]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/cassini.c
net: convert print_mac to %pM
[mirror_ubuntu-bionic-kernel.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96
97 #include <net/checksum.h>
98
99 #include <asm/atomic.h>
100 #include <asm/system.h>
101 #include <asm/io.h>
102 #include <asm/byteorder.h>
103 #include <asm/uaccess.h>
104
105 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define CAS_NCPUS num_online_cpus()
108
109 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
110 #define USE_NAPI
111 #define cas_skb_release(x) netif_receive_skb(x)
112 #else
113 #define cas_skb_release(x) netif_rx(x)
114 #endif
115
116 /* select which firmware to use */
117 #define USE_HP_WORKAROUND
118 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
119 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
120
121 #include "cassini.h"
122
123 #define USE_TX_COMPWB /* use completion writeback registers */
124 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
125 #define USE_RX_BLANK /* hw interrupt mitigation */
126 #undef USE_ENTROPY_DEV /* don't test for entropy device */
127
128 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
129 * also, we need to make cp->lock finer-grained.
130 */
131 #undef USE_PCI_INTB
132 #undef USE_PCI_INTC
133 #undef USE_PCI_INTD
134 #undef USE_QOS
135
136 #undef USE_VPD_DEBUG /* debug vpd information if defined */
137
138 /* rx processing options */
139 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
140 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
141 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
142 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
143 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
144
145 #define DRV_MODULE_NAME "cassini"
146 #define PFX DRV_MODULE_NAME ": "
147 #define DRV_MODULE_VERSION "1.6"
148 #define DRV_MODULE_RELDATE "21 May 2008"
149
150 #define CAS_DEF_MSG_ENABLE \
151 (NETIF_MSG_DRV | \
152 NETIF_MSG_PROBE | \
153 NETIF_MSG_LINK | \
154 NETIF_MSG_TIMER | \
155 NETIF_MSG_IFDOWN | \
156 NETIF_MSG_IFUP | \
157 NETIF_MSG_RX_ERR | \
158 NETIF_MSG_TX_ERR)
159
160 /* length of time before we decide the hardware is borked,
161 * and dev->tx_timeout() should be called to fix the problem
162 */
163 #define CAS_TX_TIMEOUT (HZ)
164 #define CAS_LINK_TIMEOUT (22*HZ/10)
165 #define CAS_LINK_FAST_TIMEOUT (1)
166
167 /* timeout values for state changing. these specify the number
168 * of 10us delays to be used before giving up.
169 */
170 #define STOP_TRIES_PHY 1000
171 #define STOP_TRIES 5000
172
173 /* specify a minimum frame size to deal with some fifo issues
174 * max mtu == 2 * page size - ethernet header - 64 - swivel =
175 * 2 * page_size - 0x50
176 */
177 #define CAS_MIN_FRAME 97
178 #define CAS_1000MB_MIN_FRAME 255
179 #define CAS_MIN_MTU 60
180 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
181
182 #if 1
183 /*
184 * Eliminate these and use separate atomic counters for each, to
185 * avoid a race condition.
186 */
187 #else
188 #define CAS_RESET_MTU 1
189 #define CAS_RESET_ALL 2
190 #define CAS_RESET_SPARE 3
191 #endif
192
193 static char version[] __devinitdata =
194 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
195
196 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
197 static int link_mode;
198
199 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
200 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
201 MODULE_LICENSE("GPL");
202 MODULE_FIRMWARE("sun/cassini.bin");
203 module_param(cassini_debug, int, 0);
204 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
205 module_param(link_mode, int, 0);
206 MODULE_PARM_DESC(link_mode, "default link mode");
207
208 /*
209 * Work around for a PCS bug in which the link goes down due to the chip
210 * being confused and never showing a link status of "up."
211 */
212 #define DEFAULT_LINKDOWN_TIMEOUT 5
213 /*
214 * Value in seconds, for user input.
215 */
216 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
217 module_param(linkdown_timeout, int, 0);
218 MODULE_PARM_DESC(linkdown_timeout,
219 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
220
221 /*
222 * value in 'ticks' (units used by jiffies). Set when we init the
223 * module because 'HZ' in actually a function call on some flavors of
224 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
225 */
226 static int link_transition_timeout;
227
228
229
230 static u16 link_modes[] __devinitdata = {
231 BMCR_ANENABLE, /* 0 : autoneg */
232 0, /* 1 : 10bt half duplex */
233 BMCR_SPEED100, /* 2 : 100bt half duplex */
234 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
235 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
236 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
237 };
238
239 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
240 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
244 { 0, }
245 };
246
247 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
248
249 static void cas_set_link_modes(struct cas *cp);
250
251 static inline void cas_lock_tx(struct cas *cp)
252 {
253 int i;
254
255 for (i = 0; i < N_TX_RINGS; i++)
256 spin_lock(&cp->tx_lock[i]);
257 }
258
259 static inline void cas_lock_all(struct cas *cp)
260 {
261 spin_lock_irq(&cp->lock);
262 cas_lock_tx(cp);
263 }
264
265 /* WTZ: QA was finding deadlock problems with the previous
266 * versions after long test runs with multiple cards per machine.
267 * See if replacing cas_lock_all with safer versions helps. The
268 * symptoms QA is reporting match those we'd expect if interrupts
269 * aren't being properly restored, and we fixed a previous deadlock
270 * with similar symptoms by using save/restore versions in other
271 * places.
272 */
273 #define cas_lock_all_save(cp, flags) \
274 do { \
275 struct cas *xxxcp = (cp); \
276 spin_lock_irqsave(&xxxcp->lock, flags); \
277 cas_lock_tx(xxxcp); \
278 } while (0)
279
280 static inline void cas_unlock_tx(struct cas *cp)
281 {
282 int i;
283
284 for (i = N_TX_RINGS; i > 0; i--)
285 spin_unlock(&cp->tx_lock[i - 1]);
286 }
287
288 static inline void cas_unlock_all(struct cas *cp)
289 {
290 cas_unlock_tx(cp);
291 spin_unlock_irq(&cp->lock);
292 }
293
294 #define cas_unlock_all_restore(cp, flags) \
295 do { \
296 struct cas *xxxcp = (cp); \
297 cas_unlock_tx(xxxcp); \
298 spin_unlock_irqrestore(&xxxcp->lock, flags); \
299 } while (0)
300
301 static void cas_disable_irq(struct cas *cp, const int ring)
302 {
303 /* Make sure we won't get any more interrupts */
304 if (ring == 0) {
305 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
306 return;
307 }
308
309 /* disable completion interrupts and selectively mask */
310 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
311 switch (ring) {
312 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
313 #ifdef USE_PCI_INTB
314 case 1:
315 #endif
316 #ifdef USE_PCI_INTC
317 case 2:
318 #endif
319 #ifdef USE_PCI_INTD
320 case 3:
321 #endif
322 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
323 cp->regs + REG_PLUS_INTRN_MASK(ring));
324 break;
325 #endif
326 default:
327 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
328 REG_PLUS_INTRN_MASK(ring));
329 break;
330 }
331 }
332 }
333
334 static inline void cas_mask_intr(struct cas *cp)
335 {
336 int i;
337
338 for (i = 0; i < N_RX_COMP_RINGS; i++)
339 cas_disable_irq(cp, i);
340 }
341
342 static void cas_enable_irq(struct cas *cp, const int ring)
343 {
344 if (ring == 0) { /* all but TX_DONE */
345 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
346 return;
347 }
348
349 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
350 switch (ring) {
351 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
352 #ifdef USE_PCI_INTB
353 case 1:
354 #endif
355 #ifdef USE_PCI_INTC
356 case 2:
357 #endif
358 #ifdef USE_PCI_INTD
359 case 3:
360 #endif
361 writel(INTRN_MASK_RX_EN, cp->regs +
362 REG_PLUS_INTRN_MASK(ring));
363 break;
364 #endif
365 default:
366 break;
367 }
368 }
369 }
370
371 static inline void cas_unmask_intr(struct cas *cp)
372 {
373 int i;
374
375 for (i = 0; i < N_RX_COMP_RINGS; i++)
376 cas_enable_irq(cp, i);
377 }
378
379 static inline void cas_entropy_gather(struct cas *cp)
380 {
381 #ifdef USE_ENTROPY_DEV
382 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
383 return;
384
385 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
386 readl(cp->regs + REG_ENTROPY_IV),
387 sizeof(uint64_t)*8);
388 #endif
389 }
390
391 static inline void cas_entropy_reset(struct cas *cp)
392 {
393 #ifdef USE_ENTROPY_DEV
394 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
395 return;
396
397 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
398 cp->regs + REG_BIM_LOCAL_DEV_EN);
399 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
400 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
401
402 /* if we read back 0x0, we don't have an entropy device */
403 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
404 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
405 #endif
406 }
407
408 /* access to the phy. the following assumes that we've initialized the MIF to
409 * be in frame rather than bit-bang mode
410 */
411 static u16 cas_phy_read(struct cas *cp, int reg)
412 {
413 u32 cmd;
414 int limit = STOP_TRIES_PHY;
415
416 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
417 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
418 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
419 cmd |= MIF_FRAME_TURN_AROUND_MSB;
420 writel(cmd, cp->regs + REG_MIF_FRAME);
421
422 /* poll for completion */
423 while (limit-- > 0) {
424 udelay(10);
425 cmd = readl(cp->regs + REG_MIF_FRAME);
426 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
427 return (cmd & MIF_FRAME_DATA_MASK);
428 }
429 return 0xFFFF; /* -1 */
430 }
431
432 static int cas_phy_write(struct cas *cp, int reg, u16 val)
433 {
434 int limit = STOP_TRIES_PHY;
435 u32 cmd;
436
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 cmd |= val & MIF_FRAME_DATA_MASK;
442 writel(cmd, cp->regs + REG_MIF_FRAME);
443
444 /* poll for completion */
445 while (limit-- > 0) {
446 udelay(10);
447 cmd = readl(cp->regs + REG_MIF_FRAME);
448 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449 return 0;
450 }
451 return -1;
452 }
453
454 static void cas_phy_powerup(struct cas *cp)
455 {
456 u16 ctl = cas_phy_read(cp, MII_BMCR);
457
458 if ((ctl & BMCR_PDOWN) == 0)
459 return;
460 ctl &= ~BMCR_PDOWN;
461 cas_phy_write(cp, MII_BMCR, ctl);
462 }
463
464 static void cas_phy_powerdown(struct cas *cp)
465 {
466 u16 ctl = cas_phy_read(cp, MII_BMCR);
467
468 if (ctl & BMCR_PDOWN)
469 return;
470 ctl |= BMCR_PDOWN;
471 cas_phy_write(cp, MII_BMCR, ctl);
472 }
473
474 /* cp->lock held. note: the last put_page will free the buffer */
475 static int cas_page_free(struct cas *cp, cas_page_t *page)
476 {
477 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
478 PCI_DMA_FROMDEVICE);
479 __free_pages(page->buffer, cp->page_order);
480 kfree(page);
481 return 0;
482 }
483
484 #ifdef RX_COUNT_BUFFERS
485 #define RX_USED_ADD(x, y) ((x)->used += (y))
486 #define RX_USED_SET(x, y) ((x)->used = (y))
487 #else
488 #define RX_USED_ADD(x, y)
489 #define RX_USED_SET(x, y)
490 #endif
491
492 /* local page allocation routines for the receive buffers. jumbo pages
493 * require at least 8K contiguous and 8K aligned buffers.
494 */
495 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
496 {
497 cas_page_t *page;
498
499 page = kmalloc(sizeof(cas_page_t), flags);
500 if (!page)
501 return NULL;
502
503 INIT_LIST_HEAD(&page->list);
504 RX_USED_SET(page, 0);
505 page->buffer = alloc_pages(flags, cp->page_order);
506 if (!page->buffer)
507 goto page_err;
508 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
509 cp->page_size, PCI_DMA_FROMDEVICE);
510 return page;
511
512 page_err:
513 kfree(page);
514 return NULL;
515 }
516
517 /* initialize spare pool of rx buffers, but allocate during the open */
518 static void cas_spare_init(struct cas *cp)
519 {
520 spin_lock(&cp->rx_inuse_lock);
521 INIT_LIST_HEAD(&cp->rx_inuse_list);
522 spin_unlock(&cp->rx_inuse_lock);
523
524 spin_lock(&cp->rx_spare_lock);
525 INIT_LIST_HEAD(&cp->rx_spare_list);
526 cp->rx_spares_needed = RX_SPARE_COUNT;
527 spin_unlock(&cp->rx_spare_lock);
528 }
529
530 /* used on close. free all the spare buffers. */
531 static void cas_spare_free(struct cas *cp)
532 {
533 struct list_head list, *elem, *tmp;
534
535 /* free spare buffers */
536 INIT_LIST_HEAD(&list);
537 spin_lock(&cp->rx_spare_lock);
538 list_splice_init(&cp->rx_spare_list, &list);
539 spin_unlock(&cp->rx_spare_lock);
540 list_for_each_safe(elem, tmp, &list) {
541 cas_page_free(cp, list_entry(elem, cas_page_t, list));
542 }
543
544 INIT_LIST_HEAD(&list);
545 #if 1
546 /*
547 * Looks like Adrian had protected this with a different
548 * lock than used everywhere else to manipulate this list.
549 */
550 spin_lock(&cp->rx_inuse_lock);
551 list_splice_init(&cp->rx_inuse_list, &list);
552 spin_unlock(&cp->rx_inuse_lock);
553 #else
554 spin_lock(&cp->rx_spare_lock);
555 list_splice_init(&cp->rx_inuse_list, &list);
556 spin_unlock(&cp->rx_spare_lock);
557 #endif
558 list_for_each_safe(elem, tmp, &list) {
559 cas_page_free(cp, list_entry(elem, cas_page_t, list));
560 }
561 }
562
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
565 {
566 struct list_head list, *elem, *tmp;
567 int needed, i;
568
569 /* check inuse list. if we don't need any more free buffers,
570 * just free it
571 */
572
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list);
575 spin_lock(&cp->rx_inuse_lock);
576 list_splice_init(&cp->rx_inuse_list, &list);
577 spin_unlock(&cp->rx_inuse_lock);
578
579 list_for_each_safe(elem, tmp, &list) {
580 cas_page_t *page = list_entry(elem, cas_page_t, list);
581
582 /*
583 * With the lockless pagecache, cassini buffering scheme gets
584 * slightly less accurate: we might find that a page has an
585 * elevated reference count here, due to a speculative ref,
586 * and skip it as in-use. Ideally we would be able to reclaim
587 * it. However this would be such a rare case, it doesn't
588 * matter too much as we should pick it up the next time round.
589 *
590 * Importantly, if we find that the page has a refcount of 1
591 * here (our refcount), then we know it is definitely not inuse
592 * so we can reuse it.
593 */
594 if (page_count(page->buffer) > 1)
595 continue;
596
597 list_del(elem);
598 spin_lock(&cp->rx_spare_lock);
599 if (cp->rx_spares_needed > 0) {
600 list_add(elem, &cp->rx_spare_list);
601 cp->rx_spares_needed--;
602 spin_unlock(&cp->rx_spare_lock);
603 } else {
604 spin_unlock(&cp->rx_spare_lock);
605 cas_page_free(cp, page);
606 }
607 }
608
609 /* put any inuse buffers back on the list */
610 if (!list_empty(&list)) {
611 spin_lock(&cp->rx_inuse_lock);
612 list_splice(&list, &cp->rx_inuse_list);
613 spin_unlock(&cp->rx_inuse_lock);
614 }
615
616 spin_lock(&cp->rx_spare_lock);
617 needed = cp->rx_spares_needed;
618 spin_unlock(&cp->rx_spare_lock);
619 if (!needed)
620 return;
621
622 /* we still need spares, so try to allocate some */
623 INIT_LIST_HEAD(&list);
624 i = 0;
625 while (i < needed) {
626 cas_page_t *spare = cas_page_alloc(cp, flags);
627 if (!spare)
628 break;
629 list_add(&spare->list, &list);
630 i++;
631 }
632
633 spin_lock(&cp->rx_spare_lock);
634 list_splice(&list, &cp->rx_spare_list);
635 cp->rx_spares_needed -= i;
636 spin_unlock(&cp->rx_spare_lock);
637 }
638
639 /* pull a page from the list. */
640 static cas_page_t *cas_page_dequeue(struct cas *cp)
641 {
642 struct list_head *entry;
643 int recover;
644
645 spin_lock(&cp->rx_spare_lock);
646 if (list_empty(&cp->rx_spare_list)) {
647 /* try to do a quick recovery */
648 spin_unlock(&cp->rx_spare_lock);
649 cas_spare_recover(cp, GFP_ATOMIC);
650 spin_lock(&cp->rx_spare_lock);
651 if (list_empty(&cp->rx_spare_list)) {
652 if (netif_msg_rx_err(cp))
653 printk(KERN_ERR "%s: no spare buffers "
654 "available.\n", cp->dev->name);
655 spin_unlock(&cp->rx_spare_lock);
656 return NULL;
657 }
658 }
659
660 entry = cp->rx_spare_list.next;
661 list_del(entry);
662 recover = ++cp->rx_spares_needed;
663 spin_unlock(&cp->rx_spare_lock);
664
665 /* trigger the timer to do the recovery */
666 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
667 #if 1
668 atomic_inc(&cp->reset_task_pending);
669 atomic_inc(&cp->reset_task_pending_spare);
670 schedule_work(&cp->reset_task);
671 #else
672 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
673 schedule_work(&cp->reset_task);
674 #endif
675 }
676 return list_entry(entry, cas_page_t, list);
677 }
678
679
680 static void cas_mif_poll(struct cas *cp, const int enable)
681 {
682 u32 cfg;
683
684 cfg = readl(cp->regs + REG_MIF_CFG);
685 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
686
687 if (cp->phy_type & CAS_PHY_MII_MDIO1)
688 cfg |= MIF_CFG_PHY_SELECT;
689
690 /* poll and interrupt on link status change. */
691 if (enable) {
692 cfg |= MIF_CFG_POLL_EN;
693 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
694 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
695 }
696 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
697 cp->regs + REG_MIF_MASK);
698 writel(cfg, cp->regs + REG_MIF_CFG);
699 }
700
701 /* Must be invoked under cp->lock */
702 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
703 {
704 u16 ctl;
705 #if 1
706 int lcntl;
707 int changed = 0;
708 int oldstate = cp->lstate;
709 int link_was_not_down = !(oldstate == link_down);
710 #endif
711 /* Setup link parameters */
712 if (!ep)
713 goto start_aneg;
714 lcntl = cp->link_cntl;
715 if (ep->autoneg == AUTONEG_ENABLE)
716 cp->link_cntl = BMCR_ANENABLE;
717 else {
718 cp->link_cntl = 0;
719 if (ep->speed == SPEED_100)
720 cp->link_cntl |= BMCR_SPEED100;
721 else if (ep->speed == SPEED_1000)
722 cp->link_cntl |= CAS_BMCR_SPEED1000;
723 if (ep->duplex == DUPLEX_FULL)
724 cp->link_cntl |= BMCR_FULLDPLX;
725 }
726 #if 1
727 changed = (lcntl != cp->link_cntl);
728 #endif
729 start_aneg:
730 if (cp->lstate == link_up) {
731 printk(KERN_INFO "%s: PCS link down.\n",
732 cp->dev->name);
733 } else {
734 if (changed) {
735 printk(KERN_INFO "%s: link configuration changed\n",
736 cp->dev->name);
737 }
738 }
739 cp->lstate = link_down;
740 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
741 if (!cp->hw_running)
742 return;
743 #if 1
744 /*
745 * WTZ: If the old state was link_up, we turn off the carrier
746 * to replicate everything we do elsewhere on a link-down
747 * event when we were already in a link-up state..
748 */
749 if (oldstate == link_up)
750 netif_carrier_off(cp->dev);
751 if (changed && link_was_not_down) {
752 /*
753 * WTZ: This branch will simply schedule a full reset after
754 * we explicitly changed link modes in an ioctl. See if this
755 * fixes the link-problems we were having for forced mode.
756 */
757 atomic_inc(&cp->reset_task_pending);
758 atomic_inc(&cp->reset_task_pending_all);
759 schedule_work(&cp->reset_task);
760 cp->timer_ticks = 0;
761 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
762 return;
763 }
764 #endif
765 if (cp->phy_type & CAS_PHY_SERDES) {
766 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
767
768 if (cp->link_cntl & BMCR_ANENABLE) {
769 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
770 cp->lstate = link_aneg;
771 } else {
772 if (cp->link_cntl & BMCR_FULLDPLX)
773 val |= PCS_MII_CTRL_DUPLEX;
774 val &= ~PCS_MII_AUTONEG_EN;
775 cp->lstate = link_force_ok;
776 }
777 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
778 writel(val, cp->regs + REG_PCS_MII_CTRL);
779
780 } else {
781 cas_mif_poll(cp, 0);
782 ctl = cas_phy_read(cp, MII_BMCR);
783 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
784 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
785 ctl |= cp->link_cntl;
786 if (ctl & BMCR_ANENABLE) {
787 ctl |= BMCR_ANRESTART;
788 cp->lstate = link_aneg;
789 } else {
790 cp->lstate = link_force_ok;
791 }
792 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793 cas_phy_write(cp, MII_BMCR, ctl);
794 cas_mif_poll(cp, 1);
795 }
796
797 cp->timer_ticks = 0;
798 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
799 }
800
801 /* Must be invoked under cp->lock. */
802 static int cas_reset_mii_phy(struct cas *cp)
803 {
804 int limit = STOP_TRIES_PHY;
805 u16 val;
806
807 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
808 udelay(100);
809 while (limit--) {
810 val = cas_phy_read(cp, MII_BMCR);
811 if ((val & BMCR_RESET) == 0)
812 break;
813 udelay(10);
814 }
815 return (limit <= 0);
816 }
817
818 static int cas_saturn_firmware_init(struct cas *cp)
819 {
820 const struct firmware *fw;
821 const char fw_name[] = "sun/cassini.bin";
822 int err;
823
824 if (PHY_NS_DP83065 != cp->phy_id)
825 return 0;
826
827 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
828 if (err) {
829 printk(KERN_ERR "cassini: Failed to load firmware \"%s\"\n",
830 fw_name);
831 return err;
832 }
833 if (fw->size < 2) {
834 printk(KERN_ERR "cassini: bogus length %zu in \"%s\"\n",
835 fw->size, fw_name);
836 err = -EINVAL;
837 goto out;
838 }
839 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
840 cp->fw_size = fw->size - 2;
841 cp->fw_data = vmalloc(cp->fw_size);
842 if (!cp->fw_data) {
843 err = -ENOMEM;
844 printk(KERN_ERR "cassini: \"%s\" Failed %d\n", fw_name, err);
845 goto out;
846 }
847 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
848 out:
849 release_firmware(fw);
850 return err;
851 }
852
853 static void cas_saturn_firmware_load(struct cas *cp)
854 {
855 int i;
856
857 cas_phy_powerdown(cp);
858
859 /* expanded memory access mode */
860 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
861
862 /* pointer configuration for new firmware */
863 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
864 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
865 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
866 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
867 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
868 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
869 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
870 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
871
872 /* download new firmware */
873 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
874 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
875 for (i = 0; i < cp->fw_size; i++)
876 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
877
878 /* enable firmware */
879 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
880 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
881 }
882
883
884 /* phy initialization */
885 static void cas_phy_init(struct cas *cp)
886 {
887 u16 val;
888
889 /* if we're in MII/GMII mode, set up phy */
890 if (CAS_PHY_MII(cp->phy_type)) {
891 writel(PCS_DATAPATH_MODE_MII,
892 cp->regs + REG_PCS_DATAPATH_MODE);
893
894 cas_mif_poll(cp, 0);
895 cas_reset_mii_phy(cp); /* take out of isolate mode */
896
897 if (PHY_LUCENT_B0 == cp->phy_id) {
898 /* workaround link up/down issue with lucent */
899 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
900 cas_phy_write(cp, MII_BMCR, 0x00f1);
901 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
902
903 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
904 /* workarounds for broadcom phy */
905 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
906 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
907 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
908 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
909 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
910 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
911 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
912 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
913 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
914 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
915 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
916
917 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
918 val = cas_phy_read(cp, BROADCOM_MII_REG4);
919 val = cas_phy_read(cp, BROADCOM_MII_REG4);
920 if (val & 0x0080) {
921 /* link workaround */
922 cas_phy_write(cp, BROADCOM_MII_REG4,
923 val & ~0x0080);
924 }
925
926 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
927 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
928 SATURN_PCFG_FSI : 0x0,
929 cp->regs + REG_SATURN_PCFG);
930
931 /* load firmware to address 10Mbps auto-negotiation
932 * issue. NOTE: this will need to be changed if the
933 * default firmware gets fixed.
934 */
935 if (PHY_NS_DP83065 == cp->phy_id) {
936 cas_saturn_firmware_load(cp);
937 }
938 cas_phy_powerup(cp);
939 }
940
941 /* advertise capabilities */
942 val = cas_phy_read(cp, MII_BMCR);
943 val &= ~BMCR_ANENABLE;
944 cas_phy_write(cp, MII_BMCR, val);
945 udelay(10);
946
947 cas_phy_write(cp, MII_ADVERTISE,
948 cas_phy_read(cp, MII_ADVERTISE) |
949 (ADVERTISE_10HALF | ADVERTISE_10FULL |
950 ADVERTISE_100HALF | ADVERTISE_100FULL |
951 CAS_ADVERTISE_PAUSE |
952 CAS_ADVERTISE_ASYM_PAUSE));
953
954 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
955 /* make sure that we don't advertise half
956 * duplex to avoid a chip issue
957 */
958 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
959 val &= ~CAS_ADVERTISE_1000HALF;
960 val |= CAS_ADVERTISE_1000FULL;
961 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
962 }
963
964 } else {
965 /* reset pcs for serdes */
966 u32 val;
967 int limit;
968
969 writel(PCS_DATAPATH_MODE_SERDES,
970 cp->regs + REG_PCS_DATAPATH_MODE);
971
972 /* enable serdes pins on saturn */
973 if (cp->cas_flags & CAS_FLAG_SATURN)
974 writel(0, cp->regs + REG_SATURN_PCFG);
975
976 /* Reset PCS unit. */
977 val = readl(cp->regs + REG_PCS_MII_CTRL);
978 val |= PCS_MII_RESET;
979 writel(val, cp->regs + REG_PCS_MII_CTRL);
980
981 limit = STOP_TRIES;
982 while (limit-- > 0) {
983 udelay(10);
984 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
985 PCS_MII_RESET) == 0)
986 break;
987 }
988 if (limit <= 0)
989 printk(KERN_WARNING "%s: PCS reset bit would not "
990 "clear [%08x].\n", cp->dev->name,
991 readl(cp->regs + REG_PCS_STATE_MACHINE));
992
993 /* Make sure PCS is disabled while changing advertisement
994 * configuration.
995 */
996 writel(0x0, cp->regs + REG_PCS_CFG);
997
998 /* Advertise all capabilities except half-duplex. */
999 val = readl(cp->regs + REG_PCS_MII_ADVERT);
1000 val &= ~PCS_MII_ADVERT_HD;
1001 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
1002 PCS_MII_ADVERT_ASYM_PAUSE);
1003 writel(val, cp->regs + REG_PCS_MII_ADVERT);
1004
1005 /* enable PCS */
1006 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1007
1008 /* pcs workaround: enable sync detect */
1009 writel(PCS_SERDES_CTRL_SYNCD_EN,
1010 cp->regs + REG_PCS_SERDES_CTRL);
1011 }
1012 }
1013
1014
1015 static int cas_pcs_link_check(struct cas *cp)
1016 {
1017 u32 stat, state_machine;
1018 int retval = 0;
1019
1020 /* The link status bit latches on zero, so you must
1021 * read it twice in such a case to see a transition
1022 * to the link being up.
1023 */
1024 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1025 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1026 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1027
1028 /* The remote-fault indication is only valid
1029 * when autoneg has completed.
1030 */
1031 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1032 PCS_MII_STATUS_REMOTE_FAULT)) ==
1033 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1034 if (netif_msg_link(cp))
1035 printk(KERN_INFO "%s: PCS RemoteFault\n",
1036 cp->dev->name);
1037 }
1038
1039 /* work around link detection issue by querying the PCS state
1040 * machine directly.
1041 */
1042 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1043 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1044 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1045 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1046 stat |= PCS_MII_STATUS_LINK_STATUS;
1047 }
1048
1049 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1050 if (cp->lstate != link_up) {
1051 if (cp->opened) {
1052 cp->lstate = link_up;
1053 cp->link_transition = LINK_TRANSITION_LINK_UP;
1054
1055 cas_set_link_modes(cp);
1056 netif_carrier_on(cp->dev);
1057 }
1058 }
1059 } else if (cp->lstate == link_up) {
1060 cp->lstate = link_down;
1061 if (link_transition_timeout != 0 &&
1062 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1063 !cp->link_transition_jiffies_valid) {
1064 /*
1065 * force a reset, as a workaround for the
1066 * link-failure problem. May want to move this to a
1067 * point a bit earlier in the sequence. If we had
1068 * generated a reset a short time ago, we'll wait for
1069 * the link timer to check the status until a
1070 * timer expires (link_transistion_jiffies_valid is
1071 * true when the timer is running.) Instead of using
1072 * a system timer, we just do a check whenever the
1073 * link timer is running - this clears the flag after
1074 * a suitable delay.
1075 */
1076 retval = 1;
1077 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1078 cp->link_transition_jiffies = jiffies;
1079 cp->link_transition_jiffies_valid = 1;
1080 } else {
1081 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1082 }
1083 netif_carrier_off(cp->dev);
1084 if (cp->opened && netif_msg_link(cp)) {
1085 printk(KERN_INFO "%s: PCS link down.\n",
1086 cp->dev->name);
1087 }
1088
1089 /* Cassini only: if you force a mode, there can be
1090 * sync problems on link down. to fix that, the following
1091 * things need to be checked:
1092 * 1) read serialink state register
1093 * 2) read pcs status register to verify link down.
1094 * 3) if link down and serial link == 0x03, then you need
1095 * to global reset the chip.
1096 */
1097 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1098 /* should check to see if we're in a forced mode */
1099 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1100 if (stat == 0x03)
1101 return 1;
1102 }
1103 } else if (cp->lstate == link_down) {
1104 if (link_transition_timeout != 0 &&
1105 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1106 !cp->link_transition_jiffies_valid) {
1107 /* force a reset, as a workaround for the
1108 * link-failure problem. May want to move
1109 * this to a point a bit earlier in the
1110 * sequence.
1111 */
1112 retval = 1;
1113 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1114 cp->link_transition_jiffies = jiffies;
1115 cp->link_transition_jiffies_valid = 1;
1116 } else {
1117 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1118 }
1119 }
1120
1121 return retval;
1122 }
1123
1124 static int cas_pcs_interrupt(struct net_device *dev,
1125 struct cas *cp, u32 status)
1126 {
1127 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1128
1129 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1130 return 0;
1131 return cas_pcs_link_check(cp);
1132 }
1133
1134 static int cas_txmac_interrupt(struct net_device *dev,
1135 struct cas *cp, u32 status)
1136 {
1137 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1138
1139 if (!txmac_stat)
1140 return 0;
1141
1142 if (netif_msg_intr(cp))
1143 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1144 cp->dev->name, txmac_stat);
1145
1146 /* Defer timer expiration is quite normal,
1147 * don't even log the event.
1148 */
1149 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1150 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1151 return 0;
1152
1153 spin_lock(&cp->stat_lock[0]);
1154 if (txmac_stat & MAC_TX_UNDERRUN) {
1155 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1156 dev->name);
1157 cp->net_stats[0].tx_fifo_errors++;
1158 }
1159
1160 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1161 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1162 dev->name);
1163 cp->net_stats[0].tx_errors++;
1164 }
1165
1166 /* The rest are all cases of one of the 16-bit TX
1167 * counters expiring.
1168 */
1169 if (txmac_stat & MAC_TX_COLL_NORMAL)
1170 cp->net_stats[0].collisions += 0x10000;
1171
1172 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1173 cp->net_stats[0].tx_aborted_errors += 0x10000;
1174 cp->net_stats[0].collisions += 0x10000;
1175 }
1176
1177 if (txmac_stat & MAC_TX_COLL_LATE) {
1178 cp->net_stats[0].tx_aborted_errors += 0x10000;
1179 cp->net_stats[0].collisions += 0x10000;
1180 }
1181 spin_unlock(&cp->stat_lock[0]);
1182
1183 /* We do not keep track of MAC_TX_COLL_FIRST and
1184 * MAC_TX_PEAK_ATTEMPTS events.
1185 */
1186 return 0;
1187 }
1188
1189 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1190 {
1191 cas_hp_inst_t *inst;
1192 u32 val;
1193 int i;
1194
1195 i = 0;
1196 while ((inst = firmware) && inst->note) {
1197 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1198
1199 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1200 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1201 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1202
1203 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1204 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1205 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1206 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1207 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1208 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1209 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1210 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1211
1212 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1213 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1214 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1215 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1216 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1217 ++firmware;
1218 ++i;
1219 }
1220 }
1221
1222 static void cas_init_rx_dma(struct cas *cp)
1223 {
1224 u64 desc_dma = cp->block_dvma;
1225 u32 val;
1226 int i, size;
1227
1228 /* rx free descriptors */
1229 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1230 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1231 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1232 if ((N_RX_DESC_RINGS > 1) &&
1233 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1234 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1235 writel(val, cp->regs + REG_RX_CFG);
1236
1237 val = (unsigned long) cp->init_rxds[0] -
1238 (unsigned long) cp->init_block;
1239 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1240 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1241 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1242
1243 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1244 /* rx desc 2 is for IPSEC packets. however,
1245 * we don't it that for that purpose.
1246 */
1247 val = (unsigned long) cp->init_rxds[1] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1250 writel((desc_dma + val) & 0xffffffff, cp->regs +
1251 REG_PLUS_RX_DB1_LOW);
1252 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1253 REG_PLUS_RX_KICK1);
1254 }
1255
1256 /* rx completion registers */
1257 val = (unsigned long) cp->init_rxcs[0] -
1258 (unsigned long) cp->init_block;
1259 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1260 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1261
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 /* rx comp 2-4 */
1264 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1265 val = (unsigned long) cp->init_rxcs[i] -
1266 (unsigned long) cp->init_block;
1267 writel((desc_dma + val) >> 32, cp->regs +
1268 REG_PLUS_RX_CBN_HI(i));
1269 writel((desc_dma + val) & 0xffffffff, cp->regs +
1270 REG_PLUS_RX_CBN_LOW(i));
1271 }
1272 }
1273
1274 /* read selective clear regs to prevent spurious interrupts
1275 * on reset because complete == kick.
1276 * selective clear set up to prevent interrupts on resets
1277 */
1278 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1279 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1280 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1281 for (i = 1; i < N_RX_COMP_RINGS; i++)
1282 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1283
1284 /* 2 is different from 3 and 4 */
1285 if (N_RX_COMP_RINGS > 1)
1286 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1287 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1288
1289 for (i = 2; i < N_RX_COMP_RINGS; i++)
1290 writel(INTR_RX_DONE_ALT,
1291 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1292 }
1293
1294 /* set up pause thresholds */
1295 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1296 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1297 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1298 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1299 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1300
1301 /* zero out dma reassembly buffers */
1302 for (i = 0; i < 64; i++) {
1303 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1304 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1305 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1306 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1307 }
1308
1309 /* make sure address register is 0 for normal operation */
1310 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1311 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1312
1313 /* interrupt mitigation */
1314 #ifdef USE_RX_BLANK
1315 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1316 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1317 writel(val, cp->regs + REG_RX_BLANK);
1318 #else
1319 writel(0x0, cp->regs + REG_RX_BLANK);
1320 #endif
1321
1322 /* interrupt generation as a function of low water marks for
1323 * free desc and completion entries. these are used to trigger
1324 * housekeeping for rx descs. we don't use the free interrupt
1325 * as it's not very useful
1326 */
1327 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1328 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1329 writel(val, cp->regs + REG_RX_AE_THRESH);
1330 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1331 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1332 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1333 }
1334
1335 /* Random early detect registers. useful for congestion avoidance.
1336 * this should be tunable.
1337 */
1338 writel(0x0, cp->regs + REG_RX_RED);
1339
1340 /* receive page sizes. default == 2K (0x800) */
1341 val = 0;
1342 if (cp->page_size == 0x1000)
1343 val = 0x1;
1344 else if (cp->page_size == 0x2000)
1345 val = 0x2;
1346 else if (cp->page_size == 0x4000)
1347 val = 0x3;
1348
1349 /* round mtu + offset. constrain to page size. */
1350 size = cp->dev->mtu + 64;
1351 if (size > cp->page_size)
1352 size = cp->page_size;
1353
1354 if (size <= 0x400)
1355 i = 0x0;
1356 else if (size <= 0x800)
1357 i = 0x1;
1358 else if (size <= 0x1000)
1359 i = 0x2;
1360 else
1361 i = 0x3;
1362
1363 cp->mtu_stride = 1 << (i + 10);
1364 val = CAS_BASE(RX_PAGE_SIZE, val);
1365 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1366 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1367 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1368 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1369
1370 /* enable the header parser if desired */
1371 if (CAS_HP_FIRMWARE == cas_prog_null)
1372 return;
1373
1374 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1375 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1376 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1377 writel(val, cp->regs + REG_HP_CFG);
1378 }
1379
1380 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1381 {
1382 memset(rxc, 0, sizeof(*rxc));
1383 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1384 }
1385
1386 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1387 * flipping is protected by the fact that the chip will not
1388 * hand back the same page index while it's being processed.
1389 */
1390 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1391 {
1392 cas_page_t *page = cp->rx_pages[1][index];
1393 cas_page_t *new;
1394
1395 if (page_count(page->buffer) == 1)
1396 return page;
1397
1398 new = cas_page_dequeue(cp);
1399 if (new) {
1400 spin_lock(&cp->rx_inuse_lock);
1401 list_add(&page->list, &cp->rx_inuse_list);
1402 spin_unlock(&cp->rx_inuse_lock);
1403 }
1404 return new;
1405 }
1406
1407 /* this needs to be changed if we actually use the ENC RX DESC ring */
1408 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1409 const int index)
1410 {
1411 cas_page_t **page0 = cp->rx_pages[0];
1412 cas_page_t **page1 = cp->rx_pages[1];
1413
1414 /* swap if buffer is in use */
1415 if (page_count(page0[index]->buffer) > 1) {
1416 cas_page_t *new = cas_page_spare(cp, index);
1417 if (new) {
1418 page1[index] = page0[index];
1419 page0[index] = new;
1420 }
1421 }
1422 RX_USED_SET(page0[index], 0);
1423 return page0[index];
1424 }
1425
1426 static void cas_clean_rxds(struct cas *cp)
1427 {
1428 /* only clean ring 0 as ring 1 is used for spare buffers */
1429 struct cas_rx_desc *rxd = cp->init_rxds[0];
1430 int i, size;
1431
1432 /* release all rx flows */
1433 for (i = 0; i < N_RX_FLOWS; i++) {
1434 struct sk_buff *skb;
1435 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1436 cas_skb_release(skb);
1437 }
1438 }
1439
1440 /* initialize descriptors */
1441 size = RX_DESC_RINGN_SIZE(0);
1442 for (i = 0; i < size; i++) {
1443 cas_page_t *page = cas_page_swap(cp, 0, i);
1444 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1445 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1446 CAS_BASE(RX_INDEX_RING, 0));
1447 }
1448
1449 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1450 cp->rx_last[0] = 0;
1451 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1452 }
1453
1454 static void cas_clean_rxcs(struct cas *cp)
1455 {
1456 int i, j;
1457
1458 /* take ownership of rx comp descriptors */
1459 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1460 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1461 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1462 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1463 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1464 cas_rxc_init(rxc + j);
1465 }
1466 }
1467 }
1468
1469 #if 0
1470 /* When we get a RX fifo overflow, the RX unit is probably hung
1471 * so we do the following.
1472 *
1473 * If any part of the reset goes wrong, we return 1 and that causes the
1474 * whole chip to be reset.
1475 */
1476 static int cas_rxmac_reset(struct cas *cp)
1477 {
1478 struct net_device *dev = cp->dev;
1479 int limit;
1480 u32 val;
1481
1482 /* First, reset MAC RX. */
1483 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1484 for (limit = 0; limit < STOP_TRIES; limit++) {
1485 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1486 break;
1487 udelay(10);
1488 }
1489 if (limit == STOP_TRIES) {
1490 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1491 "chip.\n", dev->name);
1492 return 1;
1493 }
1494
1495 /* Second, disable RX DMA. */
1496 writel(0, cp->regs + REG_RX_CFG);
1497 for (limit = 0; limit < STOP_TRIES; limit++) {
1498 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1499 break;
1500 udelay(10);
1501 }
1502 if (limit == STOP_TRIES) {
1503 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1504 "chip.\n", dev->name);
1505 return 1;
1506 }
1507
1508 mdelay(5);
1509
1510 /* Execute RX reset command. */
1511 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1512 for (limit = 0; limit < STOP_TRIES; limit++) {
1513 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1514 break;
1515 udelay(10);
1516 }
1517 if (limit == STOP_TRIES) {
1518 printk(KERN_ERR "%s: RX reset command will not execute, "
1519 "resetting whole chip.\n", dev->name);
1520 return 1;
1521 }
1522
1523 /* reset driver rx state */
1524 cas_clean_rxds(cp);
1525 cas_clean_rxcs(cp);
1526
1527 /* Now, reprogram the rest of RX unit. */
1528 cas_init_rx_dma(cp);
1529
1530 /* re-enable */
1531 val = readl(cp->regs + REG_RX_CFG);
1532 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1533 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1534 val = readl(cp->regs + REG_MAC_RX_CFG);
1535 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1536 return 0;
1537 }
1538 #endif
1539
1540 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1541 u32 status)
1542 {
1543 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1544
1545 if (!stat)
1546 return 0;
1547
1548 if (netif_msg_intr(cp))
1549 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1550 cp->dev->name, stat);
1551
1552 /* these are all rollovers */
1553 spin_lock(&cp->stat_lock[0]);
1554 if (stat & MAC_RX_ALIGN_ERR)
1555 cp->net_stats[0].rx_frame_errors += 0x10000;
1556
1557 if (stat & MAC_RX_CRC_ERR)
1558 cp->net_stats[0].rx_crc_errors += 0x10000;
1559
1560 if (stat & MAC_RX_LEN_ERR)
1561 cp->net_stats[0].rx_length_errors += 0x10000;
1562
1563 if (stat & MAC_RX_OVERFLOW) {
1564 cp->net_stats[0].rx_over_errors++;
1565 cp->net_stats[0].rx_fifo_errors++;
1566 }
1567
1568 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1569 * events.
1570 */
1571 spin_unlock(&cp->stat_lock[0]);
1572 return 0;
1573 }
1574
1575 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1576 u32 status)
1577 {
1578 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1579
1580 if (!stat)
1581 return 0;
1582
1583 if (netif_msg_intr(cp))
1584 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1585 cp->dev->name, stat);
1586
1587 /* This interrupt is just for pause frame and pause
1588 * tracking. It is useful for diagnostics and debug
1589 * but probably by default we will mask these events.
1590 */
1591 if (stat & MAC_CTRL_PAUSE_STATE)
1592 cp->pause_entered++;
1593
1594 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1595 cp->pause_last_time_recvd = (stat >> 16);
1596
1597 return 0;
1598 }
1599
1600
1601 /* Must be invoked under cp->lock. */
1602 static inline int cas_mdio_link_not_up(struct cas *cp)
1603 {
1604 u16 val;
1605
1606 switch (cp->lstate) {
1607 case link_force_ret:
1608 if (netif_msg_link(cp))
1609 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1610 " forced mode\n", cp->dev->name);
1611 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1612 cp->timer_ticks = 5;
1613 cp->lstate = link_force_ok;
1614 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1615 break;
1616
1617 case link_aneg:
1618 val = cas_phy_read(cp, MII_BMCR);
1619
1620 /* Try forced modes. we try things in the following order:
1621 * 1000 full -> 100 full/half -> 10 half
1622 */
1623 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1624 val |= BMCR_FULLDPLX;
1625 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1626 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1627 cas_phy_write(cp, MII_BMCR, val);
1628 cp->timer_ticks = 5;
1629 cp->lstate = link_force_try;
1630 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1631 break;
1632
1633 case link_force_try:
1634 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1635 val = cas_phy_read(cp, MII_BMCR);
1636 cp->timer_ticks = 5;
1637 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1638 val &= ~CAS_BMCR_SPEED1000;
1639 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1640 cas_phy_write(cp, MII_BMCR, val);
1641 break;
1642 }
1643
1644 if (val & BMCR_SPEED100) {
1645 if (val & BMCR_FULLDPLX) /* fd failed */
1646 val &= ~BMCR_FULLDPLX;
1647 else { /* 100Mbps failed */
1648 val &= ~BMCR_SPEED100;
1649 }
1650 cas_phy_write(cp, MII_BMCR, val);
1651 break;
1652 }
1653 default:
1654 break;
1655 }
1656 return 0;
1657 }
1658
1659
1660 /* must be invoked with cp->lock held */
1661 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1662 {
1663 int restart;
1664
1665 if (bmsr & BMSR_LSTATUS) {
1666 /* Ok, here we got a link. If we had it due to a forced
1667 * fallback, and we were configured for autoneg, we
1668 * retry a short autoneg pass. If you know your hub is
1669 * broken, use ethtool ;)
1670 */
1671 if ((cp->lstate == link_force_try) &&
1672 (cp->link_cntl & BMCR_ANENABLE)) {
1673 cp->lstate = link_force_ret;
1674 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1675 cas_mif_poll(cp, 0);
1676 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1677 cp->timer_ticks = 5;
1678 if (cp->opened && netif_msg_link(cp))
1679 printk(KERN_INFO "%s: Got link after fallback, retrying"
1680 " autoneg once...\n", cp->dev->name);
1681 cas_phy_write(cp, MII_BMCR,
1682 cp->link_fcntl | BMCR_ANENABLE |
1683 BMCR_ANRESTART);
1684 cas_mif_poll(cp, 1);
1685
1686 } else if (cp->lstate != link_up) {
1687 cp->lstate = link_up;
1688 cp->link_transition = LINK_TRANSITION_LINK_UP;
1689
1690 if (cp->opened) {
1691 cas_set_link_modes(cp);
1692 netif_carrier_on(cp->dev);
1693 }
1694 }
1695 return 0;
1696 }
1697
1698 /* link not up. if the link was previously up, we restart the
1699 * whole process
1700 */
1701 restart = 0;
1702 if (cp->lstate == link_up) {
1703 cp->lstate = link_down;
1704 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1705
1706 netif_carrier_off(cp->dev);
1707 if (cp->opened && netif_msg_link(cp))
1708 printk(KERN_INFO "%s: Link down\n",
1709 cp->dev->name);
1710 restart = 1;
1711
1712 } else if (++cp->timer_ticks > 10)
1713 cas_mdio_link_not_up(cp);
1714
1715 return restart;
1716 }
1717
1718 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1719 u32 status)
1720 {
1721 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1722 u16 bmsr;
1723
1724 /* check for a link change */
1725 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1726 return 0;
1727
1728 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1729 return cas_mii_link_check(cp, bmsr);
1730 }
1731
1732 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1733 u32 status)
1734 {
1735 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1736
1737 if (!stat)
1738 return 0;
1739
1740 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1741 readl(cp->regs + REG_BIM_DIAG));
1742
1743 /* cassini+ has this reserved */
1744 if ((stat & PCI_ERR_BADACK) &&
1745 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1746 printk("<No ACK64# during ABS64 cycle> ");
1747
1748 if (stat & PCI_ERR_DTRTO)
1749 printk("<Delayed transaction timeout> ");
1750 if (stat & PCI_ERR_OTHER)
1751 printk("<other> ");
1752 if (stat & PCI_ERR_BIM_DMA_WRITE)
1753 printk("<BIM DMA 0 write req> ");
1754 if (stat & PCI_ERR_BIM_DMA_READ)
1755 printk("<BIM DMA 0 read req> ");
1756 printk("\n");
1757
1758 if (stat & PCI_ERR_OTHER) {
1759 u16 cfg;
1760
1761 /* Interrogate PCI config space for the
1762 * true cause.
1763 */
1764 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1765 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1766 dev->name, cfg);
1767 if (cfg & PCI_STATUS_PARITY)
1768 printk(KERN_ERR "%s: PCI parity error detected.\n",
1769 dev->name);
1770 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1771 printk(KERN_ERR "%s: PCI target abort.\n",
1772 dev->name);
1773 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1774 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1775 dev->name);
1776 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1777 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1778 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1779 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1780 dev->name);
1781 if (cfg & PCI_STATUS_DETECTED_PARITY)
1782 printk(KERN_ERR "%s: PCI parity error.\n",
1783 dev->name);
1784
1785 /* Write the error bits back to clear them. */
1786 cfg &= (PCI_STATUS_PARITY |
1787 PCI_STATUS_SIG_TARGET_ABORT |
1788 PCI_STATUS_REC_TARGET_ABORT |
1789 PCI_STATUS_REC_MASTER_ABORT |
1790 PCI_STATUS_SIG_SYSTEM_ERROR |
1791 PCI_STATUS_DETECTED_PARITY);
1792 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1793 }
1794
1795 /* For all PCI errors, we should reset the chip. */
1796 return 1;
1797 }
1798
1799 /* All non-normal interrupt conditions get serviced here.
1800 * Returns non-zero if we should just exit the interrupt
1801 * handler right now (ie. if we reset the card which invalidates
1802 * all of the other original irq status bits).
1803 */
1804 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1805 u32 status)
1806 {
1807 if (status & INTR_RX_TAG_ERROR) {
1808 /* corrupt RX tag framing */
1809 if (netif_msg_rx_err(cp))
1810 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1811 cp->dev->name);
1812 spin_lock(&cp->stat_lock[0]);
1813 cp->net_stats[0].rx_errors++;
1814 spin_unlock(&cp->stat_lock[0]);
1815 goto do_reset;
1816 }
1817
1818 if (status & INTR_RX_LEN_MISMATCH) {
1819 /* length mismatch. */
1820 if (netif_msg_rx_err(cp))
1821 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1822 cp->dev->name);
1823 spin_lock(&cp->stat_lock[0]);
1824 cp->net_stats[0].rx_errors++;
1825 spin_unlock(&cp->stat_lock[0]);
1826 goto do_reset;
1827 }
1828
1829 if (status & INTR_PCS_STATUS) {
1830 if (cas_pcs_interrupt(dev, cp, status))
1831 goto do_reset;
1832 }
1833
1834 if (status & INTR_TX_MAC_STATUS) {
1835 if (cas_txmac_interrupt(dev, cp, status))
1836 goto do_reset;
1837 }
1838
1839 if (status & INTR_RX_MAC_STATUS) {
1840 if (cas_rxmac_interrupt(dev, cp, status))
1841 goto do_reset;
1842 }
1843
1844 if (status & INTR_MAC_CTRL_STATUS) {
1845 if (cas_mac_interrupt(dev, cp, status))
1846 goto do_reset;
1847 }
1848
1849 if (status & INTR_MIF_STATUS) {
1850 if (cas_mif_interrupt(dev, cp, status))
1851 goto do_reset;
1852 }
1853
1854 if (status & INTR_PCI_ERROR_STATUS) {
1855 if (cas_pci_interrupt(dev, cp, status))
1856 goto do_reset;
1857 }
1858 return 0;
1859
1860 do_reset:
1861 #if 1
1862 atomic_inc(&cp->reset_task_pending);
1863 atomic_inc(&cp->reset_task_pending_all);
1864 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1865 dev->name, status);
1866 schedule_work(&cp->reset_task);
1867 #else
1868 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1869 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1870 schedule_work(&cp->reset_task);
1871 #endif
1872 return 1;
1873 }
1874
1875 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1876 * determining whether to do a netif_stop/wakeup
1877 */
1878 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1879 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1880 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1881 const int len)
1882 {
1883 unsigned long off = addr + len;
1884
1885 if (CAS_TABORT(cp) == 1)
1886 return 0;
1887 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1888 return 0;
1889 return TX_TARGET_ABORT_LEN;
1890 }
1891
1892 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1893 {
1894 struct cas_tx_desc *txds;
1895 struct sk_buff **skbs;
1896 struct net_device *dev = cp->dev;
1897 int entry, count;
1898
1899 spin_lock(&cp->tx_lock[ring]);
1900 txds = cp->init_txds[ring];
1901 skbs = cp->tx_skbs[ring];
1902 entry = cp->tx_old[ring];
1903
1904 count = TX_BUFF_COUNT(ring, entry, limit);
1905 while (entry != limit) {
1906 struct sk_buff *skb = skbs[entry];
1907 dma_addr_t daddr;
1908 u32 dlen;
1909 int frag;
1910
1911 if (!skb) {
1912 /* this should never occur */
1913 entry = TX_DESC_NEXT(ring, entry);
1914 continue;
1915 }
1916
1917 /* however, we might get only a partial skb release. */
1918 count -= skb_shinfo(skb)->nr_frags +
1919 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1920 if (count < 0)
1921 break;
1922
1923 if (netif_msg_tx_done(cp))
1924 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1925 cp->dev->name, ring, entry);
1926
1927 skbs[entry] = NULL;
1928 cp->tx_tiny_use[ring][entry].nbufs = 0;
1929
1930 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1931 struct cas_tx_desc *txd = txds + entry;
1932
1933 daddr = le64_to_cpu(txd->buffer);
1934 dlen = CAS_VAL(TX_DESC_BUFLEN,
1935 le64_to_cpu(txd->control));
1936 pci_unmap_page(cp->pdev, daddr, dlen,
1937 PCI_DMA_TODEVICE);
1938 entry = TX_DESC_NEXT(ring, entry);
1939
1940 /* tiny buffer may follow */
1941 if (cp->tx_tiny_use[ring][entry].used) {
1942 cp->tx_tiny_use[ring][entry].used = 0;
1943 entry = TX_DESC_NEXT(ring, entry);
1944 }
1945 }
1946
1947 spin_lock(&cp->stat_lock[ring]);
1948 cp->net_stats[ring].tx_packets++;
1949 cp->net_stats[ring].tx_bytes += skb->len;
1950 spin_unlock(&cp->stat_lock[ring]);
1951 dev_kfree_skb_irq(skb);
1952 }
1953 cp->tx_old[ring] = entry;
1954
1955 /* this is wrong for multiple tx rings. the net device needs
1956 * multiple queues for this to do the right thing. we wait
1957 * for 2*packets to be available when using tiny buffers
1958 */
1959 if (netif_queue_stopped(dev) &&
1960 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1961 netif_wake_queue(dev);
1962 spin_unlock(&cp->tx_lock[ring]);
1963 }
1964
1965 static void cas_tx(struct net_device *dev, struct cas *cp,
1966 u32 status)
1967 {
1968 int limit, ring;
1969 #ifdef USE_TX_COMPWB
1970 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1971 #endif
1972 if (netif_msg_intr(cp))
1973 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1974 cp->dev->name, status, (unsigned long long)compwb);
1975 /* process all the rings */
1976 for (ring = 0; ring < N_TX_RINGS; ring++) {
1977 #ifdef USE_TX_COMPWB
1978 /* use the completion writeback registers */
1979 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1980 CAS_VAL(TX_COMPWB_LSB, compwb);
1981 compwb = TX_COMPWB_NEXT(compwb);
1982 #else
1983 limit = readl(cp->regs + REG_TX_COMPN(ring));
1984 #endif
1985 if (cp->tx_old[ring] != limit)
1986 cas_tx_ringN(cp, ring, limit);
1987 }
1988 }
1989
1990
1991 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1992 int entry, const u64 *words,
1993 struct sk_buff **skbref)
1994 {
1995 int dlen, hlen, len, i, alloclen;
1996 int off, swivel = RX_SWIVEL_OFF_VAL;
1997 struct cas_page *page;
1998 struct sk_buff *skb;
1999 void *addr, *crcaddr;
2000 __sum16 csum;
2001 char *p;
2002
2003 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
2004 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
2005 len = hlen + dlen;
2006
2007 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
2008 alloclen = len;
2009 else
2010 alloclen = max(hlen, RX_COPY_MIN);
2011
2012 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
2013 if (skb == NULL)
2014 return -1;
2015
2016 *skbref = skb;
2017 skb_reserve(skb, swivel);
2018
2019 p = skb->data;
2020 addr = crcaddr = NULL;
2021 if (hlen) { /* always copy header pages */
2022 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2023 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2024 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2025 swivel;
2026
2027 i = hlen;
2028 if (!dlen) /* attach FCS */
2029 i += cp->crc_size;
2030 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2031 PCI_DMA_FROMDEVICE);
2032 addr = cas_page_map(page->buffer);
2033 memcpy(p, addr + off, i);
2034 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035 PCI_DMA_FROMDEVICE);
2036 cas_page_unmap(addr);
2037 RX_USED_ADD(page, 0x100);
2038 p += hlen;
2039 swivel = 0;
2040 }
2041
2042
2043 if (alloclen < (hlen + dlen)) {
2044 skb_frag_t *frag = skb_shinfo(skb)->frags;
2045
2046 /* normal or jumbo packets. we use frags */
2047 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2048 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2049 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2050
2051 hlen = min(cp->page_size - off, dlen);
2052 if (hlen < 0) {
2053 if (netif_msg_rx_err(cp)) {
2054 printk(KERN_DEBUG "%s: rx page overflow: "
2055 "%d\n", cp->dev->name, hlen);
2056 }
2057 dev_kfree_skb_irq(skb);
2058 return -1;
2059 }
2060 i = hlen;
2061 if (i == dlen) /* attach FCS */
2062 i += cp->crc_size;
2063 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2064 PCI_DMA_FROMDEVICE);
2065
2066 /* make sure we always copy a header */
2067 swivel = 0;
2068 if (p == (char *) skb->data) { /* not split */
2069 addr = cas_page_map(page->buffer);
2070 memcpy(p, addr + off, RX_COPY_MIN);
2071 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2072 PCI_DMA_FROMDEVICE);
2073 cas_page_unmap(addr);
2074 off += RX_COPY_MIN;
2075 swivel = RX_COPY_MIN;
2076 RX_USED_ADD(page, cp->mtu_stride);
2077 } else {
2078 RX_USED_ADD(page, hlen);
2079 }
2080 skb_put(skb, alloclen);
2081
2082 skb_shinfo(skb)->nr_frags++;
2083 skb->data_len += hlen - swivel;
2084 skb->truesize += hlen - swivel;
2085 skb->len += hlen - swivel;
2086
2087 get_page(page->buffer);
2088 frag->page = page->buffer;
2089 frag->page_offset = off;
2090 frag->size = hlen - swivel;
2091
2092 /* any more data? */
2093 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2094 hlen = dlen;
2095 off = 0;
2096
2097 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2098 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2099 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2100 hlen + cp->crc_size,
2101 PCI_DMA_FROMDEVICE);
2102 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2103 hlen + cp->crc_size,
2104 PCI_DMA_FROMDEVICE);
2105
2106 skb_shinfo(skb)->nr_frags++;
2107 skb->data_len += hlen;
2108 skb->len += hlen;
2109 frag++;
2110
2111 get_page(page->buffer);
2112 frag->page = page->buffer;
2113 frag->page_offset = 0;
2114 frag->size = hlen;
2115 RX_USED_ADD(page, hlen + cp->crc_size);
2116 }
2117
2118 if (cp->crc_size) {
2119 addr = cas_page_map(page->buffer);
2120 crcaddr = addr + off + hlen;
2121 }
2122
2123 } else {
2124 /* copying packet */
2125 if (!dlen)
2126 goto end_copy_pkt;
2127
2128 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2129 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2130 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2131 hlen = min(cp->page_size - off, dlen);
2132 if (hlen < 0) {
2133 if (netif_msg_rx_err(cp)) {
2134 printk(KERN_DEBUG "%s: rx page overflow: "
2135 "%d\n", cp->dev->name, hlen);
2136 }
2137 dev_kfree_skb_irq(skb);
2138 return -1;
2139 }
2140 i = hlen;
2141 if (i == dlen) /* attach FCS */
2142 i += cp->crc_size;
2143 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2144 PCI_DMA_FROMDEVICE);
2145 addr = cas_page_map(page->buffer);
2146 memcpy(p, addr + off, i);
2147 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2148 PCI_DMA_FROMDEVICE);
2149 cas_page_unmap(addr);
2150 if (p == (char *) skb->data) /* not split */
2151 RX_USED_ADD(page, cp->mtu_stride);
2152 else
2153 RX_USED_ADD(page, i);
2154
2155 /* any more data? */
2156 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2157 p += hlen;
2158 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2159 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2160 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2161 dlen + cp->crc_size,
2162 PCI_DMA_FROMDEVICE);
2163 addr = cas_page_map(page->buffer);
2164 memcpy(p, addr, dlen + cp->crc_size);
2165 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2166 dlen + cp->crc_size,
2167 PCI_DMA_FROMDEVICE);
2168 cas_page_unmap(addr);
2169 RX_USED_ADD(page, dlen + cp->crc_size);
2170 }
2171 end_copy_pkt:
2172 if (cp->crc_size) {
2173 addr = NULL;
2174 crcaddr = skb->data + alloclen;
2175 }
2176 skb_put(skb, alloclen);
2177 }
2178
2179 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2180 if (cp->crc_size) {
2181 /* checksum includes FCS. strip it out. */
2182 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2183 csum_unfold(csum)));
2184 if (addr)
2185 cas_page_unmap(addr);
2186 }
2187 skb->protocol = eth_type_trans(skb, cp->dev);
2188 if (skb->protocol == htons(ETH_P_IP)) {
2189 skb->csum = csum_unfold(~csum);
2190 skb->ip_summed = CHECKSUM_COMPLETE;
2191 } else
2192 skb->ip_summed = CHECKSUM_NONE;
2193 return len;
2194 }
2195
2196
2197 /* we can handle up to 64 rx flows at a time. we do the same thing
2198 * as nonreassm except that we batch up the buffers.
2199 * NOTE: we currently just treat each flow as a bunch of packets that
2200 * we pass up. a better way would be to coalesce the packets
2201 * into a jumbo packet. to do that, we need to do the following:
2202 * 1) the first packet will have a clean split between header and
2203 * data. save both.
2204 * 2) each time the next flow packet comes in, extend the
2205 * data length and merge the checksums.
2206 * 3) on flow release, fix up the header.
2207 * 4) make sure the higher layer doesn't care.
2208 * because packets get coalesced, we shouldn't run into fragment count
2209 * issues.
2210 */
2211 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2212 struct sk_buff *skb)
2213 {
2214 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2215 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2216
2217 /* this is protected at a higher layer, so no need to
2218 * do any additional locking here. stick the buffer
2219 * at the end.
2220 */
2221 __skb_queue_tail(flow, skb);
2222 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2223 while ((skb = __skb_dequeue(flow))) {
2224 cas_skb_release(skb);
2225 }
2226 }
2227 }
2228
2229 /* put rx descriptor back on ring. if a buffer is in use by a higher
2230 * layer, this will need to put in a replacement.
2231 */
2232 static void cas_post_page(struct cas *cp, const int ring, const int index)
2233 {
2234 cas_page_t *new;
2235 int entry;
2236
2237 entry = cp->rx_old[ring];
2238
2239 new = cas_page_swap(cp, ring, index);
2240 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2241 cp->init_rxds[ring][entry].index =
2242 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2243 CAS_BASE(RX_INDEX_RING, ring));
2244
2245 entry = RX_DESC_ENTRY(ring, entry + 1);
2246 cp->rx_old[ring] = entry;
2247
2248 if (entry % 4)
2249 return;
2250
2251 if (ring == 0)
2252 writel(entry, cp->regs + REG_RX_KICK);
2253 else if ((N_RX_DESC_RINGS > 1) &&
2254 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2255 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2256 }
2257
2258
2259 /* only when things are bad */
2260 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2261 {
2262 unsigned int entry, last, count, released;
2263 int cluster;
2264 cas_page_t **page = cp->rx_pages[ring];
2265
2266 entry = cp->rx_old[ring];
2267
2268 if (netif_msg_intr(cp))
2269 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2270 cp->dev->name, ring, entry);
2271
2272 cluster = -1;
2273 count = entry & 0x3;
2274 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2275 released = 0;
2276 while (entry != last) {
2277 /* make a new buffer if it's still in use */
2278 if (page_count(page[entry]->buffer) > 1) {
2279 cas_page_t *new = cas_page_dequeue(cp);
2280 if (!new) {
2281 /* let the timer know that we need to
2282 * do this again
2283 */
2284 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2285 if (!timer_pending(&cp->link_timer))
2286 mod_timer(&cp->link_timer, jiffies +
2287 CAS_LINK_FAST_TIMEOUT);
2288 cp->rx_old[ring] = entry;
2289 cp->rx_last[ring] = num ? num - released : 0;
2290 return -ENOMEM;
2291 }
2292 spin_lock(&cp->rx_inuse_lock);
2293 list_add(&page[entry]->list, &cp->rx_inuse_list);
2294 spin_unlock(&cp->rx_inuse_lock);
2295 cp->init_rxds[ring][entry].buffer =
2296 cpu_to_le64(new->dma_addr);
2297 page[entry] = new;
2298
2299 }
2300
2301 if (++count == 4) {
2302 cluster = entry;
2303 count = 0;
2304 }
2305 released++;
2306 entry = RX_DESC_ENTRY(ring, entry + 1);
2307 }
2308 cp->rx_old[ring] = entry;
2309
2310 if (cluster < 0)
2311 return 0;
2312
2313 if (ring == 0)
2314 writel(cluster, cp->regs + REG_RX_KICK);
2315 else if ((N_RX_DESC_RINGS > 1) &&
2316 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2317 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2318 return 0;
2319 }
2320
2321
2322 /* process a completion ring. packets are set up in three basic ways:
2323 * small packets: should be copied header + data in single buffer.
2324 * large packets: header and data in a single buffer.
2325 * split packets: header in a separate buffer from data.
2326 * data may be in multiple pages. data may be > 256
2327 * bytes but in a single page.
2328 *
2329 * NOTE: RX page posting is done in this routine as well. while there's
2330 * the capability of using multiple RX completion rings, it isn't
2331 * really worthwhile due to the fact that the page posting will
2332 * force serialization on the single descriptor ring.
2333 */
2334 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2335 {
2336 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2337 int entry, drops;
2338 int npackets = 0;
2339
2340 if (netif_msg_intr(cp))
2341 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2342 cp->dev->name, ring,
2343 readl(cp->regs + REG_RX_COMP_HEAD),
2344 cp->rx_new[ring]);
2345
2346 entry = cp->rx_new[ring];
2347 drops = 0;
2348 while (1) {
2349 struct cas_rx_comp *rxc = rxcs + entry;
2350 struct sk_buff *skb;
2351 int type, len;
2352 u64 words[4];
2353 int i, dring;
2354
2355 words[0] = le64_to_cpu(rxc->word1);
2356 words[1] = le64_to_cpu(rxc->word2);
2357 words[2] = le64_to_cpu(rxc->word3);
2358 words[3] = le64_to_cpu(rxc->word4);
2359
2360 /* don't touch if still owned by hw */
2361 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2362 if (type == 0)
2363 break;
2364
2365 /* hw hasn't cleared the zero bit yet */
2366 if (words[3] & RX_COMP4_ZERO) {
2367 break;
2368 }
2369
2370 /* get info on the packet */
2371 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2372 spin_lock(&cp->stat_lock[ring]);
2373 cp->net_stats[ring].rx_errors++;
2374 if (words[3] & RX_COMP4_LEN_MISMATCH)
2375 cp->net_stats[ring].rx_length_errors++;
2376 if (words[3] & RX_COMP4_BAD)
2377 cp->net_stats[ring].rx_crc_errors++;
2378 spin_unlock(&cp->stat_lock[ring]);
2379
2380 /* We'll just return it to Cassini. */
2381 drop_it:
2382 spin_lock(&cp->stat_lock[ring]);
2383 ++cp->net_stats[ring].rx_dropped;
2384 spin_unlock(&cp->stat_lock[ring]);
2385 goto next;
2386 }
2387
2388 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2389 if (len < 0) {
2390 ++drops;
2391 goto drop_it;
2392 }
2393
2394 /* see if it's a flow re-assembly or not. the driver
2395 * itself handles release back up.
2396 */
2397 if (RX_DONT_BATCH || (type == 0x2)) {
2398 /* non-reassm: these always get released */
2399 cas_skb_release(skb);
2400 } else {
2401 cas_rx_flow_pkt(cp, words, skb);
2402 }
2403
2404 spin_lock(&cp->stat_lock[ring]);
2405 cp->net_stats[ring].rx_packets++;
2406 cp->net_stats[ring].rx_bytes += len;
2407 spin_unlock(&cp->stat_lock[ring]);
2408 cp->dev->last_rx = jiffies;
2409
2410 next:
2411 npackets++;
2412
2413 /* should it be released? */
2414 if (words[0] & RX_COMP1_RELEASE_HDR) {
2415 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2416 dring = CAS_VAL(RX_INDEX_RING, i);
2417 i = CAS_VAL(RX_INDEX_NUM, i);
2418 cas_post_page(cp, dring, i);
2419 }
2420
2421 if (words[0] & RX_COMP1_RELEASE_DATA) {
2422 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2423 dring = CAS_VAL(RX_INDEX_RING, i);
2424 i = CAS_VAL(RX_INDEX_NUM, i);
2425 cas_post_page(cp, dring, i);
2426 }
2427
2428 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2429 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2430 dring = CAS_VAL(RX_INDEX_RING, i);
2431 i = CAS_VAL(RX_INDEX_NUM, i);
2432 cas_post_page(cp, dring, i);
2433 }
2434
2435 /* skip to the next entry */
2436 entry = RX_COMP_ENTRY(ring, entry + 1 +
2437 CAS_VAL(RX_COMP1_SKIP, words[0]));
2438 #ifdef USE_NAPI
2439 if (budget && (npackets >= budget))
2440 break;
2441 #endif
2442 }
2443 cp->rx_new[ring] = entry;
2444
2445 if (drops)
2446 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2447 cp->dev->name);
2448 return npackets;
2449 }
2450
2451
2452 /* put completion entries back on the ring */
2453 static void cas_post_rxcs_ringN(struct net_device *dev,
2454 struct cas *cp, int ring)
2455 {
2456 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2457 int last, entry;
2458
2459 last = cp->rx_cur[ring];
2460 entry = cp->rx_new[ring];
2461 if (netif_msg_intr(cp))
2462 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2463 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2464 entry);
2465
2466 /* zero and re-mark descriptors */
2467 while (last != entry) {
2468 cas_rxc_init(rxc + last);
2469 last = RX_COMP_ENTRY(ring, last + 1);
2470 }
2471 cp->rx_cur[ring] = last;
2472
2473 if (ring == 0)
2474 writel(last, cp->regs + REG_RX_COMP_TAIL);
2475 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2476 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2477 }
2478
2479
2480
2481 /* cassini can use all four PCI interrupts for the completion ring.
2482 * rings 3 and 4 are identical
2483 */
2484 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2485 static inline void cas_handle_irqN(struct net_device *dev,
2486 struct cas *cp, const u32 status,
2487 const int ring)
2488 {
2489 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2490 cas_post_rxcs_ringN(dev, cp, ring);
2491 }
2492
2493 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2494 {
2495 struct net_device *dev = dev_id;
2496 struct cas *cp = netdev_priv(dev);
2497 unsigned long flags;
2498 int ring;
2499 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2500
2501 /* check for shared irq */
2502 if (status == 0)
2503 return IRQ_NONE;
2504
2505 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2506 spin_lock_irqsave(&cp->lock, flags);
2507 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2508 #ifdef USE_NAPI
2509 cas_mask_intr(cp);
2510 netif_rx_schedule(dev, &cp->napi);
2511 #else
2512 cas_rx_ringN(cp, ring, 0);
2513 #endif
2514 status &= ~INTR_RX_DONE_ALT;
2515 }
2516
2517 if (status)
2518 cas_handle_irqN(dev, cp, status, ring);
2519 spin_unlock_irqrestore(&cp->lock, flags);
2520 return IRQ_HANDLED;
2521 }
2522 #endif
2523
2524 #ifdef USE_PCI_INTB
2525 /* everything but rx packets */
2526 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2527 {
2528 if (status & INTR_RX_BUF_UNAVAIL_1) {
2529 /* Frame arrived, no free RX buffers available.
2530 * NOTE: we can get this on a link transition. */
2531 cas_post_rxds_ringN(cp, 1, 0);
2532 spin_lock(&cp->stat_lock[1]);
2533 cp->net_stats[1].rx_dropped++;
2534 spin_unlock(&cp->stat_lock[1]);
2535 }
2536
2537 if (status & INTR_RX_BUF_AE_1)
2538 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2539 RX_AE_FREEN_VAL(1));
2540
2541 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2542 cas_post_rxcs_ringN(cp, 1);
2543 }
2544
2545 /* ring 2 handles a few more events than 3 and 4 */
2546 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2547 {
2548 struct net_device *dev = dev_id;
2549 struct cas *cp = netdev_priv(dev);
2550 unsigned long flags;
2551 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2552
2553 /* check for shared interrupt */
2554 if (status == 0)
2555 return IRQ_NONE;
2556
2557 spin_lock_irqsave(&cp->lock, flags);
2558 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2559 #ifdef USE_NAPI
2560 cas_mask_intr(cp);
2561 netif_rx_schedule(dev, &cp->napi);
2562 #else
2563 cas_rx_ringN(cp, 1, 0);
2564 #endif
2565 status &= ~INTR_RX_DONE_ALT;
2566 }
2567 if (status)
2568 cas_handle_irq1(cp, status);
2569 spin_unlock_irqrestore(&cp->lock, flags);
2570 return IRQ_HANDLED;
2571 }
2572 #endif
2573
2574 static inline void cas_handle_irq(struct net_device *dev,
2575 struct cas *cp, const u32 status)
2576 {
2577 /* housekeeping interrupts */
2578 if (status & INTR_ERROR_MASK)
2579 cas_abnormal_irq(dev, cp, status);
2580
2581 if (status & INTR_RX_BUF_UNAVAIL) {
2582 /* Frame arrived, no free RX buffers available.
2583 * NOTE: we can get this on a link transition.
2584 */
2585 cas_post_rxds_ringN(cp, 0, 0);
2586 spin_lock(&cp->stat_lock[0]);
2587 cp->net_stats[0].rx_dropped++;
2588 spin_unlock(&cp->stat_lock[0]);
2589 } else if (status & INTR_RX_BUF_AE) {
2590 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2591 RX_AE_FREEN_VAL(0));
2592 }
2593
2594 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2595 cas_post_rxcs_ringN(dev, cp, 0);
2596 }
2597
2598 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2599 {
2600 struct net_device *dev = dev_id;
2601 struct cas *cp = netdev_priv(dev);
2602 unsigned long flags;
2603 u32 status = readl(cp->regs + REG_INTR_STATUS);
2604
2605 if (status == 0)
2606 return IRQ_NONE;
2607
2608 spin_lock_irqsave(&cp->lock, flags);
2609 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2610 cas_tx(dev, cp, status);
2611 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2612 }
2613
2614 if (status & INTR_RX_DONE) {
2615 #ifdef USE_NAPI
2616 cas_mask_intr(cp);
2617 netif_rx_schedule(dev, &cp->napi);
2618 #else
2619 cas_rx_ringN(cp, 0, 0);
2620 #endif
2621 status &= ~INTR_RX_DONE;
2622 }
2623
2624 if (status)
2625 cas_handle_irq(dev, cp, status);
2626 spin_unlock_irqrestore(&cp->lock, flags);
2627 return IRQ_HANDLED;
2628 }
2629
2630
2631 #ifdef USE_NAPI
2632 static int cas_poll(struct napi_struct *napi, int budget)
2633 {
2634 struct cas *cp = container_of(napi, struct cas, napi);
2635 struct net_device *dev = cp->dev;
2636 int i, enable_intr, credits;
2637 u32 status = readl(cp->regs + REG_INTR_STATUS);
2638 unsigned long flags;
2639
2640 spin_lock_irqsave(&cp->lock, flags);
2641 cas_tx(dev, cp, status);
2642 spin_unlock_irqrestore(&cp->lock, flags);
2643
2644 /* NAPI rx packets. we spread the credits across all of the
2645 * rxc rings
2646 *
2647 * to make sure we're fair with the work we loop through each
2648 * ring N_RX_COMP_RING times with a request of
2649 * budget / N_RX_COMP_RINGS
2650 */
2651 enable_intr = 1;
2652 credits = 0;
2653 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2654 int j;
2655 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2656 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2657 if (credits >= budget) {
2658 enable_intr = 0;
2659 goto rx_comp;
2660 }
2661 }
2662 }
2663
2664 rx_comp:
2665 /* final rx completion */
2666 spin_lock_irqsave(&cp->lock, flags);
2667 if (status)
2668 cas_handle_irq(dev, cp, status);
2669
2670 #ifdef USE_PCI_INTB
2671 if (N_RX_COMP_RINGS > 1) {
2672 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2673 if (status)
2674 cas_handle_irq1(dev, cp, status);
2675 }
2676 #endif
2677
2678 #ifdef USE_PCI_INTC
2679 if (N_RX_COMP_RINGS > 2) {
2680 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2681 if (status)
2682 cas_handle_irqN(dev, cp, status, 2);
2683 }
2684 #endif
2685
2686 #ifdef USE_PCI_INTD
2687 if (N_RX_COMP_RINGS > 3) {
2688 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2689 if (status)
2690 cas_handle_irqN(dev, cp, status, 3);
2691 }
2692 #endif
2693 spin_unlock_irqrestore(&cp->lock, flags);
2694 if (enable_intr) {
2695 netif_rx_complete(dev, napi);
2696 cas_unmask_intr(cp);
2697 }
2698 return credits;
2699 }
2700 #endif
2701
2702 #ifdef CONFIG_NET_POLL_CONTROLLER
2703 static void cas_netpoll(struct net_device *dev)
2704 {
2705 struct cas *cp = netdev_priv(dev);
2706
2707 cas_disable_irq(cp, 0);
2708 cas_interrupt(cp->pdev->irq, dev);
2709 cas_enable_irq(cp, 0);
2710
2711 #ifdef USE_PCI_INTB
2712 if (N_RX_COMP_RINGS > 1) {
2713 /* cas_interrupt1(); */
2714 }
2715 #endif
2716 #ifdef USE_PCI_INTC
2717 if (N_RX_COMP_RINGS > 2) {
2718 /* cas_interruptN(); */
2719 }
2720 #endif
2721 #ifdef USE_PCI_INTD
2722 if (N_RX_COMP_RINGS > 3) {
2723 /* cas_interruptN(); */
2724 }
2725 #endif
2726 }
2727 #endif
2728
2729 static void cas_tx_timeout(struct net_device *dev)
2730 {
2731 struct cas *cp = netdev_priv(dev);
2732
2733 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2734 if (!cp->hw_running) {
2735 printk("%s: hrm.. hw not running!\n", dev->name);
2736 return;
2737 }
2738
2739 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2740 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2741
2742 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2743 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2744
2745 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2746 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2747 dev->name,
2748 readl(cp->regs + REG_TX_CFG),
2749 readl(cp->regs + REG_MAC_TX_STATUS),
2750 readl(cp->regs + REG_MAC_TX_CFG),
2751 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2752 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2753 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2754 readl(cp->regs + REG_TX_SM_1),
2755 readl(cp->regs + REG_TX_SM_2));
2756
2757 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2758 dev->name,
2759 readl(cp->regs + REG_RX_CFG),
2760 readl(cp->regs + REG_MAC_RX_STATUS),
2761 readl(cp->regs + REG_MAC_RX_CFG));
2762
2763 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2764 dev->name,
2765 readl(cp->regs + REG_HP_STATE_MACHINE),
2766 readl(cp->regs + REG_HP_STATUS0),
2767 readl(cp->regs + REG_HP_STATUS1),
2768 readl(cp->regs + REG_HP_STATUS2));
2769
2770 #if 1
2771 atomic_inc(&cp->reset_task_pending);
2772 atomic_inc(&cp->reset_task_pending_all);
2773 schedule_work(&cp->reset_task);
2774 #else
2775 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2776 schedule_work(&cp->reset_task);
2777 #endif
2778 }
2779
2780 static inline int cas_intme(int ring, int entry)
2781 {
2782 /* Algorithm: IRQ every 1/2 of descriptors. */
2783 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2784 return 1;
2785 return 0;
2786 }
2787
2788
2789 static void cas_write_txd(struct cas *cp, int ring, int entry,
2790 dma_addr_t mapping, int len, u64 ctrl, int last)
2791 {
2792 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2793
2794 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2795 if (cas_intme(ring, entry))
2796 ctrl |= TX_DESC_INTME;
2797 if (last)
2798 ctrl |= TX_DESC_EOF;
2799 txd->control = cpu_to_le64(ctrl);
2800 txd->buffer = cpu_to_le64(mapping);
2801 }
2802
2803 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2804 const int entry)
2805 {
2806 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2807 }
2808
2809 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2810 const int entry, const int tentry)
2811 {
2812 cp->tx_tiny_use[ring][tentry].nbufs++;
2813 cp->tx_tiny_use[ring][entry].used = 1;
2814 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2815 }
2816
2817 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2818 struct sk_buff *skb)
2819 {
2820 struct net_device *dev = cp->dev;
2821 int entry, nr_frags, frag, tabort, tentry;
2822 dma_addr_t mapping;
2823 unsigned long flags;
2824 u64 ctrl;
2825 u32 len;
2826
2827 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2828
2829 /* This is a hard error, log it. */
2830 if (TX_BUFFS_AVAIL(cp, ring) <=
2831 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2832 netif_stop_queue(dev);
2833 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2834 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2835 "queue awake!\n", dev->name);
2836 return 1;
2837 }
2838
2839 ctrl = 0;
2840 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2841 const u64 csum_start_off = skb_transport_offset(skb);
2842 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2843
2844 ctrl = TX_DESC_CSUM_EN |
2845 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2846 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2847 }
2848
2849 entry = cp->tx_new[ring];
2850 cp->tx_skbs[ring][entry] = skb;
2851
2852 nr_frags = skb_shinfo(skb)->nr_frags;
2853 len = skb_headlen(skb);
2854 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2855 offset_in_page(skb->data), len,
2856 PCI_DMA_TODEVICE);
2857
2858 tentry = entry;
2859 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2860 if (unlikely(tabort)) {
2861 /* NOTE: len is always > tabort */
2862 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2863 ctrl | TX_DESC_SOF, 0);
2864 entry = TX_DESC_NEXT(ring, entry);
2865
2866 skb_copy_from_linear_data_offset(skb, len - tabort,
2867 tx_tiny_buf(cp, ring, entry), tabort);
2868 mapping = tx_tiny_map(cp, ring, entry, tentry);
2869 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2870 (nr_frags == 0));
2871 } else {
2872 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2873 TX_DESC_SOF, (nr_frags == 0));
2874 }
2875 entry = TX_DESC_NEXT(ring, entry);
2876
2877 for (frag = 0; frag < nr_frags; frag++) {
2878 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2879
2880 len = fragp->size;
2881 mapping = pci_map_page(cp->pdev, fragp->page,
2882 fragp->page_offset, len,
2883 PCI_DMA_TODEVICE);
2884
2885 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2886 if (unlikely(tabort)) {
2887 void *addr;
2888
2889 /* NOTE: len is always > tabort */
2890 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2891 ctrl, 0);
2892 entry = TX_DESC_NEXT(ring, entry);
2893
2894 addr = cas_page_map(fragp->page);
2895 memcpy(tx_tiny_buf(cp, ring, entry),
2896 addr + fragp->page_offset + len - tabort,
2897 tabort);
2898 cas_page_unmap(addr);
2899 mapping = tx_tiny_map(cp, ring, entry, tentry);
2900 len = tabort;
2901 }
2902
2903 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2904 (frag + 1 == nr_frags));
2905 entry = TX_DESC_NEXT(ring, entry);
2906 }
2907
2908 cp->tx_new[ring] = entry;
2909 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2910 netif_stop_queue(dev);
2911
2912 if (netif_msg_tx_queued(cp))
2913 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2914 "avail %d\n",
2915 dev->name, ring, entry, skb->len,
2916 TX_BUFFS_AVAIL(cp, ring));
2917 writel(entry, cp->regs + REG_TX_KICKN(ring));
2918 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2919 return 0;
2920 }
2921
2922 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2923 {
2924 struct cas *cp = netdev_priv(dev);
2925
2926 /* this is only used as a load-balancing hint, so it doesn't
2927 * need to be SMP safe
2928 */
2929 static int ring;
2930
2931 if (skb_padto(skb, cp->min_frame_size))
2932 return 0;
2933
2934 /* XXX: we need some higher-level QoS hooks to steer packets to
2935 * individual queues.
2936 */
2937 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2938 return 1;
2939 dev->trans_start = jiffies;
2940 return 0;
2941 }
2942
2943 static void cas_init_tx_dma(struct cas *cp)
2944 {
2945 u64 desc_dma = cp->block_dvma;
2946 unsigned long off;
2947 u32 val;
2948 int i;
2949
2950 /* set up tx completion writeback registers. must be 8-byte aligned */
2951 #ifdef USE_TX_COMPWB
2952 off = offsetof(struct cas_init_block, tx_compwb);
2953 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2954 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2955 #endif
2956
2957 /* enable completion writebacks, enable paced mode,
2958 * disable read pipe, and disable pre-interrupt compwbs
2959 */
2960 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2961 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2962 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2963 TX_CFG_INTR_COMPWB_DIS;
2964
2965 /* write out tx ring info and tx desc bases */
2966 for (i = 0; i < MAX_TX_RINGS; i++) {
2967 off = (unsigned long) cp->init_txds[i] -
2968 (unsigned long) cp->init_block;
2969
2970 val |= CAS_TX_RINGN_BASE(i);
2971 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2972 writel((desc_dma + off) & 0xffffffff, cp->regs +
2973 REG_TX_DBN_LOW(i));
2974 /* don't zero out the kick register here as the system
2975 * will wedge
2976 */
2977 }
2978 writel(val, cp->regs + REG_TX_CFG);
2979
2980 /* program max burst sizes. these numbers should be different
2981 * if doing QoS.
2982 */
2983 #ifdef USE_QOS
2984 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2985 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2986 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2987 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2988 #else
2989 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2990 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2991 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2992 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2993 #endif
2994 }
2995
2996 /* Must be invoked under cp->lock. */
2997 static inline void cas_init_dma(struct cas *cp)
2998 {
2999 cas_init_tx_dma(cp);
3000 cas_init_rx_dma(cp);
3001 }
3002
3003 /* Must be invoked under cp->lock. */
3004 static u32 cas_setup_multicast(struct cas *cp)
3005 {
3006 u32 rxcfg = 0;
3007 int i;
3008
3009 if (cp->dev->flags & IFF_PROMISC) {
3010 rxcfg |= MAC_RX_CFG_PROMISC_EN;
3011
3012 } else if (cp->dev->flags & IFF_ALLMULTI) {
3013 for (i=0; i < 16; i++)
3014 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3015 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3016
3017 } else {
3018 u16 hash_table[16];
3019 u32 crc;
3020 struct dev_mc_list *dmi = cp->dev->mc_list;
3021 int i;
3022
3023 /* use the alternate mac address registers for the
3024 * first 15 multicast addresses
3025 */
3026 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3027 if (!dmi) {
3028 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3029 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3030 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3031 continue;
3032 }
3033 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3034 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3035 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3036 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3037 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3038 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3039 dmi = dmi->next;
3040 }
3041
3042 /* use hw hash table for the next series of
3043 * multicast addresses
3044 */
3045 memset(hash_table, 0, sizeof(hash_table));
3046 while (dmi) {
3047 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3048 crc >>= 24;
3049 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3050 dmi = dmi->next;
3051 }
3052 for (i=0; i < 16; i++)
3053 writel(hash_table[i], cp->regs +
3054 REG_MAC_HASH_TABLEN(i));
3055 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3056 }
3057
3058 return rxcfg;
3059 }
3060
3061 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3062 static void cas_clear_mac_err(struct cas *cp)
3063 {
3064 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3065 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3066 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3067 writel(0, cp->regs + REG_MAC_COLL_LATE);
3068 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3069 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3070 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3071 writel(0, cp->regs + REG_MAC_LEN_ERR);
3072 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3073 writel(0, cp->regs + REG_MAC_FCS_ERR);
3074 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3075 }
3076
3077
3078 static void cas_mac_reset(struct cas *cp)
3079 {
3080 int i;
3081
3082 /* do both TX and RX reset */
3083 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3084 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3085
3086 /* wait for TX */
3087 i = STOP_TRIES;
3088 while (i-- > 0) {
3089 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3090 break;
3091 udelay(10);
3092 }
3093
3094 /* wait for RX */
3095 i = STOP_TRIES;
3096 while (i-- > 0) {
3097 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3098 break;
3099 udelay(10);
3100 }
3101
3102 if (readl(cp->regs + REG_MAC_TX_RESET) |
3103 readl(cp->regs + REG_MAC_RX_RESET))
3104 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3105 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3106 readl(cp->regs + REG_MAC_RX_RESET),
3107 readl(cp->regs + REG_MAC_STATE_MACHINE));
3108 }
3109
3110
3111 /* Must be invoked under cp->lock. */
3112 static void cas_init_mac(struct cas *cp)
3113 {
3114 unsigned char *e = &cp->dev->dev_addr[0];
3115 int i;
3116 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3117 u32 rxcfg;
3118 #endif
3119 cas_mac_reset(cp);
3120
3121 /* setup core arbitration weight register */
3122 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3123
3124 /* XXX Use pci_dma_burst_advice() */
3125 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3126 /* set the infinite burst register for chips that don't have
3127 * pci issues.
3128 */
3129 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3130 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3131 #endif
3132
3133 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3134
3135 writel(0x00, cp->regs + REG_MAC_IPG0);
3136 writel(0x08, cp->regs + REG_MAC_IPG1);
3137 writel(0x04, cp->regs + REG_MAC_IPG2);
3138
3139 /* change later for 802.3z */
3140 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3141
3142 /* min frame + FCS */
3143 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3144
3145 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3146 * specify the maximum frame size to prevent RX tag errors on
3147 * oversized frames.
3148 */
3149 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3150 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3151 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3152 cp->regs + REG_MAC_FRAMESIZE_MAX);
3153
3154 /* NOTE: crc_size is used as a surrogate for half-duplex.
3155 * workaround saturn half-duplex issue by increasing preamble
3156 * size to 65 bytes.
3157 */
3158 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3159 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3160 else
3161 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3162 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3163 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3164 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3165
3166 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3167
3168 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3169 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3170 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3171 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3172 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3173
3174 /* setup mac address in perfect filter array */
3175 for (i = 0; i < 45; i++)
3176 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3177
3178 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3179 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3180 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3181
3182 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3183 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3184 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3185
3186 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3187 cp->mac_rx_cfg = cas_setup_multicast(cp);
3188 #else
3189 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3190 * a writel does not seem to be necessary because Cassini
3191 * seems to preserve the configuration when we do the reset.
3192 * If the chip is in trouble, though, it is not clear if we
3193 * can really count on this behavior. cas_set_multicast uses
3194 * spin_lock_irqsave, but we are called only in cas_init_hw and
3195 * cas_init_hw is protected by cas_lock_all, which calls
3196 * spin_lock_irq (so it doesn't need to save the flags, and
3197 * we should be OK for the writel, as that is the only
3198 * difference).
3199 */
3200 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3201 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3202 #endif
3203 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3204 cas_clear_mac_err(cp);
3205 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3206
3207 /* Setup MAC interrupts. We want to get all of the interesting
3208 * counter expiration events, but we do not want to hear about
3209 * normal rx/tx as the DMA engine tells us that.
3210 */
3211 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3212 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3213
3214 /* Don't enable even the PAUSE interrupts for now, we
3215 * make no use of those events other than to record them.
3216 */
3217 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3218 }
3219
3220 /* Must be invoked under cp->lock. */
3221 static void cas_init_pause_thresholds(struct cas *cp)
3222 {
3223 /* Calculate pause thresholds. Setting the OFF threshold to the
3224 * full RX fifo size effectively disables PAUSE generation
3225 */
3226 if (cp->rx_fifo_size <= (2 * 1024)) {
3227 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3228 } else {
3229 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3230 if (max_frame * 3 > cp->rx_fifo_size) {
3231 cp->rx_pause_off = 7104;
3232 cp->rx_pause_on = 960;
3233 } else {
3234 int off = (cp->rx_fifo_size - (max_frame * 2));
3235 int on = off - max_frame;
3236 cp->rx_pause_off = off;
3237 cp->rx_pause_on = on;
3238 }
3239 }
3240 }
3241
3242 static int cas_vpd_match(const void __iomem *p, const char *str)
3243 {
3244 int len = strlen(str) + 1;
3245 int i;
3246
3247 for (i = 0; i < len; i++) {
3248 if (readb(p + i) != str[i])
3249 return 0;
3250 }
3251 return 1;
3252 }
3253
3254
3255 /* get the mac address by reading the vpd information in the rom.
3256 * also get the phy type and determine if there's an entropy generator.
3257 * NOTE: this is a bit convoluted for the following reasons:
3258 * 1) vpd info has order-dependent mac addresses for multinic cards
3259 * 2) the only way to determine the nic order is to use the slot
3260 * number.
3261 * 3) fiber cards don't have bridges, so their slot numbers don't
3262 * mean anything.
3263 * 4) we don't actually know we have a fiber card until after
3264 * the mac addresses are parsed.
3265 */
3266 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3267 const int offset)
3268 {
3269 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3270 void __iomem *base, *kstart;
3271 int i, len;
3272 int found = 0;
3273 #define VPD_FOUND_MAC 0x01
3274 #define VPD_FOUND_PHY 0x02
3275
3276 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3277 int mac_off = 0;
3278
3279 /* give us access to the PROM */
3280 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3281 cp->regs + REG_BIM_LOCAL_DEV_EN);
3282
3283 /* check for an expansion rom */
3284 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3285 goto use_random_mac_addr;
3286
3287 /* search for beginning of vpd */
3288 base = NULL;
3289 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3290 /* check for PCIR */
3291 if ((readb(p + i + 0) == 0x50) &&
3292 (readb(p + i + 1) == 0x43) &&
3293 (readb(p + i + 2) == 0x49) &&
3294 (readb(p + i + 3) == 0x52)) {
3295 base = p + (readb(p + i + 8) |
3296 (readb(p + i + 9) << 8));
3297 break;
3298 }
3299 }
3300
3301 if (!base || (readb(base) != 0x82))
3302 goto use_random_mac_addr;
3303
3304 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3305 while (i < EXPANSION_ROM_SIZE) {
3306 if (readb(base + i) != 0x90) /* no vpd found */
3307 goto use_random_mac_addr;
3308
3309 /* found a vpd field */
3310 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3311
3312 /* extract keywords */
3313 kstart = base + i + 3;
3314 p = kstart;
3315 while ((p - kstart) < len) {
3316 int klen = readb(p + 2);
3317 int j;
3318 char type;
3319
3320 p += 3;
3321
3322 /* look for the following things:
3323 * -- correct length == 29
3324 * 3 (type) + 2 (size) +
3325 * 18 (strlen("local-mac-address") + 1) +
3326 * 6 (mac addr)
3327 * -- VPD Instance 'I'
3328 * -- VPD Type Bytes 'B'
3329 * -- VPD data length == 6
3330 * -- property string == local-mac-address
3331 *
3332 * -- correct length == 24
3333 * 3 (type) + 2 (size) +
3334 * 12 (strlen("entropy-dev") + 1) +
3335 * 7 (strlen("vms110") + 1)
3336 * -- VPD Instance 'I'
3337 * -- VPD Type String 'B'
3338 * -- VPD data length == 7
3339 * -- property string == entropy-dev
3340 *
3341 * -- correct length == 18
3342 * 3 (type) + 2 (size) +
3343 * 9 (strlen("phy-type") + 1) +
3344 * 4 (strlen("pcs") + 1)
3345 * -- VPD Instance 'I'
3346 * -- VPD Type String 'S'
3347 * -- VPD data length == 4
3348 * -- property string == phy-type
3349 *
3350 * -- correct length == 23
3351 * 3 (type) + 2 (size) +
3352 * 14 (strlen("phy-interface") + 1) +
3353 * 4 (strlen("pcs") + 1)
3354 * -- VPD Instance 'I'
3355 * -- VPD Type String 'S'
3356 * -- VPD data length == 4
3357 * -- property string == phy-interface
3358 */
3359 if (readb(p) != 'I')
3360 goto next;
3361
3362 /* finally, check string and length */
3363 type = readb(p + 3);
3364 if (type == 'B') {
3365 if ((klen == 29) && readb(p + 4) == 6 &&
3366 cas_vpd_match(p + 5,
3367 "local-mac-address")) {
3368 if (mac_off++ > offset)
3369 goto next;
3370
3371 /* set mac address */
3372 for (j = 0; j < 6; j++)
3373 dev_addr[j] =
3374 readb(p + 23 + j);
3375 goto found_mac;
3376 }
3377 }
3378
3379 if (type != 'S')
3380 goto next;
3381
3382 #ifdef USE_ENTROPY_DEV
3383 if ((klen == 24) &&
3384 cas_vpd_match(p + 5, "entropy-dev") &&
3385 cas_vpd_match(p + 17, "vms110")) {
3386 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3387 goto next;
3388 }
3389 #endif
3390
3391 if (found & VPD_FOUND_PHY)
3392 goto next;
3393
3394 if ((klen == 18) && readb(p + 4) == 4 &&
3395 cas_vpd_match(p + 5, "phy-type")) {
3396 if (cas_vpd_match(p + 14, "pcs")) {
3397 phy_type = CAS_PHY_SERDES;
3398 goto found_phy;
3399 }
3400 }
3401
3402 if ((klen == 23) && readb(p + 4) == 4 &&
3403 cas_vpd_match(p + 5, "phy-interface")) {
3404 if (cas_vpd_match(p + 19, "pcs")) {
3405 phy_type = CAS_PHY_SERDES;
3406 goto found_phy;
3407 }
3408 }
3409 found_mac:
3410 found |= VPD_FOUND_MAC;
3411 goto next;
3412
3413 found_phy:
3414 found |= VPD_FOUND_PHY;
3415
3416 next:
3417 p += klen;
3418 }
3419 i += len + 3;
3420 }
3421
3422 use_random_mac_addr:
3423 if (found & VPD_FOUND_MAC)
3424 goto done;
3425
3426 /* Sun MAC prefix then 3 random bytes. */
3427 printk(PFX "MAC address not found in ROM VPD\n");
3428 dev_addr[0] = 0x08;
3429 dev_addr[1] = 0x00;
3430 dev_addr[2] = 0x20;
3431 get_random_bytes(dev_addr + 3, 3);
3432
3433 done:
3434 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3435 return phy_type;
3436 }
3437
3438 /* check pci invariants */
3439 static void cas_check_pci_invariants(struct cas *cp)
3440 {
3441 struct pci_dev *pdev = cp->pdev;
3442
3443 cp->cas_flags = 0;
3444 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3445 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3446 if (pdev->revision >= CAS_ID_REVPLUS)
3447 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3448 if (pdev->revision < CAS_ID_REVPLUS02u)
3449 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3450
3451 /* Original Cassini supports HW CSUM, but it's not
3452 * enabled by default as it can trigger TX hangs.
3453 */
3454 if (pdev->revision < CAS_ID_REV2)
3455 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3456 } else {
3457 /* Only sun has original cassini chips. */
3458 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3459
3460 /* We use a flag because the same phy might be externally
3461 * connected.
3462 */
3463 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3464 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3465 cp->cas_flags |= CAS_FLAG_SATURN;
3466 }
3467 }
3468
3469
3470 static int cas_check_invariants(struct cas *cp)
3471 {
3472 struct pci_dev *pdev = cp->pdev;
3473 u32 cfg;
3474 int i;
3475
3476 /* get page size for rx buffers. */
3477 cp->page_order = 0;
3478 #ifdef USE_PAGE_ORDER
3479 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3480 /* see if we can allocate larger pages */
3481 struct page *page = alloc_pages(GFP_ATOMIC,
3482 CAS_JUMBO_PAGE_SHIFT -
3483 PAGE_SHIFT);
3484 if (page) {
3485 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3486 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3487 } else {
3488 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3489 }
3490 }
3491 #endif
3492 cp->page_size = (PAGE_SIZE << cp->page_order);
3493
3494 /* Fetch the FIFO configurations. */
3495 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3496 cp->rx_fifo_size = RX_FIFO_SIZE;
3497
3498 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3499 * they're both connected.
3500 */
3501 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3502 PCI_SLOT(pdev->devfn));
3503 if (cp->phy_type & CAS_PHY_SERDES) {
3504 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3505 return 0; /* no more checking needed */
3506 }
3507
3508 /* MII */
3509 cfg = readl(cp->regs + REG_MIF_CFG);
3510 if (cfg & MIF_CFG_MDIO_1) {
3511 cp->phy_type = CAS_PHY_MII_MDIO1;
3512 } else if (cfg & MIF_CFG_MDIO_0) {
3513 cp->phy_type = CAS_PHY_MII_MDIO0;
3514 }
3515
3516 cas_mif_poll(cp, 0);
3517 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3518
3519 for (i = 0; i < 32; i++) {
3520 u32 phy_id;
3521 int j;
3522
3523 for (j = 0; j < 3; j++) {
3524 cp->phy_addr = i;
3525 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3526 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3527 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3528 cp->phy_id = phy_id;
3529 goto done;
3530 }
3531 }
3532 }
3533 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3534 readl(cp->regs + REG_MIF_STATE_MACHINE));
3535 return -1;
3536
3537 done:
3538 /* see if we can do gigabit */
3539 cfg = cas_phy_read(cp, MII_BMSR);
3540 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3541 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3542 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3543 return 0;
3544 }
3545
3546 /* Must be invoked under cp->lock. */
3547 static inline void cas_start_dma(struct cas *cp)
3548 {
3549 int i;
3550 u32 val;
3551 int txfailed = 0;
3552
3553 /* enable dma */
3554 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3555 writel(val, cp->regs + REG_TX_CFG);
3556 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3557 writel(val, cp->regs + REG_RX_CFG);
3558
3559 /* enable the mac */
3560 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3561 writel(val, cp->regs + REG_MAC_TX_CFG);
3562 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3563 writel(val, cp->regs + REG_MAC_RX_CFG);
3564
3565 i = STOP_TRIES;
3566 while (i-- > 0) {
3567 val = readl(cp->regs + REG_MAC_TX_CFG);
3568 if ((val & MAC_TX_CFG_EN))
3569 break;
3570 udelay(10);
3571 }
3572 if (i < 0) txfailed = 1;
3573 i = STOP_TRIES;
3574 while (i-- > 0) {
3575 val = readl(cp->regs + REG_MAC_RX_CFG);
3576 if ((val & MAC_RX_CFG_EN)) {
3577 if (txfailed) {
3578 printk(KERN_ERR
3579 "%s: enabling mac failed [tx:%08x:%08x].\n",
3580 cp->dev->name,
3581 readl(cp->regs + REG_MIF_STATE_MACHINE),
3582 readl(cp->regs + REG_MAC_STATE_MACHINE));
3583 }
3584 goto enable_rx_done;
3585 }
3586 udelay(10);
3587 }
3588 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3589 cp->dev->name,
3590 (txfailed? "tx,rx":"rx"),
3591 readl(cp->regs + REG_MIF_STATE_MACHINE),
3592 readl(cp->regs + REG_MAC_STATE_MACHINE));
3593
3594 enable_rx_done:
3595 cas_unmask_intr(cp); /* enable interrupts */
3596 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3597 writel(0, cp->regs + REG_RX_COMP_TAIL);
3598
3599 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3600 if (N_RX_DESC_RINGS > 1)
3601 writel(RX_DESC_RINGN_SIZE(1) - 4,
3602 cp->regs + REG_PLUS_RX_KICK1);
3603
3604 for (i = 1; i < N_RX_COMP_RINGS; i++)
3605 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3606 }
3607 }
3608
3609 /* Must be invoked under cp->lock. */
3610 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3611 int *pause)
3612 {
3613 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3614 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3615 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3616 if (val & PCS_MII_LPA_ASYM_PAUSE)
3617 *pause |= 0x10;
3618 *spd = 1000;
3619 }
3620
3621 /* Must be invoked under cp->lock. */
3622 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3623 int *pause)
3624 {
3625 u32 val;
3626
3627 *fd = 0;
3628 *spd = 10;
3629 *pause = 0;
3630
3631 /* use GMII registers */
3632 val = cas_phy_read(cp, MII_LPA);
3633 if (val & CAS_LPA_PAUSE)
3634 *pause = 0x01;
3635
3636 if (val & CAS_LPA_ASYM_PAUSE)
3637 *pause |= 0x10;
3638
3639 if (val & LPA_DUPLEX)
3640 *fd = 1;
3641 if (val & LPA_100)
3642 *spd = 100;
3643
3644 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3645 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3646 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3647 *spd = 1000;
3648 if (val & CAS_LPA_1000FULL)
3649 *fd = 1;
3650 }
3651 }
3652
3653 /* A link-up condition has occurred, initialize and enable the
3654 * rest of the chip.
3655 *
3656 * Must be invoked under cp->lock.
3657 */
3658 static void cas_set_link_modes(struct cas *cp)
3659 {
3660 u32 val;
3661 int full_duplex, speed, pause;
3662
3663 full_duplex = 0;
3664 speed = 10;
3665 pause = 0;
3666
3667 if (CAS_PHY_MII(cp->phy_type)) {
3668 cas_mif_poll(cp, 0);
3669 val = cas_phy_read(cp, MII_BMCR);
3670 if (val & BMCR_ANENABLE) {
3671 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3672 &pause);
3673 } else {
3674 if (val & BMCR_FULLDPLX)
3675 full_duplex = 1;
3676
3677 if (val & BMCR_SPEED100)
3678 speed = 100;
3679 else if (val & CAS_BMCR_SPEED1000)
3680 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3681 1000 : 100;
3682 }
3683 cas_mif_poll(cp, 1);
3684
3685 } else {
3686 val = readl(cp->regs + REG_PCS_MII_CTRL);
3687 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3688 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3689 if (val & PCS_MII_CTRL_DUPLEX)
3690 full_duplex = 1;
3691 }
3692 }
3693
3694 if (netif_msg_link(cp))
3695 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3696 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3697
3698 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3699 if (CAS_PHY_MII(cp->phy_type)) {
3700 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3701 if (!full_duplex)
3702 val |= MAC_XIF_DISABLE_ECHO;
3703 }
3704 if (full_duplex)
3705 val |= MAC_XIF_FDPLX_LED;
3706 if (speed == 1000)
3707 val |= MAC_XIF_GMII_MODE;
3708 writel(val, cp->regs + REG_MAC_XIF_CFG);
3709
3710 /* deal with carrier and collision detect. */
3711 val = MAC_TX_CFG_IPG_EN;
3712 if (full_duplex) {
3713 val |= MAC_TX_CFG_IGNORE_CARRIER;
3714 val |= MAC_TX_CFG_IGNORE_COLL;
3715 } else {
3716 #ifndef USE_CSMA_CD_PROTO
3717 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3718 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3719 #endif
3720 }
3721 /* val now set up for REG_MAC_TX_CFG */
3722
3723 /* If gigabit and half-duplex, enable carrier extension
3724 * mode. increase slot time to 512 bytes as well.
3725 * else, disable it and make sure slot time is 64 bytes.
3726 * also activate checksum bug workaround
3727 */
3728 if ((speed == 1000) && !full_duplex) {
3729 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3730 cp->regs + REG_MAC_TX_CFG);
3731
3732 val = readl(cp->regs + REG_MAC_RX_CFG);
3733 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3734 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3735 cp->regs + REG_MAC_RX_CFG);
3736
3737 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3738
3739 cp->crc_size = 4;
3740 /* minimum size gigabit frame at half duplex */
3741 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3742
3743 } else {
3744 writel(val, cp->regs + REG_MAC_TX_CFG);
3745
3746 /* checksum bug workaround. don't strip FCS when in
3747 * half-duplex mode
3748 */
3749 val = readl(cp->regs + REG_MAC_RX_CFG);
3750 if (full_duplex) {
3751 val |= MAC_RX_CFG_STRIP_FCS;
3752 cp->crc_size = 0;
3753 cp->min_frame_size = CAS_MIN_MTU;
3754 } else {
3755 val &= ~MAC_RX_CFG_STRIP_FCS;
3756 cp->crc_size = 4;
3757 cp->min_frame_size = CAS_MIN_FRAME;
3758 }
3759 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3760 cp->regs + REG_MAC_RX_CFG);
3761 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3762 }
3763
3764 if (netif_msg_link(cp)) {
3765 if (pause & 0x01) {
3766 printk(KERN_INFO "%s: Pause is enabled "
3767 "(rxfifo: %d off: %d on: %d)\n",
3768 cp->dev->name,
3769 cp->rx_fifo_size,
3770 cp->rx_pause_off,
3771 cp->rx_pause_on);
3772 } else if (pause & 0x10) {
3773 printk(KERN_INFO "%s: TX pause enabled\n",
3774 cp->dev->name);
3775 } else {
3776 printk(KERN_INFO "%s: Pause is disabled\n",
3777 cp->dev->name);
3778 }
3779 }
3780
3781 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3782 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3783 if (pause) { /* symmetric or asymmetric pause */
3784 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3785 if (pause & 0x01) { /* symmetric pause */
3786 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3787 }
3788 }
3789 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3790 cas_start_dma(cp);
3791 }
3792
3793 /* Must be invoked under cp->lock. */
3794 static void cas_init_hw(struct cas *cp, int restart_link)
3795 {
3796 if (restart_link)
3797 cas_phy_init(cp);
3798
3799 cas_init_pause_thresholds(cp);
3800 cas_init_mac(cp);
3801 cas_init_dma(cp);
3802
3803 if (restart_link) {
3804 /* Default aneg parameters */
3805 cp->timer_ticks = 0;
3806 cas_begin_auto_negotiation(cp, NULL);
3807 } else if (cp->lstate == link_up) {
3808 cas_set_link_modes(cp);
3809 netif_carrier_on(cp->dev);
3810 }
3811 }
3812
3813 /* Must be invoked under cp->lock. on earlier cassini boards,
3814 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3815 * let it settle out, and then restore pci state.
3816 */
3817 static void cas_hard_reset(struct cas *cp)
3818 {
3819 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3820 udelay(20);
3821 pci_restore_state(cp->pdev);
3822 }
3823
3824
3825 static void cas_global_reset(struct cas *cp, int blkflag)
3826 {
3827 int limit;
3828
3829 /* issue a global reset. don't use RSTOUT. */
3830 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3831 /* For PCS, when the blkflag is set, we should set the
3832 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3833 * the last autonegotiation from being cleared. We'll
3834 * need some special handling if the chip is set into a
3835 * loopback mode.
3836 */
3837 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3838 cp->regs + REG_SW_RESET);
3839 } else {
3840 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3841 }
3842
3843 /* need to wait at least 3ms before polling register */
3844 mdelay(3);
3845
3846 limit = STOP_TRIES;
3847 while (limit-- > 0) {
3848 u32 val = readl(cp->regs + REG_SW_RESET);
3849 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3850 goto done;
3851 udelay(10);
3852 }
3853 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3854
3855 done:
3856 /* enable various BIM interrupts */
3857 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3858 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3859
3860 /* clear out pci error status mask for handled errors.
3861 * we don't deal with DMA counter overflows as they happen
3862 * all the time.
3863 */
3864 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3865 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3866 PCI_ERR_BIM_DMA_READ), cp->regs +
3867 REG_PCI_ERR_STATUS_MASK);
3868
3869 /* set up for MII by default to address mac rx reset timeout
3870 * issue
3871 */
3872 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3873 }
3874
3875 static void cas_reset(struct cas *cp, int blkflag)
3876 {
3877 u32 val;
3878
3879 cas_mask_intr(cp);
3880 cas_global_reset(cp, blkflag);
3881 cas_mac_reset(cp);
3882 cas_entropy_reset(cp);
3883
3884 /* disable dma engines. */
3885 val = readl(cp->regs + REG_TX_CFG);
3886 val &= ~TX_CFG_DMA_EN;
3887 writel(val, cp->regs + REG_TX_CFG);
3888
3889 val = readl(cp->regs + REG_RX_CFG);
3890 val &= ~RX_CFG_DMA_EN;
3891 writel(val, cp->regs + REG_RX_CFG);
3892
3893 /* program header parser */
3894 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3895 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3896 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3897 } else {
3898 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3899 }
3900
3901 /* clear out error registers */
3902 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3903 cas_clear_mac_err(cp);
3904 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3905 }
3906
3907 /* Shut down the chip, must be called with pm_mutex held. */
3908 static void cas_shutdown(struct cas *cp)
3909 {
3910 unsigned long flags;
3911
3912 /* Make us not-running to avoid timers respawning */
3913 cp->hw_running = 0;
3914
3915 del_timer_sync(&cp->link_timer);
3916
3917 /* Stop the reset task */
3918 #if 0
3919 while (atomic_read(&cp->reset_task_pending_mtu) ||
3920 atomic_read(&cp->reset_task_pending_spare) ||
3921 atomic_read(&cp->reset_task_pending_all))
3922 schedule();
3923
3924 #else
3925 while (atomic_read(&cp->reset_task_pending))
3926 schedule();
3927 #endif
3928 /* Actually stop the chip */
3929 cas_lock_all_save(cp, flags);
3930 cas_reset(cp, 0);
3931 if (cp->cas_flags & CAS_FLAG_SATURN)
3932 cas_phy_powerdown(cp);
3933 cas_unlock_all_restore(cp, flags);
3934 }
3935
3936 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3937 {
3938 struct cas *cp = netdev_priv(dev);
3939
3940 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3941 return -EINVAL;
3942
3943 dev->mtu = new_mtu;
3944 if (!netif_running(dev) || !netif_device_present(dev))
3945 return 0;
3946
3947 /* let the reset task handle it */
3948 #if 1
3949 atomic_inc(&cp->reset_task_pending);
3950 if ((cp->phy_type & CAS_PHY_SERDES)) {
3951 atomic_inc(&cp->reset_task_pending_all);
3952 } else {
3953 atomic_inc(&cp->reset_task_pending_mtu);
3954 }
3955 schedule_work(&cp->reset_task);
3956 #else
3957 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3958 CAS_RESET_ALL : CAS_RESET_MTU);
3959 printk(KERN_ERR "reset called in cas_change_mtu\n");
3960 schedule_work(&cp->reset_task);
3961 #endif
3962
3963 flush_scheduled_work();
3964 return 0;
3965 }
3966
3967 static void cas_clean_txd(struct cas *cp, int ring)
3968 {
3969 struct cas_tx_desc *txd = cp->init_txds[ring];
3970 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3971 u64 daddr, dlen;
3972 int i, size;
3973
3974 size = TX_DESC_RINGN_SIZE(ring);
3975 for (i = 0; i < size; i++) {
3976 int frag;
3977
3978 if (skbs[i] == NULL)
3979 continue;
3980
3981 skb = skbs[i];
3982 skbs[i] = NULL;
3983
3984 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3985 int ent = i & (size - 1);
3986
3987 /* first buffer is never a tiny buffer and so
3988 * needs to be unmapped.
3989 */
3990 daddr = le64_to_cpu(txd[ent].buffer);
3991 dlen = CAS_VAL(TX_DESC_BUFLEN,
3992 le64_to_cpu(txd[ent].control));
3993 pci_unmap_page(cp->pdev, daddr, dlen,
3994 PCI_DMA_TODEVICE);
3995
3996 if (frag != skb_shinfo(skb)->nr_frags) {
3997 i++;
3998
3999 /* next buffer might by a tiny buffer.
4000 * skip past it.
4001 */
4002 ent = i & (size - 1);
4003 if (cp->tx_tiny_use[ring][ent].used)
4004 i++;
4005 }
4006 }
4007 dev_kfree_skb_any(skb);
4008 }
4009
4010 /* zero out tiny buf usage */
4011 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4012 }
4013
4014 /* freed on close */
4015 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4016 {
4017 cas_page_t **page = cp->rx_pages[ring];
4018 int i, size;
4019
4020 size = RX_DESC_RINGN_SIZE(ring);
4021 for (i = 0; i < size; i++) {
4022 if (page[i]) {
4023 cas_page_free(cp, page[i]);
4024 page[i] = NULL;
4025 }
4026 }
4027 }
4028
4029 static void cas_free_rxds(struct cas *cp)
4030 {
4031 int i;
4032
4033 for (i = 0; i < N_RX_DESC_RINGS; i++)
4034 cas_free_rx_desc(cp, i);
4035 }
4036
4037 /* Must be invoked under cp->lock. */
4038 static void cas_clean_rings(struct cas *cp)
4039 {
4040 int i;
4041
4042 /* need to clean all tx rings */
4043 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4044 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4045 for (i = 0; i < N_TX_RINGS; i++)
4046 cas_clean_txd(cp, i);
4047
4048 /* zero out init block */
4049 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4050 cas_clean_rxds(cp);
4051 cas_clean_rxcs(cp);
4052 }
4053
4054 /* allocated on open */
4055 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4056 {
4057 cas_page_t **page = cp->rx_pages[ring];
4058 int size, i = 0;
4059
4060 size = RX_DESC_RINGN_SIZE(ring);
4061 for (i = 0; i < size; i++) {
4062 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4063 return -1;
4064 }
4065 return 0;
4066 }
4067
4068 static int cas_alloc_rxds(struct cas *cp)
4069 {
4070 int i;
4071
4072 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4073 if (cas_alloc_rx_desc(cp, i) < 0) {
4074 cas_free_rxds(cp);
4075 return -1;
4076 }
4077 }
4078 return 0;
4079 }
4080
4081 static void cas_reset_task(struct work_struct *work)
4082 {
4083 struct cas *cp = container_of(work, struct cas, reset_task);
4084 #if 0
4085 int pending = atomic_read(&cp->reset_task_pending);
4086 #else
4087 int pending_all = atomic_read(&cp->reset_task_pending_all);
4088 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4089 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4090
4091 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4092 /* We can have more tasks scheduled than actually
4093 * needed.
4094 */
4095 atomic_dec(&cp->reset_task_pending);
4096 return;
4097 }
4098 #endif
4099 /* The link went down, we reset the ring, but keep
4100 * DMA stopped. Use this function for reset
4101 * on error as well.
4102 */
4103 if (cp->hw_running) {
4104 unsigned long flags;
4105
4106 /* Make sure we don't get interrupts or tx packets */
4107 netif_device_detach(cp->dev);
4108 cas_lock_all_save(cp, flags);
4109
4110 if (cp->opened) {
4111 /* We call cas_spare_recover when we call cas_open.
4112 * but we do not initialize the lists cas_spare_recover
4113 * uses until cas_open is called.
4114 */
4115 cas_spare_recover(cp, GFP_ATOMIC);
4116 }
4117 #if 1
4118 /* test => only pending_spare set */
4119 if (!pending_all && !pending_mtu)
4120 goto done;
4121 #else
4122 if (pending == CAS_RESET_SPARE)
4123 goto done;
4124 #endif
4125 /* when pending == CAS_RESET_ALL, the following
4126 * call to cas_init_hw will restart auto negotiation.
4127 * Setting the second argument of cas_reset to
4128 * !(pending == CAS_RESET_ALL) will set this argument
4129 * to 1 (avoiding reinitializing the PHY for the normal
4130 * PCS case) when auto negotiation is not restarted.
4131 */
4132 #if 1
4133 cas_reset(cp, !(pending_all > 0));
4134 if (cp->opened)
4135 cas_clean_rings(cp);
4136 cas_init_hw(cp, (pending_all > 0));
4137 #else
4138 cas_reset(cp, !(pending == CAS_RESET_ALL));
4139 if (cp->opened)
4140 cas_clean_rings(cp);
4141 cas_init_hw(cp, pending == CAS_RESET_ALL);
4142 #endif
4143
4144 done:
4145 cas_unlock_all_restore(cp, flags);
4146 netif_device_attach(cp->dev);
4147 }
4148 #if 1
4149 atomic_sub(pending_all, &cp->reset_task_pending_all);
4150 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4151 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4152 atomic_dec(&cp->reset_task_pending);
4153 #else
4154 atomic_set(&cp->reset_task_pending, 0);
4155 #endif
4156 }
4157
4158 static void cas_link_timer(unsigned long data)
4159 {
4160 struct cas *cp = (struct cas *) data;
4161 int mask, pending = 0, reset = 0;
4162 unsigned long flags;
4163
4164 if (link_transition_timeout != 0 &&
4165 cp->link_transition_jiffies_valid &&
4166 ((jiffies - cp->link_transition_jiffies) >
4167 (link_transition_timeout))) {
4168 /* One-second counter so link-down workaround doesn't
4169 * cause resets to occur so fast as to fool the switch
4170 * into thinking the link is down.
4171 */
4172 cp->link_transition_jiffies_valid = 0;
4173 }
4174
4175 if (!cp->hw_running)
4176 return;
4177
4178 spin_lock_irqsave(&cp->lock, flags);
4179 cas_lock_tx(cp);
4180 cas_entropy_gather(cp);
4181
4182 /* If the link task is still pending, we just
4183 * reschedule the link timer
4184 */
4185 #if 1
4186 if (atomic_read(&cp->reset_task_pending_all) ||
4187 atomic_read(&cp->reset_task_pending_spare) ||
4188 atomic_read(&cp->reset_task_pending_mtu))
4189 goto done;
4190 #else
4191 if (atomic_read(&cp->reset_task_pending))
4192 goto done;
4193 #endif
4194
4195 /* check for rx cleaning */
4196 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4197 int i, rmask;
4198
4199 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4200 rmask = CAS_FLAG_RXD_POST(i);
4201 if ((mask & rmask) == 0)
4202 continue;
4203
4204 /* post_rxds will do a mod_timer */
4205 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4206 pending = 1;
4207 continue;
4208 }
4209 cp->cas_flags &= ~rmask;
4210 }
4211 }
4212
4213 if (CAS_PHY_MII(cp->phy_type)) {
4214 u16 bmsr;
4215 cas_mif_poll(cp, 0);
4216 bmsr = cas_phy_read(cp, MII_BMSR);
4217 /* WTZ: Solaris driver reads this twice, but that
4218 * may be due to the PCS case and the use of a
4219 * common implementation. Read it twice here to be
4220 * safe.
4221 */
4222 bmsr = cas_phy_read(cp, MII_BMSR);
4223 cas_mif_poll(cp, 1);
4224 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4225 reset = cas_mii_link_check(cp, bmsr);
4226 } else {
4227 reset = cas_pcs_link_check(cp);
4228 }
4229
4230 if (reset)
4231 goto done;
4232
4233 /* check for tx state machine confusion */
4234 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4235 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4236 u32 wptr, rptr;
4237 int tlm = CAS_VAL(MAC_SM_TLM, val);
4238
4239 if (((tlm == 0x5) || (tlm == 0x3)) &&
4240 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4241 if (netif_msg_tx_err(cp))
4242 printk(KERN_DEBUG "%s: tx err: "
4243 "MAC_STATE[%08x]\n",
4244 cp->dev->name, val);
4245 reset = 1;
4246 goto done;
4247 }
4248
4249 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4250 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4251 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4252 if ((val == 0) && (wptr != rptr)) {
4253 if (netif_msg_tx_err(cp))
4254 printk(KERN_DEBUG "%s: tx err: "
4255 "TX_FIFO[%08x:%08x:%08x]\n",
4256 cp->dev->name, val, wptr, rptr);
4257 reset = 1;
4258 }
4259
4260 if (reset)
4261 cas_hard_reset(cp);
4262 }
4263
4264 done:
4265 if (reset) {
4266 #if 1
4267 atomic_inc(&cp->reset_task_pending);
4268 atomic_inc(&cp->reset_task_pending_all);
4269 schedule_work(&cp->reset_task);
4270 #else
4271 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4272 printk(KERN_ERR "reset called in cas_link_timer\n");
4273 schedule_work(&cp->reset_task);
4274 #endif
4275 }
4276
4277 if (!pending)
4278 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4279 cas_unlock_tx(cp);
4280 spin_unlock_irqrestore(&cp->lock, flags);
4281 }
4282
4283 /* tiny buffers are used to avoid target abort issues with
4284 * older cassini's
4285 */
4286 static void cas_tx_tiny_free(struct cas *cp)
4287 {
4288 struct pci_dev *pdev = cp->pdev;
4289 int i;
4290
4291 for (i = 0; i < N_TX_RINGS; i++) {
4292 if (!cp->tx_tiny_bufs[i])
4293 continue;
4294
4295 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4296 cp->tx_tiny_bufs[i],
4297 cp->tx_tiny_dvma[i]);
4298 cp->tx_tiny_bufs[i] = NULL;
4299 }
4300 }
4301
4302 static int cas_tx_tiny_alloc(struct cas *cp)
4303 {
4304 struct pci_dev *pdev = cp->pdev;
4305 int i;
4306
4307 for (i = 0; i < N_TX_RINGS; i++) {
4308 cp->tx_tiny_bufs[i] =
4309 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4310 &cp->tx_tiny_dvma[i]);
4311 if (!cp->tx_tiny_bufs[i]) {
4312 cas_tx_tiny_free(cp);
4313 return -1;
4314 }
4315 }
4316 return 0;
4317 }
4318
4319
4320 static int cas_open(struct net_device *dev)
4321 {
4322 struct cas *cp = netdev_priv(dev);
4323 int hw_was_up, err;
4324 unsigned long flags;
4325
4326 mutex_lock(&cp->pm_mutex);
4327
4328 hw_was_up = cp->hw_running;
4329
4330 /* The power-management mutex protects the hw_running
4331 * etc. state so it is safe to do this bit without cp->lock
4332 */
4333 if (!cp->hw_running) {
4334 /* Reset the chip */
4335 cas_lock_all_save(cp, flags);
4336 /* We set the second arg to cas_reset to zero
4337 * because cas_init_hw below will have its second
4338 * argument set to non-zero, which will force
4339 * autonegotiation to start.
4340 */
4341 cas_reset(cp, 0);
4342 cp->hw_running = 1;
4343 cas_unlock_all_restore(cp, flags);
4344 }
4345
4346 if (cas_tx_tiny_alloc(cp) < 0)
4347 return -ENOMEM;
4348
4349 /* alloc rx descriptors */
4350 err = -ENOMEM;
4351 if (cas_alloc_rxds(cp) < 0)
4352 goto err_tx_tiny;
4353
4354 /* allocate spares */
4355 cas_spare_init(cp);
4356 cas_spare_recover(cp, GFP_KERNEL);
4357
4358 /* We can now request the interrupt as we know it's masked
4359 * on the controller. cassini+ has up to 4 interrupts
4360 * that can be used, but you need to do explicit pci interrupt
4361 * mapping to expose them
4362 */
4363 if (request_irq(cp->pdev->irq, cas_interrupt,
4364 IRQF_SHARED, dev->name, (void *) dev)) {
4365 printk(KERN_ERR "%s: failed to request irq !\n",
4366 cp->dev->name);
4367 err = -EAGAIN;
4368 goto err_spare;
4369 }
4370
4371 #ifdef USE_NAPI
4372 napi_enable(&cp->napi);
4373 #endif
4374 /* init hw */
4375 cas_lock_all_save(cp, flags);
4376 cas_clean_rings(cp);
4377 cas_init_hw(cp, !hw_was_up);
4378 cp->opened = 1;
4379 cas_unlock_all_restore(cp, flags);
4380
4381 netif_start_queue(dev);
4382 mutex_unlock(&cp->pm_mutex);
4383 return 0;
4384
4385 err_spare:
4386 cas_spare_free(cp);
4387 cas_free_rxds(cp);
4388 err_tx_tiny:
4389 cas_tx_tiny_free(cp);
4390 mutex_unlock(&cp->pm_mutex);
4391 return err;
4392 }
4393
4394 static int cas_close(struct net_device *dev)
4395 {
4396 unsigned long flags;
4397 struct cas *cp = netdev_priv(dev);
4398
4399 #ifdef USE_NAPI
4400 napi_disable(&cp->napi);
4401 #endif
4402 /* Make sure we don't get distracted by suspend/resume */
4403 mutex_lock(&cp->pm_mutex);
4404
4405 netif_stop_queue(dev);
4406
4407 /* Stop traffic, mark us closed */
4408 cas_lock_all_save(cp, flags);
4409 cp->opened = 0;
4410 cas_reset(cp, 0);
4411 cas_phy_init(cp);
4412 cas_begin_auto_negotiation(cp, NULL);
4413 cas_clean_rings(cp);
4414 cas_unlock_all_restore(cp, flags);
4415
4416 free_irq(cp->pdev->irq, (void *) dev);
4417 cas_spare_free(cp);
4418 cas_free_rxds(cp);
4419 cas_tx_tiny_free(cp);
4420 mutex_unlock(&cp->pm_mutex);
4421 return 0;
4422 }
4423
4424 static struct {
4425 const char name[ETH_GSTRING_LEN];
4426 } ethtool_cassini_statnames[] = {
4427 {"collisions"},
4428 {"rx_bytes"},
4429 {"rx_crc_errors"},
4430 {"rx_dropped"},
4431 {"rx_errors"},
4432 {"rx_fifo_errors"},
4433 {"rx_frame_errors"},
4434 {"rx_length_errors"},
4435 {"rx_over_errors"},
4436 {"rx_packets"},
4437 {"tx_aborted_errors"},
4438 {"tx_bytes"},
4439 {"tx_dropped"},
4440 {"tx_errors"},
4441 {"tx_fifo_errors"},
4442 {"tx_packets"}
4443 };
4444 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4445
4446 static struct {
4447 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4448 } ethtool_register_table[] = {
4449 {-MII_BMSR},
4450 {-MII_BMCR},
4451 {REG_CAWR},
4452 {REG_INF_BURST},
4453 {REG_BIM_CFG},
4454 {REG_RX_CFG},
4455 {REG_HP_CFG},
4456 {REG_MAC_TX_CFG},
4457 {REG_MAC_RX_CFG},
4458 {REG_MAC_CTRL_CFG},
4459 {REG_MAC_XIF_CFG},
4460 {REG_MIF_CFG},
4461 {REG_PCS_CFG},
4462 {REG_SATURN_PCFG},
4463 {REG_PCS_MII_STATUS},
4464 {REG_PCS_STATE_MACHINE},
4465 {REG_MAC_COLL_EXCESS},
4466 {REG_MAC_COLL_LATE}
4467 };
4468 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4469 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4470
4471 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4472 {
4473 u8 *p;
4474 int i;
4475 unsigned long flags;
4476
4477 spin_lock_irqsave(&cp->lock, flags);
4478 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4479 u16 hval;
4480 u32 val;
4481 if (ethtool_register_table[i].offsets < 0) {
4482 hval = cas_phy_read(cp,
4483 -ethtool_register_table[i].offsets);
4484 val = hval;
4485 } else {
4486 val= readl(cp->regs+ethtool_register_table[i].offsets);
4487 }
4488 memcpy(p, (u8 *)&val, sizeof(u32));
4489 }
4490 spin_unlock_irqrestore(&cp->lock, flags);
4491 }
4492
4493 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4494 {
4495 struct cas *cp = netdev_priv(dev);
4496 struct net_device_stats *stats = cp->net_stats;
4497 unsigned long flags;
4498 int i;
4499 unsigned long tmp;
4500
4501 /* we collate all of the stats into net_stats[N_TX_RING] */
4502 if (!cp->hw_running)
4503 return stats + N_TX_RINGS;
4504
4505 /* collect outstanding stats */
4506 /* WTZ: the Cassini spec gives these as 16 bit counters but
4507 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4508 * in case the chip somehow puts any garbage in the other bits.
4509 * Also, counter usage didn't seem to mach what Adrian did
4510 * in the parts of the code that set these quantities. Made
4511 * that consistent.
4512 */
4513 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4514 stats[N_TX_RINGS].rx_crc_errors +=
4515 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4516 stats[N_TX_RINGS].rx_frame_errors +=
4517 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4518 stats[N_TX_RINGS].rx_length_errors +=
4519 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4520 #if 1
4521 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4522 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4523 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4524 stats[N_TX_RINGS].collisions +=
4525 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4526 #else
4527 stats[N_TX_RINGS].tx_aborted_errors +=
4528 readl(cp->regs + REG_MAC_COLL_EXCESS);
4529 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4530 readl(cp->regs + REG_MAC_COLL_LATE);
4531 #endif
4532 cas_clear_mac_err(cp);
4533
4534 /* saved bits that are unique to ring 0 */
4535 spin_lock(&cp->stat_lock[0]);
4536 stats[N_TX_RINGS].collisions += stats[0].collisions;
4537 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4538 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4539 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4540 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4541 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4542 spin_unlock(&cp->stat_lock[0]);
4543
4544 for (i = 0; i < N_TX_RINGS; i++) {
4545 spin_lock(&cp->stat_lock[i]);
4546 stats[N_TX_RINGS].rx_length_errors +=
4547 stats[i].rx_length_errors;
4548 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4549 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4550 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4551 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4552 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4553 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4554 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4555 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4556 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4557 memset(stats + i, 0, sizeof(struct net_device_stats));
4558 spin_unlock(&cp->stat_lock[i]);
4559 }
4560 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4561 return stats + N_TX_RINGS;
4562 }
4563
4564
4565 static void cas_set_multicast(struct net_device *dev)
4566 {
4567 struct cas *cp = netdev_priv(dev);
4568 u32 rxcfg, rxcfg_new;
4569 unsigned long flags;
4570 int limit = STOP_TRIES;
4571
4572 if (!cp->hw_running)
4573 return;
4574
4575 spin_lock_irqsave(&cp->lock, flags);
4576 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4577
4578 /* disable RX MAC and wait for completion */
4579 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4580 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4581 if (!limit--)
4582 break;
4583 udelay(10);
4584 }
4585
4586 /* disable hash filter and wait for completion */
4587 limit = STOP_TRIES;
4588 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4589 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4590 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4591 if (!limit--)
4592 break;
4593 udelay(10);
4594 }
4595
4596 /* program hash filters */
4597 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4598 rxcfg |= rxcfg_new;
4599 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4600 spin_unlock_irqrestore(&cp->lock, flags);
4601 }
4602
4603 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4604 {
4605 struct cas *cp = netdev_priv(dev);
4606 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4607 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4608 info->fw_version[0] = '\0';
4609 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4610 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4611 cp->casreg_len : CAS_MAX_REGS;
4612 info->n_stats = CAS_NUM_STAT_KEYS;
4613 }
4614
4615 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4616 {
4617 struct cas *cp = netdev_priv(dev);
4618 u16 bmcr;
4619 int full_duplex, speed, pause;
4620 unsigned long flags;
4621 enum link_state linkstate = link_up;
4622
4623 cmd->advertising = 0;
4624 cmd->supported = SUPPORTED_Autoneg;
4625 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4626 cmd->supported |= SUPPORTED_1000baseT_Full;
4627 cmd->advertising |= ADVERTISED_1000baseT_Full;
4628 }
4629
4630 /* Record PHY settings if HW is on. */
4631 spin_lock_irqsave(&cp->lock, flags);
4632 bmcr = 0;
4633 linkstate = cp->lstate;
4634 if (CAS_PHY_MII(cp->phy_type)) {
4635 cmd->port = PORT_MII;
4636 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4637 XCVR_INTERNAL : XCVR_EXTERNAL;
4638 cmd->phy_address = cp->phy_addr;
4639 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4640 ADVERTISED_10baseT_Half |
4641 ADVERTISED_10baseT_Full |
4642 ADVERTISED_100baseT_Half |
4643 ADVERTISED_100baseT_Full;
4644
4645 cmd->supported |=
4646 (SUPPORTED_10baseT_Half |
4647 SUPPORTED_10baseT_Full |
4648 SUPPORTED_100baseT_Half |
4649 SUPPORTED_100baseT_Full |
4650 SUPPORTED_TP | SUPPORTED_MII);
4651
4652 if (cp->hw_running) {
4653 cas_mif_poll(cp, 0);
4654 bmcr = cas_phy_read(cp, MII_BMCR);
4655 cas_read_mii_link_mode(cp, &full_duplex,
4656 &speed, &pause);
4657 cas_mif_poll(cp, 1);
4658 }
4659
4660 } else {
4661 cmd->port = PORT_FIBRE;
4662 cmd->transceiver = XCVR_INTERNAL;
4663 cmd->phy_address = 0;
4664 cmd->supported |= SUPPORTED_FIBRE;
4665 cmd->advertising |= ADVERTISED_FIBRE;
4666
4667 if (cp->hw_running) {
4668 /* pcs uses the same bits as mii */
4669 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4670 cas_read_pcs_link_mode(cp, &full_duplex,
4671 &speed, &pause);
4672 }
4673 }
4674 spin_unlock_irqrestore(&cp->lock, flags);
4675
4676 if (bmcr & BMCR_ANENABLE) {
4677 cmd->advertising |= ADVERTISED_Autoneg;
4678 cmd->autoneg = AUTONEG_ENABLE;
4679 cmd->speed = ((speed == 10) ?
4680 SPEED_10 :
4681 ((speed == 1000) ?
4682 SPEED_1000 : SPEED_100));
4683 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4684 } else {
4685 cmd->autoneg = AUTONEG_DISABLE;
4686 cmd->speed =
4687 (bmcr & CAS_BMCR_SPEED1000) ?
4688 SPEED_1000 :
4689 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4690 SPEED_10);
4691 cmd->duplex =
4692 (bmcr & BMCR_FULLDPLX) ?
4693 DUPLEX_FULL : DUPLEX_HALF;
4694 }
4695 if (linkstate != link_up) {
4696 /* Force these to "unknown" if the link is not up and
4697 * autonogotiation in enabled. We can set the link
4698 * speed to 0, but not cmd->duplex,
4699 * because its legal values are 0 and 1. Ethtool will
4700 * print the value reported in parentheses after the
4701 * word "Unknown" for unrecognized values.
4702 *
4703 * If in forced mode, we report the speed and duplex
4704 * settings that we configured.
4705 */
4706 if (cp->link_cntl & BMCR_ANENABLE) {
4707 cmd->speed = 0;
4708 cmd->duplex = 0xff;
4709 } else {
4710 cmd->speed = SPEED_10;
4711 if (cp->link_cntl & BMCR_SPEED100) {
4712 cmd->speed = SPEED_100;
4713 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4714 cmd->speed = SPEED_1000;
4715 }
4716 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4717 DUPLEX_FULL : DUPLEX_HALF;
4718 }
4719 }
4720 return 0;
4721 }
4722
4723 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4724 {
4725 struct cas *cp = netdev_priv(dev);
4726 unsigned long flags;
4727
4728 /* Verify the settings we care about. */
4729 if (cmd->autoneg != AUTONEG_ENABLE &&
4730 cmd->autoneg != AUTONEG_DISABLE)
4731 return -EINVAL;
4732
4733 if (cmd->autoneg == AUTONEG_DISABLE &&
4734 ((cmd->speed != SPEED_1000 &&
4735 cmd->speed != SPEED_100 &&
4736 cmd->speed != SPEED_10) ||
4737 (cmd->duplex != DUPLEX_HALF &&
4738 cmd->duplex != DUPLEX_FULL)))
4739 return -EINVAL;
4740
4741 /* Apply settings and restart link process. */
4742 spin_lock_irqsave(&cp->lock, flags);
4743 cas_begin_auto_negotiation(cp, cmd);
4744 spin_unlock_irqrestore(&cp->lock, flags);
4745 return 0;
4746 }
4747
4748 static int cas_nway_reset(struct net_device *dev)
4749 {
4750 struct cas *cp = netdev_priv(dev);
4751 unsigned long flags;
4752
4753 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4754 return -EINVAL;
4755
4756 /* Restart link process. */
4757 spin_lock_irqsave(&cp->lock, flags);
4758 cas_begin_auto_negotiation(cp, NULL);
4759 spin_unlock_irqrestore(&cp->lock, flags);
4760
4761 return 0;
4762 }
4763
4764 static u32 cas_get_link(struct net_device *dev)
4765 {
4766 struct cas *cp = netdev_priv(dev);
4767 return cp->lstate == link_up;
4768 }
4769
4770 static u32 cas_get_msglevel(struct net_device *dev)
4771 {
4772 struct cas *cp = netdev_priv(dev);
4773 return cp->msg_enable;
4774 }
4775
4776 static void cas_set_msglevel(struct net_device *dev, u32 value)
4777 {
4778 struct cas *cp = netdev_priv(dev);
4779 cp->msg_enable = value;
4780 }
4781
4782 static int cas_get_regs_len(struct net_device *dev)
4783 {
4784 struct cas *cp = netdev_priv(dev);
4785 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4786 }
4787
4788 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4789 void *p)
4790 {
4791 struct cas *cp = netdev_priv(dev);
4792 regs->version = 0;
4793 /* cas_read_regs handles locks (cp->lock). */
4794 cas_read_regs(cp, p, regs->len / sizeof(u32));
4795 }
4796
4797 static int cas_get_sset_count(struct net_device *dev, int sset)
4798 {
4799 switch (sset) {
4800 case ETH_SS_STATS:
4801 return CAS_NUM_STAT_KEYS;
4802 default:
4803 return -EOPNOTSUPP;
4804 }
4805 }
4806
4807 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4808 {
4809 memcpy(data, &ethtool_cassini_statnames,
4810 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4811 }
4812
4813 static void cas_get_ethtool_stats(struct net_device *dev,
4814 struct ethtool_stats *estats, u64 *data)
4815 {
4816 struct cas *cp = netdev_priv(dev);
4817 struct net_device_stats *stats = cas_get_stats(cp->dev);
4818 int i = 0;
4819 data[i++] = stats->collisions;
4820 data[i++] = stats->rx_bytes;
4821 data[i++] = stats->rx_crc_errors;
4822 data[i++] = stats->rx_dropped;
4823 data[i++] = stats->rx_errors;
4824 data[i++] = stats->rx_fifo_errors;
4825 data[i++] = stats->rx_frame_errors;
4826 data[i++] = stats->rx_length_errors;
4827 data[i++] = stats->rx_over_errors;
4828 data[i++] = stats->rx_packets;
4829 data[i++] = stats->tx_aborted_errors;
4830 data[i++] = stats->tx_bytes;
4831 data[i++] = stats->tx_dropped;
4832 data[i++] = stats->tx_errors;
4833 data[i++] = stats->tx_fifo_errors;
4834 data[i++] = stats->tx_packets;
4835 BUG_ON(i != CAS_NUM_STAT_KEYS);
4836 }
4837
4838 static const struct ethtool_ops cas_ethtool_ops = {
4839 .get_drvinfo = cas_get_drvinfo,
4840 .get_settings = cas_get_settings,
4841 .set_settings = cas_set_settings,
4842 .nway_reset = cas_nway_reset,
4843 .get_link = cas_get_link,
4844 .get_msglevel = cas_get_msglevel,
4845 .set_msglevel = cas_set_msglevel,
4846 .get_regs_len = cas_get_regs_len,
4847 .get_regs = cas_get_regs,
4848 .get_sset_count = cas_get_sset_count,
4849 .get_strings = cas_get_strings,
4850 .get_ethtool_stats = cas_get_ethtool_stats,
4851 };
4852
4853 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4854 {
4855 struct cas *cp = netdev_priv(dev);
4856 struct mii_ioctl_data *data = if_mii(ifr);
4857 unsigned long flags;
4858 int rc = -EOPNOTSUPP;
4859
4860 /* Hold the PM mutex while doing ioctl's or we may collide
4861 * with open/close and power management and oops.
4862 */
4863 mutex_lock(&cp->pm_mutex);
4864 switch (cmd) {
4865 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4866 data->phy_id = cp->phy_addr;
4867 /* Fallthrough... */
4868
4869 case SIOCGMIIREG: /* Read MII PHY register. */
4870 spin_lock_irqsave(&cp->lock, flags);
4871 cas_mif_poll(cp, 0);
4872 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4873 cas_mif_poll(cp, 1);
4874 spin_unlock_irqrestore(&cp->lock, flags);
4875 rc = 0;
4876 break;
4877
4878 case SIOCSMIIREG: /* Write MII PHY register. */
4879 if (!capable(CAP_NET_ADMIN)) {
4880 rc = -EPERM;
4881 break;
4882 }
4883 spin_lock_irqsave(&cp->lock, flags);
4884 cas_mif_poll(cp, 0);
4885 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4886 cas_mif_poll(cp, 1);
4887 spin_unlock_irqrestore(&cp->lock, flags);
4888 break;
4889 default:
4890 break;
4891 };
4892
4893 mutex_unlock(&cp->pm_mutex);
4894 return rc;
4895 }
4896
4897 /* When this chip sits underneath an Intel 31154 bridge, it is the
4898 * only subordinate device and we can tweak the bridge settings to
4899 * reflect that fact.
4900 */
4901 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4902 {
4903 struct pci_dev *pdev = cas_pdev->bus->self;
4904 u32 val;
4905
4906 if (!pdev)
4907 return;
4908
4909 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4910 return;
4911
4912 /* Clear bit 10 (Bus Parking Control) in the Secondary
4913 * Arbiter Control/Status Register which lives at offset
4914 * 0x41. Using a 32-bit word read/modify/write at 0x40
4915 * is much simpler so that's how we do this.
4916 */
4917 pci_read_config_dword(pdev, 0x40, &val);
4918 val &= ~0x00040000;
4919 pci_write_config_dword(pdev, 0x40, val);
4920
4921 /* Max out the Multi-Transaction Timer settings since
4922 * Cassini is the only device present.
4923 *
4924 * The register is 16-bit and lives at 0x50. When the
4925 * settings are enabled, it extends the GRANT# signal
4926 * for a requestor after a transaction is complete. This
4927 * allows the next request to run without first needing
4928 * to negotiate the GRANT# signal back.
4929 *
4930 * Bits 12:10 define the grant duration:
4931 *
4932 * 1 -- 16 clocks
4933 * 2 -- 32 clocks
4934 * 3 -- 64 clocks
4935 * 4 -- 128 clocks
4936 * 5 -- 256 clocks
4937 *
4938 * All other values are illegal.
4939 *
4940 * Bits 09:00 define which REQ/GNT signal pairs get the
4941 * GRANT# signal treatment. We set them all.
4942 */
4943 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4944
4945 /* The Read Prefecth Policy register is 16-bit and sits at
4946 * offset 0x52. It enables a "smart" pre-fetch policy. We
4947 * enable it and max out all of the settings since only one
4948 * device is sitting underneath and thus bandwidth sharing is
4949 * not an issue.
4950 *
4951 * The register has several 3 bit fields, which indicates a
4952 * multiplier applied to the base amount of prefetching the
4953 * chip would do. These fields are at:
4954 *
4955 * 15:13 --- ReRead Primary Bus
4956 * 12:10 --- FirstRead Primary Bus
4957 * 09:07 --- ReRead Secondary Bus
4958 * 06:04 --- FirstRead Secondary Bus
4959 *
4960 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4961 * get enabled on. Bit 3 is a grouped enabler which controls
4962 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4963 * the individual REQ/GNT pairs [2:0].
4964 */
4965 pci_write_config_word(pdev, 0x52,
4966 (0x7 << 13) |
4967 (0x7 << 10) |
4968 (0x7 << 7) |
4969 (0x7 << 4) |
4970 (0xf << 0));
4971
4972 /* Force cacheline size to 0x8 */
4973 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4974
4975 /* Force latency timer to maximum setting so Cassini can
4976 * sit on the bus as long as it likes.
4977 */
4978 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4979 }
4980
4981 static int __devinit cas_init_one(struct pci_dev *pdev,
4982 const struct pci_device_id *ent)
4983 {
4984 static int cas_version_printed = 0;
4985 unsigned long casreg_len;
4986 struct net_device *dev;
4987 struct cas *cp;
4988 int i, err, pci_using_dac;
4989 u16 pci_cmd;
4990 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4991
4992 if (cas_version_printed++ == 0)
4993 printk(KERN_INFO "%s", version);
4994
4995 err = pci_enable_device(pdev);
4996 if (err) {
4997 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4998 return err;
4999 }
5000
5001 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5002 dev_err(&pdev->dev, "Cannot find proper PCI device "
5003 "base address, aborting.\n");
5004 err = -ENODEV;
5005 goto err_out_disable_pdev;
5006 }
5007
5008 dev = alloc_etherdev(sizeof(*cp));
5009 if (!dev) {
5010 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
5011 err = -ENOMEM;
5012 goto err_out_disable_pdev;
5013 }
5014 SET_NETDEV_DEV(dev, &pdev->dev);
5015
5016 err = pci_request_regions(pdev, dev->name);
5017 if (err) {
5018 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
5019 goto err_out_free_netdev;
5020 }
5021 pci_set_master(pdev);
5022
5023 /* we must always turn on parity response or else parity
5024 * doesn't get generated properly. disable SERR/PERR as well.
5025 * in addition, we want to turn MWI on.
5026 */
5027 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
5028 pci_cmd &= ~PCI_COMMAND_SERR;
5029 pci_cmd |= PCI_COMMAND_PARITY;
5030 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
5031 if (pci_try_set_mwi(pdev))
5032 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
5033 pci_name(pdev));
5034
5035 cas_program_bridge(pdev);
5036
5037 /*
5038 * On some architectures, the default cache line size set
5039 * by pci_try_set_mwi reduces perforamnce. We have to increase
5040 * it for this case. To start, we'll print some configuration
5041 * data.
5042 */
5043 #if 1
5044 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5045 &orig_cacheline_size);
5046 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5047 cas_cacheline_size =
5048 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5049 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5050 if (pci_write_config_byte(pdev,
5051 PCI_CACHE_LINE_SIZE,
5052 cas_cacheline_size)) {
5053 dev_err(&pdev->dev, "Could not set PCI cache "
5054 "line size\n");
5055 goto err_write_cacheline;
5056 }
5057 }
5058 #endif
5059
5060
5061 /* Configure DMA attributes. */
5062 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5063 pci_using_dac = 1;
5064 err = pci_set_consistent_dma_mask(pdev,
5065 DMA_64BIT_MASK);
5066 if (err < 0) {
5067 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5068 "for consistent allocations\n");
5069 goto err_out_free_res;
5070 }
5071
5072 } else {
5073 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5074 if (err) {
5075 dev_err(&pdev->dev, "No usable DMA configuration, "
5076 "aborting.\n");
5077 goto err_out_free_res;
5078 }
5079 pci_using_dac = 0;
5080 }
5081
5082 casreg_len = pci_resource_len(pdev, 0);
5083
5084 cp = netdev_priv(dev);
5085 cp->pdev = pdev;
5086 #if 1
5087 /* A value of 0 indicates we never explicitly set it */
5088 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5089 #endif
5090 cp->dev = dev;
5091 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5092 cassini_debug;
5093
5094 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5095 cp->link_transition_jiffies_valid = 0;
5096
5097 spin_lock_init(&cp->lock);
5098 spin_lock_init(&cp->rx_inuse_lock);
5099 spin_lock_init(&cp->rx_spare_lock);
5100 for (i = 0; i < N_TX_RINGS; i++) {
5101 spin_lock_init(&cp->stat_lock[i]);
5102 spin_lock_init(&cp->tx_lock[i]);
5103 }
5104 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5105 mutex_init(&cp->pm_mutex);
5106
5107 init_timer(&cp->link_timer);
5108 cp->link_timer.function = cas_link_timer;
5109 cp->link_timer.data = (unsigned long) cp;
5110
5111 #if 1
5112 /* Just in case the implementation of atomic operations
5113 * change so that an explicit initialization is necessary.
5114 */
5115 atomic_set(&cp->reset_task_pending, 0);
5116 atomic_set(&cp->reset_task_pending_all, 0);
5117 atomic_set(&cp->reset_task_pending_spare, 0);
5118 atomic_set(&cp->reset_task_pending_mtu, 0);
5119 #endif
5120 INIT_WORK(&cp->reset_task, cas_reset_task);
5121
5122 /* Default link parameters */
5123 if (link_mode >= 0 && link_mode <= 6)
5124 cp->link_cntl = link_modes[link_mode];
5125 else
5126 cp->link_cntl = BMCR_ANENABLE;
5127 cp->lstate = link_down;
5128 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5129 netif_carrier_off(cp->dev);
5130 cp->timer_ticks = 0;
5131
5132 /* give us access to cassini registers */
5133 cp->regs = pci_iomap(pdev, 0, casreg_len);
5134 if (!cp->regs) {
5135 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5136 goto err_out_free_res;
5137 }
5138 cp->casreg_len = casreg_len;
5139
5140 pci_save_state(pdev);
5141 cas_check_pci_invariants(cp);
5142 cas_hard_reset(cp);
5143 cas_reset(cp, 0);
5144 if (cas_check_invariants(cp))
5145 goto err_out_iounmap;
5146 if (cp->cas_flags & CAS_FLAG_SATURN)
5147 if (cas_saturn_firmware_init(cp))
5148 goto err_out_iounmap;
5149
5150 cp->init_block = (struct cas_init_block *)
5151 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5152 &cp->block_dvma);
5153 if (!cp->init_block) {
5154 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5155 goto err_out_iounmap;
5156 }
5157
5158 for (i = 0; i < N_TX_RINGS; i++)
5159 cp->init_txds[i] = cp->init_block->txds[i];
5160
5161 for (i = 0; i < N_RX_DESC_RINGS; i++)
5162 cp->init_rxds[i] = cp->init_block->rxds[i];
5163
5164 for (i = 0; i < N_RX_COMP_RINGS; i++)
5165 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5166
5167 for (i = 0; i < N_RX_FLOWS; i++)
5168 skb_queue_head_init(&cp->rx_flows[i]);
5169
5170 dev->open = cas_open;
5171 dev->stop = cas_close;
5172 dev->hard_start_xmit = cas_start_xmit;
5173 dev->get_stats = cas_get_stats;
5174 dev->set_multicast_list = cas_set_multicast;
5175 dev->do_ioctl = cas_ioctl;
5176 dev->ethtool_ops = &cas_ethtool_ops;
5177 dev->tx_timeout = cas_tx_timeout;
5178 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5179 dev->change_mtu = cas_change_mtu;
5180 #ifdef USE_NAPI
5181 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5182 #endif
5183 #ifdef CONFIG_NET_POLL_CONTROLLER
5184 dev->poll_controller = cas_netpoll;
5185 #endif
5186 dev->irq = pdev->irq;
5187 dev->dma = 0;
5188
5189 /* Cassini features. */
5190 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5191 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5192
5193 if (pci_using_dac)
5194 dev->features |= NETIF_F_HIGHDMA;
5195
5196 if (register_netdev(dev)) {
5197 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5198 goto err_out_free_consistent;
5199 }
5200
5201 i = readl(cp->regs + REG_BIM_CFG);
5202 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5203 "Ethernet[%d] %pM\n", dev->name,
5204 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5205 (i & BIM_CFG_32BIT) ? "32" : "64",
5206 (i & BIM_CFG_66MHZ) ? "66" : "33",
5207 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5208 dev->dev_addr);
5209
5210 pci_set_drvdata(pdev, dev);
5211 cp->hw_running = 1;
5212 cas_entropy_reset(cp);
5213 cas_phy_init(cp);
5214 cas_begin_auto_negotiation(cp, NULL);
5215 return 0;
5216
5217 err_out_free_consistent:
5218 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5219 cp->init_block, cp->block_dvma);
5220
5221 err_out_iounmap:
5222 mutex_lock(&cp->pm_mutex);
5223 if (cp->hw_running)
5224 cas_shutdown(cp);
5225 mutex_unlock(&cp->pm_mutex);
5226
5227 pci_iounmap(pdev, cp->regs);
5228
5229
5230 err_out_free_res:
5231 pci_release_regions(pdev);
5232
5233 err_write_cacheline:
5234 /* Try to restore it in case the error occured after we
5235 * set it.
5236 */
5237 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5238
5239 err_out_free_netdev:
5240 free_netdev(dev);
5241
5242 err_out_disable_pdev:
5243 pci_disable_device(pdev);
5244 pci_set_drvdata(pdev, NULL);
5245 return -ENODEV;
5246 }
5247
5248 static void __devexit cas_remove_one(struct pci_dev *pdev)
5249 {
5250 struct net_device *dev = pci_get_drvdata(pdev);
5251 struct cas *cp;
5252 if (!dev)
5253 return;
5254
5255 cp = netdev_priv(dev);
5256 unregister_netdev(dev);
5257
5258 if (cp->fw_data)
5259 vfree(cp->fw_data);
5260
5261 mutex_lock(&cp->pm_mutex);
5262 flush_scheduled_work();
5263 if (cp->hw_running)
5264 cas_shutdown(cp);
5265 mutex_unlock(&cp->pm_mutex);
5266
5267 #if 1
5268 if (cp->orig_cacheline_size) {
5269 /* Restore the cache line size if we had modified
5270 * it.
5271 */
5272 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5273 cp->orig_cacheline_size);
5274 }
5275 #endif
5276 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5277 cp->init_block, cp->block_dvma);
5278 pci_iounmap(pdev, cp->regs);
5279 free_netdev(dev);
5280 pci_release_regions(pdev);
5281 pci_disable_device(pdev);
5282 pci_set_drvdata(pdev, NULL);
5283 }
5284
5285 #ifdef CONFIG_PM
5286 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5287 {
5288 struct net_device *dev = pci_get_drvdata(pdev);
5289 struct cas *cp = netdev_priv(dev);
5290 unsigned long flags;
5291
5292 mutex_lock(&cp->pm_mutex);
5293
5294 /* If the driver is opened, we stop the DMA */
5295 if (cp->opened) {
5296 netif_device_detach(dev);
5297
5298 cas_lock_all_save(cp, flags);
5299
5300 /* We can set the second arg of cas_reset to 0
5301 * because on resume, we'll call cas_init_hw with
5302 * its second arg set so that autonegotiation is
5303 * restarted.
5304 */
5305 cas_reset(cp, 0);
5306 cas_clean_rings(cp);
5307 cas_unlock_all_restore(cp, flags);
5308 }
5309
5310 if (cp->hw_running)
5311 cas_shutdown(cp);
5312 mutex_unlock(&cp->pm_mutex);
5313
5314 return 0;
5315 }
5316
5317 static int cas_resume(struct pci_dev *pdev)
5318 {
5319 struct net_device *dev = pci_get_drvdata(pdev);
5320 struct cas *cp = netdev_priv(dev);
5321
5322 printk(KERN_INFO "%s: resuming\n", dev->name);
5323
5324 mutex_lock(&cp->pm_mutex);
5325 cas_hard_reset(cp);
5326 if (cp->opened) {
5327 unsigned long flags;
5328 cas_lock_all_save(cp, flags);
5329 cas_reset(cp, 0);
5330 cp->hw_running = 1;
5331 cas_clean_rings(cp);
5332 cas_init_hw(cp, 1);
5333 cas_unlock_all_restore(cp, flags);
5334
5335 netif_device_attach(dev);
5336 }
5337 mutex_unlock(&cp->pm_mutex);
5338 return 0;
5339 }
5340 #endif /* CONFIG_PM */
5341
5342 static struct pci_driver cas_driver = {
5343 .name = DRV_MODULE_NAME,
5344 .id_table = cas_pci_tbl,
5345 .probe = cas_init_one,
5346 .remove = __devexit_p(cas_remove_one),
5347 #ifdef CONFIG_PM
5348 .suspend = cas_suspend,
5349 .resume = cas_resume
5350 #endif
5351 };
5352
5353 static int __init cas_init(void)
5354 {
5355 if (linkdown_timeout > 0)
5356 link_transition_timeout = linkdown_timeout * HZ;
5357 else
5358 link_transition_timeout = 0;
5359
5360 return pci_register_driver(&cas_driver);
5361 }
5362
5363 static void __exit cas_cleanup(void)
5364 {
5365 pci_unregister_driver(&cas_driver);
5366 }
5367
5368 module_init(cas_init);
5369 module_exit(cas_cleanup);