]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/can/dev.c
can: fix handling of unmodifiable configuration options
[mirror_ubuntu-bionic-kernel.git] / drivers / net / can / dev.c
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
30
31 #define MOD_DESC "CAN device driver interface"
32
33 MODULE_DESCRIPTION(MOD_DESC);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37 /* CAN DLC to real data length conversion helpers */
38
39 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40 8, 12, 16, 20, 24, 32, 48, 64};
41
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8 can_dlc2len(u8 can_dlc)
44 {
45 return dlc2len[can_dlc & 0x0F];
46 }
47 EXPORT_SYMBOL_GPL(can_dlc2len);
48
49 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
50 9, 9, 9, 9, /* 9 - 12 */
51 10, 10, 10, 10, /* 13 - 16 */
52 11, 11, 11, 11, /* 17 - 20 */
53 12, 12, 12, 12, /* 21 - 24 */
54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
59
60 /* map the sanitized data length to an appropriate data length code */
61 u8 can_len2dlc(u8 len)
62 {
63 if (unlikely(len > 64))
64 return 0xF;
65
66 return len2dlc[len];
67 }
68 EXPORT_SYMBOL_GPL(can_len2dlc);
69
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73 /*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005 Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86 static int can_update_spt(const struct can_bittiming_const *btc,
87 int sampl_pt, int tseg, int *tseg1, int *tseg2)
88 {
89 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90 if (*tseg2 < btc->tseg2_min)
91 *tseg2 = btc->tseg2_min;
92 if (*tseg2 > btc->tseg2_max)
93 *tseg2 = btc->tseg2_max;
94 *tseg1 = tseg - *tseg2;
95 if (*tseg1 > btc->tseg1_max) {
96 *tseg1 = btc->tseg1_max;
97 *tseg2 = tseg - *tseg1;
98 }
99 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100 }
101
102 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103 const struct can_bittiming_const *btc)
104 {
105 struct can_priv *priv = netdev_priv(dev);
106 long best_error = 1000000000, error = 0;
107 int best_tseg = 0, best_brp = 0, brp = 0;
108 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
109 int spt_error = 1000, spt = 0, sampl_pt;
110 long rate;
111 u64 v64;
112
113 /* Use CiA recommended sample points */
114 if (bt->sample_point) {
115 sampl_pt = bt->sample_point;
116 } else {
117 if (bt->bitrate > 800000)
118 sampl_pt = 750;
119 else if (bt->bitrate > 500000)
120 sampl_pt = 800;
121 else
122 sampl_pt = 875;
123 }
124
125 /* tseg even = round down, odd = round up */
126 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128 tsegall = 1 + tseg / 2;
129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131 /* chose brp step which is possible in system */
132 brp = (brp / btc->brp_inc) * btc->brp_inc;
133 if ((brp < btc->brp_min) || (brp > btc->brp_max))
134 continue;
135 rate = priv->clock.freq / (brp * tsegall);
136 error = bt->bitrate - rate;
137 /* tseg brp biterror */
138 if (error < 0)
139 error = -error;
140 if (error > best_error)
141 continue;
142 best_error = error;
143 if (error == 0) {
144 spt = can_update_spt(btc, sampl_pt, tseg / 2,
145 &tseg1, &tseg2);
146 error = sampl_pt - spt;
147 if (error < 0)
148 error = -error;
149 if (error > spt_error)
150 continue;
151 spt_error = error;
152 }
153 best_tseg = tseg / 2;
154 best_brp = brp;
155 if (error == 0)
156 break;
157 }
158
159 if (best_error) {
160 /* Error in one-tenth of a percent */
161 error = (best_error * 1000) / bt->bitrate;
162 if (error > CAN_CALC_MAX_ERROR) {
163 netdev_err(dev,
164 "bitrate error %ld.%ld%% too high\n",
165 error / 10, error % 10);
166 return -EDOM;
167 } else {
168 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
169 error / 10, error % 10);
170 }
171 }
172
173 /* real sample point */
174 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
175 &tseg1, &tseg2);
176
177 v64 = (u64)best_brp * 1000000000UL;
178 do_div(v64, priv->clock.freq);
179 bt->tq = (u32)v64;
180 bt->prop_seg = tseg1 / 2;
181 bt->phase_seg1 = tseg1 - bt->prop_seg;
182 bt->phase_seg2 = tseg2;
183
184 /* check for sjw user settings */
185 if (!bt->sjw || !btc->sjw_max)
186 bt->sjw = 1;
187 else {
188 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189 if (bt->sjw > btc->sjw_max)
190 bt->sjw = btc->sjw_max;
191 /* bt->sjw must not be higher than tseg2 */
192 if (tseg2 < bt->sjw)
193 bt->sjw = tseg2;
194 }
195
196 bt->brp = best_brp;
197 /* real bit-rate */
198 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
199
200 return 0;
201 }
202 #else /* !CONFIG_CAN_CALC_BITTIMING */
203 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
204 const struct can_bittiming_const *btc)
205 {
206 netdev_err(dev, "bit-timing calculation not available\n");
207 return -EINVAL;
208 }
209 #endif /* CONFIG_CAN_CALC_BITTIMING */
210
211 /*
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
216 */
217 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
218 const struct can_bittiming_const *btc)
219 {
220 struct can_priv *priv = netdev_priv(dev);
221 int tseg1, alltseg;
222 u64 brp64;
223
224 tseg1 = bt->prop_seg + bt->phase_seg1;
225 if (!bt->sjw)
226 bt->sjw = 1;
227 if (bt->sjw > btc->sjw_max ||
228 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
229 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
230 return -ERANGE;
231
232 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
233 if (btc->brp_inc > 1)
234 do_div(brp64, btc->brp_inc);
235 brp64 += 500000000UL - 1;
236 do_div(brp64, 1000000000UL); /* the practicable BRP */
237 if (btc->brp_inc > 1)
238 brp64 *= btc->brp_inc;
239 bt->brp = (u32)brp64;
240
241 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
242 return -EINVAL;
243
244 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
245 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
246 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
247
248 return 0;
249 }
250
251 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
252 const struct can_bittiming_const *btc)
253 {
254 int err;
255
256 /* Check if the CAN device has bit-timing parameters */
257 if (!btc)
258 return -EOPNOTSUPP;
259
260 /*
261 * Depending on the given can_bittiming parameter structure the CAN
262 * timing parameters are calculated based on the provided bitrate OR
263 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264 * provided directly which are then checked and fixed up.
265 */
266 if (!bt->tq && bt->bitrate)
267 err = can_calc_bittiming(dev, bt, btc);
268 else if (bt->tq && !bt->bitrate)
269 err = can_fixup_bittiming(dev, bt, btc);
270 else
271 err = -EINVAL;
272
273 return err;
274 }
275
276 static void can_update_state_error_stats(struct net_device *dev,
277 enum can_state new_state)
278 {
279 struct can_priv *priv = netdev_priv(dev);
280
281 if (new_state <= priv->state)
282 return;
283
284 switch (new_state) {
285 case CAN_STATE_ERROR_WARNING:
286 priv->can_stats.error_warning++;
287 break;
288 case CAN_STATE_ERROR_PASSIVE:
289 priv->can_stats.error_passive++;
290 break;
291 case CAN_STATE_BUS_OFF:
292 priv->can_stats.bus_off++;
293 break;
294 default:
295 break;
296 }
297 }
298
299 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
300 {
301 switch (state) {
302 case CAN_STATE_ERROR_ACTIVE:
303 return CAN_ERR_CRTL_ACTIVE;
304 case CAN_STATE_ERROR_WARNING:
305 return CAN_ERR_CRTL_TX_WARNING;
306 case CAN_STATE_ERROR_PASSIVE:
307 return CAN_ERR_CRTL_TX_PASSIVE;
308 default:
309 return 0;
310 }
311 }
312
313 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
314 {
315 switch (state) {
316 case CAN_STATE_ERROR_ACTIVE:
317 return CAN_ERR_CRTL_ACTIVE;
318 case CAN_STATE_ERROR_WARNING:
319 return CAN_ERR_CRTL_RX_WARNING;
320 case CAN_STATE_ERROR_PASSIVE:
321 return CAN_ERR_CRTL_RX_PASSIVE;
322 default:
323 return 0;
324 }
325 }
326
327 void can_change_state(struct net_device *dev, struct can_frame *cf,
328 enum can_state tx_state, enum can_state rx_state)
329 {
330 struct can_priv *priv = netdev_priv(dev);
331 enum can_state new_state = max(tx_state, rx_state);
332
333 if (unlikely(new_state == priv->state)) {
334 netdev_warn(dev, "%s: oops, state did not change", __func__);
335 return;
336 }
337
338 netdev_dbg(dev, "New error state: %d\n", new_state);
339
340 can_update_state_error_stats(dev, new_state);
341 priv->state = new_state;
342
343 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
344 cf->can_id |= CAN_ERR_BUSOFF;
345 return;
346 }
347
348 cf->can_id |= CAN_ERR_CRTL;
349 cf->data[1] |= tx_state >= rx_state ?
350 can_tx_state_to_frame(dev, tx_state) : 0;
351 cf->data[1] |= tx_state <= rx_state ?
352 can_rx_state_to_frame(dev, rx_state) : 0;
353 }
354 EXPORT_SYMBOL_GPL(can_change_state);
355
356 /*
357 * Local echo of CAN messages
358 *
359 * CAN network devices *should* support a local echo functionality
360 * (see Documentation/networking/can.txt). To test the handling of CAN
361 * interfaces that do not support the local echo both driver types are
362 * implemented. In the case that the driver does not support the echo
363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
364 * to perform the echo as a fallback solution.
365 */
366 static void can_flush_echo_skb(struct net_device *dev)
367 {
368 struct can_priv *priv = netdev_priv(dev);
369 struct net_device_stats *stats = &dev->stats;
370 int i;
371
372 for (i = 0; i < priv->echo_skb_max; i++) {
373 if (priv->echo_skb[i]) {
374 kfree_skb(priv->echo_skb[i]);
375 priv->echo_skb[i] = NULL;
376 stats->tx_dropped++;
377 stats->tx_aborted_errors++;
378 }
379 }
380 }
381
382 /*
383 * Put the skb on the stack to be looped backed locally lateron
384 *
385 * The function is typically called in the start_xmit function
386 * of the device driver. The driver must protect access to
387 * priv->echo_skb, if necessary.
388 */
389 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
390 unsigned int idx)
391 {
392 struct can_priv *priv = netdev_priv(dev);
393
394 BUG_ON(idx >= priv->echo_skb_max);
395
396 /* check flag whether this packet has to be looped back */
397 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
398 (skb->protocol != htons(ETH_P_CAN) &&
399 skb->protocol != htons(ETH_P_CANFD))) {
400 kfree_skb(skb);
401 return;
402 }
403
404 if (!priv->echo_skb[idx]) {
405
406 skb = can_create_echo_skb(skb);
407 if (!skb)
408 return;
409
410 /* make settings for echo to reduce code in irq context */
411 skb->pkt_type = PACKET_BROADCAST;
412 skb->ip_summed = CHECKSUM_UNNECESSARY;
413 skb->dev = dev;
414
415 /* save this skb for tx interrupt echo handling */
416 priv->echo_skb[idx] = skb;
417 } else {
418 /* locking problem with netif_stop_queue() ?? */
419 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
420 kfree_skb(skb);
421 }
422 }
423 EXPORT_SYMBOL_GPL(can_put_echo_skb);
424
425 /*
426 * Get the skb from the stack and loop it back locally
427 *
428 * The function is typically called when the TX done interrupt
429 * is handled in the device driver. The driver must protect
430 * access to priv->echo_skb, if necessary.
431 */
432 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
433 {
434 struct can_priv *priv = netdev_priv(dev);
435
436 BUG_ON(idx >= priv->echo_skb_max);
437
438 if (priv->echo_skb[idx]) {
439 struct sk_buff *skb = priv->echo_skb[idx];
440 struct can_frame *cf = (struct can_frame *)skb->data;
441 u8 dlc = cf->can_dlc;
442
443 netif_rx(priv->echo_skb[idx]);
444 priv->echo_skb[idx] = NULL;
445
446 return dlc;
447 }
448
449 return 0;
450 }
451 EXPORT_SYMBOL_GPL(can_get_echo_skb);
452
453 /*
454 * Remove the skb from the stack and free it.
455 *
456 * The function is typically called when TX failed.
457 */
458 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
459 {
460 struct can_priv *priv = netdev_priv(dev);
461
462 BUG_ON(idx >= priv->echo_skb_max);
463
464 if (priv->echo_skb[idx]) {
465 dev_kfree_skb_any(priv->echo_skb[idx]);
466 priv->echo_skb[idx] = NULL;
467 }
468 }
469 EXPORT_SYMBOL_GPL(can_free_echo_skb);
470
471 /*
472 * CAN device restart for bus-off recovery
473 */
474 static void can_restart(unsigned long data)
475 {
476 struct net_device *dev = (struct net_device *)data;
477 struct can_priv *priv = netdev_priv(dev);
478 struct net_device_stats *stats = &dev->stats;
479 struct sk_buff *skb;
480 struct can_frame *cf;
481 int err;
482
483 BUG_ON(netif_carrier_ok(dev));
484
485 /*
486 * No synchronization needed because the device is bus-off and
487 * no messages can come in or go out.
488 */
489 can_flush_echo_skb(dev);
490
491 /* send restart message upstream */
492 skb = alloc_can_err_skb(dev, &cf);
493 if (skb == NULL) {
494 err = -ENOMEM;
495 goto restart;
496 }
497 cf->can_id |= CAN_ERR_RESTARTED;
498
499 netif_rx(skb);
500
501 stats->rx_packets++;
502 stats->rx_bytes += cf->can_dlc;
503
504 restart:
505 netdev_dbg(dev, "restarted\n");
506 priv->can_stats.restarts++;
507
508 /* Now restart the device */
509 err = priv->do_set_mode(dev, CAN_MODE_START);
510
511 netif_carrier_on(dev);
512 if (err)
513 netdev_err(dev, "Error %d during restart", err);
514 }
515
516 int can_restart_now(struct net_device *dev)
517 {
518 struct can_priv *priv = netdev_priv(dev);
519
520 /*
521 * A manual restart is only permitted if automatic restart is
522 * disabled and the device is in the bus-off state
523 */
524 if (priv->restart_ms)
525 return -EINVAL;
526 if (priv->state != CAN_STATE_BUS_OFF)
527 return -EBUSY;
528
529 /* Runs as soon as possible in the timer context */
530 mod_timer(&priv->restart_timer, jiffies);
531
532 return 0;
533 }
534
535 /*
536 * CAN bus-off
537 *
538 * This functions should be called when the device goes bus-off to
539 * tell the netif layer that no more packets can be sent or received.
540 * If enabled, a timer is started to trigger bus-off recovery.
541 */
542 void can_bus_off(struct net_device *dev)
543 {
544 struct can_priv *priv = netdev_priv(dev);
545
546 netdev_dbg(dev, "bus-off\n");
547
548 netif_carrier_off(dev);
549
550 if (priv->restart_ms)
551 mod_timer(&priv->restart_timer,
552 jiffies + (priv->restart_ms * HZ) / 1000);
553 }
554 EXPORT_SYMBOL_GPL(can_bus_off);
555
556 static void can_setup(struct net_device *dev)
557 {
558 dev->type = ARPHRD_CAN;
559 dev->mtu = CAN_MTU;
560 dev->hard_header_len = 0;
561 dev->addr_len = 0;
562 dev->tx_queue_len = 10;
563
564 /* New-style flags. */
565 dev->flags = IFF_NOARP;
566 dev->features = NETIF_F_HW_CSUM;
567 }
568
569 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
570 {
571 struct sk_buff *skb;
572
573 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
574 sizeof(struct can_frame));
575 if (unlikely(!skb))
576 return NULL;
577
578 skb->protocol = htons(ETH_P_CAN);
579 skb->pkt_type = PACKET_BROADCAST;
580 skb->ip_summed = CHECKSUM_UNNECESSARY;
581
582 skb_reset_mac_header(skb);
583 skb_reset_network_header(skb);
584 skb_reset_transport_header(skb);
585
586 can_skb_reserve(skb);
587 can_skb_prv(skb)->ifindex = dev->ifindex;
588 can_skb_prv(skb)->skbcnt = 0;
589
590 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
591 memset(*cf, 0, sizeof(struct can_frame));
592
593 return skb;
594 }
595 EXPORT_SYMBOL_GPL(alloc_can_skb);
596
597 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
598 struct canfd_frame **cfd)
599 {
600 struct sk_buff *skb;
601
602 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
603 sizeof(struct canfd_frame));
604 if (unlikely(!skb))
605 return NULL;
606
607 skb->protocol = htons(ETH_P_CANFD);
608 skb->pkt_type = PACKET_BROADCAST;
609 skb->ip_summed = CHECKSUM_UNNECESSARY;
610
611 skb_reset_mac_header(skb);
612 skb_reset_network_header(skb);
613 skb_reset_transport_header(skb);
614
615 can_skb_reserve(skb);
616 can_skb_prv(skb)->ifindex = dev->ifindex;
617 can_skb_prv(skb)->skbcnt = 0;
618
619 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
620 memset(*cfd, 0, sizeof(struct canfd_frame));
621
622 return skb;
623 }
624 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
625
626 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
627 {
628 struct sk_buff *skb;
629
630 skb = alloc_can_skb(dev, cf);
631 if (unlikely(!skb))
632 return NULL;
633
634 (*cf)->can_id = CAN_ERR_FLAG;
635 (*cf)->can_dlc = CAN_ERR_DLC;
636
637 return skb;
638 }
639 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
640
641 /*
642 * Allocate and setup space for the CAN network device
643 */
644 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
645 {
646 struct net_device *dev;
647 struct can_priv *priv;
648 int size;
649
650 if (echo_skb_max)
651 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
652 echo_skb_max * sizeof(struct sk_buff *);
653 else
654 size = sizeof_priv;
655
656 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
657 if (!dev)
658 return NULL;
659
660 priv = netdev_priv(dev);
661
662 if (echo_skb_max) {
663 priv->echo_skb_max = echo_skb_max;
664 priv->echo_skb = (void *)priv +
665 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
666 }
667
668 priv->state = CAN_STATE_STOPPED;
669
670 init_timer(&priv->restart_timer);
671
672 return dev;
673 }
674 EXPORT_SYMBOL_GPL(alloc_candev);
675
676 /*
677 * Free space of the CAN network device
678 */
679 void free_candev(struct net_device *dev)
680 {
681 free_netdev(dev);
682 }
683 EXPORT_SYMBOL_GPL(free_candev);
684
685 /*
686 * changing MTU and control mode for CAN/CANFD devices
687 */
688 int can_change_mtu(struct net_device *dev, int new_mtu)
689 {
690 struct can_priv *priv = netdev_priv(dev);
691
692 /* Do not allow changing the MTU while running */
693 if (dev->flags & IFF_UP)
694 return -EBUSY;
695
696 /* allow change of MTU according to the CANFD ability of the device */
697 switch (new_mtu) {
698 case CAN_MTU:
699 /* 'CANFD-only' controllers can not switch to CAN_MTU */
700 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
701 return -EINVAL;
702
703 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
704 break;
705
706 case CANFD_MTU:
707 /* check for potential CANFD ability */
708 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
709 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
710 return -EINVAL;
711
712 priv->ctrlmode |= CAN_CTRLMODE_FD;
713 break;
714
715 default:
716 return -EINVAL;
717 }
718
719 dev->mtu = new_mtu;
720 return 0;
721 }
722 EXPORT_SYMBOL_GPL(can_change_mtu);
723
724 /*
725 * Common open function when the device gets opened.
726 *
727 * This function should be called in the open function of the device
728 * driver.
729 */
730 int open_candev(struct net_device *dev)
731 {
732 struct can_priv *priv = netdev_priv(dev);
733
734 if (!priv->bittiming.bitrate) {
735 netdev_err(dev, "bit-timing not yet defined\n");
736 return -EINVAL;
737 }
738
739 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
740 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
741 (!priv->data_bittiming.bitrate ||
742 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
743 netdev_err(dev, "incorrect/missing data bit-timing\n");
744 return -EINVAL;
745 }
746
747 /* Switch carrier on if device was stopped while in bus-off state */
748 if (!netif_carrier_ok(dev))
749 netif_carrier_on(dev);
750
751 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
752
753 return 0;
754 }
755 EXPORT_SYMBOL_GPL(open_candev);
756
757 /*
758 * Common close function for cleanup before the device gets closed.
759 *
760 * This function should be called in the close function of the device
761 * driver.
762 */
763 void close_candev(struct net_device *dev)
764 {
765 struct can_priv *priv = netdev_priv(dev);
766
767 del_timer_sync(&priv->restart_timer);
768 can_flush_echo_skb(dev);
769 }
770 EXPORT_SYMBOL_GPL(close_candev);
771
772 /*
773 * CAN netlink interface
774 */
775 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
776 [IFLA_CAN_STATE] = { .type = NLA_U32 },
777 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
778 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
779 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
780 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
781 [IFLA_CAN_BITTIMING_CONST]
782 = { .len = sizeof(struct can_bittiming_const) },
783 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
784 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
785 [IFLA_CAN_DATA_BITTIMING]
786 = { .len = sizeof(struct can_bittiming) },
787 [IFLA_CAN_DATA_BITTIMING_CONST]
788 = { .len = sizeof(struct can_bittiming_const) },
789 };
790
791 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
792 {
793 bool is_can_fd = false;
794
795 /* Make sure that valid CAN FD configurations always consist of
796 * - nominal/arbitration bittiming
797 * - data bittiming
798 * - control mode with CAN_CTRLMODE_FD set
799 */
800
801 if (data[IFLA_CAN_CTRLMODE]) {
802 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
803
804 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
805 }
806
807 if (is_can_fd) {
808 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
809 return -EOPNOTSUPP;
810 }
811
812 if (data[IFLA_CAN_DATA_BITTIMING]) {
813 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
814 return -EOPNOTSUPP;
815 }
816
817 return 0;
818 }
819
820 static int can_changelink(struct net_device *dev,
821 struct nlattr *tb[], struct nlattr *data[])
822 {
823 struct can_priv *priv = netdev_priv(dev);
824 int err;
825
826 /* We need synchronization with dev->stop() */
827 ASSERT_RTNL();
828
829 if (data[IFLA_CAN_BITTIMING]) {
830 struct can_bittiming bt;
831
832 /* Do not allow changing bittiming while running */
833 if (dev->flags & IFF_UP)
834 return -EBUSY;
835 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
836 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
837 if (err)
838 return err;
839 memcpy(&priv->bittiming, &bt, sizeof(bt));
840
841 if (priv->do_set_bittiming) {
842 /* Finally, set the bit-timing registers */
843 err = priv->do_set_bittiming(dev);
844 if (err)
845 return err;
846 }
847 }
848
849 if (data[IFLA_CAN_CTRLMODE]) {
850 struct can_ctrlmode *cm;
851 u32 ctrlstatic;
852 u32 maskedflags;
853
854 /* Do not allow changing controller mode while running */
855 if (dev->flags & IFF_UP)
856 return -EBUSY;
857 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
858 ctrlstatic = priv->ctrlmode_static;
859 maskedflags = cm->flags & cm->mask;
860
861 /* check whether provided bits are allowed to be passed */
862 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
863 return -EOPNOTSUPP;
864
865 /* do not check for static fd-non-iso if 'fd' is disabled */
866 if (!(maskedflags & CAN_CTRLMODE_FD))
867 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
868
869 /* make sure static options are provided by configuration */
870 if ((maskedflags & ctrlstatic) != ctrlstatic)
871 return -EOPNOTSUPP;
872
873 /* clear bits to be modified and copy the flag values */
874 priv->ctrlmode &= ~cm->mask;
875 priv->ctrlmode |= maskedflags;
876
877 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
878 if (priv->ctrlmode & CAN_CTRLMODE_FD)
879 dev->mtu = CANFD_MTU;
880 else
881 dev->mtu = CAN_MTU;
882 }
883
884 if (data[IFLA_CAN_RESTART_MS]) {
885 /* Do not allow changing restart delay while running */
886 if (dev->flags & IFF_UP)
887 return -EBUSY;
888 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
889 }
890
891 if (data[IFLA_CAN_RESTART]) {
892 /* Do not allow a restart while not running */
893 if (!(dev->flags & IFF_UP))
894 return -EINVAL;
895 err = can_restart_now(dev);
896 if (err)
897 return err;
898 }
899
900 if (data[IFLA_CAN_DATA_BITTIMING]) {
901 struct can_bittiming dbt;
902
903 /* Do not allow changing bittiming while running */
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
906 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
907 sizeof(dbt));
908 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
909 if (err)
910 return err;
911 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
912
913 if (priv->do_set_data_bittiming) {
914 /* Finally, set the bit-timing registers */
915 err = priv->do_set_data_bittiming(dev);
916 if (err)
917 return err;
918 }
919 }
920
921 return 0;
922 }
923
924 static size_t can_get_size(const struct net_device *dev)
925 {
926 struct can_priv *priv = netdev_priv(dev);
927 size_t size = 0;
928
929 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
930 size += nla_total_size(sizeof(struct can_bittiming));
931 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
932 size += nla_total_size(sizeof(struct can_bittiming_const));
933 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
934 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
935 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
936 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
937 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
938 size += nla_total_size(sizeof(struct can_berr_counter));
939 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
940 size += nla_total_size(sizeof(struct can_bittiming));
941 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
942 size += nla_total_size(sizeof(struct can_bittiming_const));
943
944 return size;
945 }
946
947 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
948 {
949 struct can_priv *priv = netdev_priv(dev);
950 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
951 struct can_berr_counter bec;
952 enum can_state state = priv->state;
953
954 if (priv->do_get_state)
955 priv->do_get_state(dev, &state);
956
957 if ((priv->bittiming.bitrate &&
958 nla_put(skb, IFLA_CAN_BITTIMING,
959 sizeof(priv->bittiming), &priv->bittiming)) ||
960
961 (priv->bittiming_const &&
962 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
963 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
964
965 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
966 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
967 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
968 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
969
970 (priv->do_get_berr_counter &&
971 !priv->do_get_berr_counter(dev, &bec) &&
972 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
973
974 (priv->data_bittiming.bitrate &&
975 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
976 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
977
978 (priv->data_bittiming_const &&
979 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
980 sizeof(*priv->data_bittiming_const),
981 priv->data_bittiming_const)))
982 return -EMSGSIZE;
983
984 return 0;
985 }
986
987 static size_t can_get_xstats_size(const struct net_device *dev)
988 {
989 return sizeof(struct can_device_stats);
990 }
991
992 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
993 {
994 struct can_priv *priv = netdev_priv(dev);
995
996 if (nla_put(skb, IFLA_INFO_XSTATS,
997 sizeof(priv->can_stats), &priv->can_stats))
998 goto nla_put_failure;
999 return 0;
1000
1001 nla_put_failure:
1002 return -EMSGSIZE;
1003 }
1004
1005 static int can_newlink(struct net *src_net, struct net_device *dev,
1006 struct nlattr *tb[], struct nlattr *data[])
1007 {
1008 return -EOPNOTSUPP;
1009 }
1010
1011 static struct rtnl_link_ops can_link_ops __read_mostly = {
1012 .kind = "can",
1013 .maxtype = IFLA_CAN_MAX,
1014 .policy = can_policy,
1015 .setup = can_setup,
1016 .validate = can_validate,
1017 .newlink = can_newlink,
1018 .changelink = can_changelink,
1019 .get_size = can_get_size,
1020 .fill_info = can_fill_info,
1021 .get_xstats_size = can_get_xstats_size,
1022 .fill_xstats = can_fill_xstats,
1023 };
1024
1025 /*
1026 * Register the CAN network device
1027 */
1028 int register_candev(struct net_device *dev)
1029 {
1030 dev->rtnl_link_ops = &can_link_ops;
1031 return register_netdev(dev);
1032 }
1033 EXPORT_SYMBOL_GPL(register_candev);
1034
1035 /*
1036 * Unregister the CAN network device
1037 */
1038 void unregister_candev(struct net_device *dev)
1039 {
1040 unregister_netdev(dev);
1041 }
1042 EXPORT_SYMBOL_GPL(unregister_candev);
1043
1044 /*
1045 * Test if a network device is a candev based device
1046 * and return the can_priv* if so.
1047 */
1048 struct can_priv *safe_candev_priv(struct net_device *dev)
1049 {
1050 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1051 return NULL;
1052
1053 return netdev_priv(dev);
1054 }
1055 EXPORT_SYMBOL_GPL(safe_candev_priv);
1056
1057 static __init int can_dev_init(void)
1058 {
1059 int err;
1060
1061 can_led_notifier_init();
1062
1063 err = rtnl_link_register(&can_link_ops);
1064 if (!err)
1065 printk(KERN_INFO MOD_DESC "\n");
1066
1067 return err;
1068 }
1069 module_init(can_dev_init);
1070
1071 static __exit void can_dev_exit(void)
1072 {
1073 rtnl_link_unregister(&can_link_ops);
1074
1075 can_led_notifier_exit();
1076 }
1077 module_exit(can_dev_exit);
1078
1079 MODULE_ALIAS_RTNL_LINK("can");