]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/can/usb/ems_usb.c
ASoC: pcm3168a: remove unused variable
[mirror_ubuntu-zesty-kernel.git] / drivers / net / can / usb / ems_usb.c
1 /*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE 0x0C
36 #define CONTR_BUS_ERROR 0x1C
37
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON 1
41 #define CONTR_ONCE 2
42
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
55
56 /* Messages from the PC to the CPC interface */
57 #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
65
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN 0x01
76 #define CPC_OVR_EVENT_CANSTATE 0x02
77 #define CPC_OVR_EVENT_BUSERROR 0x04
78
79 /*
80 * If the CAN controller lost a message we indicate it with the highest bit
81 * set in the count field.
82 */
83 #define CPC_OVR_HW 0x80
84
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN 11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM 0x01
97
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG 0x1F
100 #define SJA1000_ECC_DIR 0x20
101 #define SJA1000_ECC_ERR 0x06
102 #define SJA1000_ECC_BIT 0x00
103 #define SJA1000_ECC_FORM 0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK 0xc0
106
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112
113 /*
114 * The device actually uses a 16MHz clock to generate the CAN clock
115 * but it expects SJA1000 bit settings based on 8MHz (is internally
116 * converted).
117 */
118 #define EMS_USB_ARM7_CLOCK 8000000
119
120 /*
121 * CAN-Message representation in a CPC_MSG. Message object type is
122 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
123 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
124 */
125 struct cpc_can_msg {
126 __le32 id;
127 u8 length;
128 u8 msg[8];
129 };
130
131 /* Representation of the CAN parameters for the SJA1000 controller */
132 struct cpc_sja1000_params {
133 u8 mode;
134 u8 acc_code0;
135 u8 acc_code1;
136 u8 acc_code2;
137 u8 acc_code3;
138 u8 acc_mask0;
139 u8 acc_mask1;
140 u8 acc_mask2;
141 u8 acc_mask3;
142 u8 btr0;
143 u8 btr1;
144 u8 outp_contr;
145 };
146
147 /* CAN params message representation */
148 struct cpc_can_params {
149 u8 cc_type;
150
151 /* Will support M16C CAN controller in the future */
152 union {
153 struct cpc_sja1000_params sja1000;
154 } cc_params;
155 };
156
157 /* Structure for confirmed message handling */
158 struct cpc_confirm {
159 u8 error; /* error code */
160 };
161
162 /* Structure for overrun conditions */
163 struct cpc_overrun {
164 u8 event;
165 u8 count;
166 };
167
168 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
169 struct cpc_sja1000_can_error {
170 u8 ecc;
171 u8 rxerr;
172 u8 txerr;
173 };
174
175 /* structure for CAN error conditions */
176 struct cpc_can_error {
177 u8 ecode;
178
179 struct {
180 u8 cc_type;
181
182 /* Other controllers may also provide error code capture regs */
183 union {
184 struct cpc_sja1000_can_error sja1000;
185 } regs;
186 } cc;
187 };
188
189 /*
190 * Structure containing RX/TX error counter. This structure is used to request
191 * the values of the CAN controllers TX and RX error counter.
192 */
193 struct cpc_can_err_counter {
194 u8 rx;
195 u8 tx;
196 };
197
198 /* Main message type used between library and application */
199 struct __packed ems_cpc_msg {
200 u8 type; /* type of message */
201 u8 length; /* length of data within union 'msg' */
202 u8 msgid; /* confirmation handle */
203 __le32 ts_sec; /* timestamp in seconds */
204 __le32 ts_nsec; /* timestamp in nano seconds */
205
206 union {
207 u8 generic[64];
208 struct cpc_can_msg can_msg;
209 struct cpc_can_params can_params;
210 struct cpc_confirm confirmation;
211 struct cpc_overrun overrun;
212 struct cpc_can_error error;
213 struct cpc_can_err_counter err_counter;
214 u8 can_state;
215 } msg;
216 };
217
218 /*
219 * Table of devices that work with this driver
220 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
221 */
222 static struct usb_device_id ems_usb_table[] = {
223 {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
224 {} /* Terminating entry */
225 };
226
227 MODULE_DEVICE_TABLE(usb, ems_usb_table);
228
229 #define RX_BUFFER_SIZE 64
230 #define CPC_HEADER_SIZE 4
231 #define INTR_IN_BUFFER_SIZE 4
232
233 #define MAX_RX_URBS 10
234 #define MAX_TX_URBS 10
235
236 struct ems_usb;
237
238 struct ems_tx_urb_context {
239 struct ems_usb *dev;
240
241 u32 echo_index;
242 u8 dlc;
243 };
244
245 struct ems_usb {
246 struct can_priv can; /* must be the first member */
247
248 struct sk_buff *echo_skb[MAX_TX_URBS];
249
250 struct usb_device *udev;
251 struct net_device *netdev;
252
253 atomic_t active_tx_urbs;
254 struct usb_anchor tx_submitted;
255 struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
256
257 struct usb_anchor rx_submitted;
258
259 struct urb *intr_urb;
260
261 u8 *tx_msg_buffer;
262
263 u8 *intr_in_buffer;
264 unsigned int free_slots; /* remember number of available slots */
265
266 struct ems_cpc_msg active_params; /* active controller parameters */
267 };
268
269 static void ems_usb_read_interrupt_callback(struct urb *urb)
270 {
271 struct ems_usb *dev = urb->context;
272 struct net_device *netdev = dev->netdev;
273 int err;
274
275 if (!netif_device_present(netdev))
276 return;
277
278 switch (urb->status) {
279 case 0:
280 dev->free_slots = dev->intr_in_buffer[1];
281 break;
282
283 case -ECONNRESET: /* unlink */
284 case -ENOENT:
285 case -ESHUTDOWN:
286 return;
287
288 default:
289 netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
290 break;
291 }
292
293 err = usb_submit_urb(urb, GFP_ATOMIC);
294
295 if (err == -ENODEV)
296 netif_device_detach(netdev);
297 else if (err)
298 netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
299 }
300
301 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
302 {
303 struct can_frame *cf;
304 struct sk_buff *skb;
305 int i;
306 struct net_device_stats *stats = &dev->netdev->stats;
307
308 skb = alloc_can_skb(dev->netdev, &cf);
309 if (skb == NULL)
310 return;
311
312 cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
313 cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
314
315 if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
316 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
317 cf->can_id |= CAN_EFF_FLAG;
318
319 if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
320 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
321 cf->can_id |= CAN_RTR_FLAG;
322 } else {
323 for (i = 0; i < cf->can_dlc; i++)
324 cf->data[i] = msg->msg.can_msg.msg[i];
325 }
326
327 stats->rx_packets++;
328 stats->rx_bytes += cf->can_dlc;
329 netif_rx(skb);
330 }
331
332 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
333 {
334 struct can_frame *cf;
335 struct sk_buff *skb;
336 struct net_device_stats *stats = &dev->netdev->stats;
337
338 skb = alloc_can_err_skb(dev->netdev, &cf);
339 if (skb == NULL)
340 return;
341
342 if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
343 u8 state = msg->msg.can_state;
344
345 if (state & SJA1000_SR_BS) {
346 dev->can.state = CAN_STATE_BUS_OFF;
347 cf->can_id |= CAN_ERR_BUSOFF;
348
349 dev->can.can_stats.bus_off++;
350 can_bus_off(dev->netdev);
351 } else if (state & SJA1000_SR_ES) {
352 dev->can.state = CAN_STATE_ERROR_WARNING;
353 dev->can.can_stats.error_warning++;
354 } else {
355 dev->can.state = CAN_STATE_ERROR_ACTIVE;
356 dev->can.can_stats.error_passive++;
357 }
358 } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
359 u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
360 u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
361 u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
362
363 /* bus error interrupt */
364 dev->can.can_stats.bus_error++;
365 stats->rx_errors++;
366
367 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
368
369 switch (ecc & SJA1000_ECC_MASK) {
370 case SJA1000_ECC_BIT:
371 cf->data[2] |= CAN_ERR_PROT_BIT;
372 break;
373 case SJA1000_ECC_FORM:
374 cf->data[2] |= CAN_ERR_PROT_FORM;
375 break;
376 case SJA1000_ECC_STUFF:
377 cf->data[2] |= CAN_ERR_PROT_STUFF;
378 break;
379 default:
380 cf->data[3] = ecc & SJA1000_ECC_SEG;
381 break;
382 }
383
384 /* Error occurred during transmission? */
385 if ((ecc & SJA1000_ECC_DIR) == 0)
386 cf->data[2] |= CAN_ERR_PROT_TX;
387
388 if (dev->can.state == CAN_STATE_ERROR_WARNING ||
389 dev->can.state == CAN_STATE_ERROR_PASSIVE) {
390 cf->data[1] = (txerr > rxerr) ?
391 CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
392 }
393 } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
394 cf->can_id |= CAN_ERR_CRTL;
395 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
396
397 stats->rx_over_errors++;
398 stats->rx_errors++;
399 }
400
401 stats->rx_packets++;
402 stats->rx_bytes += cf->can_dlc;
403 netif_rx(skb);
404 }
405
406 /*
407 * callback for bulk IN urb
408 */
409 static void ems_usb_read_bulk_callback(struct urb *urb)
410 {
411 struct ems_usb *dev = urb->context;
412 struct net_device *netdev;
413 int retval;
414
415 netdev = dev->netdev;
416
417 if (!netif_device_present(netdev))
418 return;
419
420 switch (urb->status) {
421 case 0: /* success */
422 break;
423
424 case -ENOENT:
425 return;
426
427 default:
428 netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
429 goto resubmit_urb;
430 }
431
432 if (urb->actual_length > CPC_HEADER_SIZE) {
433 struct ems_cpc_msg *msg;
434 u8 *ibuf = urb->transfer_buffer;
435 u8 msg_count, start;
436
437 msg_count = ibuf[0] & ~0x80;
438
439 start = CPC_HEADER_SIZE;
440
441 while (msg_count) {
442 msg = (struct ems_cpc_msg *)&ibuf[start];
443
444 switch (msg->type) {
445 case CPC_MSG_TYPE_CAN_STATE:
446 /* Process CAN state changes */
447 ems_usb_rx_err(dev, msg);
448 break;
449
450 case CPC_MSG_TYPE_CAN_FRAME:
451 case CPC_MSG_TYPE_EXT_CAN_FRAME:
452 case CPC_MSG_TYPE_RTR_FRAME:
453 case CPC_MSG_TYPE_EXT_RTR_FRAME:
454 ems_usb_rx_can_msg(dev, msg);
455 break;
456
457 case CPC_MSG_TYPE_CAN_FRAME_ERROR:
458 /* Process errorframe */
459 ems_usb_rx_err(dev, msg);
460 break;
461
462 case CPC_MSG_TYPE_OVERRUN:
463 /* Message lost while receiving */
464 ems_usb_rx_err(dev, msg);
465 break;
466 }
467
468 start += CPC_MSG_HEADER_LEN + msg->length;
469 msg_count--;
470
471 if (start > urb->transfer_buffer_length) {
472 netdev_err(netdev, "format error\n");
473 break;
474 }
475 }
476 }
477
478 resubmit_urb:
479 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
480 urb->transfer_buffer, RX_BUFFER_SIZE,
481 ems_usb_read_bulk_callback, dev);
482
483 retval = usb_submit_urb(urb, GFP_ATOMIC);
484
485 if (retval == -ENODEV)
486 netif_device_detach(netdev);
487 else if (retval)
488 netdev_err(netdev,
489 "failed resubmitting read bulk urb: %d\n", retval);
490 }
491
492 /*
493 * callback for bulk IN urb
494 */
495 static void ems_usb_write_bulk_callback(struct urb *urb)
496 {
497 struct ems_tx_urb_context *context = urb->context;
498 struct ems_usb *dev;
499 struct net_device *netdev;
500
501 BUG_ON(!context);
502
503 dev = context->dev;
504 netdev = dev->netdev;
505
506 /* free up our allocated buffer */
507 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
508 urb->transfer_buffer, urb->transfer_dma);
509
510 atomic_dec(&dev->active_tx_urbs);
511
512 if (!netif_device_present(netdev))
513 return;
514
515 if (urb->status)
516 netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
517
518 netdev->trans_start = jiffies;
519
520 /* transmission complete interrupt */
521 netdev->stats.tx_packets++;
522 netdev->stats.tx_bytes += context->dlc;
523
524 can_get_echo_skb(netdev, context->echo_index);
525
526 /* Release context */
527 context->echo_index = MAX_TX_URBS;
528
529 if (netif_queue_stopped(netdev))
530 netif_wake_queue(netdev);
531 }
532
533 /*
534 * Send the given CPC command synchronously
535 */
536 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
537 {
538 int actual_length;
539
540 /* Copy payload */
541 memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
542 msg->length + CPC_MSG_HEADER_LEN);
543
544 /* Clear header */
545 memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
546
547 return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
548 &dev->tx_msg_buffer[0],
549 msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
550 &actual_length, 1000);
551 }
552
553 /*
554 * Change CAN controllers' mode register
555 */
556 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
557 {
558 dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
559
560 return ems_usb_command_msg(dev, &dev->active_params);
561 }
562
563 /*
564 * Send a CPC_Control command to change behaviour when interface receives a CAN
565 * message, bus error or CAN state changed notifications.
566 */
567 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
568 {
569 struct ems_cpc_msg cmd;
570
571 cmd.type = CPC_CMD_TYPE_CONTROL;
572 cmd.length = CPC_MSG_HEADER_LEN + 1;
573
574 cmd.msgid = 0;
575
576 cmd.msg.generic[0] = val;
577
578 return ems_usb_command_msg(dev, &cmd);
579 }
580
581 /*
582 * Start interface
583 */
584 static int ems_usb_start(struct ems_usb *dev)
585 {
586 struct net_device *netdev = dev->netdev;
587 int err, i;
588
589 dev->intr_in_buffer[0] = 0;
590 dev->free_slots = 15; /* initial size */
591
592 for (i = 0; i < MAX_RX_URBS; i++) {
593 struct urb *urb = NULL;
594 u8 *buf = NULL;
595
596 /* create a URB, and a buffer for it */
597 urb = usb_alloc_urb(0, GFP_KERNEL);
598 if (!urb) {
599 netdev_err(netdev, "No memory left for URBs\n");
600 err = -ENOMEM;
601 break;
602 }
603
604 buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
605 &urb->transfer_dma);
606 if (!buf) {
607 netdev_err(netdev, "No memory left for USB buffer\n");
608 usb_free_urb(urb);
609 err = -ENOMEM;
610 break;
611 }
612
613 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
614 buf, RX_BUFFER_SIZE,
615 ems_usb_read_bulk_callback, dev);
616 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
617 usb_anchor_urb(urb, &dev->rx_submitted);
618
619 err = usb_submit_urb(urb, GFP_KERNEL);
620 if (err) {
621 usb_unanchor_urb(urb);
622 usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
623 urb->transfer_dma);
624 usb_free_urb(urb);
625 break;
626 }
627
628 /* Drop reference, USB core will take care of freeing it */
629 usb_free_urb(urb);
630 }
631
632 /* Did we submit any URBs */
633 if (i == 0) {
634 netdev_warn(netdev, "couldn't setup read URBs\n");
635 return err;
636 }
637
638 /* Warn if we've couldn't transmit all the URBs */
639 if (i < MAX_RX_URBS)
640 netdev_warn(netdev, "rx performance may be slow\n");
641
642 /* Setup and start interrupt URB */
643 usb_fill_int_urb(dev->intr_urb, dev->udev,
644 usb_rcvintpipe(dev->udev, 1),
645 dev->intr_in_buffer,
646 INTR_IN_BUFFER_SIZE,
647 ems_usb_read_interrupt_callback, dev, 1);
648
649 err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
650 if (err) {
651 netdev_warn(netdev, "intr URB submit failed: %d\n", err);
652
653 return err;
654 }
655
656 /* CPC-USB will transfer received message to host */
657 err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
658 if (err)
659 goto failed;
660
661 /* CPC-USB will transfer CAN state changes to host */
662 err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
663 if (err)
664 goto failed;
665
666 /* CPC-USB will transfer bus errors to host */
667 err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
668 if (err)
669 goto failed;
670
671 err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
672 if (err)
673 goto failed;
674
675 dev->can.state = CAN_STATE_ERROR_ACTIVE;
676
677 return 0;
678
679 failed:
680 netdev_warn(netdev, "couldn't submit control: %d\n", err);
681
682 return err;
683 }
684
685 static void unlink_all_urbs(struct ems_usb *dev)
686 {
687 int i;
688
689 usb_unlink_urb(dev->intr_urb);
690
691 usb_kill_anchored_urbs(&dev->rx_submitted);
692
693 usb_kill_anchored_urbs(&dev->tx_submitted);
694 atomic_set(&dev->active_tx_urbs, 0);
695
696 for (i = 0; i < MAX_TX_URBS; i++)
697 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
698 }
699
700 static int ems_usb_open(struct net_device *netdev)
701 {
702 struct ems_usb *dev = netdev_priv(netdev);
703 int err;
704
705 err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
706 if (err)
707 return err;
708
709 /* common open */
710 err = open_candev(netdev);
711 if (err)
712 return err;
713
714 /* finally start device */
715 err = ems_usb_start(dev);
716 if (err) {
717 if (err == -ENODEV)
718 netif_device_detach(dev->netdev);
719
720 netdev_warn(netdev, "couldn't start device: %d\n", err);
721
722 close_candev(netdev);
723
724 return err;
725 }
726
727
728 netif_start_queue(netdev);
729
730 return 0;
731 }
732
733 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
734 {
735 struct ems_usb *dev = netdev_priv(netdev);
736 struct ems_tx_urb_context *context = NULL;
737 struct net_device_stats *stats = &netdev->stats;
738 struct can_frame *cf = (struct can_frame *)skb->data;
739 struct ems_cpc_msg *msg;
740 struct urb *urb;
741 u8 *buf;
742 int i, err;
743 size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
744 + sizeof(struct cpc_can_msg);
745
746 if (can_dropped_invalid_skb(netdev, skb))
747 return NETDEV_TX_OK;
748
749 /* create a URB, and a buffer for it, and copy the data to the URB */
750 urb = usb_alloc_urb(0, GFP_ATOMIC);
751 if (!urb) {
752 netdev_err(netdev, "No memory left for URBs\n");
753 goto nomem;
754 }
755
756 buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
757 if (!buf) {
758 netdev_err(netdev, "No memory left for USB buffer\n");
759 usb_free_urb(urb);
760 goto nomem;
761 }
762
763 msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
764
765 msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
766 msg->msg.can_msg.length = cf->can_dlc;
767
768 if (cf->can_id & CAN_RTR_FLAG) {
769 msg->type = cf->can_id & CAN_EFF_FLAG ?
770 CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
771
772 msg->length = CPC_CAN_MSG_MIN_SIZE;
773 } else {
774 msg->type = cf->can_id & CAN_EFF_FLAG ?
775 CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
776
777 for (i = 0; i < cf->can_dlc; i++)
778 msg->msg.can_msg.msg[i] = cf->data[i];
779
780 msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
781 }
782
783 for (i = 0; i < MAX_TX_URBS; i++) {
784 if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
785 context = &dev->tx_contexts[i];
786 break;
787 }
788 }
789
790 /*
791 * May never happen! When this happens we'd more URBs in flight as
792 * allowed (MAX_TX_URBS).
793 */
794 if (!context) {
795 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
796 usb_free_urb(urb);
797
798 netdev_warn(netdev, "couldn't find free context\n");
799
800 return NETDEV_TX_BUSY;
801 }
802
803 context->dev = dev;
804 context->echo_index = i;
805 context->dlc = cf->can_dlc;
806
807 usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
808 size, ems_usb_write_bulk_callback, context);
809 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
810 usb_anchor_urb(urb, &dev->tx_submitted);
811
812 can_put_echo_skb(skb, netdev, context->echo_index);
813
814 atomic_inc(&dev->active_tx_urbs);
815
816 err = usb_submit_urb(urb, GFP_ATOMIC);
817 if (unlikely(err)) {
818 can_free_echo_skb(netdev, context->echo_index);
819
820 usb_unanchor_urb(urb);
821 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
822 dev_kfree_skb(skb);
823
824 atomic_dec(&dev->active_tx_urbs);
825
826 if (err == -ENODEV) {
827 netif_device_detach(netdev);
828 } else {
829 netdev_warn(netdev, "failed tx_urb %d\n", err);
830
831 stats->tx_dropped++;
832 }
833 } else {
834 netdev->trans_start = jiffies;
835
836 /* Slow down tx path */
837 if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
838 dev->free_slots < 5) {
839 netif_stop_queue(netdev);
840 }
841 }
842
843 /*
844 * Release our reference to this URB, the USB core will eventually free
845 * it entirely.
846 */
847 usb_free_urb(urb);
848
849 return NETDEV_TX_OK;
850
851 nomem:
852 dev_kfree_skb(skb);
853 stats->tx_dropped++;
854
855 return NETDEV_TX_OK;
856 }
857
858 static int ems_usb_close(struct net_device *netdev)
859 {
860 struct ems_usb *dev = netdev_priv(netdev);
861
862 /* Stop polling */
863 unlink_all_urbs(dev);
864
865 netif_stop_queue(netdev);
866
867 /* Set CAN controller to reset mode */
868 if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
869 netdev_warn(netdev, "couldn't stop device");
870
871 close_candev(netdev);
872
873 return 0;
874 }
875
876 static const struct net_device_ops ems_usb_netdev_ops = {
877 .ndo_open = ems_usb_open,
878 .ndo_stop = ems_usb_close,
879 .ndo_start_xmit = ems_usb_start_xmit,
880 .ndo_change_mtu = can_change_mtu,
881 };
882
883 static const struct can_bittiming_const ems_usb_bittiming_const = {
884 .name = "ems_usb",
885 .tseg1_min = 1,
886 .tseg1_max = 16,
887 .tseg2_min = 1,
888 .tseg2_max = 8,
889 .sjw_max = 4,
890 .brp_min = 1,
891 .brp_max = 64,
892 .brp_inc = 1,
893 };
894
895 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
896 {
897 struct ems_usb *dev = netdev_priv(netdev);
898
899 switch (mode) {
900 case CAN_MODE_START:
901 if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
902 netdev_warn(netdev, "couldn't start device");
903
904 if (netif_queue_stopped(netdev))
905 netif_wake_queue(netdev);
906 break;
907
908 default:
909 return -EOPNOTSUPP;
910 }
911
912 return 0;
913 }
914
915 static int ems_usb_set_bittiming(struct net_device *netdev)
916 {
917 struct ems_usb *dev = netdev_priv(netdev);
918 struct can_bittiming *bt = &dev->can.bittiming;
919 u8 btr0, btr1;
920
921 btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
922 btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
923 (((bt->phase_seg2 - 1) & 0x7) << 4);
924 if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
925 btr1 |= 0x80;
926
927 netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
928
929 dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
930 dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
931
932 return ems_usb_command_msg(dev, &dev->active_params);
933 }
934
935 static void init_params_sja1000(struct ems_cpc_msg *msg)
936 {
937 struct cpc_sja1000_params *sja1000 =
938 &msg->msg.can_params.cc_params.sja1000;
939
940 msg->type = CPC_CMD_TYPE_CAN_PARAMS;
941 msg->length = sizeof(struct cpc_can_params);
942 msg->msgid = 0;
943
944 msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
945
946 /* Acceptance filter open */
947 sja1000->acc_code0 = 0x00;
948 sja1000->acc_code1 = 0x00;
949 sja1000->acc_code2 = 0x00;
950 sja1000->acc_code3 = 0x00;
951
952 /* Acceptance filter open */
953 sja1000->acc_mask0 = 0xFF;
954 sja1000->acc_mask1 = 0xFF;
955 sja1000->acc_mask2 = 0xFF;
956 sja1000->acc_mask3 = 0xFF;
957
958 sja1000->btr0 = 0;
959 sja1000->btr1 = 0;
960
961 sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
962 sja1000->mode = SJA1000_MOD_RM;
963 }
964
965 /*
966 * probe function for new CPC-USB devices
967 */
968 static int ems_usb_probe(struct usb_interface *intf,
969 const struct usb_device_id *id)
970 {
971 struct net_device *netdev;
972 struct ems_usb *dev;
973 int i, err = -ENOMEM;
974
975 netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
976 if (!netdev) {
977 dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
978 return -ENOMEM;
979 }
980
981 dev = netdev_priv(netdev);
982
983 dev->udev = interface_to_usbdev(intf);
984 dev->netdev = netdev;
985
986 dev->can.state = CAN_STATE_STOPPED;
987 dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
988 dev->can.bittiming_const = &ems_usb_bittiming_const;
989 dev->can.do_set_bittiming = ems_usb_set_bittiming;
990 dev->can.do_set_mode = ems_usb_set_mode;
991 dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
992
993 netdev->netdev_ops = &ems_usb_netdev_ops;
994
995 netdev->flags |= IFF_ECHO; /* we support local echo */
996
997 init_usb_anchor(&dev->rx_submitted);
998
999 init_usb_anchor(&dev->tx_submitted);
1000 atomic_set(&dev->active_tx_urbs, 0);
1001
1002 for (i = 0; i < MAX_TX_URBS; i++)
1003 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1004
1005 dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1006 if (!dev->intr_urb) {
1007 dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1008 goto cleanup_candev;
1009 }
1010
1011 dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1012 if (!dev->intr_in_buffer)
1013 goto cleanup_intr_urb;
1014
1015 dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1016 sizeof(struct ems_cpc_msg), GFP_KERNEL);
1017 if (!dev->tx_msg_buffer)
1018 goto cleanup_intr_in_buffer;
1019
1020 usb_set_intfdata(intf, dev);
1021
1022 SET_NETDEV_DEV(netdev, &intf->dev);
1023
1024 init_params_sja1000(&dev->active_params);
1025
1026 err = ems_usb_command_msg(dev, &dev->active_params);
1027 if (err) {
1028 netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1029 goto cleanup_tx_msg_buffer;
1030 }
1031
1032 err = register_candev(netdev);
1033 if (err) {
1034 netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1035 goto cleanup_tx_msg_buffer;
1036 }
1037
1038 return 0;
1039
1040 cleanup_tx_msg_buffer:
1041 kfree(dev->tx_msg_buffer);
1042
1043 cleanup_intr_in_buffer:
1044 kfree(dev->intr_in_buffer);
1045
1046 cleanup_intr_urb:
1047 usb_free_urb(dev->intr_urb);
1048
1049 cleanup_candev:
1050 free_candev(netdev);
1051
1052 return err;
1053 }
1054
1055 /*
1056 * called by the usb core when the device is removed from the system
1057 */
1058 static void ems_usb_disconnect(struct usb_interface *intf)
1059 {
1060 struct ems_usb *dev = usb_get_intfdata(intf);
1061
1062 usb_set_intfdata(intf, NULL);
1063
1064 if (dev) {
1065 unregister_netdev(dev->netdev);
1066 free_candev(dev->netdev);
1067
1068 unlink_all_urbs(dev);
1069
1070 usb_free_urb(dev->intr_urb);
1071
1072 kfree(dev->intr_in_buffer);
1073 }
1074 }
1075
1076 /* usb specific object needed to register this driver with the usb subsystem */
1077 static struct usb_driver ems_usb_driver = {
1078 .name = "ems_usb",
1079 .probe = ems_usb_probe,
1080 .disconnect = ems_usb_disconnect,
1081 .id_table = ems_usb_table,
1082 };
1083
1084 module_usb_driver(ems_usb_driver);