]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/can/dev.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / net / can / dev.c
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
45 {
46 return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
63 {
64 if (unlikely(len > 64))
65 return 0xF;
66
67 return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73 #define CAN_CALC_SYNC_SEG 1
74
75 /*
76 * Bit-timing calculation derived from:
77 *
78 * Code based on LinCAN sources and H8S2638 project
79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
80 * Copyright 2005 Stanislav Marek
81 * email: pisa@cmp.felk.cvut.cz
82 *
83 * Calculates proper bit-timing parameters for a specified bit-rate
84 * and sample-point, which can then be used to set the bit-timing
85 * registers of the CAN controller. You can find more information
86 * in the header file linux/can/netlink.h.
87 */
88 static int can_update_sample_point(const struct can_bittiming_const *btc,
89 unsigned int sample_point_nominal, unsigned int tseg,
90 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
91 unsigned int *sample_point_error_ptr)
92 {
93 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
94 unsigned int sample_point, best_sample_point = 0;
95 unsigned int tseg1, tseg2;
96 int i;
97
98 for (i = 0; i <= 1; i++) {
99 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
100 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
101 tseg1 = tseg - tseg2;
102 if (tseg1 > btc->tseg1_max) {
103 tseg1 = btc->tseg1_max;
104 tseg2 = tseg - tseg1;
105 }
106
107 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
108 sample_point_error = abs(sample_point_nominal - sample_point);
109
110 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
111 best_sample_point = sample_point;
112 best_sample_point_error = sample_point_error;
113 *tseg1_ptr = tseg1;
114 *tseg2_ptr = tseg2;
115 }
116 }
117
118 if (sample_point_error_ptr)
119 *sample_point_error_ptr = best_sample_point_error;
120
121 return best_sample_point;
122 }
123
124 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
125 const struct can_bittiming_const *btc)
126 {
127 struct can_priv *priv = netdev_priv(dev);
128 unsigned int bitrate; /* current bitrate */
129 unsigned int bitrate_error; /* difference between current and nominal value */
130 unsigned int best_bitrate_error = UINT_MAX;
131 unsigned int sample_point_error; /* difference between current and nominal value */
132 unsigned int best_sample_point_error = UINT_MAX;
133 unsigned int sample_point_nominal; /* nominal sample point */
134 unsigned int best_tseg = 0; /* current best value for tseg */
135 unsigned int best_brp = 0; /* current best value for brp */
136 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
137 u64 v64;
138
139 /* Use CiA recommended sample points */
140 if (bt->sample_point) {
141 sample_point_nominal = bt->sample_point;
142 } else {
143 if (bt->bitrate > 800000)
144 sample_point_nominal = 750;
145 else if (bt->bitrate > 500000)
146 sample_point_nominal = 800;
147 else
148 sample_point_nominal = 875;
149 }
150
151 /* tseg even = round down, odd = round up */
152 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
153 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
154 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
155
156 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
157 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
158
159 /* choose brp step which is possible in system */
160 brp = (brp / btc->brp_inc) * btc->brp_inc;
161 if ((brp < btc->brp_min) || (brp > btc->brp_max))
162 continue;
163
164 bitrate = priv->clock.freq / (brp * tsegall);
165 bitrate_error = abs(bt->bitrate - bitrate);
166
167 /* tseg brp biterror */
168 if (bitrate_error > best_bitrate_error)
169 continue;
170
171 /* reset sample point error if we have a better bitrate */
172 if (bitrate_error < best_bitrate_error)
173 best_sample_point_error = UINT_MAX;
174
175 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
176 if (sample_point_error > best_sample_point_error)
177 continue;
178
179 best_sample_point_error = sample_point_error;
180 best_bitrate_error = bitrate_error;
181 best_tseg = tseg / 2;
182 best_brp = brp;
183
184 if (bitrate_error == 0 && sample_point_error == 0)
185 break;
186 }
187
188 if (best_bitrate_error) {
189 /* Error in one-tenth of a percent */
190 v64 = (u64)best_bitrate_error * 1000;
191 do_div(v64, bt->bitrate);
192 bitrate_error = (u32)v64;
193 if (bitrate_error > CAN_CALC_MAX_ERROR) {
194 netdev_err(dev,
195 "bitrate error %d.%d%% too high\n",
196 bitrate_error / 10, bitrate_error % 10);
197 return -EDOM;
198 }
199 netdev_warn(dev, "bitrate error %d.%d%%\n",
200 bitrate_error / 10, bitrate_error % 10);
201 }
202
203 /* real sample point */
204 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
205 &tseg1, &tseg2, NULL);
206
207 v64 = (u64)best_brp * 1000 * 1000 * 1000;
208 do_div(v64, priv->clock.freq);
209 bt->tq = (u32)v64;
210 bt->prop_seg = tseg1 / 2;
211 bt->phase_seg1 = tseg1 - bt->prop_seg;
212 bt->phase_seg2 = tseg2;
213
214 /* check for sjw user settings */
215 if (!bt->sjw || !btc->sjw_max) {
216 bt->sjw = 1;
217 } else {
218 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
219 if (bt->sjw > btc->sjw_max)
220 bt->sjw = btc->sjw_max;
221 /* bt->sjw must not be higher than tseg2 */
222 if (tseg2 < bt->sjw)
223 bt->sjw = tseg2;
224 }
225
226 bt->brp = best_brp;
227
228 /* real bitrate */
229 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
230
231 return 0;
232 }
233 #else /* !CONFIG_CAN_CALC_BITTIMING */
234 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
235 const struct can_bittiming_const *btc)
236 {
237 netdev_err(dev, "bit-timing calculation not available\n");
238 return -EINVAL;
239 }
240 #endif /* CONFIG_CAN_CALC_BITTIMING */
241
242 /*
243 * Checks the validity of the specified bit-timing parameters prop_seg,
244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
245 * prescaler value brp. You can find more information in the header
246 * file linux/can/netlink.h.
247 */
248 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
249 const struct can_bittiming_const *btc)
250 {
251 struct can_priv *priv = netdev_priv(dev);
252 int tseg1, alltseg;
253 u64 brp64;
254
255 tseg1 = bt->prop_seg + bt->phase_seg1;
256 if (!bt->sjw)
257 bt->sjw = 1;
258 if (bt->sjw > btc->sjw_max ||
259 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
260 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
261 return -ERANGE;
262
263 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
264 if (btc->brp_inc > 1)
265 do_div(brp64, btc->brp_inc);
266 brp64 += 500000000UL - 1;
267 do_div(brp64, 1000000000UL); /* the practicable BRP */
268 if (btc->brp_inc > 1)
269 brp64 *= btc->brp_inc;
270 bt->brp = (u32)brp64;
271
272 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
273 return -EINVAL;
274
275 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
276 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
277 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
278
279 return 0;
280 }
281
282 /* Checks the validity of predefined bitrate settings */
283 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
284 const u32 *bitrate_const,
285 const unsigned int bitrate_const_cnt)
286 {
287 struct can_priv *priv = netdev_priv(dev);
288 unsigned int i;
289
290 for (i = 0; i < bitrate_const_cnt; i++) {
291 if (bt->bitrate == bitrate_const[i])
292 break;
293 }
294
295 if (i >= priv->bitrate_const_cnt)
296 return -EINVAL;
297
298 return 0;
299 }
300
301 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
302 const struct can_bittiming_const *btc,
303 const u32 *bitrate_const,
304 const unsigned int bitrate_const_cnt)
305 {
306 int err;
307
308 /*
309 * Depending on the given can_bittiming parameter structure the CAN
310 * timing parameters are calculated based on the provided bitrate OR
311 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
312 * provided directly which are then checked and fixed up.
313 */
314 if (!bt->tq && bt->bitrate && btc)
315 err = can_calc_bittiming(dev, bt, btc);
316 else if (bt->tq && !bt->bitrate && btc)
317 err = can_fixup_bittiming(dev, bt, btc);
318 else if (!bt->tq && bt->bitrate && bitrate_const)
319 err = can_validate_bitrate(dev, bt, bitrate_const,
320 bitrate_const_cnt);
321 else
322 err = -EINVAL;
323
324 return err;
325 }
326
327 static void can_update_state_error_stats(struct net_device *dev,
328 enum can_state new_state)
329 {
330 struct can_priv *priv = netdev_priv(dev);
331
332 if (new_state <= priv->state)
333 return;
334
335 switch (new_state) {
336 case CAN_STATE_ERROR_WARNING:
337 priv->can_stats.error_warning++;
338 break;
339 case CAN_STATE_ERROR_PASSIVE:
340 priv->can_stats.error_passive++;
341 break;
342 case CAN_STATE_BUS_OFF:
343 priv->can_stats.bus_off++;
344 break;
345 default:
346 break;
347 }
348 }
349
350 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
351 {
352 switch (state) {
353 case CAN_STATE_ERROR_ACTIVE:
354 return CAN_ERR_CRTL_ACTIVE;
355 case CAN_STATE_ERROR_WARNING:
356 return CAN_ERR_CRTL_TX_WARNING;
357 case CAN_STATE_ERROR_PASSIVE:
358 return CAN_ERR_CRTL_TX_PASSIVE;
359 default:
360 return 0;
361 }
362 }
363
364 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
365 {
366 switch (state) {
367 case CAN_STATE_ERROR_ACTIVE:
368 return CAN_ERR_CRTL_ACTIVE;
369 case CAN_STATE_ERROR_WARNING:
370 return CAN_ERR_CRTL_RX_WARNING;
371 case CAN_STATE_ERROR_PASSIVE:
372 return CAN_ERR_CRTL_RX_PASSIVE;
373 default:
374 return 0;
375 }
376 }
377
378 void can_change_state(struct net_device *dev, struct can_frame *cf,
379 enum can_state tx_state, enum can_state rx_state)
380 {
381 struct can_priv *priv = netdev_priv(dev);
382 enum can_state new_state = max(tx_state, rx_state);
383
384 if (unlikely(new_state == priv->state)) {
385 netdev_warn(dev, "%s: oops, state did not change", __func__);
386 return;
387 }
388
389 netdev_dbg(dev, "New error state: %d\n", new_state);
390
391 can_update_state_error_stats(dev, new_state);
392 priv->state = new_state;
393
394 if (!cf)
395 return;
396
397 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
398 cf->can_id |= CAN_ERR_BUSOFF;
399 return;
400 }
401
402 cf->can_id |= CAN_ERR_CRTL;
403 cf->data[1] |= tx_state >= rx_state ?
404 can_tx_state_to_frame(dev, tx_state) : 0;
405 cf->data[1] |= tx_state <= rx_state ?
406 can_rx_state_to_frame(dev, rx_state) : 0;
407 }
408 EXPORT_SYMBOL_GPL(can_change_state);
409
410 /*
411 * Local echo of CAN messages
412 *
413 * CAN network devices *should* support a local echo functionality
414 * (see Documentation/networking/can.txt). To test the handling of CAN
415 * interfaces that do not support the local echo both driver types are
416 * implemented. In the case that the driver does not support the echo
417 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
418 * to perform the echo as a fallback solution.
419 */
420 static void can_flush_echo_skb(struct net_device *dev)
421 {
422 struct can_priv *priv = netdev_priv(dev);
423 struct net_device_stats *stats = &dev->stats;
424 int i;
425
426 for (i = 0; i < priv->echo_skb_max; i++) {
427 if (priv->echo_skb[i]) {
428 kfree_skb(priv->echo_skb[i]);
429 priv->echo_skb[i] = NULL;
430 stats->tx_dropped++;
431 stats->tx_aborted_errors++;
432 }
433 }
434 }
435
436 /*
437 * Put the skb on the stack to be looped backed locally lateron
438 *
439 * The function is typically called in the start_xmit function
440 * of the device driver. The driver must protect access to
441 * priv->echo_skb, if necessary.
442 */
443 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
444 unsigned int idx)
445 {
446 struct can_priv *priv = netdev_priv(dev);
447
448 BUG_ON(idx >= priv->echo_skb_max);
449
450 /* check flag whether this packet has to be looped back */
451 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
452 (skb->protocol != htons(ETH_P_CAN) &&
453 skb->protocol != htons(ETH_P_CANFD))) {
454 kfree_skb(skb);
455 return;
456 }
457
458 if (!priv->echo_skb[idx]) {
459
460 skb = can_create_echo_skb(skb);
461 if (!skb)
462 return;
463
464 /* make settings for echo to reduce code in irq context */
465 skb->pkt_type = PACKET_BROADCAST;
466 skb->ip_summed = CHECKSUM_UNNECESSARY;
467 skb->dev = dev;
468
469 /* save this skb for tx interrupt echo handling */
470 priv->echo_skb[idx] = skb;
471 } else {
472 /* locking problem with netif_stop_queue() ?? */
473 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
474 kfree_skb(skb);
475 }
476 }
477 EXPORT_SYMBOL_GPL(can_put_echo_skb);
478
479 /*
480 * Get the skb from the stack and loop it back locally
481 *
482 * The function is typically called when the TX done interrupt
483 * is handled in the device driver. The driver must protect
484 * access to priv->echo_skb, if necessary.
485 */
486 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
487 {
488 struct can_priv *priv = netdev_priv(dev);
489
490 BUG_ON(idx >= priv->echo_skb_max);
491
492 if (priv->echo_skb[idx]) {
493 struct sk_buff *skb = priv->echo_skb[idx];
494 struct can_frame *cf = (struct can_frame *)skb->data;
495 u8 dlc = cf->can_dlc;
496
497 netif_rx(priv->echo_skb[idx]);
498 priv->echo_skb[idx] = NULL;
499
500 return dlc;
501 }
502
503 return 0;
504 }
505 EXPORT_SYMBOL_GPL(can_get_echo_skb);
506
507 /*
508 * Remove the skb from the stack and free it.
509 *
510 * The function is typically called when TX failed.
511 */
512 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
513 {
514 struct can_priv *priv = netdev_priv(dev);
515
516 BUG_ON(idx >= priv->echo_skb_max);
517
518 if (priv->echo_skb[idx]) {
519 dev_kfree_skb_any(priv->echo_skb[idx]);
520 priv->echo_skb[idx] = NULL;
521 }
522 }
523 EXPORT_SYMBOL_GPL(can_free_echo_skb);
524
525 /*
526 * CAN device restart for bus-off recovery
527 */
528 static void can_restart(struct net_device *dev)
529 {
530 struct can_priv *priv = netdev_priv(dev);
531 struct net_device_stats *stats = &dev->stats;
532 struct sk_buff *skb;
533 struct can_frame *cf;
534 int err;
535
536 BUG_ON(netif_carrier_ok(dev));
537
538 /*
539 * No synchronization needed because the device is bus-off and
540 * no messages can come in or go out.
541 */
542 can_flush_echo_skb(dev);
543
544 /* send restart message upstream */
545 skb = alloc_can_err_skb(dev, &cf);
546 if (skb == NULL) {
547 err = -ENOMEM;
548 goto restart;
549 }
550 cf->can_id |= CAN_ERR_RESTARTED;
551
552 netif_rx(skb);
553
554 stats->rx_packets++;
555 stats->rx_bytes += cf->can_dlc;
556
557 restart:
558 netdev_dbg(dev, "restarted\n");
559 priv->can_stats.restarts++;
560
561 /* Now restart the device */
562 err = priv->do_set_mode(dev, CAN_MODE_START);
563
564 netif_carrier_on(dev);
565 if (err)
566 netdev_err(dev, "Error %d during restart", err);
567 }
568
569 static void can_restart_work(struct work_struct *work)
570 {
571 struct delayed_work *dwork = to_delayed_work(work);
572 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
573
574 can_restart(priv->dev);
575 }
576
577 int can_restart_now(struct net_device *dev)
578 {
579 struct can_priv *priv = netdev_priv(dev);
580
581 /*
582 * A manual restart is only permitted if automatic restart is
583 * disabled and the device is in the bus-off state
584 */
585 if (priv->restart_ms)
586 return -EINVAL;
587 if (priv->state != CAN_STATE_BUS_OFF)
588 return -EBUSY;
589
590 cancel_delayed_work_sync(&priv->restart_work);
591 can_restart(dev);
592
593 return 0;
594 }
595
596 /*
597 * CAN bus-off
598 *
599 * This functions should be called when the device goes bus-off to
600 * tell the netif layer that no more packets can be sent or received.
601 * If enabled, a timer is started to trigger bus-off recovery.
602 */
603 void can_bus_off(struct net_device *dev)
604 {
605 struct can_priv *priv = netdev_priv(dev);
606
607 netdev_dbg(dev, "bus-off\n");
608
609 netif_carrier_off(dev);
610
611 if (priv->restart_ms)
612 schedule_delayed_work(&priv->restart_work,
613 msecs_to_jiffies(priv->restart_ms));
614 }
615 EXPORT_SYMBOL_GPL(can_bus_off);
616
617 static void can_setup(struct net_device *dev)
618 {
619 dev->type = ARPHRD_CAN;
620 dev->mtu = CAN_MTU;
621 dev->hard_header_len = 0;
622 dev->addr_len = 0;
623 dev->tx_queue_len = 10;
624
625 /* New-style flags. */
626 dev->flags = IFF_NOARP;
627 dev->features = NETIF_F_HW_CSUM;
628 }
629
630 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
631 {
632 struct sk_buff *skb;
633
634 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
635 sizeof(struct can_frame));
636 if (unlikely(!skb))
637 return NULL;
638
639 skb->protocol = htons(ETH_P_CAN);
640 skb->pkt_type = PACKET_BROADCAST;
641 skb->ip_summed = CHECKSUM_UNNECESSARY;
642
643 skb_reset_mac_header(skb);
644 skb_reset_network_header(skb);
645 skb_reset_transport_header(skb);
646
647 can_skb_reserve(skb);
648 can_skb_prv(skb)->ifindex = dev->ifindex;
649 can_skb_prv(skb)->skbcnt = 0;
650
651 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
652 memset(*cf, 0, sizeof(struct can_frame));
653
654 return skb;
655 }
656 EXPORT_SYMBOL_GPL(alloc_can_skb);
657
658 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
659 struct canfd_frame **cfd)
660 {
661 struct sk_buff *skb;
662
663 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
664 sizeof(struct canfd_frame));
665 if (unlikely(!skb))
666 return NULL;
667
668 skb->protocol = htons(ETH_P_CANFD);
669 skb->pkt_type = PACKET_BROADCAST;
670 skb->ip_summed = CHECKSUM_UNNECESSARY;
671
672 skb_reset_mac_header(skb);
673 skb_reset_network_header(skb);
674 skb_reset_transport_header(skb);
675
676 can_skb_reserve(skb);
677 can_skb_prv(skb)->ifindex = dev->ifindex;
678 can_skb_prv(skb)->skbcnt = 0;
679
680 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
681 memset(*cfd, 0, sizeof(struct canfd_frame));
682
683 return skb;
684 }
685 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
686
687 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
688 {
689 struct sk_buff *skb;
690
691 skb = alloc_can_skb(dev, cf);
692 if (unlikely(!skb))
693 return NULL;
694
695 (*cf)->can_id = CAN_ERR_FLAG;
696 (*cf)->can_dlc = CAN_ERR_DLC;
697
698 return skb;
699 }
700 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
701
702 /*
703 * Allocate and setup space for the CAN network device
704 */
705 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
706 {
707 struct net_device *dev;
708 struct can_priv *priv;
709 int size;
710
711 if (echo_skb_max)
712 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
713 echo_skb_max * sizeof(struct sk_buff *);
714 else
715 size = sizeof_priv;
716
717 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
718 if (!dev)
719 return NULL;
720
721 priv = netdev_priv(dev);
722 priv->dev = dev;
723
724 if (echo_skb_max) {
725 priv->echo_skb_max = echo_skb_max;
726 priv->echo_skb = (void *)priv +
727 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
728 }
729
730 priv->state = CAN_STATE_STOPPED;
731
732 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
733
734 return dev;
735 }
736 EXPORT_SYMBOL_GPL(alloc_candev);
737
738 /*
739 * Free space of the CAN network device
740 */
741 void free_candev(struct net_device *dev)
742 {
743 free_netdev(dev);
744 }
745 EXPORT_SYMBOL_GPL(free_candev);
746
747 /*
748 * changing MTU and control mode for CAN/CANFD devices
749 */
750 int can_change_mtu(struct net_device *dev, int new_mtu)
751 {
752 struct can_priv *priv = netdev_priv(dev);
753
754 /* Do not allow changing the MTU while running */
755 if (dev->flags & IFF_UP)
756 return -EBUSY;
757
758 /* allow change of MTU according to the CANFD ability of the device */
759 switch (new_mtu) {
760 case CAN_MTU:
761 /* 'CANFD-only' controllers can not switch to CAN_MTU */
762 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
763 return -EINVAL;
764
765 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
766 break;
767
768 case CANFD_MTU:
769 /* check for potential CANFD ability */
770 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
771 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
772 return -EINVAL;
773
774 priv->ctrlmode |= CAN_CTRLMODE_FD;
775 break;
776
777 default:
778 return -EINVAL;
779 }
780
781 dev->mtu = new_mtu;
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(can_change_mtu);
785
786 /*
787 * Common open function when the device gets opened.
788 *
789 * This function should be called in the open function of the device
790 * driver.
791 */
792 int open_candev(struct net_device *dev)
793 {
794 struct can_priv *priv = netdev_priv(dev);
795
796 if (!priv->bittiming.bitrate) {
797 netdev_err(dev, "bit-timing not yet defined\n");
798 return -EINVAL;
799 }
800
801 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
802 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
803 (!priv->data_bittiming.bitrate ||
804 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
805 netdev_err(dev, "incorrect/missing data bit-timing\n");
806 return -EINVAL;
807 }
808
809 /* Switch carrier on if device was stopped while in bus-off state */
810 if (!netif_carrier_ok(dev))
811 netif_carrier_on(dev);
812
813 return 0;
814 }
815 EXPORT_SYMBOL_GPL(open_candev);
816
817 /*
818 * Common close function for cleanup before the device gets closed.
819 *
820 * This function should be called in the close function of the device
821 * driver.
822 */
823 void close_candev(struct net_device *dev)
824 {
825 struct can_priv *priv = netdev_priv(dev);
826
827 cancel_delayed_work_sync(&priv->restart_work);
828 can_flush_echo_skb(dev);
829 }
830 EXPORT_SYMBOL_GPL(close_candev);
831
832 /*
833 * CAN netlink interface
834 */
835 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
836 [IFLA_CAN_STATE] = { .type = NLA_U32 },
837 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
838 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
839 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
840 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
841 [IFLA_CAN_BITTIMING_CONST]
842 = { .len = sizeof(struct can_bittiming_const) },
843 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
844 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
845 [IFLA_CAN_DATA_BITTIMING]
846 = { .len = sizeof(struct can_bittiming) },
847 [IFLA_CAN_DATA_BITTIMING_CONST]
848 = { .len = sizeof(struct can_bittiming_const) },
849 };
850
851 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
852 {
853 bool is_can_fd = false;
854
855 /* Make sure that valid CAN FD configurations always consist of
856 * - nominal/arbitration bittiming
857 * - data bittiming
858 * - control mode with CAN_CTRLMODE_FD set
859 */
860
861 if (!data)
862 return 0;
863
864 if (data[IFLA_CAN_CTRLMODE]) {
865 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
866
867 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
868 }
869
870 if (is_can_fd) {
871 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
872 return -EOPNOTSUPP;
873 }
874
875 if (data[IFLA_CAN_DATA_BITTIMING]) {
876 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
877 return -EOPNOTSUPP;
878 }
879
880 return 0;
881 }
882
883 static int can_changelink(struct net_device *dev,
884 struct nlattr *tb[], struct nlattr *data[])
885 {
886 struct can_priv *priv = netdev_priv(dev);
887 int err;
888
889 /* We need synchronization with dev->stop() */
890 ASSERT_RTNL();
891
892 if (data[IFLA_CAN_BITTIMING]) {
893 struct can_bittiming bt;
894
895 /* Do not allow changing bittiming while running */
896 if (dev->flags & IFF_UP)
897 return -EBUSY;
898
899 /* Calculate bittiming parameters based on
900 * bittiming_const if set, otherwise pass bitrate
901 * directly via do_set_bitrate(). Bail out if neither
902 * is given.
903 */
904 if (!priv->bittiming_const && !priv->do_set_bittiming)
905 return -EOPNOTSUPP;
906
907 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
908 err = can_get_bittiming(dev, &bt,
909 priv->bittiming_const,
910 priv->bitrate_const,
911 priv->bitrate_const_cnt);
912 if (err)
913 return err;
914 memcpy(&priv->bittiming, &bt, sizeof(bt));
915
916 if (priv->do_set_bittiming) {
917 /* Finally, set the bit-timing registers */
918 err = priv->do_set_bittiming(dev);
919 if (err)
920 return err;
921 }
922 }
923
924 if (data[IFLA_CAN_CTRLMODE]) {
925 struct can_ctrlmode *cm;
926 u32 ctrlstatic;
927 u32 maskedflags;
928
929 /* Do not allow changing controller mode while running */
930 if (dev->flags & IFF_UP)
931 return -EBUSY;
932 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
933 ctrlstatic = priv->ctrlmode_static;
934 maskedflags = cm->flags & cm->mask;
935
936 /* check whether provided bits are allowed to be passed */
937 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
938 return -EOPNOTSUPP;
939
940 /* do not check for static fd-non-iso if 'fd' is disabled */
941 if (!(maskedflags & CAN_CTRLMODE_FD))
942 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
943
944 /* make sure static options are provided by configuration */
945 if ((maskedflags & ctrlstatic) != ctrlstatic)
946 return -EOPNOTSUPP;
947
948 /* clear bits to be modified and copy the flag values */
949 priv->ctrlmode &= ~cm->mask;
950 priv->ctrlmode |= maskedflags;
951
952 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
953 if (priv->ctrlmode & CAN_CTRLMODE_FD)
954 dev->mtu = CANFD_MTU;
955 else
956 dev->mtu = CAN_MTU;
957 }
958
959 if (data[IFLA_CAN_RESTART_MS]) {
960 /* Do not allow changing restart delay while running */
961 if (dev->flags & IFF_UP)
962 return -EBUSY;
963 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
964 }
965
966 if (data[IFLA_CAN_RESTART]) {
967 /* Do not allow a restart while not running */
968 if (!(dev->flags & IFF_UP))
969 return -EINVAL;
970 err = can_restart_now(dev);
971 if (err)
972 return err;
973 }
974
975 if (data[IFLA_CAN_DATA_BITTIMING]) {
976 struct can_bittiming dbt;
977
978 /* Do not allow changing bittiming while running */
979 if (dev->flags & IFF_UP)
980 return -EBUSY;
981
982 /* Calculate bittiming parameters based on
983 * data_bittiming_const if set, otherwise pass bitrate
984 * directly via do_set_bitrate(). Bail out if neither
985 * is given.
986 */
987 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
988 return -EOPNOTSUPP;
989
990 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
991 sizeof(dbt));
992 err = can_get_bittiming(dev, &dbt,
993 priv->data_bittiming_const,
994 priv->data_bitrate_const,
995 priv->data_bitrate_const_cnt);
996 if (err)
997 return err;
998 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
999
1000 if (priv->do_set_data_bittiming) {
1001 /* Finally, set the bit-timing registers */
1002 err = priv->do_set_data_bittiming(dev);
1003 if (err)
1004 return err;
1005 }
1006 }
1007
1008 if (data[IFLA_CAN_TERMINATION]) {
1009 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1010 const unsigned int num_term = priv->termination_const_cnt;
1011 unsigned int i;
1012
1013 if (!priv->do_set_termination)
1014 return -EOPNOTSUPP;
1015
1016 /* check whether given value is supported by the interface */
1017 for (i = 0; i < num_term; i++) {
1018 if (termval == priv->termination_const[i])
1019 break;
1020 }
1021 if (i >= num_term)
1022 return -EINVAL;
1023
1024 /* Finally, set the termination value */
1025 err = priv->do_set_termination(dev, termval);
1026 if (err)
1027 return err;
1028
1029 priv->termination = termval;
1030 }
1031
1032 return 0;
1033 }
1034
1035 static size_t can_get_size(const struct net_device *dev)
1036 {
1037 struct can_priv *priv = netdev_priv(dev);
1038 size_t size = 0;
1039
1040 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1041 size += nla_total_size(sizeof(struct can_bittiming));
1042 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1043 size += nla_total_size(sizeof(struct can_bittiming_const));
1044 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1045 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1046 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1047 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1048 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1049 size += nla_total_size(sizeof(struct can_berr_counter));
1050 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1051 size += nla_total_size(sizeof(struct can_bittiming));
1052 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1053 size += nla_total_size(sizeof(struct can_bittiming_const));
1054 if (priv->termination_const) {
1055 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1056 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1057 priv->termination_const_cnt);
1058 }
1059 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1060 size += nla_total_size(sizeof(*priv->bitrate_const) *
1061 priv->bitrate_const_cnt);
1062 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1063 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1064 priv->data_bitrate_const_cnt);
1065
1066 return size;
1067 }
1068
1069 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1070 {
1071 struct can_priv *priv = netdev_priv(dev);
1072 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1073 struct can_berr_counter bec;
1074 enum can_state state = priv->state;
1075
1076 if (priv->do_get_state)
1077 priv->do_get_state(dev, &state);
1078
1079 if ((priv->bittiming.bitrate &&
1080 nla_put(skb, IFLA_CAN_BITTIMING,
1081 sizeof(priv->bittiming), &priv->bittiming)) ||
1082
1083 (priv->bittiming_const &&
1084 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1085 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1086
1087 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1088 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1089 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1090 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1091
1092 (priv->do_get_berr_counter &&
1093 !priv->do_get_berr_counter(dev, &bec) &&
1094 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1095
1096 (priv->data_bittiming.bitrate &&
1097 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1098 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1099
1100 (priv->data_bittiming_const &&
1101 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1102 sizeof(*priv->data_bittiming_const),
1103 priv->data_bittiming_const)) ||
1104
1105 (priv->termination_const &&
1106 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1107 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1108 sizeof(*priv->termination_const) *
1109 priv->termination_const_cnt,
1110 priv->termination_const))) ||
1111
1112 (priv->bitrate_const &&
1113 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1114 sizeof(*priv->bitrate_const) *
1115 priv->bitrate_const_cnt,
1116 priv->bitrate_const)) ||
1117
1118 (priv->data_bitrate_const &&
1119 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1120 sizeof(*priv->data_bitrate_const) *
1121 priv->data_bitrate_const_cnt,
1122 priv->data_bitrate_const))
1123 )
1124
1125 return -EMSGSIZE;
1126
1127 return 0;
1128 }
1129
1130 static size_t can_get_xstats_size(const struct net_device *dev)
1131 {
1132 return sizeof(struct can_device_stats);
1133 }
1134
1135 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1136 {
1137 struct can_priv *priv = netdev_priv(dev);
1138
1139 if (nla_put(skb, IFLA_INFO_XSTATS,
1140 sizeof(priv->can_stats), &priv->can_stats))
1141 goto nla_put_failure;
1142 return 0;
1143
1144 nla_put_failure:
1145 return -EMSGSIZE;
1146 }
1147
1148 static int can_newlink(struct net *src_net, struct net_device *dev,
1149 struct nlattr *tb[], struct nlattr *data[])
1150 {
1151 return -EOPNOTSUPP;
1152 }
1153
1154 static void can_dellink(struct net_device *dev, struct list_head *head)
1155 {
1156 return;
1157 }
1158
1159 static struct rtnl_link_ops can_link_ops __read_mostly = {
1160 .kind = "can",
1161 .maxtype = IFLA_CAN_MAX,
1162 .policy = can_policy,
1163 .setup = can_setup,
1164 .validate = can_validate,
1165 .newlink = can_newlink,
1166 .changelink = can_changelink,
1167 .dellink = can_dellink,
1168 .get_size = can_get_size,
1169 .fill_info = can_fill_info,
1170 .get_xstats_size = can_get_xstats_size,
1171 .fill_xstats = can_fill_xstats,
1172 };
1173
1174 /*
1175 * Register the CAN network device
1176 */
1177 int register_candev(struct net_device *dev)
1178 {
1179 struct can_priv *priv = netdev_priv(dev);
1180
1181 /* Ensure termination_const, termination_const_cnt and
1182 * do_set_termination consistency. All must be either set or
1183 * unset.
1184 */
1185 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1186 (!priv->termination_const != !priv->do_set_termination))
1187 return -EINVAL;
1188
1189 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1190 return -EINVAL;
1191
1192 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1193 return -EINVAL;
1194
1195 dev->rtnl_link_ops = &can_link_ops;
1196 return register_netdev(dev);
1197 }
1198 EXPORT_SYMBOL_GPL(register_candev);
1199
1200 /*
1201 * Unregister the CAN network device
1202 */
1203 void unregister_candev(struct net_device *dev)
1204 {
1205 unregister_netdev(dev);
1206 }
1207 EXPORT_SYMBOL_GPL(unregister_candev);
1208
1209 /*
1210 * Test if a network device is a candev based device
1211 * and return the can_priv* if so.
1212 */
1213 struct can_priv *safe_candev_priv(struct net_device *dev)
1214 {
1215 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1216 return NULL;
1217
1218 return netdev_priv(dev);
1219 }
1220 EXPORT_SYMBOL_GPL(safe_candev_priv);
1221
1222 static __init int can_dev_init(void)
1223 {
1224 int err;
1225
1226 can_led_notifier_init();
1227
1228 err = rtnl_link_register(&can_link_ops);
1229 if (!err)
1230 printk(KERN_INFO MOD_DESC "\n");
1231
1232 return err;
1233 }
1234 module_init(can_dev_init);
1235
1236 static __exit void can_dev_exit(void)
1237 {
1238 rtnl_link_unregister(&can_link_ops);
1239
1240 can_led_notifier_exit();
1241 }
1242 module_exit(can_dev_exit);
1243
1244 MODULE_ALIAS_RTNL_LINK("can");