]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/can/usb/ems_usb.c
2d390384ef3bb3d3845fcf6102bef70715f1dd21
[mirror_ubuntu-bionic-kernel.git] / drivers / net / can / usb / ems_usb.c
1 /*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE 0x0C
36 #define CONTR_BUS_ERROR 0x1C
37
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON 1
41 #define CONTR_ONCE 2
42
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
55
56 /* Messages from the PC to the CPC interface */
57 #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
65
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN 0x01
76 #define CPC_OVR_EVENT_CANSTATE 0x02
77 #define CPC_OVR_EVENT_BUSERROR 0x04
78
79 /*
80 * If the CAN controller lost a message we indicate it with the highest bit
81 * set in the count field.
82 */
83 #define CPC_OVR_HW 0x80
84
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN 11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM 0x01
97
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG 0x1F
100 #define SJA1000_ECC_DIR 0x20
101 #define SJA1000_ECC_ERR 0x06
102 #define SJA1000_ECC_BIT 0x00
103 #define SJA1000_ECC_FORM 0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK 0xc0
106
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112
113 /*
114 * The device actually uses a 16MHz clock to generate the CAN clock
115 * but it expects SJA1000 bit settings based on 8MHz (is internally
116 * converted).
117 */
118 #define EMS_USB_ARM7_CLOCK 8000000
119
120 /*
121 * CAN-Message representation in a CPC_MSG. Message object type is
122 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
123 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
124 */
125 struct cpc_can_msg {
126 __le32 id;
127 u8 length;
128 u8 msg[8];
129 };
130
131 /* Representation of the CAN parameters for the SJA1000 controller */
132 struct cpc_sja1000_params {
133 u8 mode;
134 u8 acc_code0;
135 u8 acc_code1;
136 u8 acc_code2;
137 u8 acc_code3;
138 u8 acc_mask0;
139 u8 acc_mask1;
140 u8 acc_mask2;
141 u8 acc_mask3;
142 u8 btr0;
143 u8 btr1;
144 u8 outp_contr;
145 };
146
147 /* CAN params message representation */
148 struct cpc_can_params {
149 u8 cc_type;
150
151 /* Will support M16C CAN controller in the future */
152 union {
153 struct cpc_sja1000_params sja1000;
154 } cc_params;
155 };
156
157 /* Structure for confirmed message handling */
158 struct cpc_confirm {
159 u8 error; /* error code */
160 };
161
162 /* Structure for overrun conditions */
163 struct cpc_overrun {
164 u8 event;
165 u8 count;
166 };
167
168 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
169 struct cpc_sja1000_can_error {
170 u8 ecc;
171 u8 rxerr;
172 u8 txerr;
173 };
174
175 /* structure for CAN error conditions */
176 struct cpc_can_error {
177 u8 ecode;
178
179 struct {
180 u8 cc_type;
181
182 /* Other controllers may also provide error code capture regs */
183 union {
184 struct cpc_sja1000_can_error sja1000;
185 } regs;
186 } cc;
187 };
188
189 /*
190 * Structure containing RX/TX error counter. This structure is used to request
191 * the values of the CAN controllers TX and RX error counter.
192 */
193 struct cpc_can_err_counter {
194 u8 rx;
195 u8 tx;
196 };
197
198 /* Main message type used between library and application */
199 struct __packed ems_cpc_msg {
200 u8 type; /* type of message */
201 u8 length; /* length of data within union 'msg' */
202 u8 msgid; /* confirmation handle */
203 __le32 ts_sec; /* timestamp in seconds */
204 __le32 ts_nsec; /* timestamp in nano seconds */
205
206 union {
207 u8 generic[64];
208 struct cpc_can_msg can_msg;
209 struct cpc_can_params can_params;
210 struct cpc_confirm confirmation;
211 struct cpc_overrun overrun;
212 struct cpc_can_error error;
213 struct cpc_can_err_counter err_counter;
214 u8 can_state;
215 } msg;
216 };
217
218 /*
219 * Table of devices that work with this driver
220 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
221 */
222 static struct usb_device_id ems_usb_table[] = {
223 {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
224 {} /* Terminating entry */
225 };
226
227 MODULE_DEVICE_TABLE(usb, ems_usb_table);
228
229 #define RX_BUFFER_SIZE 64
230 #define CPC_HEADER_SIZE 4
231 #define INTR_IN_BUFFER_SIZE 4
232
233 #define MAX_RX_URBS 10
234 #define MAX_TX_URBS 10
235
236 struct ems_usb;
237
238 struct ems_tx_urb_context {
239 struct ems_usb *dev;
240
241 u32 echo_index;
242 u8 dlc;
243 };
244
245 struct ems_usb {
246 struct can_priv can; /* must be the first member */
247
248 struct sk_buff *echo_skb[MAX_TX_URBS];
249
250 struct usb_device *udev;
251 struct net_device *netdev;
252
253 atomic_t active_tx_urbs;
254 struct usb_anchor tx_submitted;
255 struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
256
257 struct usb_anchor rx_submitted;
258
259 struct urb *intr_urb;
260
261 u8 *tx_msg_buffer;
262
263 u8 *intr_in_buffer;
264 unsigned int free_slots; /* remember number of available slots */
265
266 struct ems_cpc_msg active_params; /* active controller parameters */
267 };
268
269 static void ems_usb_read_interrupt_callback(struct urb *urb)
270 {
271 struct ems_usb *dev = urb->context;
272 struct net_device *netdev = dev->netdev;
273 int err;
274
275 if (!netif_device_present(netdev))
276 return;
277
278 switch (urb->status) {
279 case 0:
280 dev->free_slots = dev->intr_in_buffer[1];
281 break;
282
283 case -ECONNRESET: /* unlink */
284 case -ENOENT:
285 case -ESHUTDOWN:
286 return;
287
288 default:
289 netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
290 break;
291 }
292
293 err = usb_submit_urb(urb, GFP_ATOMIC);
294
295 if (err == -ENODEV)
296 netif_device_detach(netdev);
297 else if (err)
298 netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
299 }
300
301 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
302 {
303 struct can_frame *cf;
304 struct sk_buff *skb;
305 int i;
306 struct net_device_stats *stats = &dev->netdev->stats;
307
308 skb = alloc_can_skb(dev->netdev, &cf);
309 if (skb == NULL)
310 return;
311
312 cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
313 cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
314
315 if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
316 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
317 cf->can_id |= CAN_EFF_FLAG;
318
319 if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
320 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
321 cf->can_id |= CAN_RTR_FLAG;
322 } else {
323 for (i = 0; i < cf->can_dlc; i++)
324 cf->data[i] = msg->msg.can_msg.msg[i];
325 }
326
327 stats->rx_packets++;
328 stats->rx_bytes += cf->can_dlc;
329 netif_rx(skb);
330 }
331
332 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
333 {
334 struct can_frame *cf;
335 struct sk_buff *skb;
336 struct net_device_stats *stats = &dev->netdev->stats;
337
338 skb = alloc_can_err_skb(dev->netdev, &cf);
339 if (skb == NULL)
340 return;
341
342 if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
343 u8 state = msg->msg.can_state;
344
345 if (state & SJA1000_SR_BS) {
346 dev->can.state = CAN_STATE_BUS_OFF;
347 cf->can_id |= CAN_ERR_BUSOFF;
348
349 dev->can.can_stats.bus_off++;
350 can_bus_off(dev->netdev);
351 } else if (state & SJA1000_SR_ES) {
352 dev->can.state = CAN_STATE_ERROR_WARNING;
353 dev->can.can_stats.error_warning++;
354 } else {
355 dev->can.state = CAN_STATE_ERROR_ACTIVE;
356 dev->can.can_stats.error_passive++;
357 }
358 } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
359 u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
360 u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
361 u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
362
363 /* bus error interrupt */
364 dev->can.can_stats.bus_error++;
365 stats->rx_errors++;
366
367 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
368
369 switch (ecc & SJA1000_ECC_MASK) {
370 case SJA1000_ECC_BIT:
371 cf->data[2] |= CAN_ERR_PROT_BIT;
372 break;
373 case SJA1000_ECC_FORM:
374 cf->data[2] |= CAN_ERR_PROT_FORM;
375 break;
376 case SJA1000_ECC_STUFF:
377 cf->data[2] |= CAN_ERR_PROT_STUFF;
378 break;
379 default:
380 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
381 cf->data[3] = ecc & SJA1000_ECC_SEG;
382 break;
383 }
384
385 /* Error occurred during transmission? */
386 if ((ecc & SJA1000_ECC_DIR) == 0)
387 cf->data[2] |= CAN_ERR_PROT_TX;
388
389 if (dev->can.state == CAN_STATE_ERROR_WARNING ||
390 dev->can.state == CAN_STATE_ERROR_PASSIVE) {
391 cf->data[1] = (txerr > rxerr) ?
392 CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
393 }
394 } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
395 cf->can_id |= CAN_ERR_CRTL;
396 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
397
398 stats->rx_over_errors++;
399 stats->rx_errors++;
400 }
401
402 stats->rx_packets++;
403 stats->rx_bytes += cf->can_dlc;
404 netif_rx(skb);
405 }
406
407 /*
408 * callback for bulk IN urb
409 */
410 static void ems_usb_read_bulk_callback(struct urb *urb)
411 {
412 struct ems_usb *dev = urb->context;
413 struct net_device *netdev;
414 int retval;
415
416 netdev = dev->netdev;
417
418 if (!netif_device_present(netdev))
419 return;
420
421 switch (urb->status) {
422 case 0: /* success */
423 break;
424
425 case -ENOENT:
426 return;
427
428 default:
429 netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
430 goto resubmit_urb;
431 }
432
433 if (urb->actual_length > CPC_HEADER_SIZE) {
434 struct ems_cpc_msg *msg;
435 u8 *ibuf = urb->transfer_buffer;
436 u8 msg_count, start;
437
438 msg_count = ibuf[0] & ~0x80;
439
440 start = CPC_HEADER_SIZE;
441
442 while (msg_count) {
443 msg = (struct ems_cpc_msg *)&ibuf[start];
444
445 switch (msg->type) {
446 case CPC_MSG_TYPE_CAN_STATE:
447 /* Process CAN state changes */
448 ems_usb_rx_err(dev, msg);
449 break;
450
451 case CPC_MSG_TYPE_CAN_FRAME:
452 case CPC_MSG_TYPE_EXT_CAN_FRAME:
453 case CPC_MSG_TYPE_RTR_FRAME:
454 case CPC_MSG_TYPE_EXT_RTR_FRAME:
455 ems_usb_rx_can_msg(dev, msg);
456 break;
457
458 case CPC_MSG_TYPE_CAN_FRAME_ERROR:
459 /* Process errorframe */
460 ems_usb_rx_err(dev, msg);
461 break;
462
463 case CPC_MSG_TYPE_OVERRUN:
464 /* Message lost while receiving */
465 ems_usb_rx_err(dev, msg);
466 break;
467 }
468
469 start += CPC_MSG_HEADER_LEN + msg->length;
470 msg_count--;
471
472 if (start > urb->transfer_buffer_length) {
473 netdev_err(netdev, "format error\n");
474 break;
475 }
476 }
477 }
478
479 resubmit_urb:
480 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
481 urb->transfer_buffer, RX_BUFFER_SIZE,
482 ems_usb_read_bulk_callback, dev);
483
484 retval = usb_submit_urb(urb, GFP_ATOMIC);
485
486 if (retval == -ENODEV)
487 netif_device_detach(netdev);
488 else if (retval)
489 netdev_err(netdev,
490 "failed resubmitting read bulk urb: %d\n", retval);
491 }
492
493 /*
494 * callback for bulk IN urb
495 */
496 static void ems_usb_write_bulk_callback(struct urb *urb)
497 {
498 struct ems_tx_urb_context *context = urb->context;
499 struct ems_usb *dev;
500 struct net_device *netdev;
501
502 BUG_ON(!context);
503
504 dev = context->dev;
505 netdev = dev->netdev;
506
507 /* free up our allocated buffer */
508 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
509 urb->transfer_buffer, urb->transfer_dma);
510
511 atomic_dec(&dev->active_tx_urbs);
512
513 if (!netif_device_present(netdev))
514 return;
515
516 if (urb->status)
517 netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
518
519 netdev->trans_start = jiffies;
520
521 /* transmission complete interrupt */
522 netdev->stats.tx_packets++;
523 netdev->stats.tx_bytes += context->dlc;
524
525 can_get_echo_skb(netdev, context->echo_index);
526
527 /* Release context */
528 context->echo_index = MAX_TX_URBS;
529
530 if (netif_queue_stopped(netdev))
531 netif_wake_queue(netdev);
532 }
533
534 /*
535 * Send the given CPC command synchronously
536 */
537 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
538 {
539 int actual_length;
540
541 /* Copy payload */
542 memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
543 msg->length + CPC_MSG_HEADER_LEN);
544
545 /* Clear header */
546 memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
547
548 return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
549 &dev->tx_msg_buffer[0],
550 msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
551 &actual_length, 1000);
552 }
553
554 /*
555 * Change CAN controllers' mode register
556 */
557 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
558 {
559 dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
560
561 return ems_usb_command_msg(dev, &dev->active_params);
562 }
563
564 /*
565 * Send a CPC_Control command to change behaviour when interface receives a CAN
566 * message, bus error or CAN state changed notifications.
567 */
568 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
569 {
570 struct ems_cpc_msg cmd;
571
572 cmd.type = CPC_CMD_TYPE_CONTROL;
573 cmd.length = CPC_MSG_HEADER_LEN + 1;
574
575 cmd.msgid = 0;
576
577 cmd.msg.generic[0] = val;
578
579 return ems_usb_command_msg(dev, &cmd);
580 }
581
582 /*
583 * Start interface
584 */
585 static int ems_usb_start(struct ems_usb *dev)
586 {
587 struct net_device *netdev = dev->netdev;
588 int err, i;
589
590 dev->intr_in_buffer[0] = 0;
591 dev->free_slots = 15; /* initial size */
592
593 for (i = 0; i < MAX_RX_URBS; i++) {
594 struct urb *urb = NULL;
595 u8 *buf = NULL;
596
597 /* create a URB, and a buffer for it */
598 urb = usb_alloc_urb(0, GFP_KERNEL);
599 if (!urb) {
600 netdev_err(netdev, "No memory left for URBs\n");
601 err = -ENOMEM;
602 break;
603 }
604
605 buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
606 &urb->transfer_dma);
607 if (!buf) {
608 netdev_err(netdev, "No memory left for USB buffer\n");
609 usb_free_urb(urb);
610 err = -ENOMEM;
611 break;
612 }
613
614 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
615 buf, RX_BUFFER_SIZE,
616 ems_usb_read_bulk_callback, dev);
617 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
618 usb_anchor_urb(urb, &dev->rx_submitted);
619
620 err = usb_submit_urb(urb, GFP_KERNEL);
621 if (err) {
622 usb_unanchor_urb(urb);
623 usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
624 urb->transfer_dma);
625 usb_free_urb(urb);
626 break;
627 }
628
629 /* Drop reference, USB core will take care of freeing it */
630 usb_free_urb(urb);
631 }
632
633 /* Did we submit any URBs */
634 if (i == 0) {
635 netdev_warn(netdev, "couldn't setup read URBs\n");
636 return err;
637 }
638
639 /* Warn if we've couldn't transmit all the URBs */
640 if (i < MAX_RX_URBS)
641 netdev_warn(netdev, "rx performance may be slow\n");
642
643 /* Setup and start interrupt URB */
644 usb_fill_int_urb(dev->intr_urb, dev->udev,
645 usb_rcvintpipe(dev->udev, 1),
646 dev->intr_in_buffer,
647 INTR_IN_BUFFER_SIZE,
648 ems_usb_read_interrupt_callback, dev, 1);
649
650 err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
651 if (err) {
652 netdev_warn(netdev, "intr URB submit failed: %d\n", err);
653
654 return err;
655 }
656
657 /* CPC-USB will transfer received message to host */
658 err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
659 if (err)
660 goto failed;
661
662 /* CPC-USB will transfer CAN state changes to host */
663 err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
664 if (err)
665 goto failed;
666
667 /* CPC-USB will transfer bus errors to host */
668 err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
669 if (err)
670 goto failed;
671
672 err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
673 if (err)
674 goto failed;
675
676 dev->can.state = CAN_STATE_ERROR_ACTIVE;
677
678 return 0;
679
680 failed:
681 netdev_warn(netdev, "couldn't submit control: %d\n", err);
682
683 return err;
684 }
685
686 static void unlink_all_urbs(struct ems_usb *dev)
687 {
688 int i;
689
690 usb_unlink_urb(dev->intr_urb);
691
692 usb_kill_anchored_urbs(&dev->rx_submitted);
693
694 usb_kill_anchored_urbs(&dev->tx_submitted);
695 atomic_set(&dev->active_tx_urbs, 0);
696
697 for (i = 0; i < MAX_TX_URBS; i++)
698 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
699 }
700
701 static int ems_usb_open(struct net_device *netdev)
702 {
703 struct ems_usb *dev = netdev_priv(netdev);
704 int err;
705
706 err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
707 if (err)
708 return err;
709
710 /* common open */
711 err = open_candev(netdev);
712 if (err)
713 return err;
714
715 /* finally start device */
716 err = ems_usb_start(dev);
717 if (err) {
718 if (err == -ENODEV)
719 netif_device_detach(dev->netdev);
720
721 netdev_warn(netdev, "couldn't start device: %d\n", err);
722
723 close_candev(netdev);
724
725 return err;
726 }
727
728
729 netif_start_queue(netdev);
730
731 return 0;
732 }
733
734 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
735 {
736 struct ems_usb *dev = netdev_priv(netdev);
737 struct ems_tx_urb_context *context = NULL;
738 struct net_device_stats *stats = &netdev->stats;
739 struct can_frame *cf = (struct can_frame *)skb->data;
740 struct ems_cpc_msg *msg;
741 struct urb *urb;
742 u8 *buf;
743 int i, err;
744 size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
745 + sizeof(struct cpc_can_msg);
746
747 if (can_dropped_invalid_skb(netdev, skb))
748 return NETDEV_TX_OK;
749
750 /* create a URB, and a buffer for it, and copy the data to the URB */
751 urb = usb_alloc_urb(0, GFP_ATOMIC);
752 if (!urb) {
753 netdev_err(netdev, "No memory left for URBs\n");
754 goto nomem;
755 }
756
757 buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
758 if (!buf) {
759 netdev_err(netdev, "No memory left for USB buffer\n");
760 usb_free_urb(urb);
761 goto nomem;
762 }
763
764 msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
765
766 msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
767 msg->msg.can_msg.length = cf->can_dlc;
768
769 if (cf->can_id & CAN_RTR_FLAG) {
770 msg->type = cf->can_id & CAN_EFF_FLAG ?
771 CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
772
773 msg->length = CPC_CAN_MSG_MIN_SIZE;
774 } else {
775 msg->type = cf->can_id & CAN_EFF_FLAG ?
776 CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
777
778 for (i = 0; i < cf->can_dlc; i++)
779 msg->msg.can_msg.msg[i] = cf->data[i];
780
781 msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
782 }
783
784 for (i = 0; i < MAX_TX_URBS; i++) {
785 if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
786 context = &dev->tx_contexts[i];
787 break;
788 }
789 }
790
791 /*
792 * May never happen! When this happens we'd more URBs in flight as
793 * allowed (MAX_TX_URBS).
794 */
795 if (!context) {
796 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
797 usb_free_urb(urb);
798
799 netdev_warn(netdev, "couldn't find free context\n");
800
801 return NETDEV_TX_BUSY;
802 }
803
804 context->dev = dev;
805 context->echo_index = i;
806 context->dlc = cf->can_dlc;
807
808 usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
809 size, ems_usb_write_bulk_callback, context);
810 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
811 usb_anchor_urb(urb, &dev->tx_submitted);
812
813 can_put_echo_skb(skb, netdev, context->echo_index);
814
815 atomic_inc(&dev->active_tx_urbs);
816
817 err = usb_submit_urb(urb, GFP_ATOMIC);
818 if (unlikely(err)) {
819 can_free_echo_skb(netdev, context->echo_index);
820
821 usb_unanchor_urb(urb);
822 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
823 dev_kfree_skb(skb);
824
825 atomic_dec(&dev->active_tx_urbs);
826
827 if (err == -ENODEV) {
828 netif_device_detach(netdev);
829 } else {
830 netdev_warn(netdev, "failed tx_urb %d\n", err);
831
832 stats->tx_dropped++;
833 }
834 } else {
835 netdev->trans_start = jiffies;
836
837 /* Slow down tx path */
838 if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
839 dev->free_slots < 5) {
840 netif_stop_queue(netdev);
841 }
842 }
843
844 /*
845 * Release our reference to this URB, the USB core will eventually free
846 * it entirely.
847 */
848 usb_free_urb(urb);
849
850 return NETDEV_TX_OK;
851
852 nomem:
853 dev_kfree_skb(skb);
854 stats->tx_dropped++;
855
856 return NETDEV_TX_OK;
857 }
858
859 static int ems_usb_close(struct net_device *netdev)
860 {
861 struct ems_usb *dev = netdev_priv(netdev);
862
863 /* Stop polling */
864 unlink_all_urbs(dev);
865
866 netif_stop_queue(netdev);
867
868 /* Set CAN controller to reset mode */
869 if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
870 netdev_warn(netdev, "couldn't stop device");
871
872 close_candev(netdev);
873
874 return 0;
875 }
876
877 static const struct net_device_ops ems_usb_netdev_ops = {
878 .ndo_open = ems_usb_open,
879 .ndo_stop = ems_usb_close,
880 .ndo_start_xmit = ems_usb_start_xmit,
881 .ndo_change_mtu = can_change_mtu,
882 };
883
884 static const struct can_bittiming_const ems_usb_bittiming_const = {
885 .name = "ems_usb",
886 .tseg1_min = 1,
887 .tseg1_max = 16,
888 .tseg2_min = 1,
889 .tseg2_max = 8,
890 .sjw_max = 4,
891 .brp_min = 1,
892 .brp_max = 64,
893 .brp_inc = 1,
894 };
895
896 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
897 {
898 struct ems_usb *dev = netdev_priv(netdev);
899
900 switch (mode) {
901 case CAN_MODE_START:
902 if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
903 netdev_warn(netdev, "couldn't start device");
904
905 if (netif_queue_stopped(netdev))
906 netif_wake_queue(netdev);
907 break;
908
909 default:
910 return -EOPNOTSUPP;
911 }
912
913 return 0;
914 }
915
916 static int ems_usb_set_bittiming(struct net_device *netdev)
917 {
918 struct ems_usb *dev = netdev_priv(netdev);
919 struct can_bittiming *bt = &dev->can.bittiming;
920 u8 btr0, btr1;
921
922 btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
923 btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
924 (((bt->phase_seg2 - 1) & 0x7) << 4);
925 if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
926 btr1 |= 0x80;
927
928 netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
929
930 dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
931 dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
932
933 return ems_usb_command_msg(dev, &dev->active_params);
934 }
935
936 static void init_params_sja1000(struct ems_cpc_msg *msg)
937 {
938 struct cpc_sja1000_params *sja1000 =
939 &msg->msg.can_params.cc_params.sja1000;
940
941 msg->type = CPC_CMD_TYPE_CAN_PARAMS;
942 msg->length = sizeof(struct cpc_can_params);
943 msg->msgid = 0;
944
945 msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
946
947 /* Acceptance filter open */
948 sja1000->acc_code0 = 0x00;
949 sja1000->acc_code1 = 0x00;
950 sja1000->acc_code2 = 0x00;
951 sja1000->acc_code3 = 0x00;
952
953 /* Acceptance filter open */
954 sja1000->acc_mask0 = 0xFF;
955 sja1000->acc_mask1 = 0xFF;
956 sja1000->acc_mask2 = 0xFF;
957 sja1000->acc_mask3 = 0xFF;
958
959 sja1000->btr0 = 0;
960 sja1000->btr1 = 0;
961
962 sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
963 sja1000->mode = SJA1000_MOD_RM;
964 }
965
966 /*
967 * probe function for new CPC-USB devices
968 */
969 static int ems_usb_probe(struct usb_interface *intf,
970 const struct usb_device_id *id)
971 {
972 struct net_device *netdev;
973 struct ems_usb *dev;
974 int i, err = -ENOMEM;
975
976 netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
977 if (!netdev) {
978 dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
979 return -ENOMEM;
980 }
981
982 dev = netdev_priv(netdev);
983
984 dev->udev = interface_to_usbdev(intf);
985 dev->netdev = netdev;
986
987 dev->can.state = CAN_STATE_STOPPED;
988 dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
989 dev->can.bittiming_const = &ems_usb_bittiming_const;
990 dev->can.do_set_bittiming = ems_usb_set_bittiming;
991 dev->can.do_set_mode = ems_usb_set_mode;
992 dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
993
994 netdev->netdev_ops = &ems_usb_netdev_ops;
995
996 netdev->flags |= IFF_ECHO; /* we support local echo */
997
998 init_usb_anchor(&dev->rx_submitted);
999
1000 init_usb_anchor(&dev->tx_submitted);
1001 atomic_set(&dev->active_tx_urbs, 0);
1002
1003 for (i = 0; i < MAX_TX_URBS; i++)
1004 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1005
1006 dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1007 if (!dev->intr_urb) {
1008 dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1009 goto cleanup_candev;
1010 }
1011
1012 dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1013 if (!dev->intr_in_buffer)
1014 goto cleanup_intr_urb;
1015
1016 dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1017 sizeof(struct ems_cpc_msg), GFP_KERNEL);
1018 if (!dev->tx_msg_buffer)
1019 goto cleanup_intr_in_buffer;
1020
1021 usb_set_intfdata(intf, dev);
1022
1023 SET_NETDEV_DEV(netdev, &intf->dev);
1024
1025 init_params_sja1000(&dev->active_params);
1026
1027 err = ems_usb_command_msg(dev, &dev->active_params);
1028 if (err) {
1029 netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1030 goto cleanup_tx_msg_buffer;
1031 }
1032
1033 err = register_candev(netdev);
1034 if (err) {
1035 netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1036 goto cleanup_tx_msg_buffer;
1037 }
1038
1039 return 0;
1040
1041 cleanup_tx_msg_buffer:
1042 kfree(dev->tx_msg_buffer);
1043
1044 cleanup_intr_in_buffer:
1045 kfree(dev->intr_in_buffer);
1046
1047 cleanup_intr_urb:
1048 usb_free_urb(dev->intr_urb);
1049
1050 cleanup_candev:
1051 free_candev(netdev);
1052
1053 return err;
1054 }
1055
1056 /*
1057 * called by the usb core when the device is removed from the system
1058 */
1059 static void ems_usb_disconnect(struct usb_interface *intf)
1060 {
1061 struct ems_usb *dev = usb_get_intfdata(intf);
1062
1063 usb_set_intfdata(intf, NULL);
1064
1065 if (dev) {
1066 unregister_netdev(dev->netdev);
1067 free_candev(dev->netdev);
1068
1069 unlink_all_urbs(dev);
1070
1071 usb_free_urb(dev->intr_urb);
1072
1073 kfree(dev->intr_in_buffer);
1074 }
1075 }
1076
1077 /* usb specific object needed to register this driver with the usb subsystem */
1078 static struct usb_driver ems_usb_driver = {
1079 .name = "ems_usb",
1080 .probe = ems_usb_probe,
1081 .disconnect = ems_usb_disconnect,
1082 .id_table = ems_usb_table,
1083 };
1084
1085 module_usb_driver(ems_usb_driver);