(dev))
11010 bnx2x_nic_load(bp, LOAD_NORMAL);
11011
11012 netif_device_attach(dev);
11013
11014 rtnl_unlock();
11015 }
11016
11017 static struct pci_error_handlers bnx2x_err_handler = {
11018 .error_detected = bnx2x_io_error_detected,
11019 .slot_reset = bnx2x_io_slot_reset,
11020 .resume = bnx2x_io_resume,
11021 };
11022
11023 static struct pci_driver bnx2x_pci_driver = {
11024 .name = DRV_MODULE_NAME,
11025 .id_table = bnx2x_pci_tbl,
11026 .probe = bnx2x_init_one,
11027 .remove = __devexit_p(bnx2x_remove_one),
11028 .suspend = bnx2x_suspend,
11029 .resume = bnx2x_resume,
11030 .err_handler = &bnx2x_err_handler,
11031 };
11032
11033 static int __init bnx2x_init(void)
11034 {
11035 int ret;
11036
11037 pr_info("%s", version);
11038
11039 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11040 if (bnx2x_wq == NULL) {
11041 pr_err("Cannot create workqueue\n");
11042 return -ENOMEM;
11043 }
11044
11045 ret = pci_register_driver(&bnx2x_pci_driver);
11046 if (ret) {
11047 pr_err("Cannot register driver\n");
11048 destroy_workqueue(bnx2x_wq);
11049 }
11050 return ret;
11051 }
11052
11053 static void __exit bnx2x_cleanup(void)
11054 {
11055 pci_unregister_driver(&bnx2x_pci_driver);
11056
11057 destroy_workqueue(bnx2x_wq);
11058 }
11059
11060 void bnx2x_notify_link_changed(struct bnx2x *bp)
11061 {
11062 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11063 }
11064
11065 module_init(bnx2x_init);
11066 module_exit(bnx2x_cleanup);
11067
11068 #ifdef BCM_CNIC
11069 /**
11070 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11071 *
11072 * @bp: driver handle
11073 * @set: set or clear the CAM entry
11074 *
11075 * This function will wait until the ramdord completion returns.
11076 * Return 0 if success, -ENODEV if ramrod doesn't return.
11077 */
11078 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11079 {
11080 unsigned long ramrod_flags = 0;
11081
11082 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11083 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11084 &bp->iscsi_l2_mac_obj, true,
11085 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11086 }
11087
11088 /* count denotes the number of new completions we have seen */
11089 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11090 {
11091 struct eth_spe *spe;
11092
11093 #ifdef BNX2X_STOP_ON_ERROR
11094 if (unlikely(bp->panic))
11095 return;
11096 #endif
11097
11098 spin_lock_bh(&bp->spq_lock);
11099 BUG_ON(bp->cnic_spq_pending < count);
11100 bp->cnic_spq_pending -= count;
11101
11102
11103 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11104 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11105 & SPE_HDR_CONN_TYPE) >>
11106 SPE_HDR_CONN_TYPE_SHIFT;
11107 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11108 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11109
11110 /* Set validation for iSCSI L2 client before sending SETUP
11111 * ramrod
11112 */
11113 if (type == ETH_CONNECTION_TYPE) {
11114 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11115 bnx2x_set_ctx_validation(bp, &bp->context.
11116 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11117 BNX2X_ISCSI_ETH_CID);
11118 }
11119
11120 /*
11121 * There may be not more than 8 L2, not more than 8 L5 SPEs
11122 * and in the air. We also check that number of outstanding
11123 * COMMON ramrods is not more than the EQ and SPQ can
11124 * accommodate.
11125 */
11126 if (type == ETH_CONNECTION_TYPE) {
11127 if (!atomic_read(&bp->cq_spq_left))
11128 break;
11129 else
11130 atomic_dec(&bp->cq_spq_left);
11131 } else if (type == NONE_CONNECTION_TYPE) {
11132 if (!atomic_read(&bp->eq_spq_left))
11133 break;
11134 else
11135 atomic_dec(&bp->eq_spq_left);
11136 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11137 (type == FCOE_CONNECTION_TYPE)) {
11138 if (bp->cnic_spq_pending >=
11139 bp->cnic_eth_dev.max_kwqe_pending)
11140 break;
11141 else
11142 bp->cnic_spq_pending++;
11143 } else {
11144 BNX2X_ERR("Unknown SPE type: %d\n", type);
11145 bnx2x_panic();
11146 break;
11147 }
11148
11149 spe = bnx2x_sp_get_next(bp);
11150 *spe = *bp->cnic_kwq_cons;
11151
11152 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11153 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11154
11155 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11156 bp->cnic_kwq_cons = bp->cnic_kwq;
11157 else
11158 bp->cnic_kwq_cons++;
11159 }
11160 bnx2x_sp_prod_update(bp);
11161 spin_unlock_bh(&bp->spq_lock);
11162 }
11163
11164 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11165 struct kwqe_16 *kwqes[], u32 count)
11166 {
11167 struct bnx2x *bp = netdev_priv(dev);
11168 int i;
11169
11170 #ifdef BNX2X_STOP_ON_ERROR
11171 if (unlikely(bp->panic))
11172 return -EIO;
11173 #endif
11174
11175 spin_lock_bh(&bp->spq_lock);
11176
11177 for (i = 0; i < count; i++) {
11178 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11179
11180 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11181 break;
11182
11183 *bp->cnic_kwq_prod = *spe;
11184
11185 bp->cnic_kwq_pending++;
11186
11187 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11188 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11189 spe->data.update_data_addr.hi,
11190 spe->data.update_data_addr.lo,
11191 bp->cnic_kwq_pending);
11192
11193 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11194 bp->cnic_kwq_prod = bp->cnic_kwq;
11195 else
11196 bp->cnic_kwq_prod++;
11197 }
11198
11199 spin_unlock_bh(&bp->spq_lock);
11200
11201 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11202 bnx2x_cnic_sp_post(bp, 0);
11203
11204 return i;
11205 }
11206
11207 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11208 {
11209 struct cnic_ops *c_ops;
11210 int rc = 0;
11211
11212 mutex_lock(&bp->cnic_mutex);
11213 c_ops = rcu_dereference_protected(bp->cnic_ops,
11214 lockdep_is_held(&bp->cnic_mutex));
11215 if (c_ops)
11216 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11217 mutex_unlock(&bp->cnic_mutex);
11218
11219 return rc;
11220 }
11221
11222 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11223 {
11224 struct cnic_ops *c_ops;
11225 int rc = 0;
11226
11227 rcu_read_lock();
11228 c_ops = rcu_dereference(bp->cnic_ops);
11229 if (c_ops)
11230 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11231 rcu_read_unlock();
11232
11233 return rc;
11234 }
11235
11236 /*
11237 * for commands that have no data
11238 */
11239 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11240 {
11241 struct cnic_ctl_info ctl = {0};
11242
11243 ctl.cmd = cmd;
11244
11245 return bnx2x_cnic_ctl_send(bp, &ctl);
11246 }
11247
11248 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11249 {
11250 struct cnic_ctl_info ctl = {0};
11251
11252 /* first we tell CNIC and only then we count this as a completion */
11253 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11254 ctl.data.comp.cid = cid;
11255 ctl.data.comp.error = err;
11256
11257 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11258 bnx2x_cnic_sp_post(bp, 0);
11259 }
11260
11261
11262 /* Called with netif_addr_lock_bh() taken.
11263 * Sets an rx_mode config for an iSCSI ETH client.
11264 * Doesn't block.
11265 * Completion should be checked outside.
11266 */
11267 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11268 {
11269 unsigned long accept_flags = 0, ramrod_flags = 0;
11270 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11271 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11272
11273 if (start) {
11274 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11275 * because it's the only way for UIO Queue to accept
11276 * multicasts (in non-promiscuous mode only one Queue per
11277 * function will receive multicast packets (leading in our
11278 * case).
11279 */
11280 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11281 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11282 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11283 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11284
11285 /* Clear STOP_PENDING bit if START is requested */
11286 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11287
11288 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11289 } else
11290 /* Clear START_PENDING bit if STOP is requested */
11291 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11292
11293 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11294 set_bit(sched_state, &bp->sp_state);
11295 else {
11296 __set_bit(RAMROD_RX, &ramrod_flags);
11297 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11298 ramrod_flags);
11299 }
11300 }
11301
11302
11303 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11304 {
11305 struct bnx2x *bp = netdev_priv(dev);
11306 int rc = 0;
11307
11308 switch (ctl->cmd) {
11309 case DRV_CTL_CTXTBL_WR_CMD: {
11310 u32 index = ctl->data.io.offset;
11311 dma_addr_t addr = ctl->data.io.dma_addr;
11312
11313 bnx2x_ilt_wr(bp, index, addr);
11314 break;
11315 }
11316
11317 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11318 int count = ctl->data.credit.credit_count;
11319
11320 bnx2x_cnic_sp_post(bp, count);
11321 break;
11322 }
11323
11324 /* rtnl_lock is held. */
11325 case DRV_CTL_START_L2_CMD: {
11326 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11327 unsigned long sp_bits = 0;
11328
11329 /* Configure the iSCSI classification object */
11330 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11331 cp->iscsi_l2_client_id,
11332 cp->iscsi_l2_cid, BP_FUNC(bp),
11333 bnx2x_sp(bp, mac_rdata),
11334 bnx2x_sp_mapping(bp, mac_rdata),
11335 BNX2X_FILTER_MAC_PENDING,
11336 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11337 &bp->macs_pool);
11338
11339 /* Set iSCSI MAC address */
11340 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11341 if (rc)
11342 break;
11343
11344 mmiowb();
11345 barrier();
11346
11347 /* Start accepting on iSCSI L2 ring */
11348
11349 netif_addr_lock_bh(dev);
11350 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11351 netif_addr_unlock_bh(dev);
11352
11353 /* bits to wait on */
11354 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11355 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11356
11357 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11358 BNX2X_ERR("rx_mode completion timed out!\n");
11359
11360 break;
11361 }
11362
11363 /* rtnl_lock is held. */
11364 case DRV_CTL_STOP_L2_CMD: {
11365 unsigned long sp_bits = 0;
11366
11367 /* Stop accepting on iSCSI L2 ring */
11368 netif_addr_lock_bh(dev);
11369 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11370 netif_addr_unlock_bh(dev);
11371
11372 /* bits to wait on */
11373 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11374 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11375
11376 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11377 BNX2X_ERR("rx_mode completion timed out!\n");
11378
11379 mmiowb();
11380 barrier();
11381
11382 /* Unset iSCSI L2 MAC */
11383 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11384 BNX2X_ISCSI_ETH_MAC, true);
11385 break;
11386 }
11387 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11388 int count = ctl->data.credit.credit_count;
11389
11390 smp_mb__before_atomic_inc();
11391 atomic_add(count, &bp->cq_spq_left);
11392 smp_mb__after_atomic_inc();
11393 break;
11394 }
11395
11396 default:
11397 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11398 rc = -EINVAL;
11399 }
11400
11401 return rc;
11402 }
11403
11404 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11405 {
11406 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11407
11408 if (bp->flags & USING_MSIX_FLAG) {
11409 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11410 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11411 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11412 } else {
11413 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11414 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11415 }
11416 if (!CHIP_IS_E1x(bp))
11417 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11418 else
11419 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11420
11421 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11422 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11423 cp->irq_arr[1].status_blk = bp->def_status_blk;
11424 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11425 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11426
11427 cp->num_irq = 2;
11428 }
11429
11430 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11431 void *data)
11432 {
11433 struct bnx2x *bp = netdev_priv(dev);
11434 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11435
11436 if (ops == NULL)
11437 return -EINVAL;
11438
11439 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11440 if (!bp->cnic_kwq)
11441 return -ENOMEM;
11442
11443 bp->cnic_kwq_cons = bp->cnic_kwq;
11444 bp->cnic_kwq_prod = bp->cnic_kwq;
11445 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11446
11447 bp->cnic_spq_pending = 0;
11448 bp->cnic_kwq_pending = 0;
11449
11450 bp->cnic_data = data;
11451
11452 cp->num_irq = 0;
11453 cp->drv_state |= CNIC_DRV_STATE_REGD;
11454 cp->iro_arr = bp->iro_arr;
11455
11456 bnx2x_setup_cnic_irq_info(bp);
11457
11458 rcu_assign_pointer(bp->cnic_ops, ops);
11459
11460 return 0;
11461 }
11462
11463 static int bnx2x_unregister_cnic(struct net_device *dev)
11464 {
11465 struct bnx2x *bp = netdev_priv(dev);
11466 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11467
11468 mutex_lock(&bp->cnic_mutex);
11469 cp->drv_state = 0;
11470 rcu_assign_pointer(bp->cnic_ops, NULL);
11471 mutex_unlock(&bp->cnic_mutex);
11472 synchronize_rcu();
11473 kfree(bp->cnic_kwq);
11474 bp->cnic_kwq = NULL;
11475
11476 return 0;
11477 }
11478
11479 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11480 {
11481 struct bnx2x *bp = netdev_priv(dev);
11482 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11483
11484 /* If both iSCSI and FCoE are disabled - return NULL in
11485 * order to indicate CNIC that it should not try to work
11486 * with this device.
11487 */
11488 if (NO_ISCSI(bp) && NO_FCOE(bp))
11489 return NULL;
11490
11491 cp->drv_owner = THIS_MODULE;
11492 cp->chip_id = CHIP_ID(bp);
11493 cp->pdev = bp->pdev;
11494 cp->io_base = bp->regview;
11495 cp->io_base2 = bp->doorbells;
11496 cp->max_kwqe_pending = 8;
11497 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11498 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11499 bnx2x_cid_ilt_lines(bp);
11500 cp->ctx_tbl_len = CNIC_ILT_LINES;
11501 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11502 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11503 cp->drv_ctl = bnx2x_drv_ctl;
11504 cp->drv_register_cnic = bnx2x_register_cnic;
11505 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11506 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11507 cp->iscsi_l2_client_id =
11508 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11509 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11510
11511 if (NO_ISCSI_OOO(bp))
11512 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11513
11514 if (NO_ISCSI(bp))
11515 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11516
11517 if (NO_FCOE(bp))
11518 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11519
11520 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11521 "starting cid %d\n",
11522 cp->ctx_blk_size,
11523 cp->ctx_tbl_offset,
11524 cp->ctx_tbl_len,
11525 cp->starting_cid);
11526 return cp;
11527 }
11528 EXPORT_SYMBOL(bnx2x_cnic_probe);
11529
11530 #endif /* BCM_CNIC */
11531