]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/can/dev.c
8ebe112458c4669f615d923e73d0280e38ba3477
[mirror_ubuntu-bionic-kernel.git] / drivers / net / can / dev.c
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
30
31 #define MOD_DESC "CAN device driver interface"
32
33 MODULE_DESCRIPTION(MOD_DESC);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37 /* CAN DLC to real data length conversion helpers */
38
39 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40 8, 12, 16, 20, 24, 32, 48, 64};
41
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8 can_dlc2len(u8 can_dlc)
44 {
45 return dlc2len[can_dlc & 0x0F];
46 }
47 EXPORT_SYMBOL_GPL(can_dlc2len);
48
49 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
50 9, 9, 9, 9, /* 9 - 12 */
51 10, 10, 10, 10, /* 13 - 16 */
52 11, 11, 11, 11, /* 17 - 20 */
53 12, 12, 12, 12, /* 21 - 24 */
54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
59
60 /* map the sanitized data length to an appropriate data length code */
61 u8 can_len2dlc(u8 len)
62 {
63 if (unlikely(len > 64))
64 return 0xF;
65
66 return len2dlc[len];
67 }
68 EXPORT_SYMBOL_GPL(can_len2dlc);
69
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73 /*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005 Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86 static int can_update_spt(const struct can_bittiming_const *btc,
87 int sampl_pt, int tseg, int *tseg1, int *tseg2)
88 {
89 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90 if (*tseg2 < btc->tseg2_min)
91 *tseg2 = btc->tseg2_min;
92 if (*tseg2 > btc->tseg2_max)
93 *tseg2 = btc->tseg2_max;
94 *tseg1 = tseg - *tseg2;
95 if (*tseg1 > btc->tseg1_max) {
96 *tseg1 = btc->tseg1_max;
97 *tseg2 = tseg - *tseg1;
98 }
99 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100 }
101
102 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103 const struct can_bittiming_const *btc)
104 {
105 struct can_priv *priv = netdev_priv(dev);
106 long rate, best_rate = 0;
107 long best_error = 1000000000, error = 0;
108 int best_tseg = 0, best_brp = 0, brp = 0;
109 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110 int spt_error = 1000, spt = 0, sampl_pt;
111 u64 v64;
112
113 /* Use CIA recommended sample points */
114 if (bt->sample_point) {
115 sampl_pt = bt->sample_point;
116 } else {
117 if (bt->bitrate > 800000)
118 sampl_pt = 750;
119 else if (bt->bitrate > 500000)
120 sampl_pt = 800;
121 else
122 sampl_pt = 875;
123 }
124
125 /* tseg even = round down, odd = round up */
126 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128 tsegall = 1 + tseg / 2;
129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131 /* chose brp step which is possible in system */
132 brp = (brp / btc->brp_inc) * btc->brp_inc;
133 if ((brp < btc->brp_min) || (brp > btc->brp_max))
134 continue;
135 rate = priv->clock.freq / (brp * tsegall);
136 error = bt->bitrate - rate;
137 /* tseg brp biterror */
138 if (error < 0)
139 error = -error;
140 if (error > best_error)
141 continue;
142 best_error = error;
143 if (error == 0) {
144 spt = can_update_spt(btc, sampl_pt, tseg / 2,
145 &tseg1, &tseg2);
146 error = sampl_pt - spt;
147 if (error < 0)
148 error = -error;
149 if (error > spt_error)
150 continue;
151 spt_error = error;
152 }
153 best_tseg = tseg / 2;
154 best_brp = brp;
155 best_rate = rate;
156 if (error == 0)
157 break;
158 }
159
160 if (best_error) {
161 /* Error in one-tenth of a percent */
162 error = (best_error * 1000) / bt->bitrate;
163 if (error > CAN_CALC_MAX_ERROR) {
164 netdev_err(dev,
165 "bitrate error %ld.%ld%% too high\n",
166 error / 10, error % 10);
167 return -EDOM;
168 } else {
169 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170 error / 10, error % 10);
171 }
172 }
173
174 /* real sample point */
175 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176 &tseg1, &tseg2);
177
178 v64 = (u64)best_brp * 1000000000UL;
179 do_div(v64, priv->clock.freq);
180 bt->tq = (u32)v64;
181 bt->prop_seg = tseg1 / 2;
182 bt->phase_seg1 = tseg1 - bt->prop_seg;
183 bt->phase_seg2 = tseg2;
184
185 /* check for sjw user settings */
186 if (!bt->sjw || !btc->sjw_max)
187 bt->sjw = 1;
188 else {
189 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190 if (bt->sjw > btc->sjw_max)
191 bt->sjw = btc->sjw_max;
192 /* bt->sjw must not be higher than tseg2 */
193 if (tseg2 < bt->sjw)
194 bt->sjw = tseg2;
195 }
196
197 bt->brp = best_brp;
198 /* real bit-rate */
199 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201 return 0;
202 }
203 #else /* !CONFIG_CAN_CALC_BITTIMING */
204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205 const struct can_bittiming_const *btc)
206 {
207 netdev_err(dev, "bit-timing calculation not available\n");
208 return -EINVAL;
209 }
210 #endif /* CONFIG_CAN_CALC_BITTIMING */
211
212 /*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219 const struct can_bittiming_const *btc)
220 {
221 struct can_priv *priv = netdev_priv(dev);
222 int tseg1, alltseg;
223 u64 brp64;
224
225 tseg1 = bt->prop_seg + bt->phase_seg1;
226 if (!bt->sjw)
227 bt->sjw = 1;
228 if (bt->sjw > btc->sjw_max ||
229 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231 return -ERANGE;
232
233 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234 if (btc->brp_inc > 1)
235 do_div(brp64, btc->brp_inc);
236 brp64 += 500000000UL - 1;
237 do_div(brp64, 1000000000UL); /* the practicable BRP */
238 if (btc->brp_inc > 1)
239 brp64 *= btc->brp_inc;
240 bt->brp = (u32)brp64;
241
242 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243 return -EINVAL;
244
245 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249 return 0;
250 }
251
252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253 const struct can_bittiming_const *btc)
254 {
255 int err;
256
257 /* Check if the CAN device has bit-timing parameters */
258 if (!btc)
259 return -ENOTSUPP;
260
261 /*
262 * Depending on the given can_bittiming parameter structure the CAN
263 * timing parameters are calculated based on the provided bitrate OR
264 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265 * provided directly which are then checked and fixed up.
266 */
267 if (!bt->tq && bt->bitrate)
268 err = can_calc_bittiming(dev, bt, btc);
269 else if (bt->tq && !bt->bitrate)
270 err = can_fixup_bittiming(dev, bt, btc);
271 else
272 err = -EINVAL;
273
274 return err;
275 }
276
277 /*
278 * Local echo of CAN messages
279 *
280 * CAN network devices *should* support a local echo functionality
281 * (see Documentation/networking/can.txt). To test the handling of CAN
282 * interfaces that do not support the local echo both driver types are
283 * implemented. In the case that the driver does not support the echo
284 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285 * to perform the echo as a fallback solution.
286 */
287 static void can_flush_echo_skb(struct net_device *dev)
288 {
289 struct can_priv *priv = netdev_priv(dev);
290 struct net_device_stats *stats = &dev->stats;
291 int i;
292
293 for (i = 0; i < priv->echo_skb_max; i++) {
294 if (priv->echo_skb[i]) {
295 kfree_skb(priv->echo_skb[i]);
296 priv->echo_skb[i] = NULL;
297 stats->tx_dropped++;
298 stats->tx_aborted_errors++;
299 }
300 }
301 }
302
303 /*
304 * Put the skb on the stack to be looped backed locally lateron
305 *
306 * The function is typically called in the start_xmit function
307 * of the device driver. The driver must protect access to
308 * priv->echo_skb, if necessary.
309 */
310 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311 unsigned int idx)
312 {
313 struct can_priv *priv = netdev_priv(dev);
314
315 BUG_ON(idx >= priv->echo_skb_max);
316
317 /* check flag whether this packet has to be looped back */
318 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319 (skb->protocol != htons(ETH_P_CAN) &&
320 skb->protocol != htons(ETH_P_CANFD))) {
321 kfree_skb(skb);
322 return;
323 }
324
325 if (!priv->echo_skb[idx]) {
326
327 skb = can_create_echo_skb(skb);
328 if (!skb)
329 return;
330
331 /* make settings for echo to reduce code in irq context */
332 skb->pkt_type = PACKET_BROADCAST;
333 skb->ip_summed = CHECKSUM_UNNECESSARY;
334 skb->dev = dev;
335
336 /* save this skb for tx interrupt echo handling */
337 priv->echo_skb[idx] = skb;
338 } else {
339 /* locking problem with netif_stop_queue() ?? */
340 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341 kfree_skb(skb);
342 }
343 }
344 EXPORT_SYMBOL_GPL(can_put_echo_skb);
345
346 /*
347 * Get the skb from the stack and loop it back locally
348 *
349 * The function is typically called when the TX done interrupt
350 * is handled in the device driver. The driver must protect
351 * access to priv->echo_skb, if necessary.
352 */
353 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354 {
355 struct can_priv *priv = netdev_priv(dev);
356
357 BUG_ON(idx >= priv->echo_skb_max);
358
359 if (priv->echo_skb[idx]) {
360 struct sk_buff *skb = priv->echo_skb[idx];
361 struct can_frame *cf = (struct can_frame *)skb->data;
362 u8 dlc = cf->can_dlc;
363
364 netif_rx(priv->echo_skb[idx]);
365 priv->echo_skb[idx] = NULL;
366
367 return dlc;
368 }
369
370 return 0;
371 }
372 EXPORT_SYMBOL_GPL(can_get_echo_skb);
373
374 /*
375 * Remove the skb from the stack and free it.
376 *
377 * The function is typically called when TX failed.
378 */
379 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380 {
381 struct can_priv *priv = netdev_priv(dev);
382
383 BUG_ON(idx >= priv->echo_skb_max);
384
385 if (priv->echo_skb[idx]) {
386 kfree_skb(priv->echo_skb[idx]);
387 priv->echo_skb[idx] = NULL;
388 }
389 }
390 EXPORT_SYMBOL_GPL(can_free_echo_skb);
391
392 /*
393 * CAN device restart for bus-off recovery
394 */
395 static void can_restart(unsigned long data)
396 {
397 struct net_device *dev = (struct net_device *)data;
398 struct can_priv *priv = netdev_priv(dev);
399 struct net_device_stats *stats = &dev->stats;
400 struct sk_buff *skb;
401 struct can_frame *cf;
402 int err;
403
404 BUG_ON(netif_carrier_ok(dev));
405
406 /*
407 * No synchronization needed because the device is bus-off and
408 * no messages can come in or go out.
409 */
410 can_flush_echo_skb(dev);
411
412 /* send restart message upstream */
413 skb = alloc_can_err_skb(dev, &cf);
414 if (skb == NULL) {
415 err = -ENOMEM;
416 goto restart;
417 }
418 cf->can_id |= CAN_ERR_RESTARTED;
419
420 netif_rx(skb);
421
422 stats->rx_packets++;
423 stats->rx_bytes += cf->can_dlc;
424
425 restart:
426 netdev_dbg(dev, "restarted\n");
427 priv->can_stats.restarts++;
428
429 /* Now restart the device */
430 err = priv->do_set_mode(dev, CAN_MODE_START);
431
432 netif_carrier_on(dev);
433 if (err)
434 netdev_err(dev, "Error %d during restart", err);
435 }
436
437 int can_restart_now(struct net_device *dev)
438 {
439 struct can_priv *priv = netdev_priv(dev);
440
441 /*
442 * A manual restart is only permitted if automatic restart is
443 * disabled and the device is in the bus-off state
444 */
445 if (priv->restart_ms)
446 return -EINVAL;
447 if (priv->state != CAN_STATE_BUS_OFF)
448 return -EBUSY;
449
450 /* Runs as soon as possible in the timer context */
451 mod_timer(&priv->restart_timer, jiffies);
452
453 return 0;
454 }
455
456 /*
457 * CAN bus-off
458 *
459 * This functions should be called when the device goes bus-off to
460 * tell the netif layer that no more packets can be sent or received.
461 * If enabled, a timer is started to trigger bus-off recovery.
462 */
463 void can_bus_off(struct net_device *dev)
464 {
465 struct can_priv *priv = netdev_priv(dev);
466
467 netdev_dbg(dev, "bus-off\n");
468
469 netif_carrier_off(dev);
470 priv->can_stats.bus_off++;
471
472 if (priv->restart_ms)
473 mod_timer(&priv->restart_timer,
474 jiffies + (priv->restart_ms * HZ) / 1000);
475 }
476 EXPORT_SYMBOL_GPL(can_bus_off);
477
478 static void can_setup(struct net_device *dev)
479 {
480 dev->type = ARPHRD_CAN;
481 dev->mtu = CAN_MTU;
482 dev->hard_header_len = 0;
483 dev->addr_len = 0;
484 dev->tx_queue_len = 10;
485
486 /* New-style flags. */
487 dev->flags = IFF_NOARP;
488 dev->features = NETIF_F_HW_CSUM;
489 }
490
491 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
492 {
493 struct sk_buff *skb;
494
495 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
496 sizeof(struct can_frame));
497 if (unlikely(!skb))
498 return NULL;
499
500 skb->protocol = htons(ETH_P_CAN);
501 skb->pkt_type = PACKET_BROADCAST;
502 skb->ip_summed = CHECKSUM_UNNECESSARY;
503
504 can_skb_reserve(skb);
505 can_skb_prv(skb)->ifindex = dev->ifindex;
506
507 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
508 memset(*cf, 0, sizeof(struct can_frame));
509
510 return skb;
511 }
512 EXPORT_SYMBOL_GPL(alloc_can_skb);
513
514 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
515 struct canfd_frame **cfd)
516 {
517 struct sk_buff *skb;
518
519 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
520 sizeof(struct canfd_frame));
521 if (unlikely(!skb))
522 return NULL;
523
524 skb->protocol = htons(ETH_P_CANFD);
525 skb->pkt_type = PACKET_BROADCAST;
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527
528 can_skb_reserve(skb);
529 can_skb_prv(skb)->ifindex = dev->ifindex;
530
531 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
532 memset(*cfd, 0, sizeof(struct canfd_frame));
533
534 return skb;
535 }
536 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
537
538 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
539 {
540 struct sk_buff *skb;
541
542 skb = alloc_can_skb(dev, cf);
543 if (unlikely(!skb))
544 return NULL;
545
546 (*cf)->can_id = CAN_ERR_FLAG;
547 (*cf)->can_dlc = CAN_ERR_DLC;
548
549 return skb;
550 }
551 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
552
553 /*
554 * Allocate and setup space for the CAN network device
555 */
556 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
557 {
558 struct net_device *dev;
559 struct can_priv *priv;
560 int size;
561
562 if (echo_skb_max)
563 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
564 echo_skb_max * sizeof(struct sk_buff *);
565 else
566 size = sizeof_priv;
567
568 dev = alloc_netdev(size, "can%d", can_setup);
569 if (!dev)
570 return NULL;
571
572 priv = netdev_priv(dev);
573
574 if (echo_skb_max) {
575 priv->echo_skb_max = echo_skb_max;
576 priv->echo_skb = (void *)priv +
577 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
578 }
579
580 priv->state = CAN_STATE_STOPPED;
581
582 init_timer(&priv->restart_timer);
583
584 return dev;
585 }
586 EXPORT_SYMBOL_GPL(alloc_candev);
587
588 /*
589 * Free space of the CAN network device
590 */
591 void free_candev(struct net_device *dev)
592 {
593 free_netdev(dev);
594 }
595 EXPORT_SYMBOL_GPL(free_candev);
596
597 /*
598 * Common open function when the device gets opened.
599 *
600 * This function should be called in the open function of the device
601 * driver.
602 */
603 int open_candev(struct net_device *dev)
604 {
605 struct can_priv *priv = netdev_priv(dev);
606
607 if (!priv->bittiming.bitrate) {
608 netdev_err(dev, "bit-timing not yet defined\n");
609 return -EINVAL;
610 }
611
612 /* Switch carrier on if device was stopped while in bus-off state */
613 if (!netif_carrier_ok(dev))
614 netif_carrier_on(dev);
615
616 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
617
618 return 0;
619 }
620 EXPORT_SYMBOL_GPL(open_candev);
621
622 /*
623 * Common close function for cleanup before the device gets closed.
624 *
625 * This function should be called in the close function of the device
626 * driver.
627 */
628 void close_candev(struct net_device *dev)
629 {
630 struct can_priv *priv = netdev_priv(dev);
631
632 del_timer_sync(&priv->restart_timer);
633 can_flush_echo_skb(dev);
634 }
635 EXPORT_SYMBOL_GPL(close_candev);
636
637 /*
638 * CAN netlink interface
639 */
640 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
641 [IFLA_CAN_STATE] = { .type = NLA_U32 },
642 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
643 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
644 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
645 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
646 [IFLA_CAN_BITTIMING_CONST]
647 = { .len = sizeof(struct can_bittiming_const) },
648 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
649 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
650 [IFLA_CAN_DATA_BITTIMING]
651 = { .len = sizeof(struct can_bittiming) },
652 [IFLA_CAN_DATA_BITTIMING_CONST]
653 = { .len = sizeof(struct can_bittiming_const) },
654 };
655
656 static int can_changelink(struct net_device *dev,
657 struct nlattr *tb[], struct nlattr *data[])
658 {
659 struct can_priv *priv = netdev_priv(dev);
660 int err;
661
662 /* We need synchronization with dev->stop() */
663 ASSERT_RTNL();
664
665 if (data[IFLA_CAN_BITTIMING]) {
666 struct can_bittiming bt;
667
668 /* Do not allow changing bittiming while running */
669 if (dev->flags & IFF_UP)
670 return -EBUSY;
671 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
672 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
673 if (err)
674 return err;
675 memcpy(&priv->bittiming, &bt, sizeof(bt));
676
677 if (priv->do_set_bittiming) {
678 /* Finally, set the bit-timing registers */
679 err = priv->do_set_bittiming(dev);
680 if (err)
681 return err;
682 }
683 }
684
685 if (data[IFLA_CAN_CTRLMODE]) {
686 struct can_ctrlmode *cm;
687
688 /* Do not allow changing controller mode while running */
689 if (dev->flags & IFF_UP)
690 return -EBUSY;
691 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
692 if (cm->flags & ~priv->ctrlmode_supported)
693 return -EOPNOTSUPP;
694 priv->ctrlmode &= ~cm->mask;
695 priv->ctrlmode |= cm->flags;
696 }
697
698 if (data[IFLA_CAN_RESTART_MS]) {
699 /* Do not allow changing restart delay while running */
700 if (dev->flags & IFF_UP)
701 return -EBUSY;
702 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
703 }
704
705 if (data[IFLA_CAN_RESTART]) {
706 /* Do not allow a restart while not running */
707 if (!(dev->flags & IFF_UP))
708 return -EINVAL;
709 err = can_restart_now(dev);
710 if (err)
711 return err;
712 }
713
714 if (data[IFLA_CAN_DATA_BITTIMING]) {
715 struct can_bittiming dbt;
716
717 /* Do not allow changing bittiming while running */
718 if (dev->flags & IFF_UP)
719 return -EBUSY;
720 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
721 sizeof(dbt));
722 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
723 if (err)
724 return err;
725 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
726
727 if (priv->do_set_data_bittiming) {
728 /* Finally, set the bit-timing registers */
729 err = priv->do_set_data_bittiming(dev);
730 if (err)
731 return err;
732 }
733 }
734
735 return 0;
736 }
737
738 static size_t can_get_size(const struct net_device *dev)
739 {
740 struct can_priv *priv = netdev_priv(dev);
741 size_t size = 0;
742
743 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
744 size += nla_total_size(sizeof(struct can_bittiming));
745 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
746 size += nla_total_size(sizeof(struct can_bittiming_const));
747 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
748 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
749 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
750 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
751 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
752 size += nla_total_size(sizeof(struct can_berr_counter));
753 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
754 size += nla_total_size(sizeof(struct can_bittiming));
755 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
756 size += nla_total_size(sizeof(struct can_bittiming_const));
757
758 return size;
759 }
760
761 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
762 {
763 struct can_priv *priv = netdev_priv(dev);
764 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
765 struct can_berr_counter bec;
766 enum can_state state = priv->state;
767
768 if (priv->do_get_state)
769 priv->do_get_state(dev, &state);
770
771 if ((priv->bittiming.bitrate &&
772 nla_put(skb, IFLA_CAN_BITTIMING,
773 sizeof(priv->bittiming), &priv->bittiming)) ||
774
775 (priv->bittiming_const &&
776 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
777 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
778
779 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
780 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
781 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
782 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
783
784 (priv->do_get_berr_counter &&
785 !priv->do_get_berr_counter(dev, &bec) &&
786 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
787
788 (priv->data_bittiming.bitrate &&
789 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
790 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
791
792 (priv->data_bittiming_const &&
793 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
794 sizeof(*priv->data_bittiming_const),
795 priv->data_bittiming_const)))
796 return -EMSGSIZE;
797
798 return 0;
799 }
800
801 static size_t can_get_xstats_size(const struct net_device *dev)
802 {
803 return sizeof(struct can_device_stats);
804 }
805
806 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
807 {
808 struct can_priv *priv = netdev_priv(dev);
809
810 if (nla_put(skb, IFLA_INFO_XSTATS,
811 sizeof(priv->can_stats), &priv->can_stats))
812 goto nla_put_failure;
813 return 0;
814
815 nla_put_failure:
816 return -EMSGSIZE;
817 }
818
819 static int can_newlink(struct net *src_net, struct net_device *dev,
820 struct nlattr *tb[], struct nlattr *data[])
821 {
822 return -EOPNOTSUPP;
823 }
824
825 static struct rtnl_link_ops can_link_ops __read_mostly = {
826 .kind = "can",
827 .maxtype = IFLA_CAN_MAX,
828 .policy = can_policy,
829 .setup = can_setup,
830 .newlink = can_newlink,
831 .changelink = can_changelink,
832 .get_size = can_get_size,
833 .fill_info = can_fill_info,
834 .get_xstats_size = can_get_xstats_size,
835 .fill_xstats = can_fill_xstats,
836 };
837
838 /*
839 * Register the CAN network device
840 */
841 int register_candev(struct net_device *dev)
842 {
843 dev->rtnl_link_ops = &can_link_ops;
844 return register_netdev(dev);
845 }
846 EXPORT_SYMBOL_GPL(register_candev);
847
848 /*
849 * Unregister the CAN network device
850 */
851 void unregister_candev(struct net_device *dev)
852 {
853 unregister_netdev(dev);
854 }
855 EXPORT_SYMBOL_GPL(unregister_candev);
856
857 /*
858 * Test if a network device is a candev based device
859 * and return the can_priv* if so.
860 */
861 struct can_priv *safe_candev_priv(struct net_device *dev)
862 {
863 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
864 return NULL;
865
866 return netdev_priv(dev);
867 }
868 EXPORT_SYMBOL_GPL(safe_candev_priv);
869
870 static __init int can_dev_init(void)
871 {
872 int err;
873
874 can_led_notifier_init();
875
876 err = rtnl_link_register(&can_link_ops);
877 if (!err)
878 printk(KERN_INFO MOD_DESC "\n");
879
880 return err;
881 }
882 module_init(can_dev_init);
883
884 static __exit void can_dev_exit(void)
885 {
886 rtnl_link_unregister(&can_link_ops);
887
888 can_led_notifier_exit();
889 }
890 module_exit(can_dev_exit);
891
892 MODULE_ALIAS_RTNL_LINK("can");