]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/cassini.c
[ETH]: Make eth_type_trans set skb->dev like the other *_type_trans
[mirror_ubuntu-bionic-kernel.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
79 #include <linux/mm.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
83
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
91 #include <linux/ip.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
94
95 #include <net/checksum.h>
96
97 #include <asm/atomic.h>
98 #include <asm/system.h>
99 #include <asm/io.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
102
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
106
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108 #define USE_NAPI
109 #define cas_skb_release(x) netif_receive_skb(x)
110 #else
111 #define cas_skb_release(x) netif_rx(x)
112 #endif
113
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
118
119 #include "cassini.h"
120
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
125
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
128 */
129 #undef USE_PCI_INTB
130 #undef USE_PCI_INTC
131 #undef USE_PCI_INTD
132 #undef USE_QOS
133
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
135
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
142
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.4"
146 #define DRV_MODULE_RELDATE "1 July 2004"
147
148 #define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
157
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
160 */
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
164
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
167 */
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
170
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
174 */
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179
180 #if 1
181 /*
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
184 */
185 #else
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
189 #endif
190
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
193
194 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
196
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
204
205 /*
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
208 */
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
210 /*
211 * Value in seconds, for user input.
212 */
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217
218 /*
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222 */
223 static int link_transition_timeout;
224
225
226
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 };
235
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
242 };
243
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246 static void cas_set_link_modes(struct cas *cp);
247
248 static inline void cas_lock_tx(struct cas *cp)
249 {
250 int i;
251
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
254 }
255
256 static inline void cas_lock_all(struct cas *cp)
257 {
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
260 }
261
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
269 */
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275 } while (0)
276
277 static inline void cas_unlock_tx(struct cas *cp)
278 {
279 int i;
280
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
283 }
284
285 static inline void cas_unlock_all(struct cas *cp)
286 {
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
289 }
290
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
297
298 static void cas_disable_irq(struct cas *cp, const int ring)
299 {
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
304 }
305
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317 case 3:
318 #endif
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322 #endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
327 }
328 }
329 }
330
331 static inline void cas_mask_intr(struct cas *cp)
332 {
333 int i;
334
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
337 }
338
339 static inline void cas_buffer_init(cas_page_t *cp)
340 {
341 struct page *page = cp->buffer;
342 atomic_set((atomic_t *)&page->lru.next, 1);
343 }
344
345 static inline int cas_buffer_count(cas_page_t *cp)
346 {
347 struct page *page = cp->buffer;
348 return atomic_read((atomic_t *)&page->lru.next);
349 }
350
351 static inline void cas_buffer_inc(cas_page_t *cp)
352 {
353 struct page *page = cp->buffer;
354 atomic_inc((atomic_t *)&page->lru.next);
355 }
356
357 static inline void cas_buffer_dec(cas_page_t *cp)
358 {
359 struct page *page = cp->buffer;
360 atomic_dec((atomic_t *)&page->lru.next);
361 }
362
363 static void cas_enable_irq(struct cas *cp, const int ring)
364 {
365 if (ring == 0) { /* all but TX_DONE */
366 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
367 return;
368 }
369
370 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
371 switch (ring) {
372 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
373 #ifdef USE_PCI_INTB
374 case 1:
375 #endif
376 #ifdef USE_PCI_INTC
377 case 2:
378 #endif
379 #ifdef USE_PCI_INTD
380 case 3:
381 #endif
382 writel(INTRN_MASK_RX_EN, cp->regs +
383 REG_PLUS_INTRN_MASK(ring));
384 break;
385 #endif
386 default:
387 break;
388 }
389 }
390 }
391
392 static inline void cas_unmask_intr(struct cas *cp)
393 {
394 int i;
395
396 for (i = 0; i < N_RX_COMP_RINGS; i++)
397 cas_enable_irq(cp, i);
398 }
399
400 static inline void cas_entropy_gather(struct cas *cp)
401 {
402 #ifdef USE_ENTROPY_DEV
403 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
404 return;
405
406 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
407 readl(cp->regs + REG_ENTROPY_IV),
408 sizeof(uint64_t)*8);
409 #endif
410 }
411
412 static inline void cas_entropy_reset(struct cas *cp)
413 {
414 #ifdef USE_ENTROPY_DEV
415 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
416 return;
417
418 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
419 cp->regs + REG_BIM_LOCAL_DEV_EN);
420 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
421 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
422
423 /* if we read back 0x0, we don't have an entropy device */
424 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
425 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
426 #endif
427 }
428
429 /* access to the phy. the following assumes that we've initialized the MIF to
430 * be in frame rather than bit-bang mode
431 */
432 static u16 cas_phy_read(struct cas *cp, int reg)
433 {
434 u32 cmd;
435 int limit = STOP_TRIES_PHY;
436
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 writel(cmd, cp->regs + REG_MIF_FRAME);
442
443 /* poll for completion */
444 while (limit-- > 0) {
445 udelay(10);
446 cmd = readl(cp->regs + REG_MIF_FRAME);
447 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
448 return (cmd & MIF_FRAME_DATA_MASK);
449 }
450 return 0xFFFF; /* -1 */
451 }
452
453 static int cas_phy_write(struct cas *cp, int reg, u16 val)
454 {
455 int limit = STOP_TRIES_PHY;
456 u32 cmd;
457
458 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
459 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
460 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
461 cmd |= MIF_FRAME_TURN_AROUND_MSB;
462 cmd |= val & MIF_FRAME_DATA_MASK;
463 writel(cmd, cp->regs + REG_MIF_FRAME);
464
465 /* poll for completion */
466 while (limit-- > 0) {
467 udelay(10);
468 cmd = readl(cp->regs + REG_MIF_FRAME);
469 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
470 return 0;
471 }
472 return -1;
473 }
474
475 static void cas_phy_powerup(struct cas *cp)
476 {
477 u16 ctl = cas_phy_read(cp, MII_BMCR);
478
479 if ((ctl & BMCR_PDOWN) == 0)
480 return;
481 ctl &= ~BMCR_PDOWN;
482 cas_phy_write(cp, MII_BMCR, ctl);
483 }
484
485 static void cas_phy_powerdown(struct cas *cp)
486 {
487 u16 ctl = cas_phy_read(cp, MII_BMCR);
488
489 if (ctl & BMCR_PDOWN)
490 return;
491 ctl |= BMCR_PDOWN;
492 cas_phy_write(cp, MII_BMCR, ctl);
493 }
494
495 /* cp->lock held. note: the last put_page will free the buffer */
496 static int cas_page_free(struct cas *cp, cas_page_t *page)
497 {
498 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
499 PCI_DMA_FROMDEVICE);
500 cas_buffer_dec(page);
501 __free_pages(page->buffer, cp->page_order);
502 kfree(page);
503 return 0;
504 }
505
506 #ifdef RX_COUNT_BUFFERS
507 #define RX_USED_ADD(x, y) ((x)->used += (y))
508 #define RX_USED_SET(x, y) ((x)->used = (y))
509 #else
510 #define RX_USED_ADD(x, y)
511 #define RX_USED_SET(x, y)
512 #endif
513
514 /* local page allocation routines for the receive buffers. jumbo pages
515 * require at least 8K contiguous and 8K aligned buffers.
516 */
517 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
518 {
519 cas_page_t *page;
520
521 page = kmalloc(sizeof(cas_page_t), flags);
522 if (!page)
523 return NULL;
524
525 INIT_LIST_HEAD(&page->list);
526 RX_USED_SET(page, 0);
527 page->buffer = alloc_pages(flags, cp->page_order);
528 if (!page->buffer)
529 goto page_err;
530 cas_buffer_init(page);
531 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
532 cp->page_size, PCI_DMA_FROMDEVICE);
533 return page;
534
535 page_err:
536 kfree(page);
537 return NULL;
538 }
539
540 /* initialize spare pool of rx buffers, but allocate during the open */
541 static void cas_spare_init(struct cas *cp)
542 {
543 spin_lock(&cp->rx_inuse_lock);
544 INIT_LIST_HEAD(&cp->rx_inuse_list);
545 spin_unlock(&cp->rx_inuse_lock);
546
547 spin_lock(&cp->rx_spare_lock);
548 INIT_LIST_HEAD(&cp->rx_spare_list);
549 cp->rx_spares_needed = RX_SPARE_COUNT;
550 spin_unlock(&cp->rx_spare_lock);
551 }
552
553 /* used on close. free all the spare buffers. */
554 static void cas_spare_free(struct cas *cp)
555 {
556 struct list_head list, *elem, *tmp;
557
558 /* free spare buffers */
559 INIT_LIST_HEAD(&list);
560 spin_lock(&cp->rx_spare_lock);
561 list_splice(&cp->rx_spare_list, &list);
562 INIT_LIST_HEAD(&cp->rx_spare_list);
563 spin_unlock(&cp->rx_spare_lock);
564 list_for_each_safe(elem, tmp, &list) {
565 cas_page_free(cp, list_entry(elem, cas_page_t, list));
566 }
567
568 INIT_LIST_HEAD(&list);
569 #if 1
570 /*
571 * Looks like Adrian had protected this with a different
572 * lock than used everywhere else to manipulate this list.
573 */
574 spin_lock(&cp->rx_inuse_lock);
575 list_splice(&cp->rx_inuse_list, &list);
576 INIT_LIST_HEAD(&cp->rx_inuse_list);
577 spin_unlock(&cp->rx_inuse_lock);
578 #else
579 spin_lock(&cp->rx_spare_lock);
580 list_splice(&cp->rx_inuse_list, &list);
581 INIT_LIST_HEAD(&cp->rx_inuse_list);
582 spin_unlock(&cp->rx_spare_lock);
583 #endif
584 list_for_each_safe(elem, tmp, &list) {
585 cas_page_free(cp, list_entry(elem, cas_page_t, list));
586 }
587 }
588
589 /* replenish spares if needed */
590 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
591 {
592 struct list_head list, *elem, *tmp;
593 int needed, i;
594
595 /* check inuse list. if we don't need any more free buffers,
596 * just free it
597 */
598
599 /* make a local copy of the list */
600 INIT_LIST_HEAD(&list);
601 spin_lock(&cp->rx_inuse_lock);
602 list_splice(&cp->rx_inuse_list, &list);
603 INIT_LIST_HEAD(&cp->rx_inuse_list);
604 spin_unlock(&cp->rx_inuse_lock);
605
606 list_for_each_safe(elem, tmp, &list) {
607 cas_page_t *page = list_entry(elem, cas_page_t, list);
608
609 if (cas_buffer_count(page) > 1)
610 continue;
611
612 list_del(elem);
613 spin_lock(&cp->rx_spare_lock);
614 if (cp->rx_spares_needed > 0) {
615 list_add(elem, &cp->rx_spare_list);
616 cp->rx_spares_needed--;
617 spin_unlock(&cp->rx_spare_lock);
618 } else {
619 spin_unlock(&cp->rx_spare_lock);
620 cas_page_free(cp, page);
621 }
622 }
623
624 /* put any inuse buffers back on the list */
625 if (!list_empty(&list)) {
626 spin_lock(&cp->rx_inuse_lock);
627 list_splice(&list, &cp->rx_inuse_list);
628 spin_unlock(&cp->rx_inuse_lock);
629 }
630
631 spin_lock(&cp->rx_spare_lock);
632 needed = cp->rx_spares_needed;
633 spin_unlock(&cp->rx_spare_lock);
634 if (!needed)
635 return;
636
637 /* we still need spares, so try to allocate some */
638 INIT_LIST_HEAD(&list);
639 i = 0;
640 while (i < needed) {
641 cas_page_t *spare = cas_page_alloc(cp, flags);
642 if (!spare)
643 break;
644 list_add(&spare->list, &list);
645 i++;
646 }
647
648 spin_lock(&cp->rx_spare_lock);
649 list_splice(&list, &cp->rx_spare_list);
650 cp->rx_spares_needed -= i;
651 spin_unlock(&cp->rx_spare_lock);
652 }
653
654 /* pull a page from the list. */
655 static cas_page_t *cas_page_dequeue(struct cas *cp)
656 {
657 struct list_head *entry;
658 int recover;
659
660 spin_lock(&cp->rx_spare_lock);
661 if (list_empty(&cp->rx_spare_list)) {
662 /* try to do a quick recovery */
663 spin_unlock(&cp->rx_spare_lock);
664 cas_spare_recover(cp, GFP_ATOMIC);
665 spin_lock(&cp->rx_spare_lock);
666 if (list_empty(&cp->rx_spare_list)) {
667 if (netif_msg_rx_err(cp))
668 printk(KERN_ERR "%s: no spare buffers "
669 "available.\n", cp->dev->name);
670 spin_unlock(&cp->rx_spare_lock);
671 return NULL;
672 }
673 }
674
675 entry = cp->rx_spare_list.next;
676 list_del(entry);
677 recover = ++cp->rx_spares_needed;
678 spin_unlock(&cp->rx_spare_lock);
679
680 /* trigger the timer to do the recovery */
681 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
682 #if 1
683 atomic_inc(&cp->reset_task_pending);
684 atomic_inc(&cp->reset_task_pending_spare);
685 schedule_work(&cp->reset_task);
686 #else
687 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
688 schedule_work(&cp->reset_task);
689 #endif
690 }
691 return list_entry(entry, cas_page_t, list);
692 }
693
694
695 static void cas_mif_poll(struct cas *cp, const int enable)
696 {
697 u32 cfg;
698
699 cfg = readl(cp->regs + REG_MIF_CFG);
700 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
701
702 if (cp->phy_type & CAS_PHY_MII_MDIO1)
703 cfg |= MIF_CFG_PHY_SELECT;
704
705 /* poll and interrupt on link status change. */
706 if (enable) {
707 cfg |= MIF_CFG_POLL_EN;
708 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
709 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
710 }
711 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
712 cp->regs + REG_MIF_MASK);
713 writel(cfg, cp->regs + REG_MIF_CFG);
714 }
715
716 /* Must be invoked under cp->lock */
717 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
718 {
719 u16 ctl;
720 #if 1
721 int lcntl;
722 int changed = 0;
723 int oldstate = cp->lstate;
724 int link_was_not_down = !(oldstate == link_down);
725 #endif
726 /* Setup link parameters */
727 if (!ep)
728 goto start_aneg;
729 lcntl = cp->link_cntl;
730 if (ep->autoneg == AUTONEG_ENABLE)
731 cp->link_cntl = BMCR_ANENABLE;
732 else {
733 cp->link_cntl = 0;
734 if (ep->speed == SPEED_100)
735 cp->link_cntl |= BMCR_SPEED100;
736 else if (ep->speed == SPEED_1000)
737 cp->link_cntl |= CAS_BMCR_SPEED1000;
738 if (ep->duplex == DUPLEX_FULL)
739 cp->link_cntl |= BMCR_FULLDPLX;
740 }
741 #if 1
742 changed = (lcntl != cp->link_cntl);
743 #endif
744 start_aneg:
745 if (cp->lstate == link_up) {
746 printk(KERN_INFO "%s: PCS link down.\n",
747 cp->dev->name);
748 } else {
749 if (changed) {
750 printk(KERN_INFO "%s: link configuration changed\n",
751 cp->dev->name);
752 }
753 }
754 cp->lstate = link_down;
755 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
756 if (!cp->hw_running)
757 return;
758 #if 1
759 /*
760 * WTZ: If the old state was link_up, we turn off the carrier
761 * to replicate everything we do elsewhere on a link-down
762 * event when we were already in a link-up state..
763 */
764 if (oldstate == link_up)
765 netif_carrier_off(cp->dev);
766 if (changed && link_was_not_down) {
767 /*
768 * WTZ: This branch will simply schedule a full reset after
769 * we explicitly changed link modes in an ioctl. See if this
770 * fixes the link-problems we were having for forced mode.
771 */
772 atomic_inc(&cp->reset_task_pending);
773 atomic_inc(&cp->reset_task_pending_all);
774 schedule_work(&cp->reset_task);
775 cp->timer_ticks = 0;
776 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
777 return;
778 }
779 #endif
780 if (cp->phy_type & CAS_PHY_SERDES) {
781 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
782
783 if (cp->link_cntl & BMCR_ANENABLE) {
784 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
785 cp->lstate = link_aneg;
786 } else {
787 if (cp->link_cntl & BMCR_FULLDPLX)
788 val |= PCS_MII_CTRL_DUPLEX;
789 val &= ~PCS_MII_AUTONEG_EN;
790 cp->lstate = link_force_ok;
791 }
792 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793 writel(val, cp->regs + REG_PCS_MII_CTRL);
794
795 } else {
796 cas_mif_poll(cp, 0);
797 ctl = cas_phy_read(cp, MII_BMCR);
798 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
799 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
800 ctl |= cp->link_cntl;
801 if (ctl & BMCR_ANENABLE) {
802 ctl |= BMCR_ANRESTART;
803 cp->lstate = link_aneg;
804 } else {
805 cp->lstate = link_force_ok;
806 }
807 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
808 cas_phy_write(cp, MII_BMCR, ctl);
809 cas_mif_poll(cp, 1);
810 }
811
812 cp->timer_ticks = 0;
813 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
814 }
815
816 /* Must be invoked under cp->lock. */
817 static int cas_reset_mii_phy(struct cas *cp)
818 {
819 int limit = STOP_TRIES_PHY;
820 u16 val;
821
822 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
823 udelay(100);
824 while (limit--) {
825 val = cas_phy_read(cp, MII_BMCR);
826 if ((val & BMCR_RESET) == 0)
827 break;
828 udelay(10);
829 }
830 return (limit <= 0);
831 }
832
833 static void cas_saturn_firmware_load(struct cas *cp)
834 {
835 cas_saturn_patch_t *patch = cas_saturn_patch;
836
837 cas_phy_powerdown(cp);
838
839 /* expanded memory access mode */
840 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
841
842 /* pointer configuration for new firmware */
843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
844 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
848 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
849 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
850 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
851
852 /* download new firmware */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
854 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
855 while (patch->addr) {
856 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
857 patch++;
858 }
859
860 /* enable firmware */
861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
862 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
863 }
864
865
866 /* phy initialization */
867 static void cas_phy_init(struct cas *cp)
868 {
869 u16 val;
870
871 /* if we're in MII/GMII mode, set up phy */
872 if (CAS_PHY_MII(cp->phy_type)) {
873 writel(PCS_DATAPATH_MODE_MII,
874 cp->regs + REG_PCS_DATAPATH_MODE);
875
876 cas_mif_poll(cp, 0);
877 cas_reset_mii_phy(cp); /* take out of isolate mode */
878
879 if (PHY_LUCENT_B0 == cp->phy_id) {
880 /* workaround link up/down issue with lucent */
881 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
882 cas_phy_write(cp, MII_BMCR, 0x00f1);
883 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
884
885 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
886 /* workarounds for broadcom phy */
887 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
894 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
895 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
898
899 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
900 val = cas_phy_read(cp, BROADCOM_MII_REG4);
901 val = cas_phy_read(cp, BROADCOM_MII_REG4);
902 if (val & 0x0080) {
903 /* link workaround */
904 cas_phy_write(cp, BROADCOM_MII_REG4,
905 val & ~0x0080);
906 }
907
908 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
909 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
910 SATURN_PCFG_FSI : 0x0,
911 cp->regs + REG_SATURN_PCFG);
912
913 /* load firmware to address 10Mbps auto-negotiation
914 * issue. NOTE: this will need to be changed if the
915 * default firmware gets fixed.
916 */
917 if (PHY_NS_DP83065 == cp->phy_id) {
918 cas_saturn_firmware_load(cp);
919 }
920 cas_phy_powerup(cp);
921 }
922
923 /* advertise capabilities */
924 val = cas_phy_read(cp, MII_BMCR);
925 val &= ~BMCR_ANENABLE;
926 cas_phy_write(cp, MII_BMCR, val);
927 udelay(10);
928
929 cas_phy_write(cp, MII_ADVERTISE,
930 cas_phy_read(cp, MII_ADVERTISE) |
931 (ADVERTISE_10HALF | ADVERTISE_10FULL |
932 ADVERTISE_100HALF | ADVERTISE_100FULL |
933 CAS_ADVERTISE_PAUSE |
934 CAS_ADVERTISE_ASYM_PAUSE));
935
936 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
937 /* make sure that we don't advertise half
938 * duplex to avoid a chip issue
939 */
940 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
941 val &= ~CAS_ADVERTISE_1000HALF;
942 val |= CAS_ADVERTISE_1000FULL;
943 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
944 }
945
946 } else {
947 /* reset pcs for serdes */
948 u32 val;
949 int limit;
950
951 writel(PCS_DATAPATH_MODE_SERDES,
952 cp->regs + REG_PCS_DATAPATH_MODE);
953
954 /* enable serdes pins on saturn */
955 if (cp->cas_flags & CAS_FLAG_SATURN)
956 writel(0, cp->regs + REG_SATURN_PCFG);
957
958 /* Reset PCS unit. */
959 val = readl(cp->regs + REG_PCS_MII_CTRL);
960 val |= PCS_MII_RESET;
961 writel(val, cp->regs + REG_PCS_MII_CTRL);
962
963 limit = STOP_TRIES;
964 while (limit-- > 0) {
965 udelay(10);
966 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
967 PCS_MII_RESET) == 0)
968 break;
969 }
970 if (limit <= 0)
971 printk(KERN_WARNING "%s: PCS reset bit would not "
972 "clear [%08x].\n", cp->dev->name,
973 readl(cp->regs + REG_PCS_STATE_MACHINE));
974
975 /* Make sure PCS is disabled while changing advertisement
976 * configuration.
977 */
978 writel(0x0, cp->regs + REG_PCS_CFG);
979
980 /* Advertise all capabilities except half-duplex. */
981 val = readl(cp->regs + REG_PCS_MII_ADVERT);
982 val &= ~PCS_MII_ADVERT_HD;
983 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
984 PCS_MII_ADVERT_ASYM_PAUSE);
985 writel(val, cp->regs + REG_PCS_MII_ADVERT);
986
987 /* enable PCS */
988 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
989
990 /* pcs workaround: enable sync detect */
991 writel(PCS_SERDES_CTRL_SYNCD_EN,
992 cp->regs + REG_PCS_SERDES_CTRL);
993 }
994 }
995
996
997 static int cas_pcs_link_check(struct cas *cp)
998 {
999 u32 stat, state_machine;
1000 int retval = 0;
1001
1002 /* The link status bit latches on zero, so you must
1003 * read it twice in such a case to see a transition
1004 * to the link being up.
1005 */
1006 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1007 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1008 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1009
1010 /* The remote-fault indication is only valid
1011 * when autoneg has completed.
1012 */
1013 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1014 PCS_MII_STATUS_REMOTE_FAULT)) ==
1015 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1016 if (netif_msg_link(cp))
1017 printk(KERN_INFO "%s: PCS RemoteFault\n",
1018 cp->dev->name);
1019 }
1020
1021 /* work around link detection issue by querying the PCS state
1022 * machine directly.
1023 */
1024 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1025 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1026 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1027 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1028 stat |= PCS_MII_STATUS_LINK_STATUS;
1029 }
1030
1031 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1032 if (cp->lstate != link_up) {
1033 if (cp->opened) {
1034 cp->lstate = link_up;
1035 cp->link_transition = LINK_TRANSITION_LINK_UP;
1036
1037 cas_set_link_modes(cp);
1038 netif_carrier_on(cp->dev);
1039 }
1040 }
1041 } else if (cp->lstate == link_up) {
1042 cp->lstate = link_down;
1043 if (link_transition_timeout != 0 &&
1044 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1045 !cp->link_transition_jiffies_valid) {
1046 /*
1047 * force a reset, as a workaround for the
1048 * link-failure problem. May want to move this to a
1049 * point a bit earlier in the sequence. If we had
1050 * generated a reset a short time ago, we'll wait for
1051 * the link timer to check the status until a
1052 * timer expires (link_transistion_jiffies_valid is
1053 * true when the timer is running.) Instead of using
1054 * a system timer, we just do a check whenever the
1055 * link timer is running - this clears the flag after
1056 * a suitable delay.
1057 */
1058 retval = 1;
1059 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1060 cp->link_transition_jiffies = jiffies;
1061 cp->link_transition_jiffies_valid = 1;
1062 } else {
1063 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1064 }
1065 netif_carrier_off(cp->dev);
1066 if (cp->opened && netif_msg_link(cp)) {
1067 printk(KERN_INFO "%s: PCS link down.\n",
1068 cp->dev->name);
1069 }
1070
1071 /* Cassini only: if you force a mode, there can be
1072 * sync problems on link down. to fix that, the following
1073 * things need to be checked:
1074 * 1) read serialink state register
1075 * 2) read pcs status register to verify link down.
1076 * 3) if link down and serial link == 0x03, then you need
1077 * to global reset the chip.
1078 */
1079 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1080 /* should check to see if we're in a forced mode */
1081 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1082 if (stat == 0x03)
1083 return 1;
1084 }
1085 } else if (cp->lstate == link_down) {
1086 if (link_transition_timeout != 0 &&
1087 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1088 !cp->link_transition_jiffies_valid) {
1089 /* force a reset, as a workaround for the
1090 * link-failure problem. May want to move
1091 * this to a point a bit earlier in the
1092 * sequence.
1093 */
1094 retval = 1;
1095 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1096 cp->link_transition_jiffies = jiffies;
1097 cp->link_transition_jiffies_valid = 1;
1098 } else {
1099 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1100 }
1101 }
1102
1103 return retval;
1104 }
1105
1106 static int cas_pcs_interrupt(struct net_device *dev,
1107 struct cas *cp, u32 status)
1108 {
1109 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1110
1111 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1112 return 0;
1113 return cas_pcs_link_check(cp);
1114 }
1115
1116 static int cas_txmac_interrupt(struct net_device *dev,
1117 struct cas *cp, u32 status)
1118 {
1119 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1120
1121 if (!txmac_stat)
1122 return 0;
1123
1124 if (netif_msg_intr(cp))
1125 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1126 cp->dev->name, txmac_stat);
1127
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1130 */
1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133 return 0;
1134
1135 spin_lock(&cp->stat_lock[0]);
1136 if (txmac_stat & MAC_TX_UNDERRUN) {
1137 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1138 dev->name);
1139 cp->net_stats[0].tx_fifo_errors++;
1140 }
1141
1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1144 dev->name);
1145 cp->net_stats[0].tx_errors++;
1146 }
1147
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1150 */
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1153
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1157 }
1158
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1162 }
1163 spin_unlock(&cp->stat_lock[0]);
1164
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1167 */
1168 return 0;
1169 }
1170
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1172 {
1173 cas_hp_inst_t *inst;
1174 u32 val;
1175 int i;
1176
1177 i = 0;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 ++firmware;
1200 ++i;
1201 }
1202 }
1203
1204 static void cas_init_rx_dma(struct cas *cp)
1205 {
1206 u64 desc_dma = cp->block_dvma;
1207 u32 val;
1208 int i, size;
1209
1210 /* rx free descriptors */
1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1218
1219 val = (unsigned long) cp->init_rxds[0] -
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1228 */
1229 val = (unsigned long) cp->init_rxds[1] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 REG_PLUS_RX_DB1_LOW);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235 REG_PLUS_RX_KICK1);
1236 }
1237
1238 /* rx completion registers */
1239 val = (unsigned long) cp->init_rxcs[0] -
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 /* rx comp 2-4 */
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 val = (unsigned long) cp->init_rxcs[i] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs +
1250 REG_PLUS_RX_CBN_HI(i));
1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 REG_PLUS_RX_CBN_LOW(i));
1253 }
1254 }
1255
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1259 */
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274 }
1275
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289 }
1290
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294
1295 /* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1303
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1308 */
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315 }
1316
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1319 */
1320 writel(0x0, cp->regs + REG_RX_RED);
1321
1322 /* receive page sizes. default == 2K (0x800) */
1323 val = 0;
1324 if (cp->page_size == 0x1000)
1325 val = 0x1;
1326 else if (cp->page_size == 0x2000)
1327 val = 0x2;
1328 else if (cp->page_size == 0x4000)
1329 val = 0x3;
1330
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1335
1336 if (size <= 0x400)
1337 i = 0x0;
1338 else if (size <= 0x800)
1339 i = 0x1;
1340 else if (size <= 0x1000)
1341 i = 0x2;
1342 else
1343 i = 0x3;
1344
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1354 return;
1355
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1360 }
1361
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 {
1364 memset(rxc, 0, sizeof(*rxc));
1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1366 }
1367
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1371 */
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 {
1374 cas_page_t *page = cp->rx_pages[1][index];
1375 cas_page_t *new;
1376
1377 if (cas_buffer_count(page) == 1)
1378 return page;
1379
1380 new = cas_page_dequeue(cp);
1381 if (new) {
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1385 }
1386 return new;
1387 }
1388
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391 const int index)
1392 {
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1395
1396 /* swap if buffer is in use */
1397 if (cas_buffer_count(page0[index]) > 1) {
1398 cas_page_t *new = cas_page_spare(cp, index);
1399 if (new) {
1400 page1[index] = page0[index];
1401 page0[index] = new;
1402 }
1403 }
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1406 }
1407
1408 static void cas_clean_rxds(struct cas *cp)
1409 {
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 int i, size;
1413
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1419 }
1420 }
1421
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 CAS_BASE(RX_INDEX_RING, 0));
1429 }
1430
1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1432 cp->rx_last[0] = 0;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434 }
1435
1436 static void cas_clean_rxcs(struct cas *cp)
1437 {
1438 int i, j;
1439
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1447 }
1448 }
1449 }
1450
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1454 *
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1457 */
1458 static int cas_rxmac_reset(struct cas *cp)
1459 {
1460 struct net_device *dev = cp->dev;
1461 int limit;
1462 u32 val;
1463
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 break;
1469 udelay(10);
1470 }
1471 if (limit == STOP_TRIES) {
1472 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1473 "chip.\n", dev->name);
1474 return 1;
1475 }
1476
1477 /* Second, disable RX DMA. */
1478 writel(0, cp->regs + REG_RX_CFG);
1479 for (limit = 0; limit < STOP_TRIES; limit++) {
1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481 break;
1482 udelay(10);
1483 }
1484 if (limit == STOP_TRIES) {
1485 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1486 "chip.\n", dev->name);
1487 return 1;
1488 }
1489
1490 mdelay(5);
1491
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496 break;
1497 udelay(10);
1498 }
1499 if (limit == STOP_TRIES) {
1500 printk(KERN_ERR "%s: RX reset command will not execute, "
1501 "resetting whole chip.\n", dev->name);
1502 return 1;
1503 }
1504
1505 /* reset driver rx state */
1506 cas_clean_rxds(cp);
1507 cas_clean_rxcs(cp);
1508
1509 /* Now, reprogram the rest of RX unit. */
1510 cas_init_rx_dma(cp);
1511
1512 /* re-enable */
1513 val = readl(cp->regs + REG_RX_CFG);
1514 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516 val = readl(cp->regs + REG_MAC_RX_CFG);
1517 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518 return 0;
1519 }
1520 #endif
1521
1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523 u32 status)
1524 {
1525 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526
1527 if (!stat)
1528 return 0;
1529
1530 if (netif_msg_intr(cp))
1531 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1532 cp->dev->name, stat);
1533
1534 /* these are all rollovers */
1535 spin_lock(&cp->stat_lock[0]);
1536 if (stat & MAC_RX_ALIGN_ERR)
1537 cp->net_stats[0].rx_frame_errors += 0x10000;
1538
1539 if (stat & MAC_RX_CRC_ERR)
1540 cp->net_stats[0].rx_crc_errors += 0x10000;
1541
1542 if (stat & MAC_RX_LEN_ERR)
1543 cp->net_stats[0].rx_length_errors += 0x10000;
1544
1545 if (stat & MAC_RX_OVERFLOW) {
1546 cp->net_stats[0].rx_over_errors++;
1547 cp->net_stats[0].rx_fifo_errors++;
1548 }
1549
1550 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1551 * events.
1552 */
1553 spin_unlock(&cp->stat_lock[0]);
1554 return 0;
1555 }
1556
1557 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1558 u32 status)
1559 {
1560 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1561
1562 if (!stat)
1563 return 0;
1564
1565 if (netif_msg_intr(cp))
1566 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1567 cp->dev->name, stat);
1568
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1572 */
1573 if (stat & MAC_CTRL_PAUSE_STATE)
1574 cp->pause_entered++;
1575
1576 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577 cp->pause_last_time_recvd = (stat >> 16);
1578
1579 return 0;
1580 }
1581
1582
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1585 {
1586 u16 val;
1587
1588 switch (cp->lstate) {
1589 case link_force_ret:
1590 if (netif_msg_link(cp))
1591 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1592 " forced mode\n", cp->dev->name);
1593 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1594 cp->timer_ticks = 5;
1595 cp->lstate = link_force_ok;
1596 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1597 break;
1598
1599 case link_aneg:
1600 val = cas_phy_read(cp, MII_BMCR);
1601
1602 /* Try forced modes. we try things in the following order:
1603 * 1000 full -> 100 full/half -> 10 half
1604 */
1605 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1606 val |= BMCR_FULLDPLX;
1607 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1608 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1609 cas_phy_write(cp, MII_BMCR, val);
1610 cp->timer_ticks = 5;
1611 cp->lstate = link_force_try;
1612 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613 break;
1614
1615 case link_force_try:
1616 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1617 val = cas_phy_read(cp, MII_BMCR);
1618 cp->timer_ticks = 5;
1619 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1620 val &= ~CAS_BMCR_SPEED1000;
1621 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1622 cas_phy_write(cp, MII_BMCR, val);
1623 break;
1624 }
1625
1626 if (val & BMCR_SPEED100) {
1627 if (val & BMCR_FULLDPLX) /* fd failed */
1628 val &= ~BMCR_FULLDPLX;
1629 else { /* 100Mbps failed */
1630 val &= ~BMCR_SPEED100;
1631 }
1632 cas_phy_write(cp, MII_BMCR, val);
1633 break;
1634 }
1635 default:
1636 break;
1637 }
1638 return 0;
1639 }
1640
1641
1642 /* must be invoked with cp->lock held */
1643 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1644 {
1645 int restart;
1646
1647 if (bmsr & BMSR_LSTATUS) {
1648 /* Ok, here we got a link. If we had it due to a forced
1649 * fallback, and we were configured for autoneg, we
1650 * retry a short autoneg pass. If you know your hub is
1651 * broken, use ethtool ;)
1652 */
1653 if ((cp->lstate == link_force_try) &&
1654 (cp->link_cntl & BMCR_ANENABLE)) {
1655 cp->lstate = link_force_ret;
1656 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1657 cas_mif_poll(cp, 0);
1658 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1659 cp->timer_ticks = 5;
1660 if (cp->opened && netif_msg_link(cp))
1661 printk(KERN_INFO "%s: Got link after fallback, retrying"
1662 " autoneg once...\n", cp->dev->name);
1663 cas_phy_write(cp, MII_BMCR,
1664 cp->link_fcntl | BMCR_ANENABLE |
1665 BMCR_ANRESTART);
1666 cas_mif_poll(cp, 1);
1667
1668 } else if (cp->lstate != link_up) {
1669 cp->lstate = link_up;
1670 cp->link_transition = LINK_TRANSITION_LINK_UP;
1671
1672 if (cp->opened) {
1673 cas_set_link_modes(cp);
1674 netif_carrier_on(cp->dev);
1675 }
1676 }
1677 return 0;
1678 }
1679
1680 /* link not up. if the link was previously up, we restart the
1681 * whole process
1682 */
1683 restart = 0;
1684 if (cp->lstate == link_up) {
1685 cp->lstate = link_down;
1686 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1687
1688 netif_carrier_off(cp->dev);
1689 if (cp->opened && netif_msg_link(cp))
1690 printk(KERN_INFO "%s: Link down\n",
1691 cp->dev->name);
1692 restart = 1;
1693
1694 } else if (++cp->timer_ticks > 10)
1695 cas_mdio_link_not_up(cp);
1696
1697 return restart;
1698 }
1699
1700 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1701 u32 status)
1702 {
1703 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1704 u16 bmsr;
1705
1706 /* check for a link change */
1707 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1708 return 0;
1709
1710 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1711 return cas_mii_link_check(cp, bmsr);
1712 }
1713
1714 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1715 u32 status)
1716 {
1717 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1718
1719 if (!stat)
1720 return 0;
1721
1722 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1723 readl(cp->regs + REG_BIM_DIAG));
1724
1725 /* cassini+ has this reserved */
1726 if ((stat & PCI_ERR_BADACK) &&
1727 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1728 printk("<No ACK64# during ABS64 cycle> ");
1729
1730 if (stat & PCI_ERR_DTRTO)
1731 printk("<Delayed transaction timeout> ");
1732 if (stat & PCI_ERR_OTHER)
1733 printk("<other> ");
1734 if (stat & PCI_ERR_BIM_DMA_WRITE)
1735 printk("<BIM DMA 0 write req> ");
1736 if (stat & PCI_ERR_BIM_DMA_READ)
1737 printk("<BIM DMA 0 read req> ");
1738 printk("\n");
1739
1740 if (stat & PCI_ERR_OTHER) {
1741 u16 cfg;
1742
1743 /* Interrogate PCI config space for the
1744 * true cause.
1745 */
1746 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1747 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1748 dev->name, cfg);
1749 if (cfg & PCI_STATUS_PARITY)
1750 printk(KERN_ERR "%s: PCI parity error detected.\n",
1751 dev->name);
1752 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1753 printk(KERN_ERR "%s: PCI target abort.\n",
1754 dev->name);
1755 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1756 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1757 dev->name);
1758 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1759 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1760 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1761 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1762 dev->name);
1763 if (cfg & PCI_STATUS_DETECTED_PARITY)
1764 printk(KERN_ERR "%s: PCI parity error.\n",
1765 dev->name);
1766
1767 /* Write the error bits back to clear them. */
1768 cfg &= (PCI_STATUS_PARITY |
1769 PCI_STATUS_SIG_TARGET_ABORT |
1770 PCI_STATUS_REC_TARGET_ABORT |
1771 PCI_STATUS_REC_MASTER_ABORT |
1772 PCI_STATUS_SIG_SYSTEM_ERROR |
1773 PCI_STATUS_DETECTED_PARITY);
1774 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1775 }
1776
1777 /* For all PCI errors, we should reset the chip. */
1778 return 1;
1779 }
1780
1781 /* All non-normal interrupt conditions get serviced here.
1782 * Returns non-zero if we should just exit the interrupt
1783 * handler right now (ie. if we reset the card which invalidates
1784 * all of the other original irq status bits).
1785 */
1786 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1787 u32 status)
1788 {
1789 if (status & INTR_RX_TAG_ERROR) {
1790 /* corrupt RX tag framing */
1791 if (netif_msg_rx_err(cp))
1792 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1793 cp->dev->name);
1794 spin_lock(&cp->stat_lock[0]);
1795 cp->net_stats[0].rx_errors++;
1796 spin_unlock(&cp->stat_lock[0]);
1797 goto do_reset;
1798 }
1799
1800 if (status & INTR_RX_LEN_MISMATCH) {
1801 /* length mismatch. */
1802 if (netif_msg_rx_err(cp))
1803 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1804 cp->dev->name);
1805 spin_lock(&cp->stat_lock[0]);
1806 cp->net_stats[0].rx_errors++;
1807 spin_unlock(&cp->stat_lock[0]);
1808 goto do_reset;
1809 }
1810
1811 if (status & INTR_PCS_STATUS) {
1812 if (cas_pcs_interrupt(dev, cp, status))
1813 goto do_reset;
1814 }
1815
1816 if (status & INTR_TX_MAC_STATUS) {
1817 if (cas_txmac_interrupt(dev, cp, status))
1818 goto do_reset;
1819 }
1820
1821 if (status & INTR_RX_MAC_STATUS) {
1822 if (cas_rxmac_interrupt(dev, cp, status))
1823 goto do_reset;
1824 }
1825
1826 if (status & INTR_MAC_CTRL_STATUS) {
1827 if (cas_mac_interrupt(dev, cp, status))
1828 goto do_reset;
1829 }
1830
1831 if (status & INTR_MIF_STATUS) {
1832 if (cas_mif_interrupt(dev, cp, status))
1833 goto do_reset;
1834 }
1835
1836 if (status & INTR_PCI_ERROR_STATUS) {
1837 if (cas_pci_interrupt(dev, cp, status))
1838 goto do_reset;
1839 }
1840 return 0;
1841
1842 do_reset:
1843 #if 1
1844 atomic_inc(&cp->reset_task_pending);
1845 atomic_inc(&cp->reset_task_pending_all);
1846 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1847 dev->name, status);
1848 schedule_work(&cp->reset_task);
1849 #else
1850 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1851 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1852 schedule_work(&cp->reset_task);
1853 #endif
1854 return 1;
1855 }
1856
1857 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1858 * determining whether to do a netif_stop/wakeup
1859 */
1860 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1861 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1862 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1863 const int len)
1864 {
1865 unsigned long off = addr + len;
1866
1867 if (CAS_TABORT(cp) == 1)
1868 return 0;
1869 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1870 return 0;
1871 return TX_TARGET_ABORT_LEN;
1872 }
1873
1874 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1875 {
1876 struct cas_tx_desc *txds;
1877 struct sk_buff **skbs;
1878 struct net_device *dev = cp->dev;
1879 int entry, count;
1880
1881 spin_lock(&cp->tx_lock[ring]);
1882 txds = cp->init_txds[ring];
1883 skbs = cp->tx_skbs[ring];
1884 entry = cp->tx_old[ring];
1885
1886 count = TX_BUFF_COUNT(ring, entry, limit);
1887 while (entry != limit) {
1888 struct sk_buff *skb = skbs[entry];
1889 dma_addr_t daddr;
1890 u32 dlen;
1891 int frag;
1892
1893 if (!skb) {
1894 /* this should never occur */
1895 entry = TX_DESC_NEXT(ring, entry);
1896 continue;
1897 }
1898
1899 /* however, we might get only a partial skb release. */
1900 count -= skb_shinfo(skb)->nr_frags +
1901 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1902 if (count < 0)
1903 break;
1904
1905 if (netif_msg_tx_done(cp))
1906 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1907 cp->dev->name, ring, entry);
1908
1909 skbs[entry] = NULL;
1910 cp->tx_tiny_use[ring][entry].nbufs = 0;
1911
1912 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1913 struct cas_tx_desc *txd = txds + entry;
1914
1915 daddr = le64_to_cpu(txd->buffer);
1916 dlen = CAS_VAL(TX_DESC_BUFLEN,
1917 le64_to_cpu(txd->control));
1918 pci_unmap_page(cp->pdev, daddr, dlen,
1919 PCI_DMA_TODEVICE);
1920 entry = TX_DESC_NEXT(ring, entry);
1921
1922 /* tiny buffer may follow */
1923 if (cp->tx_tiny_use[ring][entry].used) {
1924 cp->tx_tiny_use[ring][entry].used = 0;
1925 entry = TX_DESC_NEXT(ring, entry);
1926 }
1927 }
1928
1929 spin_lock(&cp->stat_lock[ring]);
1930 cp->net_stats[ring].tx_packets++;
1931 cp->net_stats[ring].tx_bytes += skb->len;
1932 spin_unlock(&cp->stat_lock[ring]);
1933 dev_kfree_skb_irq(skb);
1934 }
1935 cp->tx_old[ring] = entry;
1936
1937 /* this is wrong for multiple tx rings. the net device needs
1938 * multiple queues for this to do the right thing. we wait
1939 * for 2*packets to be available when using tiny buffers
1940 */
1941 if (netif_queue_stopped(dev) &&
1942 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1943 netif_wake_queue(dev);
1944 spin_unlock(&cp->tx_lock[ring]);
1945 }
1946
1947 static void cas_tx(struct net_device *dev, struct cas *cp,
1948 u32 status)
1949 {
1950 int limit, ring;
1951 #ifdef USE_TX_COMPWB
1952 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1953 #endif
1954 if (netif_msg_intr(cp))
1955 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1956 cp->dev->name, status, (unsigned long long)compwb);
1957 /* process all the rings */
1958 for (ring = 0; ring < N_TX_RINGS; ring++) {
1959 #ifdef USE_TX_COMPWB
1960 /* use the completion writeback registers */
1961 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1962 CAS_VAL(TX_COMPWB_LSB, compwb);
1963 compwb = TX_COMPWB_NEXT(compwb);
1964 #else
1965 limit = readl(cp->regs + REG_TX_COMPN(ring));
1966 #endif
1967 if (cp->tx_old[ring] != limit)
1968 cas_tx_ringN(cp, ring, limit);
1969 }
1970 }
1971
1972
1973 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1974 int entry, const u64 *words,
1975 struct sk_buff **skbref)
1976 {
1977 int dlen, hlen, len, i, alloclen;
1978 int off, swivel = RX_SWIVEL_OFF_VAL;
1979 struct cas_page *page;
1980 struct sk_buff *skb;
1981 void *addr, *crcaddr;
1982 char *p;
1983
1984 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1985 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1986 len = hlen + dlen;
1987
1988 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1989 alloclen = len;
1990 else
1991 alloclen = max(hlen, RX_COPY_MIN);
1992
1993 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1994 if (skb == NULL)
1995 return -1;
1996
1997 *skbref = skb;
1998 skb_reserve(skb, swivel);
1999
2000 p = skb->data;
2001 addr = crcaddr = NULL;
2002 if (hlen) { /* always copy header pages */
2003 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2006 swivel;
2007
2008 i = hlen;
2009 if (!dlen) /* attach FCS */
2010 i += cp->crc_size;
2011 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2012 PCI_DMA_FROMDEVICE);
2013 addr = cas_page_map(page->buffer);
2014 memcpy(p, addr + off, i);
2015 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2017 cas_page_unmap(addr);
2018 RX_USED_ADD(page, 0x100);
2019 p += hlen;
2020 swivel = 0;
2021 }
2022
2023
2024 if (alloclen < (hlen + dlen)) {
2025 skb_frag_t *frag = skb_shinfo(skb)->frags;
2026
2027 /* normal or jumbo packets. we use frags */
2028 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2031
2032 hlen = min(cp->page_size - off, dlen);
2033 if (hlen < 0) {
2034 if (netif_msg_rx_err(cp)) {
2035 printk(KERN_DEBUG "%s: rx page overflow: "
2036 "%d\n", cp->dev->name, hlen);
2037 }
2038 dev_kfree_skb_irq(skb);
2039 return -1;
2040 }
2041 i = hlen;
2042 if (i == dlen) /* attach FCS */
2043 i += cp->crc_size;
2044 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2045 PCI_DMA_FROMDEVICE);
2046
2047 /* make sure we always copy a header */
2048 swivel = 0;
2049 if (p == (char *) skb->data) { /* not split */
2050 addr = cas_page_map(page->buffer);
2051 memcpy(p, addr + off, RX_COPY_MIN);
2052 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2053 PCI_DMA_FROMDEVICE);
2054 cas_page_unmap(addr);
2055 off += RX_COPY_MIN;
2056 swivel = RX_COPY_MIN;
2057 RX_USED_ADD(page, cp->mtu_stride);
2058 } else {
2059 RX_USED_ADD(page, hlen);
2060 }
2061 skb_put(skb, alloclen);
2062
2063 skb_shinfo(skb)->nr_frags++;
2064 skb->data_len += hlen - swivel;
2065 skb->len += hlen - swivel;
2066
2067 get_page(page->buffer);
2068 cas_buffer_inc(page);
2069 frag->page = page->buffer;
2070 frag->page_offset = off;
2071 frag->size = hlen - swivel;
2072
2073 /* any more data? */
2074 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2075 hlen = dlen;
2076 off = 0;
2077
2078 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2081 hlen + cp->crc_size,
2082 PCI_DMA_FROMDEVICE);
2083 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2084 hlen + cp->crc_size,
2085 PCI_DMA_FROMDEVICE);
2086
2087 skb_shinfo(skb)->nr_frags++;
2088 skb->data_len += hlen;
2089 skb->len += hlen;
2090 frag++;
2091
2092 get_page(page->buffer);
2093 cas_buffer_inc(page);
2094 frag->page = page->buffer;
2095 frag->page_offset = 0;
2096 frag->size = hlen;
2097 RX_USED_ADD(page, hlen + cp->crc_size);
2098 }
2099
2100 if (cp->crc_size) {
2101 addr = cas_page_map(page->buffer);
2102 crcaddr = addr + off + hlen;
2103 }
2104
2105 } else {
2106 /* copying packet */
2107 if (!dlen)
2108 goto end_copy_pkt;
2109
2110 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2113 hlen = min(cp->page_size - off, dlen);
2114 if (hlen < 0) {
2115 if (netif_msg_rx_err(cp)) {
2116 printk(KERN_DEBUG "%s: rx page overflow: "
2117 "%d\n", cp->dev->name, hlen);
2118 }
2119 dev_kfree_skb_irq(skb);
2120 return -1;
2121 }
2122 i = hlen;
2123 if (i == dlen) /* attach FCS */
2124 i += cp->crc_size;
2125 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2126 PCI_DMA_FROMDEVICE);
2127 addr = cas_page_map(page->buffer);
2128 memcpy(p, addr + off, i);
2129 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2130 PCI_DMA_FROMDEVICE);
2131 cas_page_unmap(addr);
2132 if (p == (char *) skb->data) /* not split */
2133 RX_USED_ADD(page, cp->mtu_stride);
2134 else
2135 RX_USED_ADD(page, i);
2136
2137 /* any more data? */
2138 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2139 p += hlen;
2140 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2141 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2142 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2143 dlen + cp->crc_size,
2144 PCI_DMA_FROMDEVICE);
2145 addr = cas_page_map(page->buffer);
2146 memcpy(p, addr, dlen + cp->crc_size);
2147 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2148 dlen + cp->crc_size,
2149 PCI_DMA_FROMDEVICE);
2150 cas_page_unmap(addr);
2151 RX_USED_ADD(page, dlen + cp->crc_size);
2152 }
2153 end_copy_pkt:
2154 if (cp->crc_size) {
2155 addr = NULL;
2156 crcaddr = skb->data + alloclen;
2157 }
2158 skb_put(skb, alloclen);
2159 }
2160
2161 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2162 if (cp->crc_size) {
2163 /* checksum includes FCS. strip it out. */
2164 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2165 if (addr)
2166 cas_page_unmap(addr);
2167 }
2168 skb->csum = ntohs(i ^ 0xffff);
2169 skb->ip_summed = CHECKSUM_COMPLETE;
2170 skb->protocol = eth_type_trans(skb, cp->dev);
2171 return len;
2172 }
2173
2174
2175 /* we can handle up to 64 rx flows at a time. we do the same thing
2176 * as nonreassm except that we batch up the buffers.
2177 * NOTE: we currently just treat each flow as a bunch of packets that
2178 * we pass up. a better way would be to coalesce the packets
2179 * into a jumbo packet. to do that, we need to do the following:
2180 * 1) the first packet will have a clean split between header and
2181 * data. save both.
2182 * 2) each time the next flow packet comes in, extend the
2183 * data length and merge the checksums.
2184 * 3) on flow release, fix up the header.
2185 * 4) make sure the higher layer doesn't care.
2186 * because packets get coalesced, we shouldn't run into fragment count
2187 * issues.
2188 */
2189 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2190 struct sk_buff *skb)
2191 {
2192 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2193 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2194
2195 /* this is protected at a higher layer, so no need to
2196 * do any additional locking here. stick the buffer
2197 * at the end.
2198 */
2199 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2200 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2201 while ((skb = __skb_dequeue(flow))) {
2202 cas_skb_release(skb);
2203 }
2204 }
2205 }
2206
2207 /* put rx descriptor back on ring. if a buffer is in use by a higher
2208 * layer, this will need to put in a replacement.
2209 */
2210 static void cas_post_page(struct cas *cp, const int ring, const int index)
2211 {
2212 cas_page_t *new;
2213 int entry;
2214
2215 entry = cp->rx_old[ring];
2216
2217 new = cas_page_swap(cp, ring, index);
2218 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2219 cp->init_rxds[ring][entry].index =
2220 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2221 CAS_BASE(RX_INDEX_RING, ring));
2222
2223 entry = RX_DESC_ENTRY(ring, entry + 1);
2224 cp->rx_old[ring] = entry;
2225
2226 if (entry % 4)
2227 return;
2228
2229 if (ring == 0)
2230 writel(entry, cp->regs + REG_RX_KICK);
2231 else if ((N_RX_DESC_RINGS > 1) &&
2232 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2233 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2234 }
2235
2236
2237 /* only when things are bad */
2238 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2239 {
2240 unsigned int entry, last, count, released;
2241 int cluster;
2242 cas_page_t **page = cp->rx_pages[ring];
2243
2244 entry = cp->rx_old[ring];
2245
2246 if (netif_msg_intr(cp))
2247 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2248 cp->dev->name, ring, entry);
2249
2250 cluster = -1;
2251 count = entry & 0x3;
2252 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2253 released = 0;
2254 while (entry != last) {
2255 /* make a new buffer if it's still in use */
2256 if (cas_buffer_count(page[entry]) > 1) {
2257 cas_page_t *new = cas_page_dequeue(cp);
2258 if (!new) {
2259 /* let the timer know that we need to
2260 * do this again
2261 */
2262 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2263 if (!timer_pending(&cp->link_timer))
2264 mod_timer(&cp->link_timer, jiffies +
2265 CAS_LINK_FAST_TIMEOUT);
2266 cp->rx_old[ring] = entry;
2267 cp->rx_last[ring] = num ? num - released : 0;
2268 return -ENOMEM;
2269 }
2270 spin_lock(&cp->rx_inuse_lock);
2271 list_add(&page[entry]->list, &cp->rx_inuse_list);
2272 spin_unlock(&cp->rx_inuse_lock);
2273 cp->init_rxds[ring][entry].buffer =
2274 cpu_to_le64(new->dma_addr);
2275 page[entry] = new;
2276
2277 }
2278
2279 if (++count == 4) {
2280 cluster = entry;
2281 count = 0;
2282 }
2283 released++;
2284 entry = RX_DESC_ENTRY(ring, entry + 1);
2285 }
2286 cp->rx_old[ring] = entry;
2287
2288 if (cluster < 0)
2289 return 0;
2290
2291 if (ring == 0)
2292 writel(cluster, cp->regs + REG_RX_KICK);
2293 else if ((N_RX_DESC_RINGS > 1) &&
2294 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2295 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2296 return 0;
2297 }
2298
2299
2300 /* process a completion ring. packets are set up in three basic ways:
2301 * small packets: should be copied header + data in single buffer.
2302 * large packets: header and data in a single buffer.
2303 * split packets: header in a separate buffer from data.
2304 * data may be in multiple pages. data may be > 256
2305 * bytes but in a single page.
2306 *
2307 * NOTE: RX page posting is done in this routine as well. while there's
2308 * the capability of using multiple RX completion rings, it isn't
2309 * really worthwhile due to the fact that the page posting will
2310 * force serialization on the single descriptor ring.
2311 */
2312 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2313 {
2314 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2315 int entry, drops;
2316 int npackets = 0;
2317
2318 if (netif_msg_intr(cp))
2319 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2320 cp->dev->name, ring,
2321 readl(cp->regs + REG_RX_COMP_HEAD),
2322 cp->rx_new[ring]);
2323
2324 entry = cp->rx_new[ring];
2325 drops = 0;
2326 while (1) {
2327 struct cas_rx_comp *rxc = rxcs + entry;
2328 struct sk_buff *skb;
2329 int type, len;
2330 u64 words[4];
2331 int i, dring;
2332
2333 words[0] = le64_to_cpu(rxc->word1);
2334 words[1] = le64_to_cpu(rxc->word2);
2335 words[2] = le64_to_cpu(rxc->word3);
2336 words[3] = le64_to_cpu(rxc->word4);
2337
2338 /* don't touch if still owned by hw */
2339 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2340 if (type == 0)
2341 break;
2342
2343 /* hw hasn't cleared the zero bit yet */
2344 if (words[3] & RX_COMP4_ZERO) {
2345 break;
2346 }
2347
2348 /* get info on the packet */
2349 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2350 spin_lock(&cp->stat_lock[ring]);
2351 cp->net_stats[ring].rx_errors++;
2352 if (words[3] & RX_COMP4_LEN_MISMATCH)
2353 cp->net_stats[ring].rx_length_errors++;
2354 if (words[3] & RX_COMP4_BAD)
2355 cp->net_stats[ring].rx_crc_errors++;
2356 spin_unlock(&cp->stat_lock[ring]);
2357
2358 /* We'll just return it to Cassini. */
2359 drop_it:
2360 spin_lock(&cp->stat_lock[ring]);
2361 ++cp->net_stats[ring].rx_dropped;
2362 spin_unlock(&cp->stat_lock[ring]);
2363 goto next;
2364 }
2365
2366 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2367 if (len < 0) {
2368 ++drops;
2369 goto drop_it;
2370 }
2371
2372 /* see if it's a flow re-assembly or not. the driver
2373 * itself handles release back up.
2374 */
2375 if (RX_DONT_BATCH || (type == 0x2)) {
2376 /* non-reassm: these always get released */
2377 cas_skb_release(skb);
2378 } else {
2379 cas_rx_flow_pkt(cp, words, skb);
2380 }
2381
2382 spin_lock(&cp->stat_lock[ring]);
2383 cp->net_stats[ring].rx_packets++;
2384 cp->net_stats[ring].rx_bytes += len;
2385 spin_unlock(&cp->stat_lock[ring]);
2386 cp->dev->last_rx = jiffies;
2387
2388 next:
2389 npackets++;
2390
2391 /* should it be released? */
2392 if (words[0] & RX_COMP1_RELEASE_HDR) {
2393 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2394 dring = CAS_VAL(RX_INDEX_RING, i);
2395 i = CAS_VAL(RX_INDEX_NUM, i);
2396 cas_post_page(cp, dring, i);
2397 }
2398
2399 if (words[0] & RX_COMP1_RELEASE_DATA) {
2400 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2401 dring = CAS_VAL(RX_INDEX_RING, i);
2402 i = CAS_VAL(RX_INDEX_NUM, i);
2403 cas_post_page(cp, dring, i);
2404 }
2405
2406 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2407 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2408 dring = CAS_VAL(RX_INDEX_RING, i);
2409 i = CAS_VAL(RX_INDEX_NUM, i);
2410 cas_post_page(cp, dring, i);
2411 }
2412
2413 /* skip to the next entry */
2414 entry = RX_COMP_ENTRY(ring, entry + 1 +
2415 CAS_VAL(RX_COMP1_SKIP, words[0]));
2416 #ifdef USE_NAPI
2417 if (budget && (npackets >= budget))
2418 break;
2419 #endif
2420 }
2421 cp->rx_new[ring] = entry;
2422
2423 if (drops)
2424 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2425 cp->dev->name);
2426 return npackets;
2427 }
2428
2429
2430 /* put completion entries back on the ring */
2431 static void cas_post_rxcs_ringN(struct net_device *dev,
2432 struct cas *cp, int ring)
2433 {
2434 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2435 int last, entry;
2436
2437 last = cp->rx_cur[ring];
2438 entry = cp->rx_new[ring];
2439 if (netif_msg_intr(cp))
2440 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2441 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2442 entry);
2443
2444 /* zero and re-mark descriptors */
2445 while (last != entry) {
2446 cas_rxc_init(rxc + last);
2447 last = RX_COMP_ENTRY(ring, last + 1);
2448 }
2449 cp->rx_cur[ring] = last;
2450
2451 if (ring == 0)
2452 writel(last, cp->regs + REG_RX_COMP_TAIL);
2453 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2454 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2455 }
2456
2457
2458
2459 /* cassini can use all four PCI interrupts for the completion ring.
2460 * rings 3 and 4 are identical
2461 */
2462 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2463 static inline void cas_handle_irqN(struct net_device *dev,
2464 struct cas *cp, const u32 status,
2465 const int ring)
2466 {
2467 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2468 cas_post_rxcs_ringN(dev, cp, ring);
2469 }
2470
2471 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2472 {
2473 struct net_device *dev = dev_id;
2474 struct cas *cp = netdev_priv(dev);
2475 unsigned long flags;
2476 int ring;
2477 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2478
2479 /* check for shared irq */
2480 if (status == 0)
2481 return IRQ_NONE;
2482
2483 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2484 spin_lock_irqsave(&cp->lock, flags);
2485 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2486 #ifdef USE_NAPI
2487 cas_mask_intr(cp);
2488 netif_rx_schedule(dev);
2489 #else
2490 cas_rx_ringN(cp, ring, 0);
2491 #endif
2492 status &= ~INTR_RX_DONE_ALT;
2493 }
2494
2495 if (status)
2496 cas_handle_irqN(dev, cp, status, ring);
2497 spin_unlock_irqrestore(&cp->lock, flags);
2498 return IRQ_HANDLED;
2499 }
2500 #endif
2501
2502 #ifdef USE_PCI_INTB
2503 /* everything but rx packets */
2504 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2505 {
2506 if (status & INTR_RX_BUF_UNAVAIL_1) {
2507 /* Frame arrived, no free RX buffers available.
2508 * NOTE: we can get this on a link transition. */
2509 cas_post_rxds_ringN(cp, 1, 0);
2510 spin_lock(&cp->stat_lock[1]);
2511 cp->net_stats[1].rx_dropped++;
2512 spin_unlock(&cp->stat_lock[1]);
2513 }
2514
2515 if (status & INTR_RX_BUF_AE_1)
2516 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2517 RX_AE_FREEN_VAL(1));
2518
2519 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2520 cas_post_rxcs_ringN(cp, 1);
2521 }
2522
2523 /* ring 2 handles a few more events than 3 and 4 */
2524 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2525 {
2526 struct net_device *dev = dev_id;
2527 struct cas *cp = netdev_priv(dev);
2528 unsigned long flags;
2529 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2530
2531 /* check for shared interrupt */
2532 if (status == 0)
2533 return IRQ_NONE;
2534
2535 spin_lock_irqsave(&cp->lock, flags);
2536 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2537 #ifdef USE_NAPI
2538 cas_mask_intr(cp);
2539 netif_rx_schedule(dev);
2540 #else
2541 cas_rx_ringN(cp, 1, 0);
2542 #endif
2543 status &= ~INTR_RX_DONE_ALT;
2544 }
2545 if (status)
2546 cas_handle_irq1(cp, status);
2547 spin_unlock_irqrestore(&cp->lock, flags);
2548 return IRQ_HANDLED;
2549 }
2550 #endif
2551
2552 static inline void cas_handle_irq(struct net_device *dev,
2553 struct cas *cp, const u32 status)
2554 {
2555 /* housekeeping interrupts */
2556 if (status & INTR_ERROR_MASK)
2557 cas_abnormal_irq(dev, cp, status);
2558
2559 if (status & INTR_RX_BUF_UNAVAIL) {
2560 /* Frame arrived, no free RX buffers available.
2561 * NOTE: we can get this on a link transition.
2562 */
2563 cas_post_rxds_ringN(cp, 0, 0);
2564 spin_lock(&cp->stat_lock[0]);
2565 cp->net_stats[0].rx_dropped++;
2566 spin_unlock(&cp->stat_lock[0]);
2567 } else if (status & INTR_RX_BUF_AE) {
2568 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2569 RX_AE_FREEN_VAL(0));
2570 }
2571
2572 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2573 cas_post_rxcs_ringN(dev, cp, 0);
2574 }
2575
2576 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2577 {
2578 struct net_device *dev = dev_id;
2579 struct cas *cp = netdev_priv(dev);
2580 unsigned long flags;
2581 u32 status = readl(cp->regs + REG_INTR_STATUS);
2582
2583 if (status == 0)
2584 return IRQ_NONE;
2585
2586 spin_lock_irqsave(&cp->lock, flags);
2587 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2588 cas_tx(dev, cp, status);
2589 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2590 }
2591
2592 if (status & INTR_RX_DONE) {
2593 #ifdef USE_NAPI
2594 cas_mask_intr(cp);
2595 netif_rx_schedule(dev);
2596 #else
2597 cas_rx_ringN(cp, 0, 0);
2598 #endif
2599 status &= ~INTR_RX_DONE;
2600 }
2601
2602 if (status)
2603 cas_handle_irq(dev, cp, status);
2604 spin_unlock_irqrestore(&cp->lock, flags);
2605 return IRQ_HANDLED;
2606 }
2607
2608
2609 #ifdef USE_NAPI
2610 static int cas_poll(struct net_device *dev, int *budget)
2611 {
2612 struct cas *cp = netdev_priv(dev);
2613 int i, enable_intr, todo, credits;
2614 u32 status = readl(cp->regs + REG_INTR_STATUS);
2615 unsigned long flags;
2616
2617 spin_lock_irqsave(&cp->lock, flags);
2618 cas_tx(dev, cp, status);
2619 spin_unlock_irqrestore(&cp->lock, flags);
2620
2621 /* NAPI rx packets. we spread the credits across all of the
2622 * rxc rings
2623 */
2624 todo = min(*budget, dev->quota);
2625
2626 /* to make sure we're fair with the work we loop through each
2627 * ring N_RX_COMP_RING times with a request of
2628 * todo / N_RX_COMP_RINGS
2629 */
2630 enable_intr = 1;
2631 credits = 0;
2632 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2633 int j;
2634 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2635 credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2636 if (credits >= todo) {
2637 enable_intr = 0;
2638 goto rx_comp;
2639 }
2640 }
2641 }
2642
2643 rx_comp:
2644 *budget -= credits;
2645 dev->quota -= credits;
2646
2647 /* final rx completion */
2648 spin_lock_irqsave(&cp->lock, flags);
2649 if (status)
2650 cas_handle_irq(dev, cp, status);
2651
2652 #ifdef USE_PCI_INTB
2653 if (N_RX_COMP_RINGS > 1) {
2654 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2655 if (status)
2656 cas_handle_irq1(dev, cp, status);
2657 }
2658 #endif
2659
2660 #ifdef USE_PCI_INTC
2661 if (N_RX_COMP_RINGS > 2) {
2662 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2663 if (status)
2664 cas_handle_irqN(dev, cp, status, 2);
2665 }
2666 #endif
2667
2668 #ifdef USE_PCI_INTD
2669 if (N_RX_COMP_RINGS > 3) {
2670 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2671 if (status)
2672 cas_handle_irqN(dev, cp, status, 3);
2673 }
2674 #endif
2675 spin_unlock_irqrestore(&cp->lock, flags);
2676 if (enable_intr) {
2677 netif_rx_complete(dev);
2678 cas_unmask_intr(cp);
2679 return 0;
2680 }
2681 return 1;
2682 }
2683 #endif
2684
2685 #ifdef CONFIG_NET_POLL_CONTROLLER
2686 static void cas_netpoll(struct net_device *dev)
2687 {
2688 struct cas *cp = netdev_priv(dev);
2689
2690 cas_disable_irq(cp, 0);
2691 cas_interrupt(cp->pdev->irq, dev);
2692 cas_enable_irq(cp, 0);
2693
2694 #ifdef USE_PCI_INTB
2695 if (N_RX_COMP_RINGS > 1) {
2696 /* cas_interrupt1(); */
2697 }
2698 #endif
2699 #ifdef USE_PCI_INTC
2700 if (N_RX_COMP_RINGS > 2) {
2701 /* cas_interruptN(); */
2702 }
2703 #endif
2704 #ifdef USE_PCI_INTD
2705 if (N_RX_COMP_RINGS > 3) {
2706 /* cas_interruptN(); */
2707 }
2708 #endif
2709 }
2710 #endif
2711
2712 static void cas_tx_timeout(struct net_device *dev)
2713 {
2714 struct cas *cp = netdev_priv(dev);
2715
2716 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2717 if (!cp->hw_running) {
2718 printk("%s: hrm.. hw not running!\n", dev->name);
2719 return;
2720 }
2721
2722 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2723 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2724
2725 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2726 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2727
2728 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2729 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2730 dev->name,
2731 readl(cp->regs + REG_TX_CFG),
2732 readl(cp->regs + REG_MAC_TX_STATUS),
2733 readl(cp->regs + REG_MAC_TX_CFG),
2734 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2735 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2736 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2737 readl(cp->regs + REG_TX_SM_1),
2738 readl(cp->regs + REG_TX_SM_2));
2739
2740 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2741 dev->name,
2742 readl(cp->regs + REG_RX_CFG),
2743 readl(cp->regs + REG_MAC_RX_STATUS),
2744 readl(cp->regs + REG_MAC_RX_CFG));
2745
2746 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2747 dev->name,
2748 readl(cp->regs + REG_HP_STATE_MACHINE),
2749 readl(cp->regs + REG_HP_STATUS0),
2750 readl(cp->regs + REG_HP_STATUS1),
2751 readl(cp->regs + REG_HP_STATUS2));
2752
2753 #if 1
2754 atomic_inc(&cp->reset_task_pending);
2755 atomic_inc(&cp->reset_task_pending_all);
2756 schedule_work(&cp->reset_task);
2757 #else
2758 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2759 schedule_work(&cp->reset_task);
2760 #endif
2761 }
2762
2763 static inline int cas_intme(int ring, int entry)
2764 {
2765 /* Algorithm: IRQ every 1/2 of descriptors. */
2766 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2767 return 1;
2768 return 0;
2769 }
2770
2771
2772 static void cas_write_txd(struct cas *cp, int ring, int entry,
2773 dma_addr_t mapping, int len, u64 ctrl, int last)
2774 {
2775 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2776
2777 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2778 if (cas_intme(ring, entry))
2779 ctrl |= TX_DESC_INTME;
2780 if (last)
2781 ctrl |= TX_DESC_EOF;
2782 txd->control = cpu_to_le64(ctrl);
2783 txd->buffer = cpu_to_le64(mapping);
2784 }
2785
2786 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2787 const int entry)
2788 {
2789 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2790 }
2791
2792 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2793 const int entry, const int tentry)
2794 {
2795 cp->tx_tiny_use[ring][tentry].nbufs++;
2796 cp->tx_tiny_use[ring][entry].used = 1;
2797 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2798 }
2799
2800 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2801 struct sk_buff *skb)
2802 {
2803 struct net_device *dev = cp->dev;
2804 int entry, nr_frags, frag, tabort, tentry;
2805 dma_addr_t mapping;
2806 unsigned long flags;
2807 u64 ctrl;
2808 u32 len;
2809
2810 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2811
2812 /* This is a hard error, log it. */
2813 if (TX_BUFFS_AVAIL(cp, ring) <=
2814 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2815 netif_stop_queue(dev);
2816 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2817 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2818 "queue awake!\n", dev->name);
2819 return 1;
2820 }
2821
2822 ctrl = 0;
2823 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2824 u64 csum_start_off, csum_stuff_off;
2825
2826 csum_start_off = (u64) (skb->h.raw - skb->data);
2827 csum_stuff_off = csum_start_off + skb->csum_offset;
2828
2829 ctrl = TX_DESC_CSUM_EN |
2830 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2831 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2832 }
2833
2834 entry = cp->tx_new[ring];
2835 cp->tx_skbs[ring][entry] = skb;
2836
2837 nr_frags = skb_shinfo(skb)->nr_frags;
2838 len = skb_headlen(skb);
2839 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2840 offset_in_page(skb->data), len,
2841 PCI_DMA_TODEVICE);
2842
2843 tentry = entry;
2844 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2845 if (unlikely(tabort)) {
2846 /* NOTE: len is always > tabort */
2847 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2848 ctrl | TX_DESC_SOF, 0);
2849 entry = TX_DESC_NEXT(ring, entry);
2850
2851 memcpy(tx_tiny_buf(cp, ring, entry), skb->data +
2852 len - tabort, tabort);
2853 mapping = tx_tiny_map(cp, ring, entry, tentry);
2854 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2855 (nr_frags == 0));
2856 } else {
2857 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2858 TX_DESC_SOF, (nr_frags == 0));
2859 }
2860 entry = TX_DESC_NEXT(ring, entry);
2861
2862 for (frag = 0; frag < nr_frags; frag++) {
2863 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2864
2865 len = fragp->size;
2866 mapping = pci_map_page(cp->pdev, fragp->page,
2867 fragp->page_offset, len,
2868 PCI_DMA_TODEVICE);
2869
2870 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2871 if (unlikely(tabort)) {
2872 void *addr;
2873
2874 /* NOTE: len is always > tabort */
2875 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2876 ctrl, 0);
2877 entry = TX_DESC_NEXT(ring, entry);
2878
2879 addr = cas_page_map(fragp->page);
2880 memcpy(tx_tiny_buf(cp, ring, entry),
2881 addr + fragp->page_offset + len - tabort,
2882 tabort);
2883 cas_page_unmap(addr);
2884 mapping = tx_tiny_map(cp, ring, entry, tentry);
2885 len = tabort;
2886 }
2887
2888 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2889 (frag + 1 == nr_frags));
2890 entry = TX_DESC_NEXT(ring, entry);
2891 }
2892
2893 cp->tx_new[ring] = entry;
2894 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2895 netif_stop_queue(dev);
2896
2897 if (netif_msg_tx_queued(cp))
2898 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2899 "avail %d\n",
2900 dev->name, ring, entry, skb->len,
2901 TX_BUFFS_AVAIL(cp, ring));
2902 writel(entry, cp->regs + REG_TX_KICKN(ring));
2903 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2904 return 0;
2905 }
2906
2907 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2908 {
2909 struct cas *cp = netdev_priv(dev);
2910
2911 /* this is only used as a load-balancing hint, so it doesn't
2912 * need to be SMP safe
2913 */
2914 static int ring;
2915
2916 if (skb_padto(skb, cp->min_frame_size))
2917 return 0;
2918
2919 /* XXX: we need some higher-level QoS hooks to steer packets to
2920 * individual queues.
2921 */
2922 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2923 return 1;
2924 dev->trans_start = jiffies;
2925 return 0;
2926 }
2927
2928 static void cas_init_tx_dma(struct cas *cp)
2929 {
2930 u64 desc_dma = cp->block_dvma;
2931 unsigned long off;
2932 u32 val;
2933 int i;
2934
2935 /* set up tx completion writeback registers. must be 8-byte aligned */
2936 #ifdef USE_TX_COMPWB
2937 off = offsetof(struct cas_init_block, tx_compwb);
2938 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2939 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2940 #endif
2941
2942 /* enable completion writebacks, enable paced mode,
2943 * disable read pipe, and disable pre-interrupt compwbs
2944 */
2945 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2946 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2947 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2948 TX_CFG_INTR_COMPWB_DIS;
2949
2950 /* write out tx ring info and tx desc bases */
2951 for (i = 0; i < MAX_TX_RINGS; i++) {
2952 off = (unsigned long) cp->init_txds[i] -
2953 (unsigned long) cp->init_block;
2954
2955 val |= CAS_TX_RINGN_BASE(i);
2956 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2957 writel((desc_dma + off) & 0xffffffff, cp->regs +
2958 REG_TX_DBN_LOW(i));
2959 /* don't zero out the kick register here as the system
2960 * will wedge
2961 */
2962 }
2963 writel(val, cp->regs + REG_TX_CFG);
2964
2965 /* program max burst sizes. these numbers should be different
2966 * if doing QoS.
2967 */
2968 #ifdef USE_QOS
2969 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2970 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2971 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2972 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2973 #else
2974 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2975 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2976 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2977 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2978 #endif
2979 }
2980
2981 /* Must be invoked under cp->lock. */
2982 static inline void cas_init_dma(struct cas *cp)
2983 {
2984 cas_init_tx_dma(cp);
2985 cas_init_rx_dma(cp);
2986 }
2987
2988 /* Must be invoked under cp->lock. */
2989 static u32 cas_setup_multicast(struct cas *cp)
2990 {
2991 u32 rxcfg = 0;
2992 int i;
2993
2994 if (cp->dev->flags & IFF_PROMISC) {
2995 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2996
2997 } else if (cp->dev->flags & IFF_ALLMULTI) {
2998 for (i=0; i < 16; i++)
2999 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3000 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3001
3002 } else {
3003 u16 hash_table[16];
3004 u32 crc;
3005 struct dev_mc_list *dmi = cp->dev->mc_list;
3006 int i;
3007
3008 /* use the alternate mac address registers for the
3009 * first 15 multicast addresses
3010 */
3011 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3012 if (!dmi) {
3013 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3014 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3015 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3016 continue;
3017 }
3018 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3019 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3020 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3021 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3022 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3023 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3024 dmi = dmi->next;
3025 }
3026
3027 /* use hw hash table for the next series of
3028 * multicast addresses
3029 */
3030 memset(hash_table, 0, sizeof(hash_table));
3031 while (dmi) {
3032 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3033 crc >>= 24;
3034 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3035 dmi = dmi->next;
3036 }
3037 for (i=0; i < 16; i++)
3038 writel(hash_table[i], cp->regs +
3039 REG_MAC_HASH_TABLEN(i));
3040 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3041 }
3042
3043 return rxcfg;
3044 }
3045
3046 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3047 static void cas_clear_mac_err(struct cas *cp)
3048 {
3049 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3050 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3051 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3052 writel(0, cp->regs + REG_MAC_COLL_LATE);
3053 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3054 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3055 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3056 writel(0, cp->regs + REG_MAC_LEN_ERR);
3057 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3058 writel(0, cp->regs + REG_MAC_FCS_ERR);
3059 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3060 }
3061
3062
3063 static void cas_mac_reset(struct cas *cp)
3064 {
3065 int i;
3066
3067 /* do both TX and RX reset */
3068 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3069 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3070
3071 /* wait for TX */
3072 i = STOP_TRIES;
3073 while (i-- > 0) {
3074 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3075 break;
3076 udelay(10);
3077 }
3078
3079 /* wait for RX */
3080 i = STOP_TRIES;
3081 while (i-- > 0) {
3082 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3083 break;
3084 udelay(10);
3085 }
3086
3087 if (readl(cp->regs + REG_MAC_TX_RESET) |
3088 readl(cp->regs + REG_MAC_RX_RESET))
3089 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3090 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3091 readl(cp->regs + REG_MAC_RX_RESET),
3092 readl(cp->regs + REG_MAC_STATE_MACHINE));
3093 }
3094
3095
3096 /* Must be invoked under cp->lock. */
3097 static void cas_init_mac(struct cas *cp)
3098 {
3099 unsigned char *e = &cp->dev->dev_addr[0];
3100 int i;
3101 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3102 u32 rxcfg;
3103 #endif
3104 cas_mac_reset(cp);
3105
3106 /* setup core arbitration weight register */
3107 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3108
3109 /* XXX Use pci_dma_burst_advice() */
3110 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3111 /* set the infinite burst register for chips that don't have
3112 * pci issues.
3113 */
3114 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3115 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3116 #endif
3117
3118 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3119
3120 writel(0x00, cp->regs + REG_MAC_IPG0);
3121 writel(0x08, cp->regs + REG_MAC_IPG1);
3122 writel(0x04, cp->regs + REG_MAC_IPG2);
3123
3124 /* change later for 802.3z */
3125 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3126
3127 /* min frame + FCS */
3128 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3129
3130 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3131 * specify the maximum frame size to prevent RX tag errors on
3132 * oversized frames.
3133 */
3134 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3135 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3136 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3137 cp->regs + REG_MAC_FRAMESIZE_MAX);
3138
3139 /* NOTE: crc_size is used as a surrogate for half-duplex.
3140 * workaround saturn half-duplex issue by increasing preamble
3141 * size to 65 bytes.
3142 */
3143 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3144 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3145 else
3146 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3147 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3148 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3149 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3150
3151 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3152
3153 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3154 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3155 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3156 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3157 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3158
3159 /* setup mac address in perfect filter array */
3160 for (i = 0; i < 45; i++)
3161 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3162
3163 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3164 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3165 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3166
3167 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3168 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3169 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3170
3171 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3172 cp->mac_rx_cfg = cas_setup_multicast(cp);
3173 #else
3174 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3175 * a writel does not seem to be necessary because Cassini
3176 * seems to preserve the configuration when we do the reset.
3177 * If the chip is in trouble, though, it is not clear if we
3178 * can really count on this behavior. cas_set_multicast uses
3179 * spin_lock_irqsave, but we are called only in cas_init_hw and
3180 * cas_init_hw is protected by cas_lock_all, which calls
3181 * spin_lock_irq (so it doesn't need to save the flags, and
3182 * we should be OK for the writel, as that is the only
3183 * difference).
3184 */
3185 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3186 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3187 #endif
3188 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3189 cas_clear_mac_err(cp);
3190 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3191
3192 /* Setup MAC interrupts. We want to get all of the interesting
3193 * counter expiration events, but we do not want to hear about
3194 * normal rx/tx as the DMA engine tells us that.
3195 */
3196 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3197 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3198
3199 /* Don't enable even the PAUSE interrupts for now, we
3200 * make no use of those events other than to record them.
3201 */
3202 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3203 }
3204
3205 /* Must be invoked under cp->lock. */
3206 static void cas_init_pause_thresholds(struct cas *cp)
3207 {
3208 /* Calculate pause thresholds. Setting the OFF threshold to the
3209 * full RX fifo size effectively disables PAUSE generation
3210 */
3211 if (cp->rx_fifo_size <= (2 * 1024)) {
3212 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3213 } else {
3214 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3215 if (max_frame * 3 > cp->rx_fifo_size) {
3216 cp->rx_pause_off = 7104;
3217 cp->rx_pause_on = 960;
3218 } else {
3219 int off = (cp->rx_fifo_size - (max_frame * 2));
3220 int on = off - max_frame;
3221 cp->rx_pause_off = off;
3222 cp->rx_pause_on = on;
3223 }
3224 }
3225 }
3226
3227 static int cas_vpd_match(const void __iomem *p, const char *str)
3228 {
3229 int len = strlen(str) + 1;
3230 int i;
3231
3232 for (i = 0; i < len; i++) {
3233 if (readb(p + i) != str[i])
3234 return 0;
3235 }
3236 return 1;
3237 }
3238
3239
3240 /* get the mac address by reading the vpd information in the rom.
3241 * also get the phy type and determine if there's an entropy generator.
3242 * NOTE: this is a bit convoluted for the following reasons:
3243 * 1) vpd info has order-dependent mac addresses for multinic cards
3244 * 2) the only way to determine the nic order is to use the slot
3245 * number.
3246 * 3) fiber cards don't have bridges, so their slot numbers don't
3247 * mean anything.
3248 * 4) we don't actually know we have a fiber card until after
3249 * the mac addresses are parsed.
3250 */
3251 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3252 const int offset)
3253 {
3254 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3255 void __iomem *base, *kstart;
3256 int i, len;
3257 int found = 0;
3258 #define VPD_FOUND_MAC 0x01
3259 #define VPD_FOUND_PHY 0x02
3260
3261 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3262 int mac_off = 0;
3263
3264 /* give us access to the PROM */
3265 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3266 cp->regs + REG_BIM_LOCAL_DEV_EN);
3267
3268 /* check for an expansion rom */
3269 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3270 goto use_random_mac_addr;
3271
3272 /* search for beginning of vpd */
3273 base = NULL;
3274 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3275 /* check for PCIR */
3276 if ((readb(p + i + 0) == 0x50) &&
3277 (readb(p + i + 1) == 0x43) &&
3278 (readb(p + i + 2) == 0x49) &&
3279 (readb(p + i + 3) == 0x52)) {
3280 base = p + (readb(p + i + 8) |
3281 (readb(p + i + 9) << 8));
3282 break;
3283 }
3284 }
3285
3286 if (!base || (readb(base) != 0x82))
3287 goto use_random_mac_addr;
3288
3289 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3290 while (i < EXPANSION_ROM_SIZE) {
3291 if (readb(base + i) != 0x90) /* no vpd found */
3292 goto use_random_mac_addr;
3293
3294 /* found a vpd field */
3295 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3296
3297 /* extract keywords */
3298 kstart = base + i + 3;
3299 p = kstart;
3300 while ((p - kstart) < len) {
3301 int klen = readb(p + 2);
3302 int j;
3303 char type;
3304
3305 p += 3;
3306
3307 /* look for the following things:
3308 * -- correct length == 29
3309 * 3 (type) + 2 (size) +
3310 * 18 (strlen("local-mac-address") + 1) +
3311 * 6 (mac addr)
3312 * -- VPD Instance 'I'
3313 * -- VPD Type Bytes 'B'
3314 * -- VPD data length == 6
3315 * -- property string == local-mac-address
3316 *
3317 * -- correct length == 24
3318 * 3 (type) + 2 (size) +
3319 * 12 (strlen("entropy-dev") + 1) +
3320 * 7 (strlen("vms110") + 1)
3321 * -- VPD Instance 'I'
3322 * -- VPD Type String 'B'
3323 * -- VPD data length == 7
3324 * -- property string == entropy-dev
3325 *
3326 * -- correct length == 18
3327 * 3 (type) + 2 (size) +
3328 * 9 (strlen("phy-type") + 1) +
3329 * 4 (strlen("pcs") + 1)
3330 * -- VPD Instance 'I'
3331 * -- VPD Type String 'S'
3332 * -- VPD data length == 4
3333 * -- property string == phy-type
3334 *
3335 * -- correct length == 23
3336 * 3 (type) + 2 (size) +
3337 * 14 (strlen("phy-interface") + 1) +
3338 * 4 (strlen("pcs") + 1)
3339 * -- VPD Instance 'I'
3340 * -- VPD Type String 'S'
3341 * -- VPD data length == 4
3342 * -- property string == phy-interface
3343 */
3344 if (readb(p) != 'I')
3345 goto next;
3346
3347 /* finally, check string and length */
3348 type = readb(p + 3);
3349 if (type == 'B') {
3350 if ((klen == 29) && readb(p + 4) == 6 &&
3351 cas_vpd_match(p + 5,
3352 "local-mac-address")) {
3353 if (mac_off++ > offset)
3354 goto next;
3355
3356 /* set mac address */
3357 for (j = 0; j < 6; j++)
3358 dev_addr[j] =
3359 readb(p + 23 + j);
3360 goto found_mac;
3361 }
3362 }
3363
3364 if (type != 'S')
3365 goto next;
3366
3367 #ifdef USE_ENTROPY_DEV
3368 if ((klen == 24) &&
3369 cas_vpd_match(p + 5, "entropy-dev") &&
3370 cas_vpd_match(p + 17, "vms110")) {
3371 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3372 goto next;
3373 }
3374 #endif
3375
3376 if (found & VPD_FOUND_PHY)
3377 goto next;
3378
3379 if ((klen == 18) && readb(p + 4) == 4 &&
3380 cas_vpd_match(p + 5, "phy-type")) {
3381 if (cas_vpd_match(p + 14, "pcs")) {
3382 phy_type = CAS_PHY_SERDES;
3383 goto found_phy;
3384 }
3385 }
3386
3387 if ((klen == 23) && readb(p + 4) == 4 &&
3388 cas_vpd_match(p + 5, "phy-interface")) {
3389 if (cas_vpd_match(p + 19, "pcs")) {
3390 phy_type = CAS_PHY_SERDES;
3391 goto found_phy;
3392 }
3393 }
3394 found_mac:
3395 found |= VPD_FOUND_MAC;
3396 goto next;
3397
3398 found_phy:
3399 found |= VPD_FOUND_PHY;
3400
3401 next:
3402 p += klen;
3403 }
3404 i += len + 3;
3405 }
3406
3407 use_random_mac_addr:
3408 if (found & VPD_FOUND_MAC)
3409 goto done;
3410
3411 /* Sun MAC prefix then 3 random bytes. */
3412 printk(PFX "MAC address not found in ROM VPD\n");
3413 dev_addr[0] = 0x08;
3414 dev_addr[1] = 0x00;
3415 dev_addr[2] = 0x20;
3416 get_random_bytes(dev_addr + 3, 3);
3417
3418 done:
3419 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3420 return phy_type;
3421 }
3422
3423 /* check pci invariants */
3424 static void cas_check_pci_invariants(struct cas *cp)
3425 {
3426 struct pci_dev *pdev = cp->pdev;
3427 u8 rev;
3428
3429 cp->cas_flags = 0;
3430 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3431 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3432 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3433 if (rev >= CAS_ID_REVPLUS)
3434 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3435 if (rev < CAS_ID_REVPLUS02u)
3436 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3437
3438 /* Original Cassini supports HW CSUM, but it's not
3439 * enabled by default as it can trigger TX hangs.
3440 */
3441 if (rev < CAS_ID_REV2)
3442 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3443 } else {
3444 /* Only sun has original cassini chips. */
3445 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3446
3447 /* We use a flag because the same phy might be externally
3448 * connected.
3449 */
3450 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3451 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3452 cp->cas_flags |= CAS_FLAG_SATURN;
3453 }
3454 }
3455
3456
3457 static int cas_check_invariants(struct cas *cp)
3458 {
3459 struct pci_dev *pdev = cp->pdev;
3460 u32 cfg;
3461 int i;
3462
3463 /* get page size for rx buffers. */
3464 cp->page_order = 0;
3465 #ifdef USE_PAGE_ORDER
3466 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3467 /* see if we can allocate larger pages */
3468 struct page *page = alloc_pages(GFP_ATOMIC,
3469 CAS_JUMBO_PAGE_SHIFT -
3470 PAGE_SHIFT);
3471 if (page) {
3472 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3473 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3474 } else {
3475 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3476 }
3477 }
3478 #endif
3479 cp->page_size = (PAGE_SIZE << cp->page_order);
3480
3481 /* Fetch the FIFO configurations. */
3482 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3483 cp->rx_fifo_size = RX_FIFO_SIZE;
3484
3485 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3486 * they're both connected.
3487 */
3488 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3489 PCI_SLOT(pdev->devfn));
3490 if (cp->phy_type & CAS_PHY_SERDES) {
3491 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3492 return 0; /* no more checking needed */
3493 }
3494
3495 /* MII */
3496 cfg = readl(cp->regs + REG_MIF_CFG);
3497 if (cfg & MIF_CFG_MDIO_1) {
3498 cp->phy_type = CAS_PHY_MII_MDIO1;
3499 } else if (cfg & MIF_CFG_MDIO_0) {
3500 cp->phy_type = CAS_PHY_MII_MDIO0;
3501 }
3502
3503 cas_mif_poll(cp, 0);
3504 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3505
3506 for (i = 0; i < 32; i++) {
3507 u32 phy_id;
3508 int j;
3509
3510 for (j = 0; j < 3; j++) {
3511 cp->phy_addr = i;
3512 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3513 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3514 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3515 cp->phy_id = phy_id;
3516 goto done;
3517 }
3518 }
3519 }
3520 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3521 readl(cp->regs + REG_MIF_STATE_MACHINE));
3522 return -1;
3523
3524 done:
3525 /* see if we can do gigabit */
3526 cfg = cas_phy_read(cp, MII_BMSR);
3527 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3528 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3529 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3530 return 0;
3531 }
3532
3533 /* Must be invoked under cp->lock. */
3534 static inline void cas_start_dma(struct cas *cp)
3535 {
3536 int i;
3537 u32 val;
3538 int txfailed = 0;
3539
3540 /* enable dma */
3541 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3542 writel(val, cp->regs + REG_TX_CFG);
3543 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3544 writel(val, cp->regs + REG_RX_CFG);
3545
3546 /* enable the mac */
3547 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3548 writel(val, cp->regs + REG_MAC_TX_CFG);
3549 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3550 writel(val, cp->regs + REG_MAC_RX_CFG);
3551
3552 i = STOP_TRIES;
3553 while (i-- > 0) {
3554 val = readl(cp->regs + REG_MAC_TX_CFG);
3555 if ((val & MAC_TX_CFG_EN))
3556 break;
3557 udelay(10);
3558 }
3559 if (i < 0) txfailed = 1;
3560 i = STOP_TRIES;
3561 while (i-- > 0) {
3562 val = readl(cp->regs + REG_MAC_RX_CFG);
3563 if ((val & MAC_RX_CFG_EN)) {
3564 if (txfailed) {
3565 printk(KERN_ERR
3566 "%s: enabling mac failed [tx:%08x:%08x].\n",
3567 cp->dev->name,
3568 readl(cp->regs + REG_MIF_STATE_MACHINE),
3569 readl(cp->regs + REG_MAC_STATE_MACHINE));
3570 }
3571 goto enable_rx_done;
3572 }
3573 udelay(10);
3574 }
3575 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3576 cp->dev->name,
3577 (txfailed? "tx,rx":"rx"),
3578 readl(cp->regs + REG_MIF_STATE_MACHINE),
3579 readl(cp->regs + REG_MAC_STATE_MACHINE));
3580
3581 enable_rx_done:
3582 cas_unmask_intr(cp); /* enable interrupts */
3583 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3584 writel(0, cp->regs + REG_RX_COMP_TAIL);
3585
3586 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3587 if (N_RX_DESC_RINGS > 1)
3588 writel(RX_DESC_RINGN_SIZE(1) - 4,
3589 cp->regs + REG_PLUS_RX_KICK1);
3590
3591 for (i = 1; i < N_RX_COMP_RINGS; i++)
3592 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3593 }
3594 }
3595
3596 /* Must be invoked under cp->lock. */
3597 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3598 int *pause)
3599 {
3600 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3601 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3602 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3603 if (val & PCS_MII_LPA_ASYM_PAUSE)
3604 *pause |= 0x10;
3605 *spd = 1000;
3606 }
3607
3608 /* Must be invoked under cp->lock. */
3609 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3610 int *pause)
3611 {
3612 u32 val;
3613
3614 *fd = 0;
3615 *spd = 10;
3616 *pause = 0;
3617
3618 /* use GMII registers */
3619 val = cas_phy_read(cp, MII_LPA);
3620 if (val & CAS_LPA_PAUSE)
3621 *pause = 0x01;
3622
3623 if (val & CAS_LPA_ASYM_PAUSE)
3624 *pause |= 0x10;
3625
3626 if (val & LPA_DUPLEX)
3627 *fd = 1;
3628 if (val & LPA_100)
3629 *spd = 100;
3630
3631 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3632 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3633 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3634 *spd = 1000;
3635 if (val & CAS_LPA_1000FULL)
3636 *fd = 1;
3637 }
3638 }
3639
3640 /* A link-up condition has occurred, initialize and enable the
3641 * rest of the chip.
3642 *
3643 * Must be invoked under cp->lock.
3644 */
3645 static void cas_set_link_modes(struct cas *cp)
3646 {
3647 u32 val;
3648 int full_duplex, speed, pause;
3649
3650 full_duplex = 0;
3651 speed = 10;
3652 pause = 0;
3653
3654 if (CAS_PHY_MII(cp->phy_type)) {
3655 cas_mif_poll(cp, 0);
3656 val = cas_phy_read(cp, MII_BMCR);
3657 if (val & BMCR_ANENABLE) {
3658 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3659 &pause);
3660 } else {
3661 if (val & BMCR_FULLDPLX)
3662 full_duplex = 1;
3663
3664 if (val & BMCR_SPEED100)
3665 speed = 100;
3666 else if (val & CAS_BMCR_SPEED1000)
3667 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3668 1000 : 100;
3669 }
3670 cas_mif_poll(cp, 1);
3671
3672 } else {
3673 val = readl(cp->regs + REG_PCS_MII_CTRL);
3674 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3675 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3676 if (val & PCS_MII_CTRL_DUPLEX)
3677 full_duplex = 1;
3678 }
3679 }
3680
3681 if (netif_msg_link(cp))
3682 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3683 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3684
3685 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3686 if (CAS_PHY_MII(cp->phy_type)) {
3687 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3688 if (!full_duplex)
3689 val |= MAC_XIF_DISABLE_ECHO;
3690 }
3691 if (full_duplex)
3692 val |= MAC_XIF_FDPLX_LED;
3693 if (speed == 1000)
3694 val |= MAC_XIF_GMII_MODE;
3695 writel(val, cp->regs + REG_MAC_XIF_CFG);
3696
3697 /* deal with carrier and collision detect. */
3698 val = MAC_TX_CFG_IPG_EN;
3699 if (full_duplex) {
3700 val |= MAC_TX_CFG_IGNORE_CARRIER;
3701 val |= MAC_TX_CFG_IGNORE_COLL;
3702 } else {
3703 #ifndef USE_CSMA_CD_PROTO
3704 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3705 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3706 #endif
3707 }
3708 /* val now set up for REG_MAC_TX_CFG */
3709
3710 /* If gigabit and half-duplex, enable carrier extension
3711 * mode. increase slot time to 512 bytes as well.
3712 * else, disable it and make sure slot time is 64 bytes.
3713 * also activate checksum bug workaround
3714 */
3715 if ((speed == 1000) && !full_duplex) {
3716 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3717 cp->regs + REG_MAC_TX_CFG);
3718
3719 val = readl(cp->regs + REG_MAC_RX_CFG);
3720 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3721 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3722 cp->regs + REG_MAC_RX_CFG);
3723
3724 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3725
3726 cp->crc_size = 4;
3727 /* minimum size gigabit frame at half duplex */
3728 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3729
3730 } else {
3731 writel(val, cp->regs + REG_MAC_TX_CFG);
3732
3733 /* checksum bug workaround. don't strip FCS when in
3734 * half-duplex mode
3735 */
3736 val = readl(cp->regs + REG_MAC_RX_CFG);
3737 if (full_duplex) {
3738 val |= MAC_RX_CFG_STRIP_FCS;
3739 cp->crc_size = 0;
3740 cp->min_frame_size = CAS_MIN_MTU;
3741 } else {
3742 val &= ~MAC_RX_CFG_STRIP_FCS;
3743 cp->crc_size = 4;
3744 cp->min_frame_size = CAS_MIN_FRAME;
3745 }
3746 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3747 cp->regs + REG_MAC_RX_CFG);
3748 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3749 }
3750
3751 if (netif_msg_link(cp)) {
3752 if (pause & 0x01) {
3753 printk(KERN_INFO "%s: Pause is enabled "
3754 "(rxfifo: %d off: %d on: %d)\n",
3755 cp->dev->name,
3756 cp->rx_fifo_size,
3757 cp->rx_pause_off,
3758 cp->rx_pause_on);
3759 } else if (pause & 0x10) {
3760 printk(KERN_INFO "%s: TX pause enabled\n",
3761 cp->dev->name);
3762 } else {
3763 printk(KERN_INFO "%s: Pause is disabled\n",
3764 cp->dev->name);
3765 }
3766 }
3767
3768 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3769 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3770 if (pause) { /* symmetric or asymmetric pause */
3771 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3772 if (pause & 0x01) { /* symmetric pause */
3773 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3774 }
3775 }
3776 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3777 cas_start_dma(cp);
3778 }
3779
3780 /* Must be invoked under cp->lock. */
3781 static void cas_init_hw(struct cas *cp, int restart_link)
3782 {
3783 if (restart_link)
3784 cas_phy_init(cp);
3785
3786 cas_init_pause_thresholds(cp);
3787 cas_init_mac(cp);
3788 cas_init_dma(cp);
3789
3790 if (restart_link) {
3791 /* Default aneg parameters */
3792 cp->timer_ticks = 0;
3793 cas_begin_auto_negotiation(cp, NULL);
3794 } else if (cp->lstate == link_up) {
3795 cas_set_link_modes(cp);
3796 netif_carrier_on(cp->dev);
3797 }
3798 }
3799
3800 /* Must be invoked under cp->lock. on earlier cassini boards,
3801 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3802 * let it settle out, and then restore pci state.
3803 */
3804 static void cas_hard_reset(struct cas *cp)
3805 {
3806 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3807 udelay(20);
3808 pci_restore_state(cp->pdev);
3809 }
3810
3811
3812 static void cas_global_reset(struct cas *cp, int blkflag)
3813 {
3814 int limit;
3815
3816 /* issue a global reset. don't use RSTOUT. */
3817 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3818 /* For PCS, when the blkflag is set, we should set the
3819 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3820 * the last autonegotiation from being cleared. We'll
3821 * need some special handling if the chip is set into a
3822 * loopback mode.
3823 */
3824 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3825 cp->regs + REG_SW_RESET);
3826 } else {
3827 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3828 }
3829
3830 /* need to wait at least 3ms before polling register */
3831 mdelay(3);
3832
3833 limit = STOP_TRIES;
3834 while (limit-- > 0) {
3835 u32 val = readl(cp->regs + REG_SW_RESET);
3836 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3837 goto done;
3838 udelay(10);
3839 }
3840 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3841
3842 done:
3843 /* enable various BIM interrupts */
3844 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3845 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3846
3847 /* clear out pci error status mask for handled errors.
3848 * we don't deal with DMA counter overflows as they happen
3849 * all the time.
3850 */
3851 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3852 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3853 PCI_ERR_BIM_DMA_READ), cp->regs +
3854 REG_PCI_ERR_STATUS_MASK);
3855
3856 /* set up for MII by default to address mac rx reset timeout
3857 * issue
3858 */
3859 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3860 }
3861
3862 static void cas_reset(struct cas *cp, int blkflag)
3863 {
3864 u32 val;
3865
3866 cas_mask_intr(cp);
3867 cas_global_reset(cp, blkflag);
3868 cas_mac_reset(cp);
3869 cas_entropy_reset(cp);
3870
3871 /* disable dma engines. */
3872 val = readl(cp->regs + REG_TX_CFG);
3873 val &= ~TX_CFG_DMA_EN;
3874 writel(val, cp->regs + REG_TX_CFG);
3875
3876 val = readl(cp->regs + REG_RX_CFG);
3877 val &= ~RX_CFG_DMA_EN;
3878 writel(val, cp->regs + REG_RX_CFG);
3879
3880 /* program header parser */
3881 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3882 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3883 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3884 } else {
3885 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3886 }
3887
3888 /* clear out error registers */
3889 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3890 cas_clear_mac_err(cp);
3891 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3892 }
3893
3894 /* Shut down the chip, must be called with pm_mutex held. */
3895 static void cas_shutdown(struct cas *cp)
3896 {
3897 unsigned long flags;
3898
3899 /* Make us not-running to avoid timers respawning */
3900 cp->hw_running = 0;
3901
3902 del_timer_sync(&cp->link_timer);
3903
3904 /* Stop the reset task */
3905 #if 0
3906 while (atomic_read(&cp->reset_task_pending_mtu) ||
3907 atomic_read(&cp->reset_task_pending_spare) ||
3908 atomic_read(&cp->reset_task_pending_all))
3909 schedule();
3910
3911 #else
3912 while (atomic_read(&cp->reset_task_pending))
3913 schedule();
3914 #endif
3915 /* Actually stop the chip */
3916 cas_lock_all_save(cp, flags);
3917 cas_reset(cp, 0);
3918 if (cp->cas_flags & CAS_FLAG_SATURN)
3919 cas_phy_powerdown(cp);
3920 cas_unlock_all_restore(cp, flags);
3921 }
3922
3923 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3924 {
3925 struct cas *cp = netdev_priv(dev);
3926
3927 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3928 return -EINVAL;
3929
3930 dev->mtu = new_mtu;
3931 if (!netif_running(dev) || !netif_device_present(dev))
3932 return 0;
3933
3934 /* let the reset task handle it */
3935 #if 1
3936 atomic_inc(&cp->reset_task_pending);
3937 if ((cp->phy_type & CAS_PHY_SERDES)) {
3938 atomic_inc(&cp->reset_task_pending_all);
3939 } else {
3940 atomic_inc(&cp->reset_task_pending_mtu);
3941 }
3942 schedule_work(&cp->reset_task);
3943 #else
3944 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3945 CAS_RESET_ALL : CAS_RESET_MTU);
3946 printk(KERN_ERR "reset called in cas_change_mtu\n");
3947 schedule_work(&cp->reset_task);
3948 #endif
3949
3950 flush_scheduled_work();
3951 return 0;
3952 }
3953
3954 static void cas_clean_txd(struct cas *cp, int ring)
3955 {
3956 struct cas_tx_desc *txd = cp->init_txds[ring];
3957 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3958 u64 daddr, dlen;
3959 int i, size;
3960
3961 size = TX_DESC_RINGN_SIZE(ring);
3962 for (i = 0; i < size; i++) {
3963 int frag;
3964
3965 if (skbs[i] == NULL)
3966 continue;
3967
3968 skb = skbs[i];
3969 skbs[i] = NULL;
3970
3971 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3972 int ent = i & (size - 1);
3973
3974 /* first buffer is never a tiny buffer and so
3975 * needs to be unmapped.
3976 */
3977 daddr = le64_to_cpu(txd[ent].buffer);
3978 dlen = CAS_VAL(TX_DESC_BUFLEN,
3979 le64_to_cpu(txd[ent].control));
3980 pci_unmap_page(cp->pdev, daddr, dlen,
3981 PCI_DMA_TODEVICE);
3982
3983 if (frag != skb_shinfo(skb)->nr_frags) {
3984 i++;
3985
3986 /* next buffer might by a tiny buffer.
3987 * skip past it.
3988 */
3989 ent = i & (size - 1);
3990 if (cp->tx_tiny_use[ring][ent].used)
3991 i++;
3992 }
3993 }
3994 dev_kfree_skb_any(skb);
3995 }
3996
3997 /* zero out tiny buf usage */
3998 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3999 }
4000
4001 /* freed on close */
4002 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4003 {
4004 cas_page_t **page = cp->rx_pages[ring];
4005 int i, size;
4006
4007 size = RX_DESC_RINGN_SIZE(ring);
4008 for (i = 0; i < size; i++) {
4009 if (page[i]) {
4010 cas_page_free(cp, page[i]);
4011 page[i] = NULL;
4012 }
4013 }
4014 }
4015
4016 static void cas_free_rxds(struct cas *cp)
4017 {
4018 int i;
4019
4020 for (i = 0; i < N_RX_DESC_RINGS; i++)
4021 cas_free_rx_desc(cp, i);
4022 }
4023
4024 /* Must be invoked under cp->lock. */
4025 static void cas_clean_rings(struct cas *cp)
4026 {
4027 int i;
4028
4029 /* need to clean all tx rings */
4030 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4031 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4032 for (i = 0; i < N_TX_RINGS; i++)
4033 cas_clean_txd(cp, i);
4034
4035 /* zero out init block */
4036 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4037 cas_clean_rxds(cp);
4038 cas_clean_rxcs(cp);
4039 }
4040
4041 /* allocated on open */
4042 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4043 {
4044 cas_page_t **page = cp->rx_pages[ring];
4045 int size, i = 0;
4046
4047 size = RX_DESC_RINGN_SIZE(ring);
4048 for (i = 0; i < size; i++) {
4049 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4050 return -1;
4051 }
4052 return 0;
4053 }
4054
4055 static int cas_alloc_rxds(struct cas *cp)
4056 {
4057 int i;
4058
4059 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4060 if (cas_alloc_rx_desc(cp, i) < 0) {
4061 cas_free_rxds(cp);
4062 return -1;
4063 }
4064 }
4065 return 0;
4066 }
4067
4068 static void cas_reset_task(struct work_struct *work)
4069 {
4070 struct cas *cp = container_of(work, struct cas, reset_task);
4071 #if 0
4072 int pending = atomic_read(&cp->reset_task_pending);
4073 #else
4074 int pending_all = atomic_read(&cp->reset_task_pending_all);
4075 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4076 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4077
4078 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4079 /* We can have more tasks scheduled than actually
4080 * needed.
4081 */
4082 atomic_dec(&cp->reset_task_pending);
4083 return;
4084 }
4085 #endif
4086 /* The link went down, we reset the ring, but keep
4087 * DMA stopped. Use this function for reset
4088 * on error as well.
4089 */
4090 if (cp->hw_running) {
4091 unsigned long flags;
4092
4093 /* Make sure we don't get interrupts or tx packets */
4094 netif_device_detach(cp->dev);
4095 cas_lock_all_save(cp, flags);
4096
4097 if (cp->opened) {
4098 /* We call cas_spare_recover when we call cas_open.
4099 * but we do not initialize the lists cas_spare_recover
4100 * uses until cas_open is called.
4101 */
4102 cas_spare_recover(cp, GFP_ATOMIC);
4103 }
4104 #if 1
4105 /* test => only pending_spare set */
4106 if (!pending_all && !pending_mtu)
4107 goto done;
4108 #else
4109 if (pending == CAS_RESET_SPARE)
4110 goto done;
4111 #endif
4112 /* when pending == CAS_RESET_ALL, the following
4113 * call to cas_init_hw will restart auto negotiation.
4114 * Setting the second argument of cas_reset to
4115 * !(pending == CAS_RESET_ALL) will set this argument
4116 * to 1 (avoiding reinitializing the PHY for the normal
4117 * PCS case) when auto negotiation is not restarted.
4118 */
4119 #if 1
4120 cas_reset(cp, !(pending_all > 0));
4121 if (cp->opened)
4122 cas_clean_rings(cp);
4123 cas_init_hw(cp, (pending_all > 0));
4124 #else
4125 cas_reset(cp, !(pending == CAS_RESET_ALL));
4126 if (cp->opened)
4127 cas_clean_rings(cp);
4128 cas_init_hw(cp, pending == CAS_RESET_ALL);
4129 #endif
4130
4131 done:
4132 cas_unlock_all_restore(cp, flags);
4133 netif_device_attach(cp->dev);
4134 }
4135 #if 1
4136 atomic_sub(pending_all, &cp->reset_task_pending_all);
4137 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4138 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4139 atomic_dec(&cp->reset_task_pending);
4140 #else
4141 atomic_set(&cp->reset_task_pending, 0);
4142 #endif
4143 }
4144
4145 static void cas_link_timer(unsigned long data)
4146 {
4147 struct cas *cp = (struct cas *) data;
4148 int mask, pending = 0, reset = 0;
4149 unsigned long flags;
4150
4151 if (link_transition_timeout != 0 &&
4152 cp->link_transition_jiffies_valid &&
4153 ((jiffies - cp->link_transition_jiffies) >
4154 (link_transition_timeout))) {
4155 /* One-second counter so link-down workaround doesn't
4156 * cause resets to occur so fast as to fool the switch
4157 * into thinking the link is down.
4158 */
4159 cp->link_transition_jiffies_valid = 0;
4160 }
4161
4162 if (!cp->hw_running)
4163 return;
4164
4165 spin_lock_irqsave(&cp->lock, flags);
4166 cas_lock_tx(cp);
4167 cas_entropy_gather(cp);
4168
4169 /* If the link task is still pending, we just
4170 * reschedule the link timer
4171 */
4172 #if 1
4173 if (atomic_read(&cp->reset_task_pending_all) ||
4174 atomic_read(&cp->reset_task_pending_spare) ||
4175 atomic_read(&cp->reset_task_pending_mtu))
4176 goto done;
4177 #else
4178 if (atomic_read(&cp->reset_task_pending))
4179 goto done;
4180 #endif
4181
4182 /* check for rx cleaning */
4183 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4184 int i, rmask;
4185
4186 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4187 rmask = CAS_FLAG_RXD_POST(i);
4188 if ((mask & rmask) == 0)
4189 continue;
4190
4191 /* post_rxds will do a mod_timer */
4192 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4193 pending = 1;
4194 continue;
4195 }
4196 cp->cas_flags &= ~rmask;
4197 }
4198 }
4199
4200 if (CAS_PHY_MII(cp->phy_type)) {
4201 u16 bmsr;
4202 cas_mif_poll(cp, 0);
4203 bmsr = cas_phy_read(cp, MII_BMSR);
4204 /* WTZ: Solaris driver reads this twice, but that
4205 * may be due to the PCS case and the use of a
4206 * common implementation. Read it twice here to be
4207 * safe.
4208 */
4209 bmsr = cas_phy_read(cp, MII_BMSR);
4210 cas_mif_poll(cp, 1);
4211 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4212 reset = cas_mii_link_check(cp, bmsr);
4213 } else {
4214 reset = cas_pcs_link_check(cp);
4215 }
4216
4217 if (reset)
4218 goto done;
4219
4220 /* check for tx state machine confusion */
4221 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4222 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4223 u32 wptr, rptr;
4224 int tlm = CAS_VAL(MAC_SM_TLM, val);
4225
4226 if (((tlm == 0x5) || (tlm == 0x3)) &&
4227 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4228 if (netif_msg_tx_err(cp))
4229 printk(KERN_DEBUG "%s: tx err: "
4230 "MAC_STATE[%08x]\n",
4231 cp->dev->name, val);
4232 reset = 1;
4233 goto done;
4234 }
4235
4236 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4237 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4238 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4239 if ((val == 0) && (wptr != rptr)) {
4240 if (netif_msg_tx_err(cp))
4241 printk(KERN_DEBUG "%s: tx err: "
4242 "TX_FIFO[%08x:%08x:%08x]\n",
4243 cp->dev->name, val, wptr, rptr);
4244 reset = 1;
4245 }
4246
4247 if (reset)
4248 cas_hard_reset(cp);
4249 }
4250
4251 done:
4252 if (reset) {
4253 #if 1
4254 atomic_inc(&cp->reset_task_pending);
4255 atomic_inc(&cp->reset_task_pending_all);
4256 schedule_work(&cp->reset_task);
4257 #else
4258 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4259 printk(KERN_ERR "reset called in cas_link_timer\n");
4260 schedule_work(&cp->reset_task);
4261 #endif
4262 }
4263
4264 if (!pending)
4265 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4266 cas_unlock_tx(cp);
4267 spin_unlock_irqrestore(&cp->lock, flags);
4268 }
4269
4270 /* tiny buffers are used to avoid target abort issues with
4271 * older cassini's
4272 */
4273 static void cas_tx_tiny_free(struct cas *cp)
4274 {
4275 struct pci_dev *pdev = cp->pdev;
4276 int i;
4277
4278 for (i = 0; i < N_TX_RINGS; i++) {
4279 if (!cp->tx_tiny_bufs[i])
4280 continue;
4281
4282 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4283 cp->tx_tiny_bufs[i],
4284 cp->tx_tiny_dvma[i]);
4285 cp->tx_tiny_bufs[i] = NULL;
4286 }
4287 }
4288
4289 static int cas_tx_tiny_alloc(struct cas *cp)
4290 {
4291 struct pci_dev *pdev = cp->pdev;
4292 int i;
4293
4294 for (i = 0; i < N_TX_RINGS; i++) {
4295 cp->tx_tiny_bufs[i] =
4296 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4297 &cp->tx_tiny_dvma[i]);
4298 if (!cp->tx_tiny_bufs[i]) {
4299 cas_tx_tiny_free(cp);
4300 return -1;
4301 }
4302 }
4303 return 0;
4304 }
4305
4306
4307 static int cas_open(struct net_device *dev)
4308 {
4309 struct cas *cp = netdev_priv(dev);
4310 int hw_was_up, err;
4311 unsigned long flags;
4312
4313 mutex_lock(&cp->pm_mutex);
4314
4315 hw_was_up = cp->hw_running;
4316
4317 /* The power-management mutex protects the hw_running
4318 * etc. state so it is safe to do this bit without cp->lock
4319 */
4320 if (!cp->hw_running) {
4321 /* Reset the chip */
4322 cas_lock_all_save(cp, flags);
4323 /* We set the second arg to cas_reset to zero
4324 * because cas_init_hw below will have its second
4325 * argument set to non-zero, which will force
4326 * autonegotiation to start.
4327 */
4328 cas_reset(cp, 0);
4329 cp->hw_running = 1;
4330 cas_unlock_all_restore(cp, flags);
4331 }
4332
4333 if (cas_tx_tiny_alloc(cp) < 0)
4334 return -ENOMEM;
4335
4336 /* alloc rx descriptors */
4337 err = -ENOMEM;
4338 if (cas_alloc_rxds(cp) < 0)
4339 goto err_tx_tiny;
4340
4341 /* allocate spares */
4342 cas_spare_init(cp);
4343 cas_spare_recover(cp, GFP_KERNEL);
4344
4345 /* We can now request the interrupt as we know it's masked
4346 * on the controller. cassini+ has up to 4 interrupts
4347 * that can be used, but you need to do explicit pci interrupt
4348 * mapping to expose them
4349 */
4350 if (request_irq(cp->pdev->irq, cas_interrupt,
4351 IRQF_SHARED, dev->name, (void *) dev)) {
4352 printk(KERN_ERR "%s: failed to request irq !\n",
4353 cp->dev->name);
4354 err = -EAGAIN;
4355 goto err_spare;
4356 }
4357
4358 /* init hw */
4359 cas_lock_all_save(cp, flags);
4360 cas_clean_rings(cp);
4361 cas_init_hw(cp, !hw_was_up);
4362 cp->opened = 1;
4363 cas_unlock_all_restore(cp, flags);
4364
4365 netif_start_queue(dev);
4366 mutex_unlock(&cp->pm_mutex);
4367 return 0;
4368
4369 err_spare:
4370 cas_spare_free(cp);
4371 cas_free_rxds(cp);
4372 err_tx_tiny:
4373 cas_tx_tiny_free(cp);
4374 mutex_unlock(&cp->pm_mutex);
4375 return err;
4376 }
4377
4378 static int cas_close(struct net_device *dev)
4379 {
4380 unsigned long flags;
4381 struct cas *cp = netdev_priv(dev);
4382
4383 /* Make sure we don't get distracted by suspend/resume */
4384 mutex_lock(&cp->pm_mutex);
4385
4386 netif_stop_queue(dev);
4387
4388 /* Stop traffic, mark us closed */
4389 cas_lock_all_save(cp, flags);
4390 cp->opened = 0;
4391 cas_reset(cp, 0);
4392 cas_phy_init(cp);
4393 cas_begin_auto_negotiation(cp, NULL);
4394 cas_clean_rings(cp);
4395 cas_unlock_all_restore(cp, flags);
4396
4397 free_irq(cp->pdev->irq, (void *) dev);
4398 cas_spare_free(cp);
4399 cas_free_rxds(cp);
4400 cas_tx_tiny_free(cp);
4401 mutex_unlock(&cp->pm_mutex);
4402 return 0;
4403 }
4404
4405 static struct {
4406 const char name[ETH_GSTRING_LEN];
4407 } ethtool_cassini_statnames[] = {
4408 {"collisions"},
4409 {"rx_bytes"},
4410 {"rx_crc_errors"},
4411 {"rx_dropped"},
4412 {"rx_errors"},
4413 {"rx_fifo_errors"},
4414 {"rx_frame_errors"},
4415 {"rx_length_errors"},
4416 {"rx_over_errors"},
4417 {"rx_packets"},
4418 {"tx_aborted_errors"},
4419 {"tx_bytes"},
4420 {"tx_dropped"},
4421 {"tx_errors"},
4422 {"tx_fifo_errors"},
4423 {"tx_packets"}
4424 };
4425 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4426
4427 static struct {
4428 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4429 } ethtool_register_table[] = {
4430 {-MII_BMSR},
4431 {-MII_BMCR},
4432 {REG_CAWR},
4433 {REG_INF_BURST},
4434 {REG_BIM_CFG},
4435 {REG_RX_CFG},
4436 {REG_HP_CFG},
4437 {REG_MAC_TX_CFG},
4438 {REG_MAC_RX_CFG},
4439 {REG_MAC_CTRL_CFG},
4440 {REG_MAC_XIF_CFG},
4441 {REG_MIF_CFG},
4442 {REG_PCS_CFG},
4443 {REG_SATURN_PCFG},
4444 {REG_PCS_MII_STATUS},
4445 {REG_PCS_STATE_MACHINE},
4446 {REG_MAC_COLL_EXCESS},
4447 {REG_MAC_COLL_LATE}
4448 };
4449 #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4450 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4451
4452 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4453 {
4454 u8 *p;
4455 int i;
4456 unsigned long flags;
4457
4458 spin_lock_irqsave(&cp->lock, flags);
4459 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4460 u16 hval;
4461 u32 val;
4462 if (ethtool_register_table[i].offsets < 0) {
4463 hval = cas_phy_read(cp,
4464 -ethtool_register_table[i].offsets);
4465 val = hval;
4466 } else {
4467 val= readl(cp->regs+ethtool_register_table[i].offsets);
4468 }
4469 memcpy(p, (u8 *)&val, sizeof(u32));
4470 }
4471 spin_unlock_irqrestore(&cp->lock, flags);
4472 }
4473
4474 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4475 {
4476 struct cas *cp = netdev_priv(dev);
4477 struct net_device_stats *stats = cp->net_stats;
4478 unsigned long flags;
4479 int i;
4480 unsigned long tmp;
4481
4482 /* we collate all of the stats into net_stats[N_TX_RING] */
4483 if (!cp->hw_running)
4484 return stats + N_TX_RINGS;
4485
4486 /* collect outstanding stats */
4487 /* WTZ: the Cassini spec gives these as 16 bit counters but
4488 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4489 * in case the chip somehow puts any garbage in the other bits.
4490 * Also, counter usage didn't seem to mach what Adrian did
4491 * in the parts of the code that set these quantities. Made
4492 * that consistent.
4493 */
4494 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4495 stats[N_TX_RINGS].rx_crc_errors +=
4496 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4497 stats[N_TX_RINGS].rx_frame_errors +=
4498 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4499 stats[N_TX_RINGS].rx_length_errors +=
4500 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4501 #if 1
4502 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4503 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4504 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4505 stats[N_TX_RINGS].collisions +=
4506 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4507 #else
4508 stats[N_TX_RINGS].tx_aborted_errors +=
4509 readl(cp->regs + REG_MAC_COLL_EXCESS);
4510 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4511 readl(cp->regs + REG_MAC_COLL_LATE);
4512 #endif
4513 cas_clear_mac_err(cp);
4514
4515 /* saved bits that are unique to ring 0 */
4516 spin_lock(&cp->stat_lock[0]);
4517 stats[N_TX_RINGS].collisions += stats[0].collisions;
4518 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4519 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4520 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4521 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4522 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4523 spin_unlock(&cp->stat_lock[0]);
4524
4525 for (i = 0; i < N_TX_RINGS; i++) {
4526 spin_lock(&cp->stat_lock[i]);
4527 stats[N_TX_RINGS].rx_length_errors +=
4528 stats[i].rx_length_errors;
4529 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4530 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4531 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4532 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4533 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4534 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4535 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4536 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4537 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4538 memset(stats + i, 0, sizeof(struct net_device_stats));
4539 spin_unlock(&cp->stat_lock[i]);
4540 }
4541 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4542 return stats + N_TX_RINGS;
4543 }
4544
4545
4546 static void cas_set_multicast(struct net_device *dev)
4547 {
4548 struct cas *cp = netdev_priv(dev);
4549 u32 rxcfg, rxcfg_new;
4550 unsigned long flags;
4551 int limit = STOP_TRIES;
4552
4553 if (!cp->hw_running)
4554 return;
4555
4556 spin_lock_irqsave(&cp->lock, flags);
4557 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4558
4559 /* disable RX MAC and wait for completion */
4560 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4561 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4562 if (!limit--)
4563 break;
4564 udelay(10);
4565 }
4566
4567 /* disable hash filter and wait for completion */
4568 limit = STOP_TRIES;
4569 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4570 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4571 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4572 if (!limit--)
4573 break;
4574 udelay(10);
4575 }
4576
4577 /* program hash filters */
4578 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4579 rxcfg |= rxcfg_new;
4580 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4581 spin_unlock_irqrestore(&cp->lock, flags);
4582 }
4583
4584 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4585 {
4586 struct cas *cp = netdev_priv(dev);
4587 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4588 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4589 info->fw_version[0] = '\0';
4590 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4591 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4592 cp->casreg_len : CAS_MAX_REGS;
4593 info->n_stats = CAS_NUM_STAT_KEYS;
4594 }
4595
4596 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4597 {
4598 struct cas *cp = netdev_priv(dev);
4599 u16 bmcr;
4600 int full_duplex, speed, pause;
4601 unsigned long flags;
4602 enum link_state linkstate = link_up;
4603
4604 cmd->advertising = 0;
4605 cmd->supported = SUPPORTED_Autoneg;
4606 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4607 cmd->supported |= SUPPORTED_1000baseT_Full;
4608 cmd->advertising |= ADVERTISED_1000baseT_Full;
4609 }
4610
4611 /* Record PHY settings if HW is on. */
4612 spin_lock_irqsave(&cp->lock, flags);
4613 bmcr = 0;
4614 linkstate = cp->lstate;
4615 if (CAS_PHY_MII(cp->phy_type)) {
4616 cmd->port = PORT_MII;
4617 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4618 XCVR_INTERNAL : XCVR_EXTERNAL;
4619 cmd->phy_address = cp->phy_addr;
4620 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4621 ADVERTISED_10baseT_Half |
4622 ADVERTISED_10baseT_Full |
4623 ADVERTISED_100baseT_Half |
4624 ADVERTISED_100baseT_Full;
4625
4626 cmd->supported |=
4627 (SUPPORTED_10baseT_Half |
4628 SUPPORTED_10baseT_Full |
4629 SUPPORTED_100baseT_Half |
4630 SUPPORTED_100baseT_Full |
4631 SUPPORTED_TP | SUPPORTED_MII);
4632
4633 if (cp->hw_running) {
4634 cas_mif_poll(cp, 0);
4635 bmcr = cas_phy_read(cp, MII_BMCR);
4636 cas_read_mii_link_mode(cp, &full_duplex,
4637 &speed, &pause);
4638 cas_mif_poll(cp, 1);
4639 }
4640
4641 } else {
4642 cmd->port = PORT_FIBRE;
4643 cmd->transceiver = XCVR_INTERNAL;
4644 cmd->phy_address = 0;
4645 cmd->supported |= SUPPORTED_FIBRE;
4646 cmd->advertising |= ADVERTISED_FIBRE;
4647
4648 if (cp->hw_running) {
4649 /* pcs uses the same bits as mii */
4650 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4651 cas_read_pcs_link_mode(cp, &full_duplex,
4652 &speed, &pause);
4653 }
4654 }
4655 spin_unlock_irqrestore(&cp->lock, flags);
4656
4657 if (bmcr & BMCR_ANENABLE) {
4658 cmd->advertising |= ADVERTISED_Autoneg;
4659 cmd->autoneg = AUTONEG_ENABLE;
4660 cmd->speed = ((speed == 10) ?
4661 SPEED_10 :
4662 ((speed == 1000) ?
4663 SPEED_1000 : SPEED_100));
4664 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4665 } else {
4666 cmd->autoneg = AUTONEG_DISABLE;
4667 cmd->speed =
4668 (bmcr & CAS_BMCR_SPEED1000) ?
4669 SPEED_1000 :
4670 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4671 SPEED_10);
4672 cmd->duplex =
4673 (bmcr & BMCR_FULLDPLX) ?
4674 DUPLEX_FULL : DUPLEX_HALF;
4675 }
4676 if (linkstate != link_up) {
4677 /* Force these to "unknown" if the link is not up and
4678 * autonogotiation in enabled. We can set the link
4679 * speed to 0, but not cmd->duplex,
4680 * because its legal values are 0 and 1. Ethtool will
4681 * print the value reported in parentheses after the
4682 * word "Unknown" for unrecognized values.
4683 *
4684 * If in forced mode, we report the speed and duplex
4685 * settings that we configured.
4686 */
4687 if (cp->link_cntl & BMCR_ANENABLE) {
4688 cmd->speed = 0;
4689 cmd->duplex = 0xff;
4690 } else {
4691 cmd->speed = SPEED_10;
4692 if (cp->link_cntl & BMCR_SPEED100) {
4693 cmd->speed = SPEED_100;
4694 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4695 cmd->speed = SPEED_1000;
4696 }
4697 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4698 DUPLEX_FULL : DUPLEX_HALF;
4699 }
4700 }
4701 return 0;
4702 }
4703
4704 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4705 {
4706 struct cas *cp = netdev_priv(dev);
4707 unsigned long flags;
4708
4709 /* Verify the settings we care about. */
4710 if (cmd->autoneg != AUTONEG_ENABLE &&
4711 cmd->autoneg != AUTONEG_DISABLE)
4712 return -EINVAL;
4713
4714 if (cmd->autoneg == AUTONEG_DISABLE &&
4715 ((cmd->speed != SPEED_1000 &&
4716 cmd->speed != SPEED_100 &&
4717 cmd->speed != SPEED_10) ||
4718 (cmd->duplex != DUPLEX_HALF &&
4719 cmd->duplex != DUPLEX_FULL)))
4720 return -EINVAL;
4721
4722 /* Apply settings and restart link process. */
4723 spin_lock_irqsave(&cp->lock, flags);
4724 cas_begin_auto_negotiation(cp, cmd);
4725 spin_unlock_irqrestore(&cp->lock, flags);
4726 return 0;
4727 }
4728
4729 static int cas_nway_reset(struct net_device *dev)
4730 {
4731 struct cas *cp = netdev_priv(dev);
4732 unsigned long flags;
4733
4734 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4735 return -EINVAL;
4736
4737 /* Restart link process. */
4738 spin_lock_irqsave(&cp->lock, flags);
4739 cas_begin_auto_negotiation(cp, NULL);
4740 spin_unlock_irqrestore(&cp->lock, flags);
4741
4742 return 0;
4743 }
4744
4745 static u32 cas_get_link(struct net_device *dev)
4746 {
4747 struct cas *cp = netdev_priv(dev);
4748 return cp->lstate == link_up;
4749 }
4750
4751 static u32 cas_get_msglevel(struct net_device *dev)
4752 {
4753 struct cas *cp = netdev_priv(dev);
4754 return cp->msg_enable;
4755 }
4756
4757 static void cas_set_msglevel(struct net_device *dev, u32 value)
4758 {
4759 struct cas *cp = netdev_priv(dev);
4760 cp->msg_enable = value;
4761 }
4762
4763 static int cas_get_regs_len(struct net_device *dev)
4764 {
4765 struct cas *cp = netdev_priv(dev);
4766 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4767 }
4768
4769 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4770 void *p)
4771 {
4772 struct cas *cp = netdev_priv(dev);
4773 regs->version = 0;
4774 /* cas_read_regs handles locks (cp->lock). */
4775 cas_read_regs(cp, p, regs->len / sizeof(u32));
4776 }
4777
4778 static int cas_get_stats_count(struct net_device *dev)
4779 {
4780 return CAS_NUM_STAT_KEYS;
4781 }
4782
4783 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4784 {
4785 memcpy(data, &ethtool_cassini_statnames,
4786 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4787 }
4788
4789 static void cas_get_ethtool_stats(struct net_device *dev,
4790 struct ethtool_stats *estats, u64 *data)
4791 {
4792 struct cas *cp = netdev_priv(dev);
4793 struct net_device_stats *stats = cas_get_stats(cp->dev);
4794 int i = 0;
4795 data[i++] = stats->collisions;
4796 data[i++] = stats->rx_bytes;
4797 data[i++] = stats->rx_crc_errors;
4798 data[i++] = stats->rx_dropped;
4799 data[i++] = stats->rx_errors;
4800 data[i++] = stats->rx_fifo_errors;
4801 data[i++] = stats->rx_frame_errors;
4802 data[i++] = stats->rx_length_errors;
4803 data[i++] = stats->rx_over_errors;
4804 data[i++] = stats->rx_packets;
4805 data[i++] = stats->tx_aborted_errors;
4806 data[i++] = stats->tx_bytes;
4807 data[i++] = stats->tx_dropped;
4808 data[i++] = stats->tx_errors;
4809 data[i++] = stats->tx_fifo_errors;
4810 data[i++] = stats->tx_packets;
4811 BUG_ON(i != CAS_NUM_STAT_KEYS);
4812 }
4813
4814 static const struct ethtool_ops cas_ethtool_ops = {
4815 .get_drvinfo = cas_get_drvinfo,
4816 .get_settings = cas_get_settings,
4817 .set_settings = cas_set_settings,
4818 .nway_reset = cas_nway_reset,
4819 .get_link = cas_get_link,
4820 .get_msglevel = cas_get_msglevel,
4821 .set_msglevel = cas_set_msglevel,
4822 .get_regs_len = cas_get_regs_len,
4823 .get_regs = cas_get_regs,
4824 .get_stats_count = cas_get_stats_count,
4825 .get_strings = cas_get_strings,
4826 .get_ethtool_stats = cas_get_ethtool_stats,
4827 };
4828
4829 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4830 {
4831 struct cas *cp = netdev_priv(dev);
4832 struct mii_ioctl_data *data = if_mii(ifr);
4833 unsigned long flags;
4834 int rc = -EOPNOTSUPP;
4835
4836 /* Hold the PM mutex while doing ioctl's or we may collide
4837 * with open/close and power management and oops.
4838 */
4839 mutex_lock(&cp->pm_mutex);
4840 switch (cmd) {
4841 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4842 data->phy_id = cp->phy_addr;
4843 /* Fallthrough... */
4844
4845 case SIOCGMIIREG: /* Read MII PHY register. */
4846 spin_lock_irqsave(&cp->lock, flags);
4847 cas_mif_poll(cp, 0);
4848 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4849 cas_mif_poll(cp, 1);
4850 spin_unlock_irqrestore(&cp->lock, flags);
4851 rc = 0;
4852 break;
4853
4854 case SIOCSMIIREG: /* Write MII PHY register. */
4855 if (!capable(CAP_NET_ADMIN)) {
4856 rc = -EPERM;
4857 break;
4858 }
4859 spin_lock_irqsave(&cp->lock, flags);
4860 cas_mif_poll(cp, 0);
4861 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4862 cas_mif_poll(cp, 1);
4863 spin_unlock_irqrestore(&cp->lock, flags);
4864 break;
4865 default:
4866 break;
4867 };
4868
4869 mutex_unlock(&cp->pm_mutex);
4870 return rc;
4871 }
4872
4873 static int __devinit cas_init_one(struct pci_dev *pdev,
4874 const struct pci_device_id *ent)
4875 {
4876 static int cas_version_printed = 0;
4877 unsigned long casreg_len;
4878 struct net_device *dev;
4879 struct cas *cp;
4880 int i, err, pci_using_dac;
4881 u16 pci_cmd;
4882 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4883
4884 if (cas_version_printed++ == 0)
4885 printk(KERN_INFO "%s", version);
4886
4887 err = pci_enable_device(pdev);
4888 if (err) {
4889 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4890 return err;
4891 }
4892
4893 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4894 dev_err(&pdev->dev, "Cannot find proper PCI device "
4895 "base address, aborting.\n");
4896 err = -ENODEV;
4897 goto err_out_disable_pdev;
4898 }
4899
4900 dev = alloc_etherdev(sizeof(*cp));
4901 if (!dev) {
4902 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4903 err = -ENOMEM;
4904 goto err_out_disable_pdev;
4905 }
4906 SET_MODULE_OWNER(dev);
4907 SET_NETDEV_DEV(dev, &pdev->dev);
4908
4909 err = pci_request_regions(pdev, dev->name);
4910 if (err) {
4911 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4912 goto err_out_free_netdev;
4913 }
4914 pci_set_master(pdev);
4915
4916 /* we must always turn on parity response or else parity
4917 * doesn't get generated properly. disable SERR/PERR as well.
4918 * in addition, we want to turn MWI on.
4919 */
4920 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4921 pci_cmd &= ~PCI_COMMAND_SERR;
4922 pci_cmd |= PCI_COMMAND_PARITY;
4923 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4924 pci_set_mwi(pdev);
4925 /*
4926 * On some architectures, the default cache line size set
4927 * by pci_set_mwi reduces perforamnce. We have to increase
4928 * it for this case. To start, we'll print some configuration
4929 * data.
4930 */
4931 #if 1
4932 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4933 &orig_cacheline_size);
4934 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4935 cas_cacheline_size =
4936 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4937 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4938 if (pci_write_config_byte(pdev,
4939 PCI_CACHE_LINE_SIZE,
4940 cas_cacheline_size)) {
4941 dev_err(&pdev->dev, "Could not set PCI cache "
4942 "line size\n");
4943 goto err_write_cacheline;
4944 }
4945 }
4946 #endif
4947
4948
4949 /* Configure DMA attributes. */
4950 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4951 pci_using_dac = 1;
4952 err = pci_set_consistent_dma_mask(pdev,
4953 DMA_64BIT_MASK);
4954 if (err < 0) {
4955 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4956 "for consistent allocations\n");
4957 goto err_out_free_res;
4958 }
4959
4960 } else {
4961 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4962 if (err) {
4963 dev_err(&pdev->dev, "No usable DMA configuration, "
4964 "aborting.\n");
4965 goto err_out_free_res;
4966 }
4967 pci_using_dac = 0;
4968 }
4969
4970 casreg_len = pci_resource_len(pdev, 0);
4971
4972 cp = netdev_priv(dev);
4973 cp->pdev = pdev;
4974 #if 1
4975 /* A value of 0 indicates we never explicitly set it */
4976 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4977 #endif
4978 cp->dev = dev;
4979 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4980 cassini_debug;
4981
4982 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4983 cp->link_transition_jiffies_valid = 0;
4984
4985 spin_lock_init(&cp->lock);
4986 spin_lock_init(&cp->rx_inuse_lock);
4987 spin_lock_init(&cp->rx_spare_lock);
4988 for (i = 0; i < N_TX_RINGS; i++) {
4989 spin_lock_init(&cp->stat_lock[i]);
4990 spin_lock_init(&cp->tx_lock[i]);
4991 }
4992 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4993 mutex_init(&cp->pm_mutex);
4994
4995 init_timer(&cp->link_timer);
4996 cp->link_timer.function = cas_link_timer;
4997 cp->link_timer.data = (unsigned long) cp;
4998
4999 #if 1
5000 /* Just in case the implementation of atomic operations
5001 * change so that an explicit initialization is necessary.
5002 */
5003 atomic_set(&cp->reset_task_pending, 0);
5004 atomic_set(&cp->reset_task_pending_all, 0);
5005 atomic_set(&cp->reset_task_pending_spare, 0);
5006 atomic_set(&cp->reset_task_pending_mtu, 0);
5007 #endif
5008 INIT_WORK(&cp->reset_task, cas_reset_task);
5009
5010 /* Default link parameters */
5011 if (link_mode >= 0 && link_mode <= 6)
5012 cp->link_cntl = link_modes[link_mode];
5013 else
5014 cp->link_cntl = BMCR_ANENABLE;
5015 cp->lstate = link_down;
5016 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5017 netif_carrier_off(cp->dev);
5018 cp->timer_ticks = 0;
5019
5020 /* give us access to cassini registers */
5021 cp->regs = pci_iomap(pdev, 0, casreg_len);
5022 if (cp->regs == 0UL) {
5023 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5024 goto err_out_free_res;
5025 }
5026 cp->casreg_len = casreg_len;
5027
5028 pci_save_state(pdev);
5029 cas_check_pci_invariants(cp);
5030 cas_hard_reset(cp);
5031 cas_reset(cp, 0);
5032 if (cas_check_invariants(cp))
5033 goto err_out_iounmap;
5034
5035 cp->init_block = (struct cas_init_block *)
5036 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5037 &cp->block_dvma);
5038 if (!cp->init_block) {
5039 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5040 goto err_out_iounmap;
5041 }
5042
5043 for (i = 0; i < N_TX_RINGS; i++)
5044 cp->init_txds[i] = cp->init_block->txds[i];
5045
5046 for (i = 0; i < N_RX_DESC_RINGS; i++)
5047 cp->init_rxds[i] = cp->init_block->rxds[i];
5048
5049 for (i = 0; i < N_RX_COMP_RINGS; i++)
5050 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5051
5052 for (i = 0; i < N_RX_FLOWS; i++)
5053 skb_queue_head_init(&cp->rx_flows[i]);
5054
5055 dev->open = cas_open;
5056 dev->stop = cas_close;
5057 dev->hard_start_xmit = cas_start_xmit;
5058 dev->get_stats = cas_get_stats;
5059 dev->set_multicast_list = cas_set_multicast;
5060 dev->do_ioctl = cas_ioctl;
5061 dev->ethtool_ops = &cas_ethtool_ops;
5062 dev->tx_timeout = cas_tx_timeout;
5063 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5064 dev->change_mtu = cas_change_mtu;
5065 #ifdef USE_NAPI
5066 dev->poll = cas_poll;
5067 dev->weight = 64;
5068 #endif
5069 #ifdef CONFIG_NET_POLL_CONTROLLER
5070 dev->poll_controller = cas_netpoll;
5071 #endif
5072 dev->irq = pdev->irq;
5073 dev->dma = 0;
5074
5075 /* Cassini features. */
5076 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5077 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5078
5079 if (pci_using_dac)
5080 dev->features |= NETIF_F_HIGHDMA;
5081
5082 if (register_netdev(dev)) {
5083 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5084 goto err_out_free_consistent;
5085 }
5086
5087 i = readl(cp->regs + REG_BIM_CFG);
5088 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5089 "Ethernet[%d] ", dev->name,
5090 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5091 (i & BIM_CFG_32BIT) ? "32" : "64",
5092 (i & BIM_CFG_66MHZ) ? "66" : "33",
5093 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq);
5094
5095 for (i = 0; i < 6; i++)
5096 printk("%2.2x%c", dev->dev_addr[i],
5097 i == 5 ? ' ' : ':');
5098 printk("\n");
5099
5100 pci_set_drvdata(pdev, dev);
5101 cp->hw_running = 1;
5102 cas_entropy_reset(cp);
5103 cas_phy_init(cp);
5104 cas_begin_auto_negotiation(cp, NULL);
5105 return 0;
5106
5107 err_out_free_consistent:
5108 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5109 cp->init_block, cp->block_dvma);
5110
5111 err_out_iounmap:
5112 mutex_lock(&cp->pm_mutex);
5113 if (cp->hw_running)
5114 cas_shutdown(cp);
5115 mutex_unlock(&cp->pm_mutex);
5116
5117 pci_iounmap(pdev, cp->regs);
5118
5119
5120 err_out_free_res:
5121 pci_release_regions(pdev);
5122
5123 err_write_cacheline:
5124 /* Try to restore it in case the error occured after we
5125 * set it.
5126 */
5127 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5128
5129 err_out_free_netdev:
5130 free_netdev(dev);
5131
5132 err_out_disable_pdev:
5133 pci_disable_device(pdev);
5134 pci_set_drvdata(pdev, NULL);
5135 return -ENODEV;
5136 }
5137
5138 static void __devexit cas_remove_one(struct pci_dev *pdev)
5139 {
5140 struct net_device *dev = pci_get_drvdata(pdev);
5141 struct cas *cp;
5142 if (!dev)
5143 return;
5144
5145 cp = netdev_priv(dev);
5146 unregister_netdev(dev);
5147
5148 mutex_lock(&cp->pm_mutex);
5149 flush_scheduled_work();
5150 if (cp->hw_running)
5151 cas_shutdown(cp);
5152 mutex_unlock(&cp->pm_mutex);
5153
5154 #if 1
5155 if (cp->orig_cacheline_size) {
5156 /* Restore the cache line size if we had modified
5157 * it.
5158 */
5159 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5160 cp->orig_cacheline_size);
5161 }
5162 #endif
5163 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5164 cp->init_block, cp->block_dvma);
5165 pci_iounmap(pdev, cp->regs);
5166 free_netdev(dev);
5167 pci_release_regions(pdev);
5168 pci_disable_device(pdev);
5169 pci_set_drvdata(pdev, NULL);
5170 }
5171
5172 #ifdef CONFIG_PM
5173 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5174 {
5175 struct net_device *dev = pci_get_drvdata(pdev);
5176 struct cas *cp = netdev_priv(dev);
5177 unsigned long flags;
5178
5179 mutex_lock(&cp->pm_mutex);
5180
5181 /* If the driver is opened, we stop the DMA */
5182 if (cp->opened) {
5183 netif_device_detach(dev);
5184
5185 cas_lock_all_save(cp, flags);
5186
5187 /* We can set the second arg of cas_reset to 0
5188 * because on resume, we'll call cas_init_hw with
5189 * its second arg set so that autonegotiation is
5190 * restarted.
5191 */
5192 cas_reset(cp, 0);
5193 cas_clean_rings(cp);
5194 cas_unlock_all_restore(cp, flags);
5195 }
5196
5197 if (cp->hw_running)
5198 cas_shutdown(cp);
5199 mutex_unlock(&cp->pm_mutex);
5200
5201 return 0;
5202 }
5203
5204 static int cas_resume(struct pci_dev *pdev)
5205 {
5206 struct net_device *dev = pci_get_drvdata(pdev);
5207 struct cas *cp = netdev_priv(dev);
5208
5209 printk(KERN_INFO "%s: resuming\n", dev->name);
5210
5211 mutex_lock(&cp->pm_mutex);
5212 cas_hard_reset(cp);
5213 if (cp->opened) {
5214 unsigned long flags;
5215 cas_lock_all_save(cp, flags);
5216 cas_reset(cp, 0);
5217 cp->hw_running = 1;
5218 cas_clean_rings(cp);
5219 cas_init_hw(cp, 1);
5220 cas_unlock_all_restore(cp, flags);
5221
5222 netif_device_attach(dev);
5223 }
5224 mutex_unlock(&cp->pm_mutex);
5225 return 0;
5226 }
5227 #endif /* CONFIG_PM */
5228
5229 static struct pci_driver cas_driver = {
5230 .name = DRV_MODULE_NAME,
5231 .id_table = cas_pci_tbl,
5232 .probe = cas_init_one,
5233 .remove = __devexit_p(cas_remove_one),
5234 #ifdef CONFIG_PM
5235 .suspend = cas_suspend,
5236 .resume = cas_resume
5237 #endif
5238 };
5239
5240 static int __init cas_init(void)
5241 {
5242 if (linkdown_timeout > 0)
5243 link_transition_timeout = linkdown_timeout * HZ;
5244 else
5245 link_transition_timeout = 0;
5246
5247 return pci_register_driver(&cas_driver);
5248 }
5249
5250 static void __exit cas_cleanup(void)
5251 {
5252 pci_unregister_driver(&cas_driver);
5253 }
5254
5255 module_init(cas_init);
5256 module_exit(cas_cleanup);