]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/bonding/bond_main.c
[NET]: Inline net_device_stats
[mirror_ubuntu-focal-kernel.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 //#define BONDING_DEBUG 1
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <net/route.h>
78 #include "bonding.h"
79 #include "bond_3ad.h"
80 #include "bond_alb.h"
81
82 /*---------------------------- Module parameters ----------------------------*/
83
84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
85 #define BOND_LINK_MON_INTERV 0
86 #define BOND_LINK_ARP_INTERV 0
87
88 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
89 static int miimon = BOND_LINK_MON_INTERV;
90 static int updelay = 0;
91 static int downdelay = 0;
92 static int use_carrier = 1;
93 static char *mode = NULL;
94 static char *primary = NULL;
95 static char *lacp_rate = NULL;
96 static char *xmit_hash_policy = NULL;
97 static int arp_interval = BOND_LINK_ARP_INTERV;
98 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
99 static char *arp_validate = NULL;
100 struct bond_params bonding_defaults;
101
102 module_param(max_bonds, int, 0);
103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
104 module_param(miimon, int, 0);
105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
106 module_param(updelay, int, 0);
107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
108 module_param(downdelay, int, 0);
109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
110 "in milliseconds");
111 module_param(use_carrier, int, 0);
112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
113 "0 for off, 1 for on (default)");
114 module_param(mode, charp, 0);
115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
116 "1 for active-backup, 2 for balance-xor, "
117 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
118 "6 for balance-alb");
119 module_param(primary, charp, 0);
120 MODULE_PARM_DESC(primary, "Primary network device to use");
121 module_param(lacp_rate, charp, 0);
122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
123 "(slow/fast)");
124 module_param(xmit_hash_policy, charp, 0);
125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
126 ", 1 for layer 3+4");
127 module_param(arp_interval, int, 0);
128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
129 module_param_array(arp_ip_target, charp, NULL, 0);
130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
131 module_param(arp_validate, charp, 0);
132 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
133
134 /*----------------------------- Global variables ----------------------------*/
135
136 static const char * const version =
137 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
138
139 LIST_HEAD(bond_dev_list);
140
141 #ifdef CONFIG_PROC_FS
142 static struct proc_dir_entry *bond_proc_dir = NULL;
143 #endif
144
145 extern struct rw_semaphore bonding_rwsem;
146 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
147 static int arp_ip_count = 0;
148 static int bond_mode = BOND_MODE_ROUNDROBIN;
149 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
150 static int lacp_fast = 0;
151
152
153 struct bond_parm_tbl bond_lacp_tbl[] = {
154 { "slow", AD_LACP_SLOW},
155 { "fast", AD_LACP_FAST},
156 { NULL, -1},
157 };
158
159 struct bond_parm_tbl bond_mode_tbl[] = {
160 { "balance-rr", BOND_MODE_ROUNDROBIN},
161 { "active-backup", BOND_MODE_ACTIVEBACKUP},
162 { "balance-xor", BOND_MODE_XOR},
163 { "broadcast", BOND_MODE_BROADCAST},
164 { "802.3ad", BOND_MODE_8023AD},
165 { "balance-tlb", BOND_MODE_TLB},
166 { "balance-alb", BOND_MODE_ALB},
167 { NULL, -1},
168 };
169
170 struct bond_parm_tbl xmit_hashtype_tbl[] = {
171 { "layer2", BOND_XMIT_POLICY_LAYER2},
172 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
173 { NULL, -1},
174 };
175
176 struct bond_parm_tbl arp_validate_tbl[] = {
177 { "none", BOND_ARP_VALIDATE_NONE},
178 { "active", BOND_ARP_VALIDATE_ACTIVE},
179 { "backup", BOND_ARP_VALIDATE_BACKUP},
180 { "all", BOND_ARP_VALIDATE_ALL},
181 { NULL, -1},
182 };
183
184 /*-------------------------- Forward declarations ---------------------------*/
185
186 static void bond_send_gratuitous_arp(struct bonding *bond);
187
188 /*---------------------------- General routines -----------------------------*/
189
190 const char *bond_mode_name(int mode)
191 {
192 switch (mode) {
193 case BOND_MODE_ROUNDROBIN :
194 return "load balancing (round-robin)";
195 case BOND_MODE_ACTIVEBACKUP :
196 return "fault-tolerance (active-backup)";
197 case BOND_MODE_XOR :
198 return "load balancing (xor)";
199 case BOND_MODE_BROADCAST :
200 return "fault-tolerance (broadcast)";
201 case BOND_MODE_8023AD:
202 return "IEEE 802.3ad Dynamic link aggregation";
203 case BOND_MODE_TLB:
204 return "transmit load balancing";
205 case BOND_MODE_ALB:
206 return "adaptive load balancing";
207 default:
208 return "unknown";
209 }
210 }
211
212 /*---------------------------------- VLAN -----------------------------------*/
213
214 /**
215 * bond_add_vlan - add a new vlan id on bond
216 * @bond: bond that got the notification
217 * @vlan_id: the vlan id to add
218 *
219 * Returns -ENOMEM if allocation failed.
220 */
221 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
222 {
223 struct vlan_entry *vlan;
224
225 dprintk("bond: %s, vlan id %d\n",
226 (bond ? bond->dev->name: "None"), vlan_id);
227
228 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
229 if (!vlan) {
230 return -ENOMEM;
231 }
232
233 INIT_LIST_HEAD(&vlan->vlan_list);
234 vlan->vlan_id = vlan_id;
235 vlan->vlan_ip = 0;
236
237 write_lock_bh(&bond->lock);
238
239 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
240
241 write_unlock_bh(&bond->lock);
242
243 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
244
245 return 0;
246 }
247
248 /**
249 * bond_del_vlan - delete a vlan id from bond
250 * @bond: bond that got the notification
251 * @vlan_id: the vlan id to delete
252 *
253 * returns -ENODEV if @vlan_id was not found in @bond.
254 */
255 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
256 {
257 struct vlan_entry *vlan, *next;
258 int res = -ENODEV;
259
260 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
261
262 write_lock_bh(&bond->lock);
263
264 list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
265 if (vlan->vlan_id == vlan_id) {
266 list_del(&vlan->vlan_list);
267
268 if ((bond->params.mode == BOND_MODE_TLB) ||
269 (bond->params.mode == BOND_MODE_ALB)) {
270 bond_alb_clear_vlan(bond, vlan_id);
271 }
272
273 dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
274 bond->dev->name);
275
276 kfree(vlan);
277
278 if (list_empty(&bond->vlan_list) &&
279 (bond->slave_cnt == 0)) {
280 /* Last VLAN removed and no slaves, so
281 * restore block on adding VLANs. This will
282 * be removed once new slaves that are not
283 * VLAN challenged will be added.
284 */
285 bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
286 }
287
288 res = 0;
289 goto out;
290 }
291 }
292
293 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
294 bond->dev->name);
295
296 out:
297 write_unlock_bh(&bond->lock);
298 return res;
299 }
300
301 /**
302 * bond_has_challenged_slaves
303 * @bond: the bond we're working on
304 *
305 * Searches the slave list. Returns 1 if a vlan challenged slave
306 * was found, 0 otherwise.
307 *
308 * Assumes bond->lock is held.
309 */
310 static int bond_has_challenged_slaves(struct bonding *bond)
311 {
312 struct slave *slave;
313 int i;
314
315 bond_for_each_slave(bond, slave, i) {
316 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
317 dprintk("found VLAN challenged slave - %s\n",
318 slave->dev->name);
319 return 1;
320 }
321 }
322
323 dprintk("no VLAN challenged slaves found\n");
324 return 0;
325 }
326
327 /**
328 * bond_next_vlan - safely skip to the next item in the vlans list.
329 * @bond: the bond we're working on
330 * @curr: item we're advancing from
331 *
332 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
333 * or @curr->next otherwise (even if it is @curr itself again).
334 *
335 * Caller must hold bond->lock
336 */
337 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
338 {
339 struct vlan_entry *next, *last;
340
341 if (list_empty(&bond->vlan_list)) {
342 return NULL;
343 }
344
345 if (!curr) {
346 next = list_entry(bond->vlan_list.next,
347 struct vlan_entry, vlan_list);
348 } else {
349 last = list_entry(bond->vlan_list.prev,
350 struct vlan_entry, vlan_list);
351 if (last == curr) {
352 next = list_entry(bond->vlan_list.next,
353 struct vlan_entry, vlan_list);
354 } else {
355 next = list_entry(curr->vlan_list.next,
356 struct vlan_entry, vlan_list);
357 }
358 }
359
360 return next;
361 }
362
363 /**
364 * bond_dev_queue_xmit - Prepare skb for xmit.
365 *
366 * @bond: bond device that got this skb for tx.
367 * @skb: hw accel VLAN tagged skb to transmit
368 * @slave_dev: slave that is supposed to xmit this skbuff
369 *
370 * When the bond gets an skb to transmit that is
371 * already hardware accelerated VLAN tagged, and it
372 * needs to relay this skb to a slave that is not
373 * hw accel capable, the skb needs to be "unaccelerated",
374 * i.e. strip the hwaccel tag and re-insert it as part
375 * of the payload.
376 */
377 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
378 {
379 unsigned short vlan_id;
380
381 if (!list_empty(&bond->vlan_list) &&
382 !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
383 vlan_get_tag(skb, &vlan_id) == 0) {
384 skb->dev = slave_dev;
385 skb = vlan_put_tag(skb, vlan_id);
386 if (!skb) {
387 /* vlan_put_tag() frees the skb in case of error,
388 * so return success here so the calling functions
389 * won't attempt to free is again.
390 */
391 return 0;
392 }
393 } else {
394 skb->dev = slave_dev;
395 }
396
397 skb->priority = 1;
398 dev_queue_xmit(skb);
399
400 return 0;
401 }
402
403 /*
404 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
405 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
406 * lock because:
407 * a. This operation is performed in IOCTL context,
408 * b. The operation is protected by the RTNL semaphore in the 8021q code,
409 * c. Holding a lock with BH disabled while directly calling a base driver
410 * entry point is generally a BAD idea.
411 *
412 * The design of synchronization/protection for this operation in the 8021q
413 * module is good for one or more VLAN devices over a single physical device
414 * and cannot be extended for a teaming solution like bonding, so there is a
415 * potential race condition here where a net device from the vlan group might
416 * be referenced (either by a base driver or the 8021q code) while it is being
417 * removed from the system. However, it turns out we're not making matters
418 * worse, and if it works for regular VLAN usage it will work here too.
419 */
420
421 /**
422 * bond_vlan_rx_register - Propagates registration to slaves
423 * @bond_dev: bonding net device that got called
424 * @grp: vlan group being registered
425 */
426 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
427 {
428 struct bonding *bond = bond_dev->priv;
429 struct slave *slave;
430 int i;
431
432 bond->vlgrp = grp;
433
434 bond_for_each_slave(bond, slave, i) {
435 struct net_device *slave_dev = slave->dev;
436
437 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
438 slave_dev->vlan_rx_register) {
439 slave_dev->vlan_rx_register(slave_dev, grp);
440 }
441 }
442 }
443
444 /**
445 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
446 * @bond_dev: bonding net device that got called
447 * @vid: vlan id being added
448 */
449 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
450 {
451 struct bonding *bond = bond_dev->priv;
452 struct slave *slave;
453 int i, res;
454
455 bond_for_each_slave(bond, slave, i) {
456 struct net_device *slave_dev = slave->dev;
457
458 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
459 slave_dev->vlan_rx_add_vid) {
460 slave_dev->vlan_rx_add_vid(slave_dev, vid);
461 }
462 }
463
464 res = bond_add_vlan(bond, vid);
465 if (res) {
466 printk(KERN_ERR DRV_NAME
467 ": %s: Error: Failed to add vlan id %d\n",
468 bond_dev->name, vid);
469 }
470 }
471
472 /**
473 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
474 * @bond_dev: bonding net device that got called
475 * @vid: vlan id being removed
476 */
477 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
478 {
479 struct bonding *bond = bond_dev->priv;
480 struct slave *slave;
481 struct net_device *vlan_dev;
482 int i, res;
483
484 bond_for_each_slave(bond, slave, i) {
485 struct net_device *slave_dev = slave->dev;
486
487 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
488 slave_dev->vlan_rx_kill_vid) {
489 /* Save and then restore vlan_dev in the grp array,
490 * since the slave's driver might clear it.
491 */
492 vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
493 slave_dev->vlan_rx_kill_vid(slave_dev, vid);
494 vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
495 }
496 }
497
498 res = bond_del_vlan(bond, vid);
499 if (res) {
500 printk(KERN_ERR DRV_NAME
501 ": %s: Error: Failed to remove vlan id %d\n",
502 bond_dev->name, vid);
503 }
504 }
505
506 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
507 {
508 struct vlan_entry *vlan;
509
510 write_lock_bh(&bond->lock);
511
512 if (list_empty(&bond->vlan_list)) {
513 goto out;
514 }
515
516 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
517 slave_dev->vlan_rx_register) {
518 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
519 }
520
521 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
522 !(slave_dev->vlan_rx_add_vid)) {
523 goto out;
524 }
525
526 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
527 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
528 }
529
530 out:
531 write_unlock_bh(&bond->lock);
532 }
533
534 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
535 {
536 struct vlan_entry *vlan;
537 struct net_device *vlan_dev;
538
539 write_lock_bh(&bond->lock);
540
541 if (list_empty(&bond->vlan_list)) {
542 goto out;
543 }
544
545 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
546 !(slave_dev->vlan_rx_kill_vid)) {
547 goto unreg;
548 }
549
550 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
551 /* Save and then restore vlan_dev in the grp array,
552 * since the slave's driver might clear it.
553 */
554 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
555 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
556 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
557 }
558
559 unreg:
560 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
561 slave_dev->vlan_rx_register) {
562 slave_dev->vlan_rx_register(slave_dev, NULL);
563 }
564
565 out:
566 write_unlock_bh(&bond->lock);
567 }
568
569 /*------------------------------- Link status -------------------------------*/
570
571 /*
572 * Set the carrier state for the master according to the state of its
573 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
574 * do special 802.3ad magic.
575 *
576 * Returns zero if carrier state does not change, nonzero if it does.
577 */
578 static int bond_set_carrier(struct bonding *bond)
579 {
580 struct slave *slave;
581 int i;
582
583 if (bond->slave_cnt == 0)
584 goto down;
585
586 if (bond->params.mode == BOND_MODE_8023AD)
587 return bond_3ad_set_carrier(bond);
588
589 bond_for_each_slave(bond, slave, i) {
590 if (slave->link == BOND_LINK_UP) {
591 if (!netif_carrier_ok(bond->dev)) {
592 netif_carrier_on(bond->dev);
593 return 1;
594 }
595 return 0;
596 }
597 }
598
599 down:
600 if (netif_carrier_ok(bond->dev)) {
601 netif_carrier_off(bond->dev);
602 return 1;
603 }
604 return 0;
605 }
606
607 /*
608 * Get link speed and duplex from the slave's base driver
609 * using ethtool. If for some reason the call fails or the
610 * values are invalid, fake speed and duplex to 100/Full
611 * and return error.
612 */
613 static int bond_update_speed_duplex(struct slave *slave)
614 {
615 struct net_device *slave_dev = slave->dev;
616 static int (* ioctl)(struct net_device *, struct ifreq *, int);
617 struct ifreq ifr;
618 struct ethtool_cmd etool;
619
620 /* Fake speed and duplex */
621 slave->speed = SPEED_100;
622 slave->duplex = DUPLEX_FULL;
623
624 if (slave_dev->ethtool_ops) {
625 int res;
626
627 if (!slave_dev->ethtool_ops->get_settings) {
628 return -1;
629 }
630
631 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
632 if (res < 0) {
633 return -1;
634 }
635
636 goto verify;
637 }
638
639 ioctl = slave_dev->do_ioctl;
640 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
641 etool.cmd = ETHTOOL_GSET;
642 ifr.ifr_data = (char*)&etool;
643 if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) {
644 return -1;
645 }
646
647 verify:
648 switch (etool.speed) {
649 case SPEED_10:
650 case SPEED_100:
651 case SPEED_1000:
652 case SPEED_10000:
653 break;
654 default:
655 return -1;
656 }
657
658 switch (etool.duplex) {
659 case DUPLEX_FULL:
660 case DUPLEX_HALF:
661 break;
662 default:
663 return -1;
664 }
665
666 slave->speed = etool.speed;
667 slave->duplex = etool.duplex;
668
669 return 0;
670 }
671
672 /*
673 * if <dev> supports MII link status reporting, check its link status.
674 *
675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
676 * depening upon the setting of the use_carrier parameter.
677 *
678 * Return either BMSR_LSTATUS, meaning that the link is up (or we
679 * can't tell and just pretend it is), or 0, meaning that the link is
680 * down.
681 *
682 * If reporting is non-zero, instead of faking link up, return -1 if
683 * both ETHTOOL and MII ioctls fail (meaning the device does not
684 * support them). If use_carrier is set, return whatever it says.
685 * It'd be nice if there was a good way to tell if a driver supports
686 * netif_carrier, but there really isn't.
687 */
688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
689 {
690 static int (* ioctl)(struct net_device *, struct ifreq *, int);
691 struct ifreq ifr;
692 struct mii_ioctl_data *mii;
693 struct ethtool_value etool;
694
695 if (bond->params.use_carrier) {
696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
697 }
698
699 ioctl = slave_dev->do_ioctl;
700 if (ioctl) {
701 /* TODO: set pointer to correct ioctl on a per team member */
702 /* bases to make this more efficient. that is, once */
703 /* we determine the correct ioctl, we will always */
704 /* call it and not the others for that team */
705 /* member. */
706
707 /*
708 * We cannot assume that SIOCGMIIPHY will also read a
709 * register; not all network drivers (e.g., e100)
710 * support that.
711 */
712
713 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
714 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
715 mii = if_mii(&ifr);
716 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
717 mii->reg_num = MII_BMSR;
718 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
719 return (mii->val_out & BMSR_LSTATUS);
720 }
721 }
722 }
723
724 /* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */
725 /* for a period of time so we attempt to get link status */
726 /* from it last if the above MII ioctls fail... */
727 if (slave_dev->ethtool_ops) {
728 if (slave_dev->ethtool_ops->get_link) {
729 u32 link;
730
731 link = slave_dev->ethtool_ops->get_link(slave_dev);
732
733 return link ? BMSR_LSTATUS : 0;
734 }
735 }
736
737 if (ioctl) {
738 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
739 etool.cmd = ETHTOOL_GLINK;
740 ifr.ifr_data = (char*)&etool;
741 if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) {
742 if (etool.data == 1) {
743 return BMSR_LSTATUS;
744 } else {
745 dprintk("SIOCETHTOOL shows link down\n");
746 return 0;
747 }
748 }
749 }
750
751 /*
752 * If reporting, report that either there's no dev->do_ioctl,
753 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we
754 * cannot report link status). If not reporting, pretend
755 * we're ok.
756 */
757 return (reporting ? -1 : BMSR_LSTATUS);
758 }
759
760 /*----------------------------- Multicast list ------------------------------*/
761
762 /*
763 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
764 */
765 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
766 {
767 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
768 dmi1->dmi_addrlen == dmi2->dmi_addrlen;
769 }
770
771 /*
772 * returns dmi entry if found, NULL otherwise
773 */
774 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
775 {
776 struct dev_mc_list *idmi;
777
778 for (idmi = mc_list; idmi; idmi = idmi->next) {
779 if (bond_is_dmi_same(dmi, idmi)) {
780 return idmi;
781 }
782 }
783
784 return NULL;
785 }
786
787 /*
788 * Push the promiscuity flag down to appropriate slaves
789 */
790 static void bond_set_promiscuity(struct bonding *bond, int inc)
791 {
792 if (USES_PRIMARY(bond->params.mode)) {
793 /* write lock already acquired */
794 if (bond->curr_active_slave) {
795 dev_set_promiscuity(bond->curr_active_slave->dev, inc);
796 }
797 } else {
798 struct slave *slave;
799 int i;
800 bond_for_each_slave(bond, slave, i) {
801 dev_set_promiscuity(slave->dev, inc);
802 }
803 }
804 }
805
806 /*
807 * Push the allmulti flag down to all slaves
808 */
809 static void bond_set_allmulti(struct bonding *bond, int inc)
810 {
811 if (USES_PRIMARY(bond->params.mode)) {
812 /* write lock already acquired */
813 if (bond->curr_active_slave) {
814 dev_set_allmulti(bond->curr_active_slave->dev, inc);
815 }
816 } else {
817 struct slave *slave;
818 int i;
819 bond_for_each_slave(bond, slave, i) {
820 dev_set_allmulti(slave->dev, inc);
821 }
822 }
823 }
824
825 /*
826 * Add a Multicast address to slaves
827 * according to mode
828 */
829 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
830 {
831 if (USES_PRIMARY(bond->params.mode)) {
832 /* write lock already acquired */
833 if (bond->curr_active_slave) {
834 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
835 }
836 } else {
837 struct slave *slave;
838 int i;
839 bond_for_each_slave(bond, slave, i) {
840 dev_mc_add(slave->dev, addr, alen, 0);
841 }
842 }
843 }
844
845 /*
846 * Remove a multicast address from slave
847 * according to mode
848 */
849 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
850 {
851 if (USES_PRIMARY(bond->params.mode)) {
852 /* write lock already acquired */
853 if (bond->curr_active_slave) {
854 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
855 }
856 } else {
857 struct slave *slave;
858 int i;
859 bond_for_each_slave(bond, slave, i) {
860 dev_mc_delete(slave->dev, addr, alen, 0);
861 }
862 }
863 }
864
865
866 /*
867 * Retrieve the list of registered multicast addresses for the bonding
868 * device and retransmit an IGMP JOIN request to the current active
869 * slave.
870 */
871 static void bond_resend_igmp_join_requests(struct bonding *bond)
872 {
873 struct in_device *in_dev;
874 struct ip_mc_list *im;
875
876 rcu_read_lock();
877 in_dev = __in_dev_get_rcu(bond->dev);
878 if (in_dev) {
879 for (im = in_dev->mc_list; im; im = im->next) {
880 ip_mc_rejoin_group(im);
881 }
882 }
883
884 rcu_read_unlock();
885 }
886
887 /*
888 * Totally destroys the mc_list in bond
889 */
890 static void bond_mc_list_destroy(struct bonding *bond)
891 {
892 struct dev_mc_list *dmi;
893
894 dmi = bond->mc_list;
895 while (dmi) {
896 bond->mc_list = dmi->next;
897 kfree(dmi);
898 dmi = bond->mc_list;
899 }
900 bond->mc_list = NULL;
901 }
902
903 /*
904 * Copy all the Multicast addresses from src to the bonding device dst
905 */
906 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
907 gfp_t gfp_flag)
908 {
909 struct dev_mc_list *dmi, *new_dmi;
910
911 for (dmi = mc_list; dmi; dmi = dmi->next) {
912 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
913
914 if (!new_dmi) {
915 /* FIXME: Potential memory leak !!! */
916 return -ENOMEM;
917 }
918
919 new_dmi->next = bond->mc_list;
920 bond->mc_list = new_dmi;
921 new_dmi->dmi_addrlen = dmi->dmi_addrlen;
922 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
923 new_dmi->dmi_users = dmi->dmi_users;
924 new_dmi->dmi_gusers = dmi->dmi_gusers;
925 }
926
927 return 0;
928 }
929
930 /*
931 * flush all members of flush->mc_list from device dev->mc_list
932 */
933 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
934 {
935 struct bonding *bond = bond_dev->priv;
936 struct dev_mc_list *dmi;
937
938 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
939 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
940 }
941
942 if (bond->params.mode == BOND_MODE_8023AD) {
943 /* del lacpdu mc addr from mc list */
944 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
945
946 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
947 }
948 }
949
950 /*--------------------------- Active slave change ---------------------------*/
951
952 /*
953 * Update the mc list and multicast-related flags for the new and
954 * old active slaves (if any) according to the multicast mode, and
955 * promiscuous flags unconditionally.
956 */
957 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
958 {
959 struct dev_mc_list *dmi;
960
961 if (!USES_PRIMARY(bond->params.mode)) {
962 /* nothing to do - mc list is already up-to-date on
963 * all slaves
964 */
965 return;
966 }
967
968 if (old_active) {
969 if (bond->dev->flags & IFF_PROMISC) {
970 dev_set_promiscuity(old_active->dev, -1);
971 }
972
973 if (bond->dev->flags & IFF_ALLMULTI) {
974 dev_set_allmulti(old_active->dev, -1);
975 }
976
977 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
978 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
979 }
980 }
981
982 if (new_active) {
983 if (bond->dev->flags & IFF_PROMISC) {
984 dev_set_promiscuity(new_active->dev, 1);
985 }
986
987 if (bond->dev->flags & IFF_ALLMULTI) {
988 dev_set_allmulti(new_active->dev, 1);
989 }
990
991 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
992 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
993 }
994 bond_resend_igmp_join_requests(bond);
995 }
996 }
997
998 /**
999 * find_best_interface - select the best available slave to be the active one
1000 * @bond: our bonding struct
1001 *
1002 * Warning: Caller must hold curr_slave_lock for writing.
1003 */
1004 static struct slave *bond_find_best_slave(struct bonding *bond)
1005 {
1006 struct slave *new_active, *old_active;
1007 struct slave *bestslave = NULL;
1008 int mintime = bond->params.updelay;
1009 int i;
1010
1011 new_active = old_active = bond->curr_active_slave;
1012
1013 if (!new_active) { /* there were no active slaves left */
1014 if (bond->slave_cnt > 0) { /* found one slave */
1015 new_active = bond->first_slave;
1016 } else {
1017 return NULL; /* still no slave, return NULL */
1018 }
1019 }
1020
1021 /* first try the primary link; if arping, a link must tx/rx traffic
1022 * before it can be considered the curr_active_slave - also, we would skip
1023 * slaves between the curr_active_slave and primary_slave that may be up
1024 * and able to arp
1025 */
1026 if ((bond->primary_slave) &&
1027 (!bond->params.arp_interval) &&
1028 (IS_UP(bond->primary_slave->dev))) {
1029 new_active = bond->primary_slave;
1030 }
1031
1032 /* remember where to stop iterating over the slaves */
1033 old_active = new_active;
1034
1035 bond_for_each_slave_from(bond, new_active, i, old_active) {
1036 if (IS_UP(new_active->dev)) {
1037 if (new_active->link == BOND_LINK_UP) {
1038 return new_active;
1039 } else if (new_active->link == BOND_LINK_BACK) {
1040 /* link up, but waiting for stabilization */
1041 if (new_active->delay < mintime) {
1042 mintime = new_active->delay;
1043 bestslave = new_active;
1044 }
1045 }
1046 }
1047 }
1048
1049 return bestslave;
1050 }
1051
1052 /**
1053 * change_active_interface - change the active slave into the specified one
1054 * @bond: our bonding struct
1055 * @new: the new slave to make the active one
1056 *
1057 * Set the new slave to the bond's settings and unset them on the old
1058 * curr_active_slave.
1059 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1060 *
1061 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1062 * because it is apparently the best available slave we have, even though its
1063 * updelay hasn't timed out yet.
1064 *
1065 * Warning: Caller must hold curr_slave_lock for writing.
1066 */
1067 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1068 {
1069 struct slave *old_active = bond->curr_active_slave;
1070
1071 if (old_active == new_active) {
1072 return;
1073 }
1074
1075 if (new_active) {
1076 if (new_active->link == BOND_LINK_BACK) {
1077 if (USES_PRIMARY(bond->params.mode)) {
1078 printk(KERN_INFO DRV_NAME
1079 ": %s: making interface %s the new "
1080 "active one %d ms earlier.\n",
1081 bond->dev->name, new_active->dev->name,
1082 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1083 }
1084
1085 new_active->delay = 0;
1086 new_active->link = BOND_LINK_UP;
1087 new_active->jiffies = jiffies;
1088
1089 if (bond->params.mode == BOND_MODE_8023AD) {
1090 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1091 }
1092
1093 if ((bond->params.mode == BOND_MODE_TLB) ||
1094 (bond->params.mode == BOND_MODE_ALB)) {
1095 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1096 }
1097 } else {
1098 if (USES_PRIMARY(bond->params.mode)) {
1099 printk(KERN_INFO DRV_NAME
1100 ": %s: making interface %s the new "
1101 "active one.\n",
1102 bond->dev->name, new_active->dev->name);
1103 }
1104 }
1105 }
1106
1107 if (USES_PRIMARY(bond->params.mode)) {
1108 bond_mc_swap(bond, new_active, old_active);
1109 }
1110
1111 if ((bond->params.mode == BOND_MODE_TLB) ||
1112 (bond->params.mode == BOND_MODE_ALB)) {
1113 bond_alb_handle_active_change(bond, new_active);
1114 if (old_active)
1115 bond_set_slave_inactive_flags(old_active);
1116 if (new_active)
1117 bond_set_slave_active_flags(new_active);
1118 } else {
1119 bond->curr_active_slave = new_active;
1120 }
1121
1122 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1123 if (old_active) {
1124 bond_set_slave_inactive_flags(old_active);
1125 }
1126
1127 if (new_active) {
1128 bond_set_slave_active_flags(new_active);
1129 }
1130 bond_send_gratuitous_arp(bond);
1131 }
1132 }
1133
1134 /**
1135 * bond_select_active_slave - select a new active slave, if needed
1136 * @bond: our bonding struct
1137 *
1138 * This functions shoud be called when one of the following occurs:
1139 * - The old curr_active_slave has been released or lost its link.
1140 * - The primary_slave has got its link back.
1141 * - A slave has got its link back and there's no old curr_active_slave.
1142 *
1143 * Warning: Caller must hold curr_slave_lock for writing.
1144 */
1145 void bond_select_active_slave(struct bonding *bond)
1146 {
1147 struct slave *best_slave;
1148 int rv;
1149
1150 best_slave = bond_find_best_slave(bond);
1151 if (best_slave != bond->curr_active_slave) {
1152 bond_change_active_slave(bond, best_slave);
1153 rv = bond_set_carrier(bond);
1154 if (!rv)
1155 return;
1156
1157 if (netif_carrier_ok(bond->dev)) {
1158 printk(KERN_INFO DRV_NAME
1159 ": %s: first active interface up!\n",
1160 bond->dev->name);
1161 } else {
1162 printk(KERN_INFO DRV_NAME ": %s: "
1163 "now running without any active interface !\n",
1164 bond->dev->name);
1165 }
1166 }
1167 }
1168
1169 /*--------------------------- slave list handling ---------------------------*/
1170
1171 /*
1172 * This function attaches the slave to the end of list.
1173 *
1174 * bond->lock held for writing by caller.
1175 */
1176 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1177 {
1178 if (bond->first_slave == NULL) { /* attaching the first slave */
1179 new_slave->next = new_slave;
1180 new_slave->prev = new_slave;
1181 bond->first_slave = new_slave;
1182 } else {
1183 new_slave->next = bond->first_slave;
1184 new_slave->prev = bond->first_slave->prev;
1185 new_slave->next->prev = new_slave;
1186 new_slave->prev->next = new_slave;
1187 }
1188
1189 bond->slave_cnt++;
1190 }
1191
1192 /*
1193 * This function detaches the slave from the list.
1194 * WARNING: no check is made to verify if the slave effectively
1195 * belongs to <bond>.
1196 * Nothing is freed on return, structures are just unchained.
1197 * If any slave pointer in bond was pointing to <slave>,
1198 * it should be changed by the calling function.
1199 *
1200 * bond->lock held for writing by caller.
1201 */
1202 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1203 {
1204 if (slave->next) {
1205 slave->next->prev = slave->prev;
1206 }
1207
1208 if (slave->prev) {
1209 slave->prev->next = slave->next;
1210 }
1211
1212 if (bond->first_slave == slave) { /* slave is the first slave */
1213 if (bond->slave_cnt > 1) { /* there are more slave */
1214 bond->first_slave = slave->next;
1215 } else {
1216 bond->first_slave = NULL; /* slave was the last one */
1217 }
1218 }
1219
1220 slave->next = NULL;
1221 slave->prev = NULL;
1222 bond->slave_cnt--;
1223 }
1224
1225 /*---------------------------------- IOCTL ----------------------------------*/
1226
1227 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev)
1228 {
1229 dprintk("bond_dev=%p\n", bond_dev);
1230 dprintk("slave_dev=%p\n", slave_dev);
1231 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1232 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1233 return 0;
1234 }
1235
1236 #define BOND_INTERSECT_FEATURES \
1237 (NETIF_F_SG | NETIF_F_ALL_CSUM | NETIF_F_TSO | NETIF_F_UFO)
1238
1239 /*
1240 * Compute the common dev->feature set available to all slaves. Some
1241 * feature bits are managed elsewhere, so preserve feature bits set on
1242 * master device that are not part of the examined set.
1243 */
1244 static int bond_compute_features(struct bonding *bond)
1245 {
1246 unsigned long features = BOND_INTERSECT_FEATURES;
1247 struct slave *slave;
1248 struct net_device *bond_dev = bond->dev;
1249 unsigned short max_hard_header_len = ETH_HLEN;
1250 int i;
1251
1252 bond_for_each_slave(bond, slave, i) {
1253 features &= (slave->dev->features & BOND_INTERSECT_FEATURES);
1254 if (slave->dev->hard_header_len > max_hard_header_len)
1255 max_hard_header_len = slave->dev->hard_header_len;
1256 }
1257
1258 if ((features & NETIF_F_SG) &&
1259 !(features & NETIF_F_ALL_CSUM))
1260 features &= ~NETIF_F_SG;
1261
1262 /*
1263 * features will include NETIF_F_TSO (NETIF_F_UFO) iff all
1264 * slave devices support NETIF_F_TSO (NETIF_F_UFO), which
1265 * implies that all slaves also support scatter-gather
1266 * (NETIF_F_SG), which implies that features also includes
1267 * NETIF_F_SG. So no need to check whether we have an
1268 * illegal combination of NETIF_F_{TSO,UFO} and
1269 * !NETIF_F_SG
1270 */
1271
1272 features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES);
1273 bond_dev->features = features;
1274 bond_dev->hard_header_len = max_hard_header_len;
1275
1276 return 0;
1277 }
1278
1279 /* enslave device <slave> to bond device <master> */
1280 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1281 {
1282 struct bonding *bond = bond_dev->priv;
1283 struct slave *new_slave = NULL;
1284 struct dev_mc_list *dmi;
1285 struct sockaddr addr;
1286 int link_reporting;
1287 int old_features = bond_dev->features;
1288 int res = 0;
1289
1290 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1291 slave_dev->do_ioctl == NULL) {
1292 printk(KERN_WARNING DRV_NAME
1293 ": %s: Warning: no link monitoring support for %s\n",
1294 bond_dev->name, slave_dev->name);
1295 }
1296
1297 /* bond must be initialized by bond_open() before enslaving */
1298 if (!(bond_dev->flags & IFF_UP)) {
1299 dprintk("Error, master_dev is not up\n");
1300 return -EPERM;
1301 }
1302
1303 /* already enslaved */
1304 if (slave_dev->flags & IFF_SLAVE) {
1305 dprintk("Error, Device was already enslaved\n");
1306 return -EBUSY;
1307 }
1308
1309 /* vlan challenged mutual exclusion */
1310 /* no need to lock since we're protected by rtnl_lock */
1311 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1312 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1313 if (!list_empty(&bond->vlan_list)) {
1314 printk(KERN_ERR DRV_NAME
1315 ": %s: Error: cannot enslave VLAN "
1316 "challenged slave %s on VLAN enabled "
1317 "bond %s\n", bond_dev->name, slave_dev->name,
1318 bond_dev->name);
1319 return -EPERM;
1320 } else {
1321 printk(KERN_WARNING DRV_NAME
1322 ": %s: Warning: enslaved VLAN challenged "
1323 "slave %s. Adding VLANs will be blocked as "
1324 "long as %s is part of bond %s\n",
1325 bond_dev->name, slave_dev->name, slave_dev->name,
1326 bond_dev->name);
1327 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1328 }
1329 } else {
1330 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1331 if (bond->slave_cnt == 0) {
1332 /* First slave, and it is not VLAN challenged,
1333 * so remove the block of adding VLANs over the bond.
1334 */
1335 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1336 }
1337 }
1338
1339 /*
1340 * Old ifenslave binaries are no longer supported. These can
1341 * be identified with moderate accurary by the state of the slave:
1342 * the current ifenslave will set the interface down prior to
1343 * enslaving it; the old ifenslave will not.
1344 */
1345 if ((slave_dev->flags & IFF_UP)) {
1346 printk(KERN_ERR DRV_NAME ": %s is up. "
1347 "This may be due to an out of date ifenslave.\n",
1348 slave_dev->name);
1349 res = -EPERM;
1350 goto err_undo_flags;
1351 }
1352
1353 if (slave_dev->set_mac_address == NULL) {
1354 printk(KERN_ERR DRV_NAME
1355 ": %s: Error: The slave device you specified does "
1356 "not support setting the MAC address. "
1357 "Your kernel likely does not support slave "
1358 "devices.\n", bond_dev->name);
1359 res = -EOPNOTSUPP;
1360 goto err_undo_flags;
1361 }
1362
1363 if (slave_dev->get_stats == NULL) {
1364 printk(KERN_NOTICE DRV_NAME
1365 ": %s: the driver for slave device %s does not provide "
1366 "get_stats function, network statistics will be "
1367 "inaccurate.\n", bond_dev->name, slave_dev->name);
1368 }
1369
1370 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1371 if (!new_slave) {
1372 res = -ENOMEM;
1373 goto err_undo_flags;
1374 }
1375
1376 /* save slave's original flags before calling
1377 * netdev_set_master and dev_open
1378 */
1379 new_slave->original_flags = slave_dev->flags;
1380
1381 /*
1382 * Save slave's original ("permanent") mac address for modes
1383 * that need it, and for restoring it upon release, and then
1384 * set it to the master's address
1385 */
1386 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1387
1388 /*
1389 * Set slave to master's mac address. The application already
1390 * set the master's mac address to that of the first slave
1391 */
1392 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1393 addr.sa_family = slave_dev->type;
1394 res = dev_set_mac_address(slave_dev, &addr);
1395 if (res) {
1396 dprintk("Error %d calling set_mac_address\n", res);
1397 goto err_free;
1398 }
1399
1400 /* open the slave since the application closed it */
1401 res = dev_open(slave_dev);
1402 if (res) {
1403 dprintk("Openning slave %s failed\n", slave_dev->name);
1404 goto err_restore_mac;
1405 }
1406
1407 res = netdev_set_master(slave_dev, bond_dev);
1408 if (res) {
1409 dprintk("Error %d calling netdev_set_master\n", res);
1410 goto err_close;
1411 }
1412
1413 new_slave->dev = slave_dev;
1414 slave_dev->priv_flags |= IFF_BONDING;
1415
1416 if ((bond->params.mode == BOND_MODE_TLB) ||
1417 (bond->params.mode == BOND_MODE_ALB)) {
1418 /* bond_alb_init_slave() must be called before all other stages since
1419 * it might fail and we do not want to have to undo everything
1420 */
1421 res = bond_alb_init_slave(bond, new_slave);
1422 if (res) {
1423 goto err_unset_master;
1424 }
1425 }
1426
1427 /* If the mode USES_PRIMARY, then the new slave gets the
1428 * master's promisc (and mc) settings only if it becomes the
1429 * curr_active_slave, and that is taken care of later when calling
1430 * bond_change_active()
1431 */
1432 if (!USES_PRIMARY(bond->params.mode)) {
1433 /* set promiscuity level to new slave */
1434 if (bond_dev->flags & IFF_PROMISC) {
1435 dev_set_promiscuity(slave_dev, 1);
1436 }
1437
1438 /* set allmulti level to new slave */
1439 if (bond_dev->flags & IFF_ALLMULTI) {
1440 dev_set_allmulti(slave_dev, 1);
1441 }
1442
1443 /* upload master's mc_list to new slave */
1444 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1445 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1446 }
1447 }
1448
1449 if (bond->params.mode == BOND_MODE_8023AD) {
1450 /* add lacpdu mc addr to mc list */
1451 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1452
1453 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1454 }
1455
1456 bond_add_vlans_on_slave(bond, slave_dev);
1457
1458 write_lock_bh(&bond->lock);
1459
1460 bond_attach_slave(bond, new_slave);
1461
1462 new_slave->delay = 0;
1463 new_slave->link_failure_count = 0;
1464
1465 bond_compute_features(bond);
1466
1467 new_slave->last_arp_rx = jiffies;
1468
1469 if (bond->params.miimon && !bond->params.use_carrier) {
1470 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1471
1472 if ((link_reporting == -1) && !bond->params.arp_interval) {
1473 /*
1474 * miimon is set but a bonded network driver
1475 * does not support ETHTOOL/MII and
1476 * arp_interval is not set. Note: if
1477 * use_carrier is enabled, we will never go
1478 * here (because netif_carrier is always
1479 * supported); thus, we don't need to change
1480 * the messages for netif_carrier.
1481 */
1482 printk(KERN_WARNING DRV_NAME
1483 ": %s: Warning: MII and ETHTOOL support not "
1484 "available for interface %s, and "
1485 "arp_interval/arp_ip_target module parameters "
1486 "not specified, thus bonding will not detect "
1487 "link failures! see bonding.txt for details.\n",
1488 bond_dev->name, slave_dev->name);
1489 } else if (link_reporting == -1) {
1490 /* unable get link status using mii/ethtool */
1491 printk(KERN_WARNING DRV_NAME
1492 ": %s: Warning: can't get link status from "
1493 "interface %s; the network driver associated "
1494 "with this interface does not support MII or "
1495 "ETHTOOL link status reporting, thus miimon "
1496 "has no effect on this interface.\n",
1497 bond_dev->name, slave_dev->name);
1498 }
1499 }
1500
1501 /* check for initial state */
1502 if (!bond->params.miimon ||
1503 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1504 if (bond->params.updelay) {
1505 dprintk("Initial state of slave_dev is "
1506 "BOND_LINK_BACK\n");
1507 new_slave->link = BOND_LINK_BACK;
1508 new_slave->delay = bond->params.updelay;
1509 } else {
1510 dprintk("Initial state of slave_dev is "
1511 "BOND_LINK_UP\n");
1512 new_slave->link = BOND_LINK_UP;
1513 }
1514 new_slave->jiffies = jiffies;
1515 } else {
1516 dprintk("Initial state of slave_dev is "
1517 "BOND_LINK_DOWN\n");
1518 new_slave->link = BOND_LINK_DOWN;
1519 }
1520
1521 if (bond_update_speed_duplex(new_slave) &&
1522 (new_slave->link != BOND_LINK_DOWN)) {
1523 printk(KERN_WARNING DRV_NAME
1524 ": %s: Warning: failed to get speed and duplex from %s, "
1525 "assumed to be 100Mb/sec and Full.\n",
1526 bond_dev->name, new_slave->dev->name);
1527
1528 if (bond->params.mode == BOND_MODE_8023AD) {
1529 printk(KERN_WARNING DRV_NAME
1530 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1531 "support in base driver for proper aggregator "
1532 "selection.\n", bond_dev->name);
1533 }
1534 }
1535
1536 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1537 /* if there is a primary slave, remember it */
1538 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1539 bond->primary_slave = new_slave;
1540 }
1541 }
1542
1543 switch (bond->params.mode) {
1544 case BOND_MODE_ACTIVEBACKUP:
1545 bond_set_slave_inactive_flags(new_slave);
1546 bond_select_active_slave(bond);
1547 break;
1548 case BOND_MODE_8023AD:
1549 /* in 802.3ad mode, the internal mechanism
1550 * will activate the slaves in the selected
1551 * aggregator
1552 */
1553 bond_set_slave_inactive_flags(new_slave);
1554 /* if this is the first slave */
1555 if (bond->slave_cnt == 1) {
1556 SLAVE_AD_INFO(new_slave).id = 1;
1557 /* Initialize AD with the number of times that the AD timer is called in 1 second
1558 * can be called only after the mac address of the bond is set
1559 */
1560 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1561 bond->params.lacp_fast);
1562 } else {
1563 SLAVE_AD_INFO(new_slave).id =
1564 SLAVE_AD_INFO(new_slave->prev).id + 1;
1565 }
1566
1567 bond_3ad_bind_slave(new_slave);
1568 break;
1569 case BOND_MODE_TLB:
1570 case BOND_MODE_ALB:
1571 new_slave->state = BOND_STATE_ACTIVE;
1572 if ((!bond->curr_active_slave) &&
1573 (new_slave->link != BOND_LINK_DOWN)) {
1574 /* first slave or no active slave yet, and this link
1575 * is OK, so make this interface the active one
1576 */
1577 bond_change_active_slave(bond, new_slave);
1578 } else {
1579 bond_set_slave_inactive_flags(new_slave);
1580 }
1581 break;
1582 default:
1583 dprintk("This slave is always active in trunk mode\n");
1584
1585 /* always active in trunk mode */
1586 new_slave->state = BOND_STATE_ACTIVE;
1587
1588 /* In trunking mode there is little meaning to curr_active_slave
1589 * anyway (it holds no special properties of the bond device),
1590 * so we can change it without calling change_active_interface()
1591 */
1592 if (!bond->curr_active_slave) {
1593 bond->curr_active_slave = new_slave;
1594 }
1595 break;
1596 } /* switch(bond_mode) */
1597
1598 bond_set_carrier(bond);
1599
1600 write_unlock_bh(&bond->lock);
1601
1602 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1603 if (res)
1604 goto err_unset_master;
1605
1606 printk(KERN_INFO DRV_NAME
1607 ": %s: enslaving %s as a%s interface with a%s link.\n",
1608 bond_dev->name, slave_dev->name,
1609 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1610 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1611
1612 /* enslave is successful */
1613 return 0;
1614
1615 /* Undo stages on error */
1616 err_unset_master:
1617 netdev_set_master(slave_dev, NULL);
1618
1619 err_close:
1620 dev_close(slave_dev);
1621
1622 err_restore_mac:
1623 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1624 addr.sa_family = slave_dev->type;
1625 dev_set_mac_address(slave_dev, &addr);
1626
1627 err_free:
1628 kfree(new_slave);
1629
1630 err_undo_flags:
1631 bond_dev->features = old_features;
1632
1633 return res;
1634 }
1635
1636 /*
1637 * Try to release the slave device <slave> from the bond device <master>
1638 * It is legal to access curr_active_slave without a lock because all the function
1639 * is write-locked.
1640 *
1641 * The rules for slave state should be:
1642 * for Active/Backup:
1643 * Active stays on all backups go down
1644 * for Bonded connections:
1645 * The first up interface should be left on and all others downed.
1646 */
1647 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1648 {
1649 struct bonding *bond = bond_dev->priv;
1650 struct slave *slave, *oldcurrent;
1651 struct sockaddr addr;
1652 int mac_addr_differ;
1653
1654 /* slave is not a slave or master is not master of this slave */
1655 if (!(slave_dev->flags & IFF_SLAVE) ||
1656 (slave_dev->master != bond_dev)) {
1657 printk(KERN_ERR DRV_NAME
1658 ": %s: Error: cannot release %s.\n",
1659 bond_dev->name, slave_dev->name);
1660 return -EINVAL;
1661 }
1662
1663 write_lock_bh(&bond->lock);
1664
1665 slave = bond_get_slave_by_dev(bond, slave_dev);
1666 if (!slave) {
1667 /* not a slave of this bond */
1668 printk(KERN_INFO DRV_NAME
1669 ": %s: %s not enslaved\n",
1670 bond_dev->name, slave_dev->name);
1671 write_unlock_bh(&bond->lock);
1672 return -EINVAL;
1673 }
1674
1675 mac_addr_differ = memcmp(bond_dev->dev_addr,
1676 slave->perm_hwaddr,
1677 ETH_ALEN);
1678 if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1679 printk(KERN_WARNING DRV_NAME
1680 ": %s: Warning: the permanent HWaddr of %s "
1681 "- %02X:%02X:%02X:%02X:%02X:%02X - is "
1682 "still in use by %s. Set the HWaddr of "
1683 "%s to a different address to avoid "
1684 "conflicts.\n",
1685 bond_dev->name,
1686 slave_dev->name,
1687 slave->perm_hwaddr[0],
1688 slave->perm_hwaddr[1],
1689 slave->perm_hwaddr[2],
1690 slave->perm_hwaddr[3],
1691 slave->perm_hwaddr[4],
1692 slave->perm_hwaddr[5],
1693 bond_dev->name,
1694 slave_dev->name);
1695 }
1696
1697 /* Inform AD package of unbinding of slave. */
1698 if (bond->params.mode == BOND_MODE_8023AD) {
1699 /* must be called before the slave is
1700 * detached from the list
1701 */
1702 bond_3ad_unbind_slave(slave);
1703 }
1704
1705 printk(KERN_INFO DRV_NAME
1706 ": %s: releasing %s interface %s\n",
1707 bond_dev->name,
1708 (slave->state == BOND_STATE_ACTIVE)
1709 ? "active" : "backup",
1710 slave_dev->name);
1711
1712 oldcurrent = bond->curr_active_slave;
1713
1714 bond->current_arp_slave = NULL;
1715
1716 /* release the slave from its bond */
1717 bond_detach_slave(bond, slave);
1718
1719 bond_compute_features(bond);
1720
1721 if (bond->primary_slave == slave) {
1722 bond->primary_slave = NULL;
1723 }
1724
1725 if (oldcurrent == slave) {
1726 bond_change_active_slave(bond, NULL);
1727 }
1728
1729 if ((bond->params.mode == BOND_MODE_TLB) ||
1730 (bond->params.mode == BOND_MODE_ALB)) {
1731 /* Must be called only after the slave has been
1732 * detached from the list and the curr_active_slave
1733 * has been cleared (if our_slave == old_current),
1734 * but before a new active slave is selected.
1735 */
1736 bond_alb_deinit_slave(bond, slave);
1737 }
1738
1739 if (oldcurrent == slave)
1740 bond_select_active_slave(bond);
1741
1742 if (bond->slave_cnt == 0) {
1743 bond_set_carrier(bond);
1744
1745 /* if the last slave was removed, zero the mac address
1746 * of the master so it will be set by the application
1747 * to the mac address of the first slave
1748 */
1749 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1750
1751 if (list_empty(&bond->vlan_list)) {
1752 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1753 } else {
1754 printk(KERN_WARNING DRV_NAME
1755 ": %s: Warning: clearing HW address of %s while it "
1756 "still has VLANs.\n",
1757 bond_dev->name, bond_dev->name);
1758 printk(KERN_WARNING DRV_NAME
1759 ": %s: When re-adding slaves, make sure the bond's "
1760 "HW address matches its VLANs'.\n",
1761 bond_dev->name);
1762 }
1763 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1764 !bond_has_challenged_slaves(bond)) {
1765 printk(KERN_INFO DRV_NAME
1766 ": %s: last VLAN challenged slave %s "
1767 "left bond %s. VLAN blocking is removed\n",
1768 bond_dev->name, slave_dev->name, bond_dev->name);
1769 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1770 }
1771
1772 write_unlock_bh(&bond->lock);
1773
1774 /* must do this from outside any spinlocks */
1775 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1776
1777 bond_del_vlans_from_slave(bond, slave_dev);
1778
1779 /* If the mode USES_PRIMARY, then we should only remove its
1780 * promisc and mc settings if it was the curr_active_slave, but that was
1781 * already taken care of above when we detached the slave
1782 */
1783 if (!USES_PRIMARY(bond->params.mode)) {
1784 /* unset promiscuity level from slave */
1785 if (bond_dev->flags & IFF_PROMISC) {
1786 dev_set_promiscuity(slave_dev, -1);
1787 }
1788
1789 /* unset allmulti level from slave */
1790 if (bond_dev->flags & IFF_ALLMULTI) {
1791 dev_set_allmulti(slave_dev, -1);
1792 }
1793
1794 /* flush master's mc_list from slave */
1795 bond_mc_list_flush(bond_dev, slave_dev);
1796 }
1797
1798 netdev_set_master(slave_dev, NULL);
1799
1800 /* close slave before restoring its mac address */
1801 dev_close(slave_dev);
1802
1803 /* restore original ("permanent") mac address */
1804 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1805 addr.sa_family = slave_dev->type;
1806 dev_set_mac_address(slave_dev, &addr);
1807
1808 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1809 IFF_SLAVE_INACTIVE | IFF_BONDING |
1810 IFF_SLAVE_NEEDARP);
1811
1812 kfree(slave);
1813
1814 return 0; /* deletion OK */
1815 }
1816
1817 /*
1818 * This function releases all slaves.
1819 */
1820 static int bond_release_all(struct net_device *bond_dev)
1821 {
1822 struct bonding *bond = bond_dev->priv;
1823 struct slave *slave;
1824 struct net_device *slave_dev;
1825 struct sockaddr addr;
1826
1827 write_lock_bh(&bond->lock);
1828
1829 netif_carrier_off(bond_dev);
1830
1831 if (bond->slave_cnt == 0) {
1832 goto out;
1833 }
1834
1835 bond->current_arp_slave = NULL;
1836 bond->primary_slave = NULL;
1837 bond_change_active_slave(bond, NULL);
1838
1839 while ((slave = bond->first_slave) != NULL) {
1840 /* Inform AD package of unbinding of slave
1841 * before slave is detached from the list.
1842 */
1843 if (bond->params.mode == BOND_MODE_8023AD) {
1844 bond_3ad_unbind_slave(slave);
1845 }
1846
1847 slave_dev = slave->dev;
1848 bond_detach_slave(bond, slave);
1849
1850 if ((bond->params.mode == BOND_MODE_TLB) ||
1851 (bond->params.mode == BOND_MODE_ALB)) {
1852 /* must be called only after the slave
1853 * has been detached from the list
1854 */
1855 bond_alb_deinit_slave(bond, slave);
1856 }
1857
1858 bond_compute_features(bond);
1859
1860 /* now that the slave is detached, unlock and perform
1861 * all the undo steps that should not be called from
1862 * within a lock.
1863 */
1864 write_unlock_bh(&bond->lock);
1865
1866 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1867 bond_del_vlans_from_slave(bond, slave_dev);
1868
1869 /* If the mode USES_PRIMARY, then we should only remove its
1870 * promisc and mc settings if it was the curr_active_slave, but that was
1871 * already taken care of above when we detached the slave
1872 */
1873 if (!USES_PRIMARY(bond->params.mode)) {
1874 /* unset promiscuity level from slave */
1875 if (bond_dev->flags & IFF_PROMISC) {
1876 dev_set_promiscuity(slave_dev, -1);
1877 }
1878
1879 /* unset allmulti level from slave */
1880 if (bond_dev->flags & IFF_ALLMULTI) {
1881 dev_set_allmulti(slave_dev, -1);
1882 }
1883
1884 /* flush master's mc_list from slave */
1885 bond_mc_list_flush(bond_dev, slave_dev);
1886 }
1887
1888 netdev_set_master(slave_dev, NULL);
1889
1890 /* close slave before restoring its mac address */
1891 dev_close(slave_dev);
1892
1893 /* restore original ("permanent") mac address*/
1894 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1895 addr.sa_family = slave_dev->type;
1896 dev_set_mac_address(slave_dev, &addr);
1897
1898 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1899 IFF_SLAVE_INACTIVE);
1900
1901 kfree(slave);
1902
1903 /* re-acquire the lock before getting the next slave */
1904 write_lock_bh(&bond->lock);
1905 }
1906
1907 /* zero the mac address of the master so it will be
1908 * set by the application to the mac address of the
1909 * first slave
1910 */
1911 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1912
1913 if (list_empty(&bond->vlan_list)) {
1914 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1915 } else {
1916 printk(KERN_WARNING DRV_NAME
1917 ": %s: Warning: clearing HW address of %s while it "
1918 "still has VLANs.\n",
1919 bond_dev->name, bond_dev->name);
1920 printk(KERN_WARNING DRV_NAME
1921 ": %s: When re-adding slaves, make sure the bond's "
1922 "HW address matches its VLANs'.\n",
1923 bond_dev->name);
1924 }
1925
1926 printk(KERN_INFO DRV_NAME
1927 ": %s: released all slaves\n",
1928 bond_dev->name);
1929
1930 out:
1931 write_unlock_bh(&bond->lock);
1932
1933 return 0;
1934 }
1935
1936 /*
1937 * This function changes the active slave to slave <slave_dev>.
1938 * It returns -EINVAL in the following cases.
1939 * - <slave_dev> is not found in the list.
1940 * - There is not active slave now.
1941 * - <slave_dev> is already active.
1942 * - The link state of <slave_dev> is not BOND_LINK_UP.
1943 * - <slave_dev> is not running.
1944 * In these cases, this fuction does nothing.
1945 * In the other cases, currnt_slave pointer is changed and 0 is returned.
1946 */
1947 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1948 {
1949 struct bonding *bond = bond_dev->priv;
1950 struct slave *old_active = NULL;
1951 struct slave *new_active = NULL;
1952 int res = 0;
1953
1954 if (!USES_PRIMARY(bond->params.mode)) {
1955 return -EINVAL;
1956 }
1957
1958 /* Verify that master_dev is indeed the master of slave_dev */
1959 if (!(slave_dev->flags & IFF_SLAVE) ||
1960 (slave_dev->master != bond_dev)) {
1961 return -EINVAL;
1962 }
1963
1964 write_lock_bh(&bond->lock);
1965
1966 old_active = bond->curr_active_slave;
1967 new_active = bond_get_slave_by_dev(bond, slave_dev);
1968
1969 /*
1970 * Changing to the current active: do nothing; return success.
1971 */
1972 if (new_active && (new_active == old_active)) {
1973 write_unlock_bh(&bond->lock);
1974 return 0;
1975 }
1976
1977 if ((new_active) &&
1978 (old_active) &&
1979 (new_active->link == BOND_LINK_UP) &&
1980 IS_UP(new_active->dev)) {
1981 bond_change_active_slave(bond, new_active);
1982 } else {
1983 res = -EINVAL;
1984 }
1985
1986 write_unlock_bh(&bond->lock);
1987
1988 return res;
1989 }
1990
1991 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1992 {
1993 struct bonding *bond = bond_dev->priv;
1994
1995 info->bond_mode = bond->params.mode;
1996 info->miimon = bond->params.miimon;
1997
1998 read_lock_bh(&bond->lock);
1999 info->num_slaves = bond->slave_cnt;
2000 read_unlock_bh(&bond->lock);
2001
2002 return 0;
2003 }
2004
2005 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2006 {
2007 struct bonding *bond = bond_dev->priv;
2008 struct slave *slave;
2009 int i, found = 0;
2010
2011 if (info->slave_id < 0) {
2012 return -ENODEV;
2013 }
2014
2015 read_lock_bh(&bond->lock);
2016
2017 bond_for_each_slave(bond, slave, i) {
2018 if (i == (int)info->slave_id) {
2019 found = 1;
2020 break;
2021 }
2022 }
2023
2024 read_unlock_bh(&bond->lock);
2025
2026 if (found) {
2027 strcpy(info->slave_name, slave->dev->name);
2028 info->link = slave->link;
2029 info->state = slave->state;
2030 info->link_failure_count = slave->link_failure_count;
2031 } else {
2032 return -ENODEV;
2033 }
2034
2035 return 0;
2036 }
2037
2038 /*-------------------------------- Monitoring -------------------------------*/
2039
2040 /* this function is called regularly to monitor each slave's link. */
2041 void bond_mii_monitor(struct net_device *bond_dev)
2042 {
2043 struct bonding *bond = bond_dev->priv;
2044 struct slave *slave, *oldcurrent;
2045 int do_failover = 0;
2046 int delta_in_ticks;
2047 int i;
2048
2049 read_lock(&bond->lock);
2050
2051 delta_in_ticks = (bond->params.miimon * HZ) / 1000;
2052
2053 if (bond->kill_timers) {
2054 goto out;
2055 }
2056
2057 if (bond->slave_cnt == 0) {
2058 goto re_arm;
2059 }
2060
2061 /* we will try to read the link status of each of our slaves, and
2062 * set their IFF_RUNNING flag appropriately. For each slave not
2063 * supporting MII status, we won't do anything so that a user-space
2064 * program could monitor the link itself if needed.
2065 */
2066
2067 read_lock(&bond->curr_slave_lock);
2068 oldcurrent = bond->curr_active_slave;
2069 read_unlock(&bond->curr_slave_lock);
2070
2071 bond_for_each_slave(bond, slave, i) {
2072 struct net_device *slave_dev = slave->dev;
2073 int link_state;
2074 u16 old_speed = slave->speed;
2075 u8 old_duplex = slave->duplex;
2076
2077 link_state = bond_check_dev_link(bond, slave_dev, 0);
2078
2079 switch (slave->link) {
2080 case BOND_LINK_UP: /* the link was up */
2081 if (link_state == BMSR_LSTATUS) {
2082 /* link stays up, nothing more to do */
2083 break;
2084 } else { /* link going down */
2085 slave->link = BOND_LINK_FAIL;
2086 slave->delay = bond->params.downdelay;
2087
2088 if (slave->link_failure_count < UINT_MAX) {
2089 slave->link_failure_count++;
2090 }
2091
2092 if (bond->params.downdelay) {
2093 printk(KERN_INFO DRV_NAME
2094 ": %s: link status down for %s "
2095 "interface %s, disabling it in "
2096 "%d ms.\n",
2097 bond_dev->name,
2098 IS_UP(slave_dev)
2099 ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2100 ? ((slave == oldcurrent)
2101 ? "active " : "backup ")
2102 : "")
2103 : "idle ",
2104 slave_dev->name,
2105 bond->params.downdelay * bond->params.miimon);
2106 }
2107 }
2108 /* no break ! fall through the BOND_LINK_FAIL test to
2109 ensure proper action to be taken
2110 */
2111 case BOND_LINK_FAIL: /* the link has just gone down */
2112 if (link_state != BMSR_LSTATUS) {
2113 /* link stays down */
2114 if (slave->delay <= 0) {
2115 /* link down for too long time */
2116 slave->link = BOND_LINK_DOWN;
2117
2118 /* in active/backup mode, we must
2119 * completely disable this interface
2120 */
2121 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2122 (bond->params.mode == BOND_MODE_8023AD)) {
2123 bond_set_slave_inactive_flags(slave);
2124 }
2125
2126 printk(KERN_INFO DRV_NAME
2127 ": %s: link status definitely "
2128 "down for interface %s, "
2129 "disabling it\n",
2130 bond_dev->name,
2131 slave_dev->name);
2132
2133 /* notify ad that the link status has changed */
2134 if (bond->params.mode == BOND_MODE_8023AD) {
2135 bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2136 }
2137
2138 if ((bond->params.mode == BOND_MODE_TLB) ||
2139 (bond->params.mode == BOND_MODE_ALB)) {
2140 bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2141 }
2142
2143 if (slave == oldcurrent) {
2144 do_failover = 1;
2145 }
2146 } else {
2147 slave->delay--;
2148 }
2149 } else {
2150 /* link up again */
2151 slave->link = BOND_LINK_UP;
2152 slave->jiffies = jiffies;
2153 printk(KERN_INFO DRV_NAME
2154 ": %s: link status up again after %d "
2155 "ms for interface %s.\n",
2156 bond_dev->name,
2157 (bond->params.downdelay - slave->delay) * bond->params.miimon,
2158 slave_dev->name);
2159 }
2160 break;
2161 case BOND_LINK_DOWN: /* the link was down */
2162 if (link_state != BMSR_LSTATUS) {
2163 /* the link stays down, nothing more to do */
2164 break;
2165 } else { /* link going up */
2166 slave->link = BOND_LINK_BACK;
2167 slave->delay = bond->params.updelay;
2168
2169 if (bond->params.updelay) {
2170 /* if updelay == 0, no need to
2171 advertise about a 0 ms delay */
2172 printk(KERN_INFO DRV_NAME
2173 ": %s: link status up for "
2174 "interface %s, enabling it "
2175 "in %d ms.\n",
2176 bond_dev->name,
2177 slave_dev->name,
2178 bond->params.updelay * bond->params.miimon);
2179 }
2180 }
2181 /* no break ! fall through the BOND_LINK_BACK state in
2182 case there's something to do.
2183 */
2184 case BOND_LINK_BACK: /* the link has just come back */
2185 if (link_state != BMSR_LSTATUS) {
2186 /* link down again */
2187 slave->link = BOND_LINK_DOWN;
2188
2189 printk(KERN_INFO DRV_NAME
2190 ": %s: link status down again after %d "
2191 "ms for interface %s.\n",
2192 bond_dev->name,
2193 (bond->params.updelay - slave->delay) * bond->params.miimon,
2194 slave_dev->name);
2195 } else {
2196 /* link stays up */
2197 if (slave->delay == 0) {
2198 /* now the link has been up for long time enough */
2199 slave->link = BOND_LINK_UP;
2200 slave->jiffies = jiffies;
2201
2202 if (bond->params.mode == BOND_MODE_8023AD) {
2203 /* prevent it from being the active one */
2204 slave->state = BOND_STATE_BACKUP;
2205 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2206 /* make it immediately active */
2207 slave->state = BOND_STATE_ACTIVE;
2208 } else if (slave != bond->primary_slave) {
2209 /* prevent it from being the active one */
2210 slave->state = BOND_STATE_BACKUP;
2211 }
2212
2213 printk(KERN_INFO DRV_NAME
2214 ": %s: link status definitely "
2215 "up for interface %s.\n",
2216 bond_dev->name,
2217 slave_dev->name);
2218
2219 /* notify ad that the link status has changed */
2220 if (bond->params.mode == BOND_MODE_8023AD) {
2221 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2222 }
2223
2224 if ((bond->params.mode == BOND_MODE_TLB) ||
2225 (bond->params.mode == BOND_MODE_ALB)) {
2226 bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2227 }
2228
2229 if ((!oldcurrent) ||
2230 (slave == bond->primary_slave)) {
2231 do_failover = 1;
2232 }
2233 } else {
2234 slave->delay--;
2235 }
2236 }
2237 break;
2238 default:
2239 /* Should not happen */
2240 printk(KERN_ERR DRV_NAME
2241 ": %s: Error: %s Illegal value (link=%d)\n",
2242 bond_dev->name,
2243 slave->dev->name,
2244 slave->link);
2245 goto out;
2246 } /* end of switch (slave->link) */
2247
2248 bond_update_speed_duplex(slave);
2249
2250 if (bond->params.mode == BOND_MODE_8023AD) {
2251 if (old_speed != slave->speed) {
2252 bond_3ad_adapter_speed_changed(slave);
2253 }
2254
2255 if (old_duplex != slave->duplex) {
2256 bond_3ad_adapter_duplex_changed(slave);
2257 }
2258 }
2259
2260 } /* end of for */
2261
2262 if (do_failover) {
2263 write_lock(&bond->curr_slave_lock);
2264
2265 bond_select_active_slave(bond);
2266
2267 write_unlock(&bond->curr_slave_lock);
2268 } else
2269 bond_set_carrier(bond);
2270
2271 re_arm:
2272 if (bond->params.miimon) {
2273 mod_timer(&bond->mii_timer, jiffies + delta_in_ticks);
2274 }
2275 out:
2276 read_unlock(&bond->lock);
2277 }
2278
2279
2280 static u32 bond_glean_dev_ip(struct net_device *dev)
2281 {
2282 struct in_device *idev;
2283 struct in_ifaddr *ifa;
2284 __be32 addr = 0;
2285
2286 if (!dev)
2287 return 0;
2288
2289 rcu_read_lock();
2290 idev = __in_dev_get_rcu(dev);
2291 if (!idev)
2292 goto out;
2293
2294 ifa = idev->ifa_list;
2295 if (!ifa)
2296 goto out;
2297
2298 addr = ifa->ifa_local;
2299 out:
2300 rcu_read_unlock();
2301 return addr;
2302 }
2303
2304 static int bond_has_ip(struct bonding *bond)
2305 {
2306 struct vlan_entry *vlan, *vlan_next;
2307
2308 if (bond->master_ip)
2309 return 1;
2310
2311 if (list_empty(&bond->vlan_list))
2312 return 0;
2313
2314 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2315 vlan_list) {
2316 if (vlan->vlan_ip)
2317 return 1;
2318 }
2319
2320 return 0;
2321 }
2322
2323 static int bond_has_this_ip(struct bonding *bond, u32 ip)
2324 {
2325 struct vlan_entry *vlan, *vlan_next;
2326
2327 if (ip == bond->master_ip)
2328 return 1;
2329
2330 if (list_empty(&bond->vlan_list))
2331 return 0;
2332
2333 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2334 vlan_list) {
2335 if (ip == vlan->vlan_ip)
2336 return 1;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /*
2343 * We go to the (large) trouble of VLAN tagging ARP frames because
2344 * switches in VLAN mode (especially if ports are configured as
2345 * "native" to a VLAN) might not pass non-tagged frames.
2346 */
2347 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id)
2348 {
2349 struct sk_buff *skb;
2350
2351 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2352 slave_dev->name, dest_ip, src_ip, vlan_id);
2353
2354 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2355 NULL, slave_dev->dev_addr, NULL);
2356
2357 if (!skb) {
2358 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2359 return;
2360 }
2361 if (vlan_id) {
2362 skb = vlan_put_tag(skb, vlan_id);
2363 if (!skb) {
2364 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2365 return;
2366 }
2367 }
2368 arp_xmit(skb);
2369 }
2370
2371
2372 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2373 {
2374 int i, vlan_id, rv;
2375 u32 *targets = bond->params.arp_targets;
2376 struct vlan_entry *vlan, *vlan_next;
2377 struct net_device *vlan_dev;
2378 struct flowi fl;
2379 struct rtable *rt;
2380
2381 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2382 if (!targets[i])
2383 continue;
2384 dprintk("basa: target %x\n", targets[i]);
2385 if (list_empty(&bond->vlan_list)) {
2386 dprintk("basa: empty vlan: arp_send\n");
2387 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2388 bond->master_ip, 0);
2389 continue;
2390 }
2391
2392 /*
2393 * If VLANs are configured, we do a route lookup to
2394 * determine which VLAN interface would be used, so we
2395 * can tag the ARP with the proper VLAN tag.
2396 */
2397 memset(&fl, 0, sizeof(fl));
2398 fl.fl4_dst = targets[i];
2399 fl.fl4_tos = RTO_ONLINK;
2400
2401 rv = ip_route_output_key(&rt, &fl);
2402 if (rv) {
2403 if (net_ratelimit()) {
2404 printk(KERN_WARNING DRV_NAME
2405 ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2406 bond->dev->name, NIPQUAD(fl.fl4_dst));
2407 }
2408 continue;
2409 }
2410
2411 /*
2412 * This target is not on a VLAN
2413 */
2414 if (rt->u.dst.dev == bond->dev) {
2415 ip_rt_put(rt);
2416 dprintk("basa: rtdev == bond->dev: arp_send\n");
2417 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2418 bond->master_ip, 0);
2419 continue;
2420 }
2421
2422 vlan_id = 0;
2423 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2424 vlan_list) {
2425 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2426 if (vlan_dev == rt->u.dst.dev) {
2427 vlan_id = vlan->vlan_id;
2428 dprintk("basa: vlan match on %s %d\n",
2429 vlan_dev->name, vlan_id);
2430 break;
2431 }
2432 }
2433
2434 if (vlan_id) {
2435 ip_rt_put(rt);
2436 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2437 vlan->vlan_ip, vlan_id);
2438 continue;
2439 }
2440
2441 if (net_ratelimit()) {
2442 printk(KERN_WARNING DRV_NAME
2443 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2444 bond->dev->name, NIPQUAD(fl.fl4_dst),
2445 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2446 }
2447 ip_rt_put(rt);
2448 }
2449 }
2450
2451 /*
2452 * Kick out a gratuitous ARP for an IP on the bonding master plus one
2453 * for each VLAN above us.
2454 */
2455 static void bond_send_gratuitous_arp(struct bonding *bond)
2456 {
2457 struct slave *slave = bond->curr_active_slave;
2458 struct vlan_entry *vlan;
2459 struct net_device *vlan_dev;
2460
2461 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2462 slave ? slave->dev->name : "NULL");
2463 if (!slave)
2464 return;
2465
2466 if (bond->master_ip) {
2467 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2468 bond->master_ip, 0);
2469 }
2470
2471 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2472 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2473 if (vlan->vlan_ip) {
2474 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2475 vlan->vlan_ip, vlan->vlan_id);
2476 }
2477 }
2478 }
2479
2480 static void bond_validate_arp(struct bonding *bond, struct slave *slave, u32 sip, u32 tip)
2481 {
2482 int i;
2483 u32 *targets = bond->params.arp_targets;
2484
2485 targets = bond->params.arp_targets;
2486 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2487 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2488 "%u.%u.%u.%u bhti(tip) %d\n",
2489 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2490 bond_has_this_ip(bond, tip));
2491 if (sip == targets[i]) {
2492 if (bond_has_this_ip(bond, tip))
2493 slave->last_arp_rx = jiffies;
2494 return;
2495 }
2496 }
2497 }
2498
2499 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2500 {
2501 struct arphdr *arp;
2502 struct slave *slave;
2503 struct bonding *bond;
2504 unsigned char *arp_ptr;
2505 u32 sip, tip;
2506
2507 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2508 goto out;
2509
2510 bond = dev->priv;
2511 read_lock(&bond->lock);
2512
2513 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2514 bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2515 orig_dev ? orig_dev->name : "NULL");
2516
2517 slave = bond_get_slave_by_dev(bond, orig_dev);
2518 if (!slave || !slave_do_arp_validate(bond, slave))
2519 goto out_unlock;
2520
2521 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
2522 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
2523 (2 * dev->addr_len) +
2524 (2 * sizeof(u32)))))
2525 goto out_unlock;
2526
2527 arp = arp_hdr(skb);
2528 if (arp->ar_hln != dev->addr_len ||
2529 skb->pkt_type == PACKET_OTHERHOST ||
2530 skb->pkt_type == PACKET_LOOPBACK ||
2531 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2532 arp->ar_pro != htons(ETH_P_IP) ||
2533 arp->ar_pln != 4)
2534 goto out_unlock;
2535
2536 arp_ptr = (unsigned char *)(arp + 1);
2537 arp_ptr += dev->addr_len;
2538 memcpy(&sip, arp_ptr, 4);
2539 arp_ptr += 4 + dev->addr_len;
2540 memcpy(&tip, arp_ptr, 4);
2541
2542 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2543 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2544 slave->state, bond->params.arp_validate,
2545 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2546
2547 /*
2548 * Backup slaves won't see the ARP reply, but do come through
2549 * here for each ARP probe (so we swap the sip/tip to validate
2550 * the probe). In a "redundant switch, common router" type of
2551 * configuration, the ARP probe will (hopefully) travel from
2552 * the active, through one switch, the router, then the other
2553 * switch before reaching the backup.
2554 */
2555 if (slave->state == BOND_STATE_ACTIVE)
2556 bond_validate_arp(bond, slave, sip, tip);
2557 else
2558 bond_validate_arp(bond, slave, tip, sip);
2559
2560 out_unlock:
2561 read_unlock(&bond->lock);
2562 out:
2563 dev_kfree_skb(skb);
2564 return NET_RX_SUCCESS;
2565 }
2566
2567 /*
2568 * this function is called regularly to monitor each slave's link
2569 * ensuring that traffic is being sent and received when arp monitoring
2570 * is used in load-balancing mode. if the adapter has been dormant, then an
2571 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2572 * arp monitoring in active backup mode.
2573 */
2574 void bond_loadbalance_arp_mon(struct net_device *bond_dev)
2575 {
2576 struct bonding *bond = bond_dev->priv;
2577 struct slave *slave, *oldcurrent;
2578 int do_failover = 0;
2579 int delta_in_ticks;
2580 int i;
2581
2582 read_lock(&bond->lock);
2583
2584 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2585
2586 if (bond->kill_timers) {
2587 goto out;
2588 }
2589
2590 if (bond->slave_cnt == 0) {
2591 goto re_arm;
2592 }
2593
2594 read_lock(&bond->curr_slave_lock);
2595 oldcurrent = bond->curr_active_slave;
2596 read_unlock(&bond->curr_slave_lock);
2597
2598 /* see if any of the previous devices are up now (i.e. they have
2599 * xmt and rcv traffic). the curr_active_slave does not come into
2600 * the picture unless it is null. also, slave->jiffies is not needed
2601 * here because we send an arp on each slave and give a slave as
2602 * long as it needs to get the tx/rx within the delta.
2603 * TODO: what about up/down delay in arp mode? it wasn't here before
2604 * so it can wait
2605 */
2606 bond_for_each_slave(bond, slave, i) {
2607 if (slave->link != BOND_LINK_UP) {
2608 if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2609 ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2610
2611 slave->link = BOND_LINK_UP;
2612 slave->state = BOND_STATE_ACTIVE;
2613
2614 /* primary_slave has no meaning in round-robin
2615 * mode. the window of a slave being up and
2616 * curr_active_slave being null after enslaving
2617 * is closed.
2618 */
2619 if (!oldcurrent) {
2620 printk(KERN_INFO DRV_NAME
2621 ": %s: link status definitely "
2622 "up for interface %s, ",
2623 bond_dev->name,
2624 slave->dev->name);
2625 do_failover = 1;
2626 } else {
2627 printk(KERN_INFO DRV_NAME
2628 ": %s: interface %s is now up\n",
2629 bond_dev->name,
2630 slave->dev->name);
2631 }
2632 }
2633 } else {
2634 /* slave->link == BOND_LINK_UP */
2635
2636 /* not all switches will respond to an arp request
2637 * when the source ip is 0, so don't take the link down
2638 * if we don't know our ip yet
2639 */
2640 if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2641 (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2642 bond_has_ip(bond))) {
2643
2644 slave->link = BOND_LINK_DOWN;
2645 slave->state = BOND_STATE_BACKUP;
2646
2647 if (slave->link_failure_count < UINT_MAX) {
2648 slave->link_failure_count++;
2649 }
2650
2651 printk(KERN_INFO DRV_NAME
2652 ": %s: interface %s is now down.\n",
2653 bond_dev->name,
2654 slave->dev->name);
2655
2656 if (slave == oldcurrent) {
2657 do_failover = 1;
2658 }
2659 }
2660 }
2661
2662 /* note: if switch is in round-robin mode, all links
2663 * must tx arp to ensure all links rx an arp - otherwise
2664 * links may oscillate or not come up at all; if switch is
2665 * in something like xor mode, there is nothing we can
2666 * do - all replies will be rx'ed on same link causing slaves
2667 * to be unstable during low/no traffic periods
2668 */
2669 if (IS_UP(slave->dev)) {
2670 bond_arp_send_all(bond, slave);
2671 }
2672 }
2673
2674 if (do_failover) {
2675 write_lock(&bond->curr_slave_lock);
2676
2677 bond_select_active_slave(bond);
2678
2679 write_unlock(&bond->curr_slave_lock);
2680 }
2681
2682 re_arm:
2683 if (bond->params.arp_interval) {
2684 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2685 }
2686 out:
2687 read_unlock(&bond->lock);
2688 }
2689
2690 /*
2691 * When using arp monitoring in active-backup mode, this function is
2692 * called to determine if any backup slaves have went down or a new
2693 * current slave needs to be found.
2694 * The backup slaves never generate traffic, they are considered up by merely
2695 * receiving traffic. If the current slave goes down, each backup slave will
2696 * be given the opportunity to tx/rx an arp before being taken down - this
2697 * prevents all slaves from being taken down due to the current slave not
2698 * sending any traffic for the backups to receive. The arps are not necessarily
2699 * necessary, any tx and rx traffic will keep the current slave up. While any
2700 * rx traffic will keep the backup slaves up, the current slave is responsible
2701 * for generating traffic to keep them up regardless of any other traffic they
2702 * may have received.
2703 * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2704 */
2705 void bond_activebackup_arp_mon(struct net_device *bond_dev)
2706 {
2707 struct bonding *bond = bond_dev->priv;
2708 struct slave *slave;
2709 int delta_in_ticks;
2710 int i;
2711
2712 read_lock(&bond->lock);
2713
2714 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2715
2716 if (bond->kill_timers) {
2717 goto out;
2718 }
2719
2720 if (bond->slave_cnt == 0) {
2721 goto re_arm;
2722 }
2723
2724 /* determine if any slave has come up or any backup slave has
2725 * gone down
2726 * TODO: what about up/down delay in arp mode? it wasn't here before
2727 * so it can wait
2728 */
2729 bond_for_each_slave(bond, slave, i) {
2730 if (slave->link != BOND_LINK_UP) {
2731 if ((jiffies - slave_last_rx(bond, slave)) <=
2732 delta_in_ticks) {
2733
2734 slave->link = BOND_LINK_UP;
2735
2736 write_lock(&bond->curr_slave_lock);
2737
2738 if ((!bond->curr_active_slave) &&
2739 ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2740 bond_change_active_slave(bond, slave);
2741 bond->current_arp_slave = NULL;
2742 } else if (bond->curr_active_slave != slave) {
2743 /* this slave has just come up but we
2744 * already have a current slave; this
2745 * can also happen if bond_enslave adds
2746 * a new slave that is up while we are
2747 * searching for a new slave
2748 */
2749 bond_set_slave_inactive_flags(slave);
2750 bond->current_arp_slave = NULL;
2751 }
2752
2753 bond_set_carrier(bond);
2754
2755 if (slave == bond->curr_active_slave) {
2756 printk(KERN_INFO DRV_NAME
2757 ": %s: %s is up and now the "
2758 "active interface\n",
2759 bond_dev->name,
2760 slave->dev->name);
2761 netif_carrier_on(bond->dev);
2762 } else {
2763 printk(KERN_INFO DRV_NAME
2764 ": %s: backup interface %s is "
2765 "now up\n",
2766 bond_dev->name,
2767 slave->dev->name);
2768 }
2769
2770 write_unlock(&bond->curr_slave_lock);
2771 }
2772 } else {
2773 read_lock(&bond->curr_slave_lock);
2774
2775 if ((slave != bond->curr_active_slave) &&
2776 (!bond->current_arp_slave) &&
2777 (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) &&
2778 bond_has_ip(bond))) {
2779 /* a backup slave has gone down; three times
2780 * the delta allows the current slave to be
2781 * taken out before the backup slave.
2782 * note: a non-null current_arp_slave indicates
2783 * the curr_active_slave went down and we are
2784 * searching for a new one; under this
2785 * condition we only take the curr_active_slave
2786 * down - this gives each slave a chance to
2787 * tx/rx traffic before being taken out
2788 */
2789
2790 read_unlock(&bond->curr_slave_lock);
2791
2792 slave->link = BOND_LINK_DOWN;
2793
2794 if (slave->link_failure_count < UINT_MAX) {
2795 slave->link_failure_count++;
2796 }
2797
2798 bond_set_slave_inactive_flags(slave);
2799
2800 printk(KERN_INFO DRV_NAME
2801 ": %s: backup interface %s is now down\n",
2802 bond_dev->name,
2803 slave->dev->name);
2804 } else {
2805 read_unlock(&bond->curr_slave_lock);
2806 }
2807 }
2808 }
2809
2810 read_lock(&bond->curr_slave_lock);
2811 slave = bond->curr_active_slave;
2812 read_unlock(&bond->curr_slave_lock);
2813
2814 if (slave) {
2815 /* if we have sent traffic in the past 2*arp_intervals but
2816 * haven't xmit and rx traffic in that time interval, select
2817 * a different slave. slave->jiffies is only updated when
2818 * a slave first becomes the curr_active_slave - not necessarily
2819 * after every arp; this ensures the slave has a full 2*delta
2820 * before being taken out. if a primary is being used, check
2821 * if it is up and needs to take over as the curr_active_slave
2822 */
2823 if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2824 (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) &&
2825 bond_has_ip(bond))) &&
2826 ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2827
2828 slave->link = BOND_LINK_DOWN;
2829
2830 if (slave->link_failure_count < UINT_MAX) {
2831 slave->link_failure_count++;
2832 }
2833
2834 printk(KERN_INFO DRV_NAME
2835 ": %s: link status down for active interface "
2836 "%s, disabling it\n",
2837 bond_dev->name,
2838 slave->dev->name);
2839
2840 write_lock(&bond->curr_slave_lock);
2841
2842 bond_select_active_slave(bond);
2843 slave = bond->curr_active_slave;
2844
2845 write_unlock(&bond->curr_slave_lock);
2846
2847 bond->current_arp_slave = slave;
2848
2849 if (slave) {
2850 slave->jiffies = jiffies;
2851 }
2852 } else if ((bond->primary_slave) &&
2853 (bond->primary_slave != slave) &&
2854 (bond->primary_slave->link == BOND_LINK_UP)) {
2855 /* at this point, slave is the curr_active_slave */
2856 printk(KERN_INFO DRV_NAME
2857 ": %s: changing from interface %s to primary "
2858 "interface %s\n",
2859 bond_dev->name,
2860 slave->dev->name,
2861 bond->primary_slave->dev->name);
2862
2863 /* primary is up so switch to it */
2864 write_lock(&bond->curr_slave_lock);
2865 bond_change_active_slave(bond, bond->primary_slave);
2866 write_unlock(&bond->curr_slave_lock);
2867
2868 slave = bond->primary_slave;
2869 slave->jiffies = jiffies;
2870 } else {
2871 bond->current_arp_slave = NULL;
2872 }
2873
2874 /* the current slave must tx an arp to ensure backup slaves
2875 * rx traffic
2876 */
2877 if (slave && bond_has_ip(bond)) {
2878 bond_arp_send_all(bond, slave);
2879 }
2880 }
2881
2882 /* if we don't have a curr_active_slave, search for the next available
2883 * backup slave from the current_arp_slave and make it the candidate
2884 * for becoming the curr_active_slave
2885 */
2886 if (!slave) {
2887 if (!bond->current_arp_slave) {
2888 bond->current_arp_slave = bond->first_slave;
2889 }
2890
2891 if (bond->current_arp_slave) {
2892 bond_set_slave_inactive_flags(bond->current_arp_slave);
2893
2894 /* search for next candidate */
2895 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
2896 if (IS_UP(slave->dev)) {
2897 slave->link = BOND_LINK_BACK;
2898 bond_set_slave_active_flags(slave);
2899 bond_arp_send_all(bond, slave);
2900 slave->jiffies = jiffies;
2901 bond->current_arp_slave = slave;
2902 break;
2903 }
2904
2905 /* if the link state is up at this point, we
2906 * mark it down - this can happen if we have
2907 * simultaneous link failures and
2908 * reselect_active_interface doesn't make this
2909 * one the current slave so it is still marked
2910 * up when it is actually down
2911 */
2912 if (slave->link == BOND_LINK_UP) {
2913 slave->link = BOND_LINK_DOWN;
2914 if (slave->link_failure_count < UINT_MAX) {
2915 slave->link_failure_count++;
2916 }
2917
2918 bond_set_slave_inactive_flags(slave);
2919
2920 printk(KERN_INFO DRV_NAME
2921 ": %s: backup interface %s is "
2922 "now down.\n",
2923 bond_dev->name,
2924 slave->dev->name);
2925 }
2926 }
2927 }
2928 }
2929
2930 re_arm:
2931 if (bond->params.arp_interval) {
2932 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2933 }
2934 out:
2935 read_unlock(&bond->lock);
2936 }
2937
2938 /*------------------------------ proc/seq_file-------------------------------*/
2939
2940 #ifdef CONFIG_PROC_FS
2941
2942 #define SEQ_START_TOKEN ((void *)1)
2943
2944 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
2945 {
2946 struct bonding *bond = seq->private;
2947 loff_t off = 0;
2948 struct slave *slave;
2949 int i;
2950
2951 /* make sure the bond won't be taken away */
2952 read_lock(&dev_base_lock);
2953 read_lock_bh(&bond->lock);
2954
2955 if (*pos == 0) {
2956 return SEQ_START_TOKEN;
2957 }
2958
2959 bond_for_each_slave(bond, slave, i) {
2960 if (++off == *pos) {
2961 return slave;
2962 }
2963 }
2964
2965 return NULL;
2966 }
2967
2968 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2969 {
2970 struct bonding *bond = seq->private;
2971 struct slave *slave = v;
2972
2973 ++*pos;
2974 if (v == SEQ_START_TOKEN) {
2975 return bond->first_slave;
2976 }
2977
2978 slave = slave->next;
2979
2980 return (slave == bond->first_slave) ? NULL : slave;
2981 }
2982
2983 static void bond_info_seq_stop(struct seq_file *seq, void *v)
2984 {
2985 struct bonding *bond = seq->private;
2986
2987 read_unlock_bh(&bond->lock);
2988 read_unlock(&dev_base_lock);
2989 }
2990
2991 static void bond_info_show_master(struct seq_file *seq)
2992 {
2993 struct bonding *bond = seq->private;
2994 struct slave *curr;
2995 int i;
2996 u32 target;
2997
2998 read_lock(&bond->curr_slave_lock);
2999 curr = bond->curr_active_slave;
3000 read_unlock(&bond->curr_slave_lock);
3001
3002 seq_printf(seq, "Bonding Mode: %s\n",
3003 bond_mode_name(bond->params.mode));
3004
3005 if (bond->params.mode == BOND_MODE_XOR ||
3006 bond->params.mode == BOND_MODE_8023AD) {
3007 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3008 xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3009 bond->params.xmit_policy);
3010 }
3011
3012 if (USES_PRIMARY(bond->params.mode)) {
3013 seq_printf(seq, "Primary Slave: %s\n",
3014 (bond->primary_slave) ?
3015 bond->primary_slave->dev->name : "None");
3016
3017 seq_printf(seq, "Currently Active Slave: %s\n",
3018 (curr) ? curr->dev->name : "None");
3019 }
3020
3021 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3022 "up" : "down");
3023 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3024 seq_printf(seq, "Up Delay (ms): %d\n",
3025 bond->params.updelay * bond->params.miimon);
3026 seq_printf(seq, "Down Delay (ms): %d\n",
3027 bond->params.downdelay * bond->params.miimon);
3028
3029
3030 /* ARP information */
3031 if(bond->params.arp_interval > 0) {
3032 int printed=0;
3033 seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3034 bond->params.arp_interval);
3035
3036 seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3037
3038 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3039 if (!bond->params.arp_targets[i])
3040 continue;
3041 if (printed)
3042 seq_printf(seq, ",");
3043 target = ntohl(bond->params.arp_targets[i]);
3044 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3045 printed = 1;
3046 }
3047 seq_printf(seq, "\n");
3048 }
3049
3050 if (bond->params.mode == BOND_MODE_8023AD) {
3051 struct ad_info ad_info;
3052
3053 seq_puts(seq, "\n802.3ad info\n");
3054 seq_printf(seq, "LACP rate: %s\n",
3055 (bond->params.lacp_fast) ? "fast" : "slow");
3056
3057 if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3058 seq_printf(seq, "bond %s has no active aggregator\n",
3059 bond->dev->name);
3060 } else {
3061 seq_printf(seq, "Active Aggregator Info:\n");
3062
3063 seq_printf(seq, "\tAggregator ID: %d\n",
3064 ad_info.aggregator_id);
3065 seq_printf(seq, "\tNumber of ports: %d\n",
3066 ad_info.ports);
3067 seq_printf(seq, "\tActor Key: %d\n",
3068 ad_info.actor_key);
3069 seq_printf(seq, "\tPartner Key: %d\n",
3070 ad_info.partner_key);
3071 seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
3072 ad_info.partner_system[0],
3073 ad_info.partner_system[1],
3074 ad_info.partner_system[2],
3075 ad_info.partner_system[3],
3076 ad_info.partner_system[4],
3077 ad_info.partner_system[5]);
3078 }
3079 }
3080 }
3081
3082 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3083 {
3084 struct bonding *bond = seq->private;
3085
3086 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3087 seq_printf(seq, "MII Status: %s\n",
3088 (slave->link == BOND_LINK_UP) ? "up" : "down");
3089 seq_printf(seq, "Link Failure Count: %u\n",
3090 slave->link_failure_count);
3091
3092 seq_printf(seq,
3093 "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n",
3094 slave->perm_hwaddr[0], slave->perm_hwaddr[1],
3095 slave->perm_hwaddr[2], slave->perm_hwaddr[3],
3096 slave->perm_hwaddr[4], slave->perm_hwaddr[5]);
3097
3098 if (bond->params.mode == BOND_MODE_8023AD) {
3099 const struct aggregator *agg
3100 = SLAVE_AD_INFO(slave).port.aggregator;
3101
3102 if (agg) {
3103 seq_printf(seq, "Aggregator ID: %d\n",
3104 agg->aggregator_identifier);
3105 } else {
3106 seq_puts(seq, "Aggregator ID: N/A\n");
3107 }
3108 }
3109 }
3110
3111 static int bond_info_seq_show(struct seq_file *seq, void *v)
3112 {
3113 if (v == SEQ_START_TOKEN) {
3114 seq_printf(seq, "%s\n", version);
3115 bond_info_show_master(seq);
3116 } else {
3117 bond_info_show_slave(seq, v);
3118 }
3119
3120 return 0;
3121 }
3122
3123 static struct seq_operations bond_info_seq_ops = {
3124 .start = bond_info_seq_start,
3125 .next = bond_info_seq_next,
3126 .stop = bond_info_seq_stop,
3127 .show = bond_info_seq_show,
3128 };
3129
3130 static int bond_info_open(struct inode *inode, struct file *file)
3131 {
3132 struct seq_file *seq;
3133 struct proc_dir_entry *proc;
3134 int res;
3135
3136 res = seq_open(file, &bond_info_seq_ops);
3137 if (!res) {
3138 /* recover the pointer buried in proc_dir_entry data */
3139 seq = file->private_data;
3140 proc = PDE(inode);
3141 seq->private = proc->data;
3142 }
3143
3144 return res;
3145 }
3146
3147 static const struct file_operations bond_info_fops = {
3148 .owner = THIS_MODULE,
3149 .open = bond_info_open,
3150 .read = seq_read,
3151 .llseek = seq_lseek,
3152 .release = seq_release,
3153 };
3154
3155 static int bond_create_proc_entry(struct bonding *bond)
3156 {
3157 struct net_device *bond_dev = bond->dev;
3158
3159 if (bond_proc_dir) {
3160 bond->proc_entry = create_proc_entry(bond_dev->name,
3161 S_IRUGO,
3162 bond_proc_dir);
3163 if (bond->proc_entry == NULL) {
3164 printk(KERN_WARNING DRV_NAME
3165 ": Warning: Cannot create /proc/net/%s/%s\n",
3166 DRV_NAME, bond_dev->name);
3167 } else {
3168 bond->proc_entry->data = bond;
3169 bond->proc_entry->proc_fops = &bond_info_fops;
3170 bond->proc_entry->owner = THIS_MODULE;
3171 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3172 }
3173 }
3174
3175 return 0;
3176 }
3177
3178 static void bond_remove_proc_entry(struct bonding *bond)
3179 {
3180 if (bond_proc_dir && bond->proc_entry) {
3181 remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3182 memset(bond->proc_file_name, 0, IFNAMSIZ);
3183 bond->proc_entry = NULL;
3184 }
3185 }
3186
3187 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3188 * Caller must hold rtnl_lock.
3189 */
3190 static void bond_create_proc_dir(void)
3191 {
3192 int len = strlen(DRV_NAME);
3193
3194 for (bond_proc_dir = proc_net->subdir; bond_proc_dir;
3195 bond_proc_dir = bond_proc_dir->next) {
3196 if ((bond_proc_dir->namelen == len) &&
3197 !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3198 break;
3199 }
3200 }
3201
3202 if (!bond_proc_dir) {
3203 bond_proc_dir = proc_mkdir(DRV_NAME, proc_net);
3204 if (bond_proc_dir) {
3205 bond_proc_dir->owner = THIS_MODULE;
3206 } else {
3207 printk(KERN_WARNING DRV_NAME
3208 ": Warning: cannot create /proc/net/%s\n",
3209 DRV_NAME);
3210 }
3211 }
3212 }
3213
3214 /* Destroy the bonding directory under /proc/net, if empty.
3215 * Caller must hold rtnl_lock.
3216 */
3217 static void bond_destroy_proc_dir(void)
3218 {
3219 struct proc_dir_entry *de;
3220
3221 if (!bond_proc_dir) {
3222 return;
3223 }
3224
3225 /* verify that the /proc dir is empty */
3226 for (de = bond_proc_dir->subdir; de; de = de->next) {
3227 /* ignore . and .. */
3228 if (*(de->name) != '.') {
3229 break;
3230 }
3231 }
3232
3233 if (de) {
3234 if (bond_proc_dir->owner == THIS_MODULE) {
3235 bond_proc_dir->owner = NULL;
3236 }
3237 } else {
3238 remove_proc_entry(DRV_NAME, proc_net);
3239 bond_proc_dir = NULL;
3240 }
3241 }
3242 #endif /* CONFIG_PROC_FS */
3243
3244 /*-------------------------- netdev event handling --------------------------*/
3245
3246 /*
3247 * Change device name
3248 */
3249 static int bond_event_changename(struct bonding *bond)
3250 {
3251 #ifdef CONFIG_PROC_FS
3252 bond_remove_proc_entry(bond);
3253 bond_create_proc_entry(bond);
3254 #endif
3255 down_write(&(bonding_rwsem));
3256 bond_destroy_sysfs_entry(bond);
3257 bond_create_sysfs_entry(bond);
3258 up_write(&(bonding_rwsem));
3259 return NOTIFY_DONE;
3260 }
3261
3262 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3263 {
3264 struct bonding *event_bond = bond_dev->priv;
3265
3266 switch (event) {
3267 case NETDEV_CHANGENAME:
3268 return bond_event_changename(event_bond);
3269 case NETDEV_UNREGISTER:
3270 /*
3271 * TODO: remove a bond from the list?
3272 */
3273 break;
3274 default:
3275 break;
3276 }
3277
3278 return NOTIFY_DONE;
3279 }
3280
3281 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3282 {
3283 struct net_device *bond_dev = slave_dev->master;
3284 struct bonding *bond = bond_dev->priv;
3285
3286 switch (event) {
3287 case NETDEV_UNREGISTER:
3288 if (bond_dev) {
3289 bond_release(bond_dev, slave_dev);
3290 }
3291 break;
3292 case NETDEV_CHANGE:
3293 /*
3294 * TODO: is this what we get if somebody
3295 * sets up a hierarchical bond, then rmmod's
3296 * one of the slave bonding devices?
3297 */
3298 break;
3299 case NETDEV_DOWN:
3300 /*
3301 * ... Or is it this?
3302 */
3303 break;
3304 case NETDEV_CHANGEMTU:
3305 /*
3306 * TODO: Should slaves be allowed to
3307 * independently alter their MTU? For
3308 * an active-backup bond, slaves need
3309 * not be the same type of device, so
3310 * MTUs may vary. For other modes,
3311 * slaves arguably should have the
3312 * same MTUs. To do this, we'd need to
3313 * take over the slave's change_mtu
3314 * function for the duration of their
3315 * servitude.
3316 */
3317 break;
3318 case NETDEV_CHANGENAME:
3319 /*
3320 * TODO: handle changing the primary's name
3321 */
3322 break;
3323 case NETDEV_FEAT_CHANGE:
3324 bond_compute_features(bond);
3325 break;
3326 default:
3327 break;
3328 }
3329
3330 return NOTIFY_DONE;
3331 }
3332
3333 /*
3334 * bond_netdev_event: handle netdev notifier chain events.
3335 *
3336 * This function receives events for the netdev chain. The caller (an
3337 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3338 * locks for us to safely manipulate the slave devices (RTNL lock,
3339 * dev_probe_lock).
3340 */
3341 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3342 {
3343 struct net_device *event_dev = (struct net_device *)ptr;
3344
3345 dprintk("event_dev: %s, event: %lx\n",
3346 (event_dev ? event_dev->name : "None"),
3347 event);
3348
3349 if (!(event_dev->priv_flags & IFF_BONDING))
3350 return NOTIFY_DONE;
3351
3352 if (event_dev->flags & IFF_MASTER) {
3353 dprintk("IFF_MASTER\n");
3354 return bond_master_netdev_event(event, event_dev);
3355 }
3356
3357 if (event_dev->flags & IFF_SLAVE) {
3358 dprintk("IFF_SLAVE\n");
3359 return bond_slave_netdev_event(event, event_dev);
3360 }
3361
3362 return NOTIFY_DONE;
3363 }
3364
3365 /*
3366 * bond_inetaddr_event: handle inetaddr notifier chain events.
3367 *
3368 * We keep track of device IPs primarily to use as source addresses in
3369 * ARP monitor probes (rather than spewing out broadcasts all the time).
3370 *
3371 * We track one IP for the main device (if it has one), plus one per VLAN.
3372 */
3373 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3374 {
3375 struct in_ifaddr *ifa = ptr;
3376 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3377 struct bonding *bond, *bond_next;
3378 struct vlan_entry *vlan, *vlan_next;
3379
3380 list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3381 if (bond->dev == event_dev) {
3382 switch (event) {
3383 case NETDEV_UP:
3384 bond->master_ip = ifa->ifa_local;
3385 return NOTIFY_OK;
3386 case NETDEV_DOWN:
3387 bond->master_ip = bond_glean_dev_ip(bond->dev);
3388 return NOTIFY_OK;
3389 default:
3390 return NOTIFY_DONE;
3391 }
3392 }
3393
3394 if (list_empty(&bond->vlan_list))
3395 continue;
3396
3397 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3398 vlan_list) {
3399 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3400 if (vlan_dev == event_dev) {
3401 switch (event) {
3402 case NETDEV_UP:
3403 vlan->vlan_ip = ifa->ifa_local;
3404 return NOTIFY_OK;
3405 case NETDEV_DOWN:
3406 vlan->vlan_ip =
3407 bond_glean_dev_ip(vlan_dev);
3408 return NOTIFY_OK;
3409 default:
3410 return NOTIFY_DONE;
3411 }
3412 }
3413 }
3414 }
3415 return NOTIFY_DONE;
3416 }
3417
3418 static struct notifier_block bond_netdev_notifier = {
3419 .notifier_call = bond_netdev_event,
3420 };
3421
3422 static struct notifier_block bond_inetaddr_notifier = {
3423 .notifier_call = bond_inetaddr_event,
3424 };
3425
3426 /*-------------------------- Packet type handling ---------------------------*/
3427
3428 /* register to receive lacpdus on a bond */
3429 static void bond_register_lacpdu(struct bonding *bond)
3430 {
3431 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3432
3433 /* initialize packet type */
3434 pk_type->type = PKT_TYPE_LACPDU;
3435 pk_type->dev = bond->dev;
3436 pk_type->func = bond_3ad_lacpdu_recv;
3437
3438 dev_add_pack(pk_type);
3439 }
3440
3441 /* unregister to receive lacpdus on a bond */
3442 static void bond_unregister_lacpdu(struct bonding *bond)
3443 {
3444 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3445 }
3446
3447 void bond_register_arp(struct bonding *bond)
3448 {
3449 struct packet_type *pt = &bond->arp_mon_pt;
3450
3451 if (pt->type)
3452 return;
3453
3454 pt->type = htons(ETH_P_ARP);
3455 pt->dev = bond->dev;
3456 pt->func = bond_arp_rcv;
3457 dev_add_pack(pt);
3458 }
3459
3460 void bond_unregister_arp(struct bonding *bond)
3461 {
3462 struct packet_type *pt = &bond->arp_mon_pt;
3463
3464 dev_remove_pack(pt);
3465 pt->type = 0;
3466 }
3467
3468 /*---------------------------- Hashing Policies -----------------------------*/
3469
3470 /*
3471 * Hash for the the output device based upon layer 3 and layer 4 data. If
3472 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3473 * altogether not IP, mimic bond_xmit_hash_policy_l2()
3474 */
3475 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3476 struct net_device *bond_dev, int count)
3477 {
3478 struct ethhdr *data = (struct ethhdr *)skb->data;
3479 struct iphdr *iph = ip_hdr(skb);
3480 u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl);
3481 int layer4_xor = 0;
3482
3483 if (skb->protocol == __constant_htons(ETH_P_IP)) {
3484 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3485 (iph->protocol == IPPROTO_TCP ||
3486 iph->protocol == IPPROTO_UDP)) {
3487 layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1)));
3488 }
3489 return (layer4_xor ^
3490 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3491
3492 }
3493
3494 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3495 }
3496
3497 /*
3498 * Hash for the output device based upon layer 2 data
3499 */
3500 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3501 struct net_device *bond_dev, int count)
3502 {
3503 struct ethhdr *data = (struct ethhdr *)skb->data;
3504
3505 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3506 }
3507
3508 /*-------------------------- Device entry points ----------------------------*/
3509
3510 static int bond_open(struct net_device *bond_dev)
3511 {
3512 struct bonding *bond = bond_dev->priv;
3513 struct timer_list *mii_timer = &bond->mii_timer;
3514 struct timer_list *arp_timer = &bond->arp_timer;
3515
3516 bond->kill_timers = 0;
3517
3518 if ((bond->params.mode == BOND_MODE_TLB) ||
3519 (bond->params.mode == BOND_MODE_ALB)) {
3520 struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer);
3521
3522 /* bond_alb_initialize must be called before the timer
3523 * is started.
3524 */
3525 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3526 /* something went wrong - fail the open operation */
3527 return -1;
3528 }
3529
3530 init_timer(alb_timer);
3531 alb_timer->expires = jiffies + 1;
3532 alb_timer->data = (unsigned long)bond;
3533 alb_timer->function = (void *)&bond_alb_monitor;
3534 add_timer(alb_timer);
3535 }
3536
3537 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3538 init_timer(mii_timer);
3539 mii_timer->expires = jiffies + 1;
3540 mii_timer->data = (unsigned long)bond_dev;
3541 mii_timer->function = (void *)&bond_mii_monitor;
3542 add_timer(mii_timer);
3543 }
3544
3545 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3546 init_timer(arp_timer);
3547 arp_timer->expires = jiffies + 1;
3548 arp_timer->data = (unsigned long)bond_dev;
3549 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
3550 arp_timer->function = (void *)&bond_activebackup_arp_mon;
3551 } else {
3552 arp_timer->function = (void *)&bond_loadbalance_arp_mon;
3553 }
3554 if (bond->params.arp_validate)
3555 bond_register_arp(bond);
3556
3557 add_timer(arp_timer);
3558 }
3559
3560 if (bond->params.mode == BOND_MODE_8023AD) {
3561 struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer);
3562 init_timer(ad_timer);
3563 ad_timer->expires = jiffies + 1;
3564 ad_timer->data = (unsigned long)bond;
3565 ad_timer->function = (void *)&bond_3ad_state_machine_handler;
3566 add_timer(ad_timer);
3567
3568 /* register to receive LACPDUs */
3569 bond_register_lacpdu(bond);
3570 }
3571
3572 return 0;
3573 }
3574
3575 static int bond_close(struct net_device *bond_dev)
3576 {
3577 struct bonding *bond = bond_dev->priv;
3578
3579 if (bond->params.mode == BOND_MODE_8023AD) {
3580 /* Unregister the receive of LACPDUs */
3581 bond_unregister_lacpdu(bond);
3582 }
3583
3584 if (bond->params.arp_validate)
3585 bond_unregister_arp(bond);
3586
3587 write_lock_bh(&bond->lock);
3588
3589
3590 /* signal timers not to re-arm */
3591 bond->kill_timers = 1;
3592
3593 write_unlock_bh(&bond->lock);
3594
3595 /* del_timer_sync must run without holding the bond->lock
3596 * because a running timer might be trying to hold it too
3597 */
3598
3599 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3600 del_timer_sync(&bond->mii_timer);
3601 }
3602
3603 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3604 del_timer_sync(&bond->arp_timer);
3605 }
3606
3607 switch (bond->params.mode) {
3608 case BOND_MODE_8023AD:
3609 del_timer_sync(&(BOND_AD_INFO(bond).ad_timer));
3610 break;
3611 case BOND_MODE_TLB:
3612 case BOND_MODE_ALB:
3613 del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer));
3614 break;
3615 default:
3616 break;
3617 }
3618
3619
3620 if ((bond->params.mode == BOND_MODE_TLB) ||
3621 (bond->params.mode == BOND_MODE_ALB)) {
3622 /* Must be called only after all
3623 * slaves have been released
3624 */
3625 bond_alb_deinitialize(bond);
3626 }
3627
3628 return 0;
3629 }
3630
3631 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3632 {
3633 struct bonding *bond = bond_dev->priv;
3634 struct net_device_stats *stats = &(bond->stats), *sstats;
3635 struct slave *slave;
3636 int i;
3637
3638 memset(stats, 0, sizeof(struct net_device_stats));
3639
3640 read_lock_bh(&bond->lock);
3641
3642 bond_for_each_slave(bond, slave, i) {
3643 sstats = slave->dev->get_stats(slave->dev);
3644 if (sstats) {
3645 stats->rx_packets += sstats->rx_packets;
3646 stats->rx_bytes += sstats->rx_bytes;
3647 stats->rx_errors += sstats->rx_errors;
3648 stats->rx_dropped += sstats->rx_dropped;
3649
3650 stats->tx_packets += sstats->tx_packets;
3651 stats->tx_bytes += sstats->tx_bytes;
3652 stats->tx_errors += sstats->tx_errors;
3653 stats->tx_dropped += sstats->tx_dropped;
3654
3655 stats->multicast += sstats->multicast;
3656 stats->collisions += sstats->collisions;
3657
3658 stats->rx_length_errors += sstats->rx_length_errors;
3659 stats->rx_over_errors += sstats->rx_over_errors;
3660 stats->rx_crc_errors += sstats->rx_crc_errors;
3661 stats->rx_frame_errors += sstats->rx_frame_errors;
3662 stats->rx_fifo_errors += sstats->rx_fifo_errors;
3663 stats->rx_missed_errors += sstats->rx_missed_errors;
3664
3665 stats->tx_aborted_errors += sstats->tx_aborted_errors;
3666 stats->tx_carrier_errors += sstats->tx_carrier_errors;
3667 stats->tx_fifo_errors += sstats->tx_fifo_errors;
3668 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3669 stats->tx_window_errors += sstats->tx_window_errors;
3670 }
3671 }
3672
3673 read_unlock_bh(&bond->lock);
3674
3675 return stats;
3676 }
3677
3678 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3679 {
3680 struct net_device *slave_dev = NULL;
3681 struct ifbond k_binfo;
3682 struct ifbond __user *u_binfo = NULL;
3683 struct ifslave k_sinfo;
3684 struct ifslave __user *u_sinfo = NULL;
3685 struct mii_ioctl_data *mii = NULL;
3686 int res = 0;
3687
3688 dprintk("bond_ioctl: master=%s, cmd=%d\n",
3689 bond_dev->name, cmd);
3690
3691 switch (cmd) {
3692 case SIOCGMIIPHY:
3693 mii = if_mii(ifr);
3694 if (!mii) {
3695 return -EINVAL;
3696 }
3697 mii->phy_id = 0;
3698 /* Fall Through */
3699 case SIOCGMIIREG:
3700 /*
3701 * We do this again just in case we were called by SIOCGMIIREG
3702 * instead of SIOCGMIIPHY.
3703 */
3704 mii = if_mii(ifr);
3705 if (!mii) {
3706 return -EINVAL;
3707 }
3708
3709 if (mii->reg_num == 1) {
3710 struct bonding *bond = bond_dev->priv;
3711 mii->val_out = 0;
3712 read_lock_bh(&bond->lock);
3713 read_lock(&bond->curr_slave_lock);
3714 if (netif_carrier_ok(bond->dev)) {
3715 mii->val_out = BMSR_LSTATUS;
3716 }
3717 read_unlock(&bond->curr_slave_lock);
3718 read_unlock_bh(&bond->lock);
3719 }
3720
3721 return 0;
3722 case BOND_INFO_QUERY_OLD:
3723 case SIOCBONDINFOQUERY:
3724 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3725
3726 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3727 return -EFAULT;
3728 }
3729
3730 res = bond_info_query(bond_dev, &k_binfo);
3731 if (res == 0) {
3732 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3733 return -EFAULT;
3734 }
3735 }
3736
3737 return res;
3738 case BOND_SLAVE_INFO_QUERY_OLD:
3739 case SIOCBONDSLAVEINFOQUERY:
3740 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3741
3742 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3743 return -EFAULT;
3744 }
3745
3746 res = bond_slave_info_query(bond_dev, &k_sinfo);
3747 if (res == 0) {
3748 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3749 return -EFAULT;
3750 }
3751 }
3752
3753 return res;
3754 default:
3755 /* Go on */
3756 break;
3757 }
3758
3759 if (!capable(CAP_NET_ADMIN)) {
3760 return -EPERM;
3761 }
3762
3763 down_write(&(bonding_rwsem));
3764 slave_dev = dev_get_by_name(ifr->ifr_slave);
3765
3766 dprintk("slave_dev=%p: \n", slave_dev);
3767
3768 if (!slave_dev) {
3769 res = -ENODEV;
3770 } else {
3771 dprintk("slave_dev->name=%s: \n", slave_dev->name);
3772 switch (cmd) {
3773 case BOND_ENSLAVE_OLD:
3774 case SIOCBONDENSLAVE:
3775 res = bond_enslave(bond_dev, slave_dev);
3776 break;
3777 case BOND_RELEASE_OLD:
3778 case SIOCBONDRELEASE:
3779 res = bond_release(bond_dev, slave_dev);
3780 break;
3781 case BOND_SETHWADDR_OLD:
3782 case SIOCBONDSETHWADDR:
3783 res = bond_sethwaddr(bond_dev, slave_dev);
3784 break;
3785 case BOND_CHANGE_ACTIVE_OLD:
3786 case SIOCBONDCHANGEACTIVE:
3787 res = bond_ioctl_change_active(bond_dev, slave_dev);
3788 break;
3789 default:
3790 res = -EOPNOTSUPP;
3791 }
3792
3793 dev_put(slave_dev);
3794 }
3795
3796 up_write(&(bonding_rwsem));
3797 return res;
3798 }
3799
3800 static void bond_set_multicast_list(struct net_device *bond_dev)
3801 {
3802 struct bonding *bond = bond_dev->priv;
3803 struct dev_mc_list *dmi;
3804
3805 write_lock_bh(&bond->lock);
3806
3807 /*
3808 * Do promisc before checking multicast_mode
3809 */
3810 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3811 bond_set_promiscuity(bond, 1);
3812 }
3813
3814 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3815 bond_set_promiscuity(bond, -1);
3816 }
3817
3818 /* set allmulti flag to slaves */
3819 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3820 bond_set_allmulti(bond, 1);
3821 }
3822
3823 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3824 bond_set_allmulti(bond, -1);
3825 }
3826
3827 bond->flags = bond_dev->flags;
3828
3829 /* looking for addresses to add to slaves' mc list */
3830 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3831 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3832 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3833 }
3834 }
3835
3836 /* looking for addresses to delete from slaves' list */
3837 for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3838 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3839 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3840 }
3841 }
3842
3843 /* save master's multicast list */
3844 bond_mc_list_destroy(bond);
3845 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3846
3847 write_unlock_bh(&bond->lock);
3848 }
3849
3850 /*
3851 * Change the MTU of all of a master's slaves to match the master
3852 */
3853 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3854 {
3855 struct bonding *bond = bond_dev->priv;
3856 struct slave *slave, *stop_at;
3857 int res = 0;
3858 int i;
3859
3860 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3861 (bond_dev ? bond_dev->name : "None"), new_mtu);
3862
3863 /* Can't hold bond->lock with bh disabled here since
3864 * some base drivers panic. On the other hand we can't
3865 * hold bond->lock without bh disabled because we'll
3866 * deadlock. The only solution is to rely on the fact
3867 * that we're under rtnl_lock here, and the slaves
3868 * list won't change. This doesn't solve the problem
3869 * of setting the slave's MTU while it is
3870 * transmitting, but the assumption is that the base
3871 * driver can handle that.
3872 *
3873 * TODO: figure out a way to safely iterate the slaves
3874 * list, but without holding a lock around the actual
3875 * call to the base driver.
3876 */
3877
3878 bond_for_each_slave(bond, slave, i) {
3879 dprintk("s %p s->p %p c_m %p\n", slave,
3880 slave->prev, slave->dev->change_mtu);
3881
3882 res = dev_set_mtu(slave->dev, new_mtu);
3883
3884 if (res) {
3885 /* If we failed to set the slave's mtu to the new value
3886 * we must abort the operation even in ACTIVE_BACKUP
3887 * mode, because if we allow the backup slaves to have
3888 * different mtu values than the active slave we'll
3889 * need to change their mtu when doing a failover. That
3890 * means changing their mtu from timer context, which
3891 * is probably not a good idea.
3892 */
3893 dprintk("err %d %s\n", res, slave->dev->name);
3894 goto unwind;
3895 }
3896 }
3897
3898 bond_dev->mtu = new_mtu;
3899
3900 return 0;
3901
3902 unwind:
3903 /* unwind from head to the slave that failed */
3904 stop_at = slave;
3905 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3906 int tmp_res;
3907
3908 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3909 if (tmp_res) {
3910 dprintk("unwind err %d dev %s\n", tmp_res,
3911 slave->dev->name);
3912 }
3913 }
3914
3915 return res;
3916 }
3917
3918 /*
3919 * Change HW address
3920 *
3921 * Note that many devices must be down to change the HW address, and
3922 * downing the master releases all slaves. We can make bonds full of
3923 * bonding devices to test this, however.
3924 */
3925 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3926 {
3927 struct bonding *bond = bond_dev->priv;
3928 struct sockaddr *sa = addr, tmp_sa;
3929 struct slave *slave, *stop_at;
3930 int res = 0;
3931 int i;
3932
3933 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
3934
3935 if (!is_valid_ether_addr(sa->sa_data)) {
3936 return -EADDRNOTAVAIL;
3937 }
3938
3939 /* Can't hold bond->lock with bh disabled here since
3940 * some base drivers panic. On the other hand we can't
3941 * hold bond->lock without bh disabled because we'll
3942 * deadlock. The only solution is to rely on the fact
3943 * that we're under rtnl_lock here, and the slaves
3944 * list won't change. This doesn't solve the problem
3945 * of setting the slave's hw address while it is
3946 * transmitting, but the assumption is that the base
3947 * driver can handle that.
3948 *
3949 * TODO: figure out a way to safely iterate the slaves
3950 * list, but without holding a lock around the actual
3951 * call to the base driver.
3952 */
3953
3954 bond_for_each_slave(bond, slave, i) {
3955 dprintk("slave %p %s\n", slave, slave->dev->name);
3956
3957 if (slave->dev->set_mac_address == NULL) {
3958 res = -EOPNOTSUPP;
3959 dprintk("EOPNOTSUPP %s\n", slave->dev->name);
3960 goto unwind;
3961 }
3962
3963 res = dev_set_mac_address(slave->dev, addr);
3964 if (res) {
3965 /* TODO: consider downing the slave
3966 * and retry ?
3967 * User should expect communications
3968 * breakage anyway until ARP finish
3969 * updating, so...
3970 */
3971 dprintk("err %d %s\n", res, slave->dev->name);
3972 goto unwind;
3973 }
3974 }
3975
3976 /* success */
3977 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3978 return 0;
3979
3980 unwind:
3981 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3982 tmp_sa.sa_family = bond_dev->type;
3983
3984 /* unwind from head to the slave that failed */
3985 stop_at = slave;
3986 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3987 int tmp_res;
3988
3989 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3990 if (tmp_res) {
3991 dprintk("unwind err %d dev %s\n", tmp_res,
3992 slave->dev->name);
3993 }
3994 }
3995
3996 return res;
3997 }
3998
3999 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4000 {
4001 struct bonding *bond = bond_dev->priv;
4002 struct slave *slave, *start_at;
4003 int i;
4004 int res = 1;
4005
4006 read_lock(&bond->lock);
4007
4008 if (!BOND_IS_OK(bond)) {
4009 goto out;
4010 }
4011
4012 read_lock(&bond->curr_slave_lock);
4013 slave = start_at = bond->curr_active_slave;
4014 read_unlock(&bond->curr_slave_lock);
4015
4016 if (!slave) {
4017 goto out;
4018 }
4019
4020 bond_for_each_slave_from(bond, slave, i, start_at) {
4021 if (IS_UP(slave->dev) &&
4022 (slave->link == BOND_LINK_UP) &&
4023 (slave->state == BOND_STATE_ACTIVE)) {
4024 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4025
4026 write_lock(&bond->curr_slave_lock);
4027 bond->curr_active_slave = slave->next;
4028 write_unlock(&bond->curr_slave_lock);
4029
4030 break;
4031 }
4032 }
4033
4034
4035 out:
4036 if (res) {
4037 /* no suitable interface, frame not sent */
4038 dev_kfree_skb(skb);
4039 }
4040 read_unlock(&bond->lock);
4041 return 0;
4042 }
4043
4044
4045 /*
4046 * in active-backup mode, we know that bond->curr_active_slave is always valid if
4047 * the bond has a usable interface.
4048 */
4049 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4050 {
4051 struct bonding *bond = bond_dev->priv;
4052 int res = 1;
4053
4054 read_lock(&bond->lock);
4055 read_lock(&bond->curr_slave_lock);
4056
4057 if (!BOND_IS_OK(bond)) {
4058 goto out;
4059 }
4060
4061 if (!bond->curr_active_slave)
4062 goto out;
4063
4064 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4065
4066 out:
4067 if (res) {
4068 /* no suitable interface, frame not sent */
4069 dev_kfree_skb(skb);
4070 }
4071 read_unlock(&bond->curr_slave_lock);
4072 read_unlock(&bond->lock);
4073 return 0;
4074 }
4075
4076 /*
4077 * In bond_xmit_xor() , we determine the output device by using a pre-
4078 * determined xmit_hash_policy(), If the selected device is not enabled,
4079 * find the next active slave.
4080 */
4081 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4082 {
4083 struct bonding *bond = bond_dev->priv;
4084 struct slave *slave, *start_at;
4085 int slave_no;
4086 int i;
4087 int res = 1;
4088
4089 read_lock(&bond->lock);
4090
4091 if (!BOND_IS_OK(bond)) {
4092 goto out;
4093 }
4094
4095 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4096
4097 bond_for_each_slave(bond, slave, i) {
4098 slave_no--;
4099 if (slave_no < 0) {
4100 break;
4101 }
4102 }
4103
4104 start_at = slave;
4105
4106 bond_for_each_slave_from(bond, slave, i, start_at) {
4107 if (IS_UP(slave->dev) &&
4108 (slave->link == BOND_LINK_UP) &&
4109 (slave->state == BOND_STATE_ACTIVE)) {
4110 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4111 break;
4112 }
4113 }
4114
4115 out:
4116 if (res) {
4117 /* no suitable interface, frame not sent */
4118 dev_kfree_skb(skb);
4119 }
4120 read_unlock(&bond->lock);
4121 return 0;
4122 }
4123
4124 /*
4125 * in broadcast mode, we send everything to all usable interfaces.
4126 */
4127 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4128 {
4129 struct bonding *bond = bond_dev->priv;
4130 struct slave *slave, *start_at;
4131 struct net_device *tx_dev = NULL;
4132 int i;
4133 int res = 1;
4134
4135 read_lock(&bond->lock);
4136
4137 if (!BOND_IS_OK(bond)) {
4138 goto out;
4139 }
4140
4141 read_lock(&bond->curr_slave_lock);
4142 start_at = bond->curr_active_slave;
4143 read_unlock(&bond->curr_slave_lock);
4144
4145 if (!start_at) {
4146 goto out;
4147 }
4148
4149 bond_for_each_slave_from(bond, slave, i, start_at) {
4150 if (IS_UP(slave->dev) &&
4151 (slave->link == BOND_LINK_UP) &&
4152 (slave->state == BOND_STATE_ACTIVE)) {
4153 if (tx_dev) {
4154 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4155 if (!skb2) {
4156 printk(KERN_ERR DRV_NAME
4157 ": %s: Error: bond_xmit_broadcast(): "
4158 "skb_clone() failed\n",
4159 bond_dev->name);
4160 continue;
4161 }
4162
4163 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4164 if (res) {
4165 dev_kfree_skb(skb2);
4166 continue;
4167 }
4168 }
4169 tx_dev = slave->dev;
4170 }
4171 }
4172
4173 if (tx_dev) {
4174 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4175 }
4176
4177 out:
4178 if (res) {
4179 /* no suitable interface, frame not sent */
4180 dev_kfree_skb(skb);
4181 }
4182 /* frame sent to all suitable interfaces */
4183 read_unlock(&bond->lock);
4184 return 0;
4185 }
4186
4187 /*------------------------- Device initialization ---------------------------*/
4188
4189 /*
4190 * set bond mode specific net device operations
4191 */
4192 void bond_set_mode_ops(struct bonding *bond, int mode)
4193 {
4194 struct net_device *bond_dev = bond->dev;
4195
4196 switch (mode) {
4197 case BOND_MODE_ROUNDROBIN:
4198 bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4199 break;
4200 case BOND_MODE_ACTIVEBACKUP:
4201 bond_dev->hard_start_xmit = bond_xmit_activebackup;
4202 break;
4203 case BOND_MODE_XOR:
4204 bond_dev->hard_start_xmit = bond_xmit_xor;
4205 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4206 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4207 else
4208 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4209 break;
4210 case BOND_MODE_BROADCAST:
4211 bond_dev->hard_start_xmit = bond_xmit_broadcast;
4212 break;
4213 case BOND_MODE_8023AD:
4214 bond_set_master_3ad_flags(bond);
4215 bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4216 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4217 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4218 else
4219 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4220 break;
4221 case BOND_MODE_ALB:
4222 bond_set_master_alb_flags(bond);
4223 /* FALLTHRU */
4224 case BOND_MODE_TLB:
4225 bond_dev->hard_start_xmit = bond_alb_xmit;
4226 bond_dev->set_mac_address = bond_alb_set_mac_address;
4227 break;
4228 default:
4229 /* Should never happen, mode already checked */
4230 printk(KERN_ERR DRV_NAME
4231 ": %s: Error: Unknown bonding mode %d\n",
4232 bond_dev->name,
4233 mode);
4234 break;
4235 }
4236 }
4237
4238 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4239 struct ethtool_drvinfo *drvinfo)
4240 {
4241 strncpy(drvinfo->driver, DRV_NAME, 32);
4242 strncpy(drvinfo->version, DRV_VERSION, 32);
4243 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4244 }
4245
4246 static const struct ethtool_ops bond_ethtool_ops = {
4247 .get_tx_csum = ethtool_op_get_tx_csum,
4248 .get_tso = ethtool_op_get_tso,
4249 .get_ufo = ethtool_op_get_ufo,
4250 .get_sg = ethtool_op_get_sg,
4251 .get_drvinfo = bond_ethtool_get_drvinfo,
4252 };
4253
4254 /*
4255 * Does not allocate but creates a /proc entry.
4256 * Allowed to fail.
4257 */
4258 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4259 {
4260 struct bonding *bond = bond_dev->priv;
4261
4262 dprintk("Begin bond_init for %s\n", bond_dev->name);
4263
4264 /* initialize rwlocks */
4265 rwlock_init(&bond->lock);
4266 rwlock_init(&bond->curr_slave_lock);
4267
4268 bond->params = *params; /* copy params struct */
4269
4270 /* Initialize pointers */
4271 bond->first_slave = NULL;
4272 bond->curr_active_slave = NULL;
4273 bond->current_arp_slave = NULL;
4274 bond->primary_slave = NULL;
4275 bond->dev = bond_dev;
4276 INIT_LIST_HEAD(&bond->vlan_list);
4277
4278 /* Initialize the device entry points */
4279 bond_dev->open = bond_open;
4280 bond_dev->stop = bond_close;
4281 bond_dev->get_stats = bond_get_stats;
4282 bond_dev->do_ioctl = bond_do_ioctl;
4283 bond_dev->ethtool_ops = &bond_ethtool_ops;
4284 bond_dev->set_multicast_list = bond_set_multicast_list;
4285 bond_dev->change_mtu = bond_change_mtu;
4286 bond_dev->set_mac_address = bond_set_mac_address;
4287
4288 bond_set_mode_ops(bond, bond->params.mode);
4289
4290 bond_dev->destructor = free_netdev;
4291
4292 /* Initialize the device options */
4293 bond_dev->tx_queue_len = 0;
4294 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4295 bond_dev->priv_flags |= IFF_BONDING;
4296
4297 /* At first, we block adding VLANs. That's the only way to
4298 * prevent problems that occur when adding VLANs over an
4299 * empty bond. The block will be removed once non-challenged
4300 * slaves are enslaved.
4301 */
4302 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4303
4304 /* don't acquire bond device's netif_tx_lock when
4305 * transmitting */
4306 bond_dev->features |= NETIF_F_LLTX;
4307
4308 /* By default, we declare the bond to be fully
4309 * VLAN hardware accelerated capable. Special
4310 * care is taken in the various xmit functions
4311 * when there are slaves that are not hw accel
4312 * capable
4313 */
4314 bond_dev->vlan_rx_register = bond_vlan_rx_register;
4315 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid;
4316 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4317 bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4318 NETIF_F_HW_VLAN_RX |
4319 NETIF_F_HW_VLAN_FILTER);
4320
4321 #ifdef CONFIG_PROC_FS
4322 bond_create_proc_entry(bond);
4323 #endif
4324
4325 list_add_tail(&bond->bond_list, &bond_dev_list);
4326
4327 return 0;
4328 }
4329
4330 /* De-initialize device specific data.
4331 * Caller must hold rtnl_lock.
4332 */
4333 void bond_deinit(struct net_device *bond_dev)
4334 {
4335 struct bonding *bond = bond_dev->priv;
4336
4337 list_del(&bond->bond_list);
4338
4339 #ifdef CONFIG_PROC_FS
4340 bond_remove_proc_entry(bond);
4341 #endif
4342 }
4343
4344 /* Unregister and free all bond devices.
4345 * Caller must hold rtnl_lock.
4346 */
4347 static void bond_free_all(void)
4348 {
4349 struct bonding *bond, *nxt;
4350
4351 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4352 struct net_device *bond_dev = bond->dev;
4353
4354 bond_mc_list_destroy(bond);
4355 /* Release the bonded slaves */
4356 bond_release_all(bond_dev);
4357 unregister_netdevice(bond_dev);
4358 bond_deinit(bond_dev);
4359 }
4360
4361 #ifdef CONFIG_PROC_FS
4362 bond_destroy_proc_dir();
4363 #endif
4364 }
4365
4366 /*------------------------- Module initialization ---------------------------*/
4367
4368 /*
4369 * Convert string input module parms. Accept either the
4370 * number of the mode or its string name.
4371 */
4372 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4373 {
4374 int i;
4375
4376 for (i = 0; tbl[i].modename; i++) {
4377 if ((isdigit(*mode_arg) &&
4378 tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4379 (strncmp(mode_arg, tbl[i].modename,
4380 strlen(tbl[i].modename)) == 0)) {
4381 return tbl[i].mode;
4382 }
4383 }
4384
4385 return -1;
4386 }
4387
4388 static int bond_check_params(struct bond_params *params)
4389 {
4390 int arp_validate_value;
4391
4392 /*
4393 * Convert string parameters.
4394 */
4395 if (mode) {
4396 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4397 if (bond_mode == -1) {
4398 printk(KERN_ERR DRV_NAME
4399 ": Error: Invalid bonding mode \"%s\"\n",
4400 mode == NULL ? "NULL" : mode);
4401 return -EINVAL;
4402 }
4403 }
4404
4405 if (xmit_hash_policy) {
4406 if ((bond_mode != BOND_MODE_XOR) &&
4407 (bond_mode != BOND_MODE_8023AD)) {
4408 printk(KERN_INFO DRV_NAME
4409 ": xor_mode param is irrelevant in mode %s\n",
4410 bond_mode_name(bond_mode));
4411 } else {
4412 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4413 xmit_hashtype_tbl);
4414 if (xmit_hashtype == -1) {
4415 printk(KERN_ERR DRV_NAME
4416 ": Error: Invalid xmit_hash_policy \"%s\"\n",
4417 xmit_hash_policy == NULL ? "NULL" :
4418 xmit_hash_policy);
4419 return -EINVAL;
4420 }
4421 }
4422 }
4423
4424 if (lacp_rate) {
4425 if (bond_mode != BOND_MODE_8023AD) {
4426 printk(KERN_INFO DRV_NAME
4427 ": lacp_rate param is irrelevant in mode %s\n",
4428 bond_mode_name(bond_mode));
4429 } else {
4430 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4431 if (lacp_fast == -1) {
4432 printk(KERN_ERR DRV_NAME
4433 ": Error: Invalid lacp rate \"%s\"\n",
4434 lacp_rate == NULL ? "NULL" : lacp_rate);
4435 return -EINVAL;
4436 }
4437 }
4438 }
4439
4440 if (max_bonds < 1 || max_bonds > INT_MAX) {
4441 printk(KERN_WARNING DRV_NAME
4442 ": Warning: max_bonds (%d) not in range %d-%d, so it "
4443 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4444 max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4445 max_bonds = BOND_DEFAULT_MAX_BONDS;
4446 }
4447
4448 if (miimon < 0) {
4449 printk(KERN_WARNING DRV_NAME
4450 ": Warning: miimon module parameter (%d), "
4451 "not in range 0-%d, so it was reset to %d\n",
4452 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4453 miimon = BOND_LINK_MON_INTERV;
4454 }
4455
4456 if (updelay < 0) {
4457 printk(KERN_WARNING DRV_NAME
4458 ": Warning: updelay module parameter (%d), "
4459 "not in range 0-%d, so it was reset to 0\n",
4460 updelay, INT_MAX);
4461 updelay = 0;
4462 }
4463
4464 if (downdelay < 0) {
4465 printk(KERN_WARNING DRV_NAME
4466 ": Warning: downdelay module parameter (%d), "
4467 "not in range 0-%d, so it was reset to 0\n",
4468 downdelay, INT_MAX);
4469 downdelay = 0;
4470 }
4471
4472 if ((use_carrier != 0) && (use_carrier != 1)) {
4473 printk(KERN_WARNING DRV_NAME
4474 ": Warning: use_carrier module parameter (%d), "
4475 "not of valid value (0/1), so it was set to 1\n",
4476 use_carrier);
4477 use_carrier = 1;
4478 }
4479
4480 /* reset values for 802.3ad */
4481 if (bond_mode == BOND_MODE_8023AD) {
4482 if (!miimon) {
4483 printk(KERN_WARNING DRV_NAME
4484 ": Warning: miimon must be specified, "
4485 "otherwise bonding will not detect link "
4486 "failure, speed and duplex which are "
4487 "essential for 802.3ad operation\n");
4488 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4489 miimon = 100;
4490 }
4491 }
4492
4493 /* reset values for TLB/ALB */
4494 if ((bond_mode == BOND_MODE_TLB) ||
4495 (bond_mode == BOND_MODE_ALB)) {
4496 if (!miimon) {
4497 printk(KERN_WARNING DRV_NAME
4498 ": Warning: miimon must be specified, "
4499 "otherwise bonding will not detect link "
4500 "failure and link speed which are essential "
4501 "for TLB/ALB load balancing\n");
4502 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4503 miimon = 100;
4504 }
4505 }
4506
4507 if (bond_mode == BOND_MODE_ALB) {
4508 printk(KERN_NOTICE DRV_NAME
4509 ": In ALB mode you might experience client "
4510 "disconnections upon reconnection of a link if the "
4511 "bonding module updelay parameter (%d msec) is "
4512 "incompatible with the forwarding delay time of the "
4513 "switch\n",
4514 updelay);
4515 }
4516
4517 if (!miimon) {
4518 if (updelay || downdelay) {
4519 /* just warn the user the up/down delay will have
4520 * no effect since miimon is zero...
4521 */
4522 printk(KERN_WARNING DRV_NAME
4523 ": Warning: miimon module parameter not set "
4524 "and updelay (%d) or downdelay (%d) module "
4525 "parameter is set; updelay and downdelay have "
4526 "no effect unless miimon is set\n",
4527 updelay, downdelay);
4528 }
4529 } else {
4530 /* don't allow arp monitoring */
4531 if (arp_interval) {
4532 printk(KERN_WARNING DRV_NAME
4533 ": Warning: miimon (%d) and arp_interval (%d) "
4534 "can't be used simultaneously, disabling ARP "
4535 "monitoring\n",
4536 miimon, arp_interval);
4537 arp_interval = 0;
4538 }
4539
4540 if ((updelay % miimon) != 0) {
4541 printk(KERN_WARNING DRV_NAME
4542 ": Warning: updelay (%d) is not a multiple "
4543 "of miimon (%d), updelay rounded to %d ms\n",
4544 updelay, miimon, (updelay / miimon) * miimon);
4545 }
4546
4547 updelay /= miimon;
4548
4549 if ((downdelay % miimon) != 0) {
4550 printk(KERN_WARNING DRV_NAME
4551 ": Warning: downdelay (%d) is not a multiple "
4552 "of miimon (%d), downdelay rounded to %d ms\n",
4553 downdelay, miimon,
4554 (downdelay / miimon) * miimon);
4555 }
4556
4557 downdelay /= miimon;
4558 }
4559
4560 if (arp_interval < 0) {
4561 printk(KERN_WARNING DRV_NAME
4562 ": Warning: arp_interval module parameter (%d) "
4563 ", not in range 0-%d, so it was reset to %d\n",
4564 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4565 arp_interval = BOND_LINK_ARP_INTERV;
4566 }
4567
4568 for (arp_ip_count = 0;
4569 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4570 arp_ip_count++) {
4571 /* not complete check, but should be good enough to
4572 catch mistakes */
4573 if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4574 printk(KERN_WARNING DRV_NAME
4575 ": Warning: bad arp_ip_target module parameter "
4576 "(%s), ARP monitoring will not be performed\n",
4577 arp_ip_target[arp_ip_count]);
4578 arp_interval = 0;
4579 } else {
4580 u32 ip = in_aton(arp_ip_target[arp_ip_count]);
4581 arp_target[arp_ip_count] = ip;
4582 }
4583 }
4584
4585 if (arp_interval && !arp_ip_count) {
4586 /* don't allow arping if no arp_ip_target given... */
4587 printk(KERN_WARNING DRV_NAME
4588 ": Warning: arp_interval module parameter (%d) "
4589 "specified without providing an arp_ip_target "
4590 "parameter, arp_interval was reset to 0\n",
4591 arp_interval);
4592 arp_interval = 0;
4593 }
4594
4595 if (arp_validate) {
4596 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4597 printk(KERN_ERR DRV_NAME
4598 ": arp_validate only supported in active-backup mode\n");
4599 return -EINVAL;
4600 }
4601 if (!arp_interval) {
4602 printk(KERN_ERR DRV_NAME
4603 ": arp_validate requires arp_interval\n");
4604 return -EINVAL;
4605 }
4606
4607 arp_validate_value = bond_parse_parm(arp_validate,
4608 arp_validate_tbl);
4609 if (arp_validate_value == -1) {
4610 printk(KERN_ERR DRV_NAME
4611 ": Error: invalid arp_validate \"%s\"\n",
4612 arp_validate == NULL ? "NULL" : arp_validate);
4613 return -EINVAL;
4614 }
4615 } else
4616 arp_validate_value = 0;
4617
4618 if (miimon) {
4619 printk(KERN_INFO DRV_NAME
4620 ": MII link monitoring set to %d ms\n",
4621 miimon);
4622 } else if (arp_interval) {
4623 int i;
4624
4625 printk(KERN_INFO DRV_NAME
4626 ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4627 arp_interval,
4628 arp_validate_tbl[arp_validate_value].modename,
4629 arp_ip_count);
4630
4631 for (i = 0; i < arp_ip_count; i++)
4632 printk (" %s", arp_ip_target[i]);
4633
4634 printk("\n");
4635
4636 } else {
4637 /* miimon and arp_interval not set, we need one so things
4638 * work as expected, see bonding.txt for details
4639 */
4640 printk(KERN_WARNING DRV_NAME
4641 ": Warning: either miimon or arp_interval and "
4642 "arp_ip_target module parameters must be specified, "
4643 "otherwise bonding will not detect link failures! see "
4644 "bonding.txt for details.\n");
4645 }
4646
4647 if (primary && !USES_PRIMARY(bond_mode)) {
4648 /* currently, using a primary only makes sense
4649 * in active backup, TLB or ALB modes
4650 */
4651 printk(KERN_WARNING DRV_NAME
4652 ": Warning: %s primary device specified but has no "
4653 "effect in %s mode\n",
4654 primary, bond_mode_name(bond_mode));
4655 primary = NULL;
4656 }
4657
4658 /* fill params struct with the proper values */
4659 params->mode = bond_mode;
4660 params->xmit_policy = xmit_hashtype;
4661 params->miimon = miimon;
4662 params->arp_interval = arp_interval;
4663 params->arp_validate = arp_validate_value;
4664 params->updelay = updelay;
4665 params->downdelay = downdelay;
4666 params->use_carrier = use_carrier;
4667 params->lacp_fast = lacp_fast;
4668 params->primary[0] = 0;
4669
4670 if (primary) {
4671 strncpy(params->primary, primary, IFNAMSIZ);
4672 params->primary[IFNAMSIZ - 1] = 0;
4673 }
4674
4675 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4676
4677 return 0;
4678 }
4679
4680 static struct lock_class_key bonding_netdev_xmit_lock_key;
4681
4682 /* Create a new bond based on the specified name and bonding parameters.
4683 * If name is NULL, obtain a suitable "bond%d" name for us.
4684 * Caller must NOT hold rtnl_lock; we need to release it here before we
4685 * set up our sysfs entries.
4686 */
4687 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4688 {
4689 struct net_device *bond_dev;
4690 int res;
4691
4692 rtnl_lock();
4693 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4694 ether_setup);
4695 if (!bond_dev) {
4696 printk(KERN_ERR DRV_NAME
4697 ": %s: eek! can't alloc netdev!\n",
4698 name);
4699 res = -ENOMEM;
4700 goto out_rtnl;
4701 }
4702
4703 if (!name) {
4704 res = dev_alloc_name(bond_dev, "bond%d");
4705 if (res < 0)
4706 goto out_netdev;
4707 }
4708
4709 /* bond_init() must be called after dev_alloc_name() (for the
4710 * /proc files), but before register_netdevice(), because we
4711 * need to set function pointers.
4712 */
4713
4714 res = bond_init(bond_dev, params);
4715 if (res < 0) {
4716 goto out_netdev;
4717 }
4718
4719 SET_MODULE_OWNER(bond_dev);
4720
4721 res = register_netdevice(bond_dev);
4722 if (res < 0) {
4723 goto out_bond;
4724 }
4725
4726 lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4727
4728 if (newbond)
4729 *newbond = bond_dev->priv;
4730
4731 netif_carrier_off(bond_dev);
4732
4733 rtnl_unlock(); /* allows sysfs registration of net device */
4734 res = bond_create_sysfs_entry(bond_dev->priv);
4735 if (res < 0) {
4736 rtnl_lock();
4737 goto out_bond;
4738 }
4739
4740 return 0;
4741
4742 out_bond:
4743 bond_deinit(bond_dev);
4744 out_netdev:
4745 free_netdev(bond_dev);
4746 out_rtnl:
4747 rtnl_unlock();
4748 return res;
4749 }
4750
4751 static int __init bonding_init(void)
4752 {
4753 int i;
4754 int res;
4755
4756 printk(KERN_INFO "%s", version);
4757
4758 res = bond_check_params(&bonding_defaults);
4759 if (res) {
4760 goto out;
4761 }
4762
4763 #ifdef CONFIG_PROC_FS
4764 bond_create_proc_dir();
4765 #endif
4766 for (i = 0; i < max_bonds; i++) {
4767 res = bond_create(NULL, &bonding_defaults, NULL);
4768 if (res)
4769 goto err;
4770 }
4771
4772 res = bond_create_sysfs();
4773 if (res)
4774 goto err;
4775
4776 register_netdevice_notifier(&bond_netdev_notifier);
4777 register_inetaddr_notifier(&bond_inetaddr_notifier);
4778
4779 goto out;
4780 err:
4781 rtnl_lock();
4782 bond_free_all();
4783 bond_destroy_sysfs();
4784 rtnl_unlock();
4785 out:
4786 return res;
4787
4788 }
4789
4790 static void __exit bonding_exit(void)
4791 {
4792 unregister_netdevice_notifier(&bond_netdev_notifier);
4793 unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4794
4795 rtnl_lock();
4796 bond_free_all();
4797 bond_destroy_sysfs();
4798 rtnl_unlock();
4799 }
4800
4801 module_init(bonding_init);
4802 module_exit(bonding_exit);
4803 MODULE_LICENSE("GPL");
4804 MODULE_VERSION(DRV_VERSION);
4805 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4806 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4807 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4808
4809 /*
4810 * Local variables:
4811 * c-indent-level: 8
4812 * c-basic-offset: 8
4813 * tab-width: 8
4814 * End:
4815 */
4816