]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/cxgb3/cxgb3_main.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
117 *
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
121 */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
130 */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
144 */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
150 *
151 * Shows the link status, speed, and duplex of a port.
152 */
153 static void link_report(struct net_device *dev)
154 {
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
160
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
171 }
172
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
180 {
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
190 {
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
199
200 if (state == netif_carrier_ok(dev))
201 return;
202
203 if (state) {
204 struct cmac *mac = &pi->mac;
205
206 netif_carrier_on(dev);
207
208 disable_tx_fifo_drain(adap, pi);
209
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
217
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
223
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
227
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
230 }
231 link_report(dev);
232 }
233
234 /**
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
242 *
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
246 */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
249 {
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
253
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
257
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
261
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
271
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
276
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
280
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
286
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
289
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
293
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
296 }
297
298 link_report(dev);
299 }
300 }
301
302 /**
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
306 *
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
310 */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315 };
316
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
319
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329 struct port_info *pi = netdev_priv(dev);
330
331 t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335 * link_start - enable a port
336 * @dev: the device to enable
337 *
338 * Performs the MAC and PHY actions needed to enable a port.
339 */
340 static void link_start(struct net_device *dev)
341 {
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
344
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
363 }
364 }
365
366 /*
367 * Interrupt handler for asynchronous events used with MSI-X.
368 */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
373 }
374
375 /*
376 * Name the MSI-X interrupts.
377 */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
384
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
388
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
393 }
394 }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399 int i, j, err, qidx = 0;
400
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
416 }
417 qidx++;
418 }
419 }
420 return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
427
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
431
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
441 {
442 int attempts = 5;
443
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
448 }
449 return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459 t3_tp_set_offload_mode(adap, 1);
460
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
463
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
469
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
482 }
483 }
484
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
487
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
493
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
505 }
506 }
507
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
510
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
516
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
528 }
529 }
530
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
536
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
543
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 }
549
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
552
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
556 }
557
558 /**
559 * setup_rss - configure RSS
560 * @adap: the adapter
561 *
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
568 */
569 static void setup_rss(struct adapter *adap)
570 {
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
576
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
580
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 }
585
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593 int i, j;
594
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
597
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606 int i;
607
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
610
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
614 }
615
616 /*
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
620 */
621 adap->flags |= NAPI_INIT;
622 }
623
624 /*
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
628 */
629 static void quiesce_rx(struct adapter *adap)
630 {
631 int i;
632
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647 * set_qset_lro - Turn a queue set's LRO capability on and off
648 * @dev: the device the qset is attached to
649 * @qset_idx: the queue set index
650 * @val: the LRO switch
651 *
652 * Sets LRO on or off for a particular queue set.
653 * the device's features flag is updated to reflect the LRO
654 * capability when all queues belonging to the device are
655 * in the same state.
656 */
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659 struct port_info *pi = netdev_priv(dev);
660 struct adapter *adapter = pi->adapter;
661
662 adapter->params.sge.qset[qset_idx].lro = !!val;
663 adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667 * setup_sge_qsets - configure SGE Tx/Rx/response queues
668 * @adap: the adapter
669 *
670 * Determines how many sets of SGE queues to use and initializes them.
671 * We support multiple queue sets per port if we have MSI-X, otherwise
672 * just one queue set per port.
673 */
674 static int setup_sge_qsets(struct adapter *adap)
675 {
676 int i, j, err, irq_idx = 0, qset_idx = 0;
677 unsigned int ntxq = SGE_TXQ_PER_SET;
678
679 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680 irq_idx = -1;
681
682 for_each_port(adap, i) {
683 struct net_device *dev = adap->port[i];
684 struct port_info *pi = netdev_priv(dev);
685
686 pi->qs = &adap->sge.qs[pi->first_qset];
687 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689 err = t3_sge_alloc_qset(adap, qset_idx, 1,
690 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691 irq_idx,
692 &adap->params.sge.qset[qset_idx], ntxq, dev,
693 netdev_get_tx_queue(dev, j));
694 if (err) {
695 t3_free_sge_resources(adap);
696 return err;
697 }
698 }
699 }
700
701 return 0;
702 }
703
704 static ssize_t attr_show(struct device *d, char *buf,
705 ssize_t(*format) (struct net_device *, char *))
706 {
707 ssize_t len;
708
709 /* Synchronize with ioctls that may shut down the device */
710 rtnl_lock();
711 len = (*format) (to_net_dev(d), buf);
712 rtnl_unlock();
713 return len;
714 }
715
716 static ssize_t attr_store(struct device *d,
717 const char *buf, size_t len,
718 ssize_t(*set) (struct net_device *, unsigned int),
719 unsigned int min_val, unsigned int max_val)
720 {
721 char *endp;
722 ssize_t ret;
723 unsigned int val;
724
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
727
728 val = simple_strtoul(buf, &endp, 0);
729 if (endp == buf || val < min_val || val > max_val)
730 return -EINVAL;
731
732 rtnl_lock();
733 ret = (*set) (to_net_dev(d), val);
734 if (!ret)
735 ret = len;
736 rtnl_unlock();
737 return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743 struct port_info *pi = netdev_priv(dev); \
744 struct adapter *adap = pi->adapter; \
745 return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748 char *buf) \
749 { \
750 return attr_show(d, buf, format_##name); \
751 }
752
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755 struct port_info *pi = netdev_priv(dev);
756 struct adapter *adap = pi->adapter;
757 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759 if (adap->flags & FULL_INIT_DONE)
760 return -EBUSY;
761 if (val && adap->params.rev == 0)
762 return -EINVAL;
763 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764 min_tids)
765 return -EINVAL;
766 adap->params.mc5.nfilters = val;
767 return 0;
768 }
769
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771 const char *buf, size_t len)
772 {
773 return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778 struct port_info *pi = netdev_priv(dev);
779 struct adapter *adap = pi->adapter;
780
781 if (adap->flags & FULL_INIT_DONE)
782 return -EBUSY;
783 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784 MC5_MIN_TIDS)
785 return -EINVAL;
786 adap->params.mc5.nservers = val;
787 return 0;
788 }
789
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791 const char *buf, size_t len)
792 {
793 return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809 &dev_attr_cam_size.attr,
810 &dev_attr_nfilters.attr,
811 &dev_attr_nservers.attr,
812 NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
817 static ssize_t tm_attr_show(struct device *d,
818 char *buf, int sched)
819 {
820 struct port_info *pi = netdev_priv(to_net_dev(d));
821 struct adapter *adap = pi->adapter;
822 unsigned int v, addr, bpt, cpt;
823 ssize_t len;
824
825 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826 rtnl_lock();
827 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829 if (sched & 1)
830 v >>= 16;
831 bpt = (v >> 8) & 0xff;
832 cpt = v & 0xff;
833 if (!cpt)
834 len = sprintf(buf, "disabled\n");
835 else {
836 v = (adap->params.vpd.cclk * 1000) / cpt;
837 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838 }
839 rtnl_unlock();
840 return len;
841 }
842
843 static ssize_t tm_attr_store(struct device *d,
844 const char *buf, size_t len, int sched)
845 {
846 struct port_info *pi = netdev_priv(to_net_dev(d));
847 struct adapter *adap = pi->adapter;
848 unsigned int val;
849 char *endp;
850 ssize_t ret;
851
852 if (!capable(CAP_NET_ADMIN))
853 return -EPERM;
854
855 val = simple_strtoul(buf, &endp, 0);
856 if (endp == buf || val > 10000000)
857 return -EINVAL;
858
859 rtnl_lock();
860 ret = t3_config_sched(adap, val, sched);
861 if (!ret)
862 ret = len;
863 rtnl_unlock();
864 return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869 char *buf) \
870 { \
871 return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874 const char *buf, size_t len) \
875 { \
876 return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890 &dev_attr_sched0.attr,
891 &dev_attr_sched1.attr,
892 &dev_attr_sched2.attr,
893 &dev_attr_sched3.attr,
894 &dev_attr_sched4.attr,
895 &dev_attr_sched5.attr,
896 &dev_attr_sched6.attr,
897 &dev_attr_sched7.attr,
898 NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904 * Sends an sk_buff to an offload queue driver
905 * after dealing with any active network taps.
906 */
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909 int ret;
910
911 local_bh_disable();
912 ret = t3_offload_tx(tdev, skb);
913 local_bh_enable();
914 return ret;
915 }
916
917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919 struct cpl_smt_write_req *req;
920 struct port_info *pi = netdev_priv(adapter->port[idx]);
921 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923 if (!skb)
924 return -ENOMEM;
925
926 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
930 req->iff = idx;
931 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933 skb->priority = 1;
934 offload_tx(&adapter->tdev, skb);
935 return 0;
936 }
937
938 static int init_smt(struct adapter *adapter)
939 {
940 int i;
941
942 for_each_port(adapter, i)
943 write_smt_entry(adapter, i);
944 return 0;
945 }
946
947 static void init_port_mtus(struct adapter *adapter)
948 {
949 unsigned int mtus = adapter->port[0]->mtu;
950
951 if (adapter->port[1])
952 mtus |= adapter->port[1]->mtu << 16;
953 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957 int hi, int port)
958 {
959 struct sk_buff *skb;
960 struct mngt_pktsched_wr *req;
961 int ret;
962
963 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964 if (!skb)
965 skb = adap->nofail_skb;
966 if (!skb)
967 return -ENOMEM;
968
969 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972 req->sched = sched;
973 req->idx = qidx;
974 req->min = lo;
975 req->max = hi;
976 req->binding = port;
977 ret = t3_mgmt_tx(adap, skb);
978 if (skb == adap->nofail_skb) {
979 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980 GFP_KERNEL);
981 if (!adap->nofail_skb)
982 ret = -ENOMEM;
983 }
984
985 return ret;
986 }
987
988 static int bind_qsets(struct adapter *adap)
989 {
990 int i, j, err = 0;
991
992 for_each_port(adap, i) {
993 const struct port_info *pi = adap2pinfo(adap, i);
994
995 for (j = 0; j < pi->nqsets; ++j) {
996 int ret = send_pktsched_cmd(adap, 1,
997 pi->first_qset + j, -1,
998 -1, i);
999 if (ret)
1000 err = ret;
1001 }
1002 }
1003
1004 return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
1008 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
1011 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025 const char *fw_name = NULL;
1026
1027 switch (edc_idx) {
1028 case EDC_OPT_AEL2005:
1029 fw_name = AEL2005_OPT_EDC_NAME;
1030 break;
1031 case EDC_TWX_AEL2005:
1032 fw_name = AEL2005_TWX_EDC_NAME;
1033 break;
1034 case EDC_TWX_AEL2020:
1035 fw_name = AEL2020_TWX_EDC_NAME;
1036 break;
1037 }
1038 return fw_name;
1039 }
1040
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043 struct adapter *adapter = phy->adapter;
1044 const struct firmware *fw;
1045 char buf[64];
1046 u32 csum;
1047 const __be32 *p;
1048 u16 *cache = phy->phy_cache;
1049 int i, ret;
1050
1051 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054 if (ret < 0) {
1055 dev_err(&adapter->pdev->dev,
1056 "could not upgrade firmware: unable to load %s\n",
1057 buf);
1058 return ret;
1059 }
1060
1061 /* check size, take checksum in account */
1062 if (fw->size > size + 4) {
1063 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064 (unsigned int)fw->size, size + 4);
1065 ret = -EINVAL;
1066 }
1067
1068 /* compute checksum */
1069 p = (const __be32 *)fw->data;
1070 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071 csum += ntohl(p[i]);
1072
1073 if (csum != 0xffffffff) {
1074 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075 csum);
1076 ret = -EINVAL;
1077 }
1078
1079 for (i = 0; i < size / 4 ; i++) {
1080 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082 }
1083
1084 release_firmware(fw);
1085
1086 return ret;
1087 }
1088
1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091 int ret;
1092 const struct firmware *fw;
1093 struct device *dev = &adap->pdev->dev;
1094
1095 ret = request_firmware(&fw, FW_FNAME, dev);
1096 if (ret < 0) {
1097 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098 FW_FNAME);
1099 return ret;
1100 }
1101 ret = t3_load_fw(adap, fw->data, fw->size);
1102 release_firmware(fw);
1103
1104 if (ret == 0)
1105 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107 else
1108 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111 return ret;
1112 }
1113
1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116 char rev = 0;
1117
1118 switch(adapter->params.rev) {
1119 case T3_REV_B:
1120 case T3_REV_B2:
1121 rev = 'b';
1122 break;
1123 case T3_REV_C:
1124 rev = 'c';
1125 break;
1126 }
1127 return rev;
1128 }
1129
1130 static int update_tpsram(struct adapter *adap)
1131 {
1132 const struct firmware *tpsram;
1133 char buf[64];
1134 struct device *dev = &adap->pdev->dev;
1135 int ret;
1136 char rev;
1137
1138 rev = t3rev2char(adap);
1139 if (!rev)
1140 return 0;
1141
1142 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144 ret = request_firmware(&tpsram, buf, dev);
1145 if (ret < 0) {
1146 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147 buf);
1148 return ret;
1149 }
1150
1151 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152 if (ret)
1153 goto release_tpsram;
1154
1155 ret = t3_set_proto_sram(adap, tpsram->data);
1156 if (ret == 0)
1157 dev_info(dev,
1158 "successful update of protocol engine "
1159 "to %d.%d.%d\n",
1160 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161 else
1162 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164 if (ret)
1165 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168 release_firmware(tpsram);
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * cxgb_up - enable the adapter
1175 * @adapter: adapter being enabled
1176 *
1177 * Called when the first port is enabled, this function performs the
1178 * actions necessary to make an adapter operational, such as completing
1179 * the initialization of HW modules, and enabling interrupts.
1180 *
1181 * Must be called with the rtnl lock held.
1182 */
1183 static int cxgb_up(struct adapter *adap)
1184 {
1185 int err;
1186
1187 if (!(adap->flags & FULL_INIT_DONE)) {
1188 err = t3_check_fw_version(adap);
1189 if (err == -EINVAL) {
1190 err = upgrade_fw(adap);
1191 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194 }
1195
1196 err = t3_check_tpsram_version(adap);
1197 if (err == -EINVAL) {
1198 err = update_tpsram(adap);
1199 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202 }
1203
1204 /*
1205 * Clear interrupts now to catch errors if t3_init_hw fails.
1206 * We clear them again later as initialization may trigger
1207 * conditions that can interrupt.
1208 */
1209 t3_intr_clear(adap);
1210
1211 err = t3_init_hw(adap, 0);
1212 if (err)
1213 goto out;
1214
1215 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218 err = setup_sge_qsets(adap);
1219 if (err)
1220 goto out;
1221
1222 setup_rss(adap);
1223 if (!(adap->flags & NAPI_INIT))
1224 init_napi(adap);
1225
1226 t3_start_sge_timers(adap);
1227 adap->flags |= FULL_INIT_DONE;
1228 }
1229
1230 t3_intr_clear(adap);
1231
1232 if (adap->flags & USING_MSIX) {
1233 name_msix_vecs(adap);
1234 err = request_irq(adap->msix_info[0].vec,
1235 t3_async_intr_handler, 0,
1236 adap->msix_info[0].desc, adap);
1237 if (err)
1238 goto irq_err;
1239
1240 err = request_msix_data_irqs(adap);
1241 if (err) {
1242 free_irq(adap->msix_info[0].vec, adap);
1243 goto irq_err;
1244 }
1245 } else if ((err = request_irq(adap->pdev->irq,
1246 t3_intr_handler(adap,
1247 adap->sge.qs[0].rspq.
1248 polling),
1249 (adap->flags & USING_MSI) ?
1250 0 : IRQF_SHARED,
1251 adap->name, adap)))
1252 goto irq_err;
1253
1254 enable_all_napi(adap);
1255 t3_sge_start(adap);
1256 t3_intr_enable(adap);
1257
1258 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259 is_offload(adap) && init_tp_parity(adap) == 0)
1260 adap->flags |= TP_PARITY_INIT;
1261
1262 if (adap->flags & TP_PARITY_INIT) {
1263 t3_write_reg(adap, A_TP_INT_CAUSE,
1264 F_CMCACHEPERR | F_ARPLUTPERR);
1265 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266 }
1267
1268 if (!(adap->flags & QUEUES_BOUND)) {
1269 err = bind_qsets(adap);
1270 if (err) {
1271 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1272 t3_intr_disable(adap);
1273 free_irq_resources(adap);
1274 goto out;
1275 }
1276 adap->flags |= QUEUES_BOUND;
1277 }
1278
1279 out:
1280 return err;
1281 irq_err:
1282 CH_ERR(adap, "request_irq failed, err %d\n", err);
1283 goto out;
1284 }
1285
1286 /*
1287 * Release resources when all the ports and offloading have been stopped.
1288 */
1289 static void cxgb_down(struct adapter *adapter)
1290 {
1291 t3_sge_stop(adapter);
1292 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1293 t3_intr_disable(adapter);
1294 spin_unlock_irq(&adapter->work_lock);
1295
1296 free_irq_resources(adapter);
1297 quiesce_rx(adapter);
1298 t3_sge_stop(adapter);
1299 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1300 }
1301
1302 static void schedule_chk_task(struct adapter *adap)
1303 {
1304 unsigned int timeo;
1305
1306 timeo = adap->params.linkpoll_period ?
1307 (HZ * adap->params.linkpoll_period) / 10 :
1308 adap->params.stats_update_period * HZ;
1309 if (timeo)
1310 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1311 }
1312
1313 static int offload_open(struct net_device *dev)
1314 {
1315 struct port_info *pi = netdev_priv(dev);
1316 struct adapter *adapter = pi->adapter;
1317 struct t3cdev *tdev = dev2t3cdev(dev);
1318 int adap_up = adapter->open_device_map & PORT_MASK;
1319 int err;
1320
1321 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1322 return 0;
1323
1324 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1325 goto out;
1326
1327 t3_tp_set_offload_mode(adapter, 1);
1328 tdev->lldev = adapter->port[0];
1329 err = cxgb3_offload_activate(adapter);
1330 if (err)
1331 goto out;
1332
1333 init_port_mtus(adapter);
1334 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1335 adapter->params.b_wnd,
1336 adapter->params.rev == 0 ?
1337 adapter->port[0]->mtu : 0xffff);
1338 init_smt(adapter);
1339
1340 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1341 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1342
1343 /* Call back all registered clients */
1344 cxgb3_add_clients(tdev);
1345
1346 out:
1347 /* restore them in case the offload module has changed them */
1348 if (err) {
1349 t3_tp_set_offload_mode(adapter, 0);
1350 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1351 cxgb3_set_dummy_ops(tdev);
1352 }
1353 return err;
1354 }
1355
1356 static int offload_close(struct t3cdev *tdev)
1357 {
1358 struct adapter *adapter = tdev2adap(tdev);
1359
1360 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1361 return 0;
1362
1363 /* Call back all registered clients */
1364 cxgb3_remove_clients(tdev);
1365
1366 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1367
1368 /* Flush work scheduled while releasing TIDs */
1369 flush_scheduled_work();
1370
1371 tdev->lldev = NULL;
1372 cxgb3_set_dummy_ops(tdev);
1373 t3_tp_set_offload_mode(adapter, 0);
1374 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1375
1376 if (!adapter->open_device_map)
1377 cxgb_down(adapter);
1378
1379 cxgb3_offload_deactivate(adapter);
1380 return 0;
1381 }
1382
1383 static int cxgb_open(struct net_device *dev)
1384 {
1385 struct port_info *pi = netdev_priv(dev);
1386 struct adapter *adapter = pi->adapter;
1387 int other_ports = adapter->open_device_map & PORT_MASK;
1388 int err;
1389
1390 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1391 return err;
1392
1393 set_bit(pi->port_id, &adapter->open_device_map);
1394 if (is_offload(adapter) && !ofld_disable) {
1395 err = offload_open(dev);
1396 if (err)
1397 printk(KERN_WARNING
1398 "Could not initialize offload capabilities\n");
1399 }
1400
1401 dev->real_num_tx_queues = pi->nqsets;
1402 link_start(dev);
1403 t3_port_intr_enable(adapter, pi->port_id);
1404 netif_tx_start_all_queues(dev);
1405 if (!other_ports)
1406 schedule_chk_task(adapter);
1407
1408 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1409 return 0;
1410 }
1411
1412 static int cxgb_close(struct net_device *dev)
1413 {
1414 struct port_info *pi = netdev_priv(dev);
1415 struct adapter *adapter = pi->adapter;
1416
1417
1418 if (!adapter->open_device_map)
1419 return 0;
1420
1421 /* Stop link fault interrupts */
1422 t3_xgm_intr_disable(adapter, pi->port_id);
1423 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1424
1425 t3_port_intr_disable(adapter, pi->port_id);
1426 netif_tx_stop_all_queues(dev);
1427 pi->phy.ops->power_down(&pi->phy, 1);
1428 netif_carrier_off(dev);
1429 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1430
1431 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1432 clear_bit(pi->port_id, &adapter->open_device_map);
1433 spin_unlock_irq(&adapter->work_lock);
1434
1435 if (!(adapter->open_device_map & PORT_MASK))
1436 cancel_delayed_work_sync(&adapter->adap_check_task);
1437
1438 if (!adapter->open_device_map)
1439 cxgb_down(adapter);
1440
1441 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1442 return 0;
1443 }
1444
1445 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1446 {
1447 struct port_info *pi = netdev_priv(dev);
1448 struct adapter *adapter = pi->adapter;
1449 struct net_device_stats *ns = &pi->netstats;
1450 const struct mac_stats *pstats;
1451
1452 spin_lock(&adapter->stats_lock);
1453 pstats = t3_mac_update_stats(&pi->mac);
1454 spin_unlock(&adapter->stats_lock);
1455
1456 ns->tx_bytes = pstats->tx_octets;
1457 ns->tx_packets = pstats->tx_frames;
1458 ns->rx_bytes = pstats->rx_octets;
1459 ns->rx_packets = pstats->rx_frames;
1460 ns->multicast = pstats->rx_mcast_frames;
1461
1462 ns->tx_errors = pstats->tx_underrun;
1463 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1464 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1465 pstats->rx_fifo_ovfl;
1466
1467 /* detailed rx_errors */
1468 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1469 ns->rx_over_errors = 0;
1470 ns->rx_crc_errors = pstats->rx_fcs_errs;
1471 ns->rx_frame_errors = pstats->rx_symbol_errs;
1472 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1473 ns->rx_missed_errors = pstats->rx_cong_drops;
1474
1475 /* detailed tx_errors */
1476 ns->tx_aborted_errors = 0;
1477 ns->tx_carrier_errors = 0;
1478 ns->tx_fifo_errors = pstats->tx_underrun;
1479 ns->tx_heartbeat_errors = 0;
1480 ns->tx_window_errors = 0;
1481 return ns;
1482 }
1483
1484 static u32 get_msglevel(struct net_device *dev)
1485 {
1486 struct port_info *pi = netdev_priv(dev);
1487 struct adapter *adapter = pi->adapter;
1488
1489 return adapter->msg_enable;
1490 }
1491
1492 static void set_msglevel(struct net_device *dev, u32 val)
1493 {
1494 struct port_info *pi = netdev_priv(dev);
1495 struct adapter *adapter = pi->adapter;
1496
1497 adapter->msg_enable = val;
1498 }
1499
1500 static char stats_strings[][ETH_GSTRING_LEN] = {
1501 "TxOctetsOK ",
1502 "TxFramesOK ",
1503 "TxMulticastFramesOK",
1504 "TxBroadcastFramesOK",
1505 "TxPauseFrames ",
1506 "TxUnderrun ",
1507 "TxExtUnderrun ",
1508
1509 "TxFrames64 ",
1510 "TxFrames65To127 ",
1511 "TxFrames128To255 ",
1512 "TxFrames256To511 ",
1513 "TxFrames512To1023 ",
1514 "TxFrames1024To1518 ",
1515 "TxFrames1519ToMax ",
1516
1517 "RxOctetsOK ",
1518 "RxFramesOK ",
1519 "RxMulticastFramesOK",
1520 "RxBroadcastFramesOK",
1521 "RxPauseFrames ",
1522 "RxFCSErrors ",
1523 "RxSymbolErrors ",
1524 "RxShortErrors ",
1525 "RxJabberErrors ",
1526 "RxLengthErrors ",
1527 "RxFIFOoverflow ",
1528
1529 "RxFrames64 ",
1530 "RxFrames65To127 ",
1531 "RxFrames128To255 ",
1532 "RxFrames256To511 ",
1533 "RxFrames512To1023 ",
1534 "RxFrames1024To1518 ",
1535 "RxFrames1519ToMax ",
1536
1537 "PhyFIFOErrors ",
1538 "TSO ",
1539 "VLANextractions ",
1540 "VLANinsertions ",
1541 "TxCsumOffload ",
1542 "RxCsumGood ",
1543 "LroAggregated ",
1544 "LroFlushed ",
1545 "LroNoDesc ",
1546 "RxDrops ",
1547
1548 "CheckTXEnToggled ",
1549 "CheckResets ",
1550
1551 "LinkFaults ",
1552 };
1553
1554 static int get_sset_count(struct net_device *dev, int sset)
1555 {
1556 switch (sset) {
1557 case ETH_SS_STATS:
1558 return ARRAY_SIZE(stats_strings);
1559 default:
1560 return -EOPNOTSUPP;
1561 }
1562 }
1563
1564 #define T3_REGMAP_SIZE (3 * 1024)
1565
1566 static int get_regs_len(struct net_device *dev)
1567 {
1568 return T3_REGMAP_SIZE;
1569 }
1570
1571 static int get_eeprom_len(struct net_device *dev)
1572 {
1573 return EEPROMSIZE;
1574 }
1575
1576 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1577 {
1578 struct port_info *pi = netdev_priv(dev);
1579 struct adapter *adapter = pi->adapter;
1580 u32 fw_vers = 0;
1581 u32 tp_vers = 0;
1582
1583 spin_lock(&adapter->stats_lock);
1584 t3_get_fw_version(adapter, &fw_vers);
1585 t3_get_tp_version(adapter, &tp_vers);
1586 spin_unlock(&adapter->stats_lock);
1587
1588 strcpy(info->driver, DRV_NAME);
1589 strcpy(info->version, DRV_VERSION);
1590 strcpy(info->bus_info, pci_name(adapter->pdev));
1591 if (!fw_vers)
1592 strcpy(info->fw_version, "N/A");
1593 else {
1594 snprintf(info->fw_version, sizeof(info->fw_version),
1595 "%s %u.%u.%u TP %u.%u.%u",
1596 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1597 G_FW_VERSION_MAJOR(fw_vers),
1598 G_FW_VERSION_MINOR(fw_vers),
1599 G_FW_VERSION_MICRO(fw_vers),
1600 G_TP_VERSION_MAJOR(tp_vers),
1601 G_TP_VERSION_MINOR(tp_vers),
1602 G_TP_VERSION_MICRO(tp_vers));
1603 }
1604 }
1605
1606 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1607 {
1608 if (stringset == ETH_SS_STATS)
1609 memcpy(data, stats_strings, sizeof(stats_strings));
1610 }
1611
1612 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1613 struct port_info *p, int idx)
1614 {
1615 int i;
1616 unsigned long tot = 0;
1617
1618 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1619 tot += adapter->sge.qs[i].port_stats[idx];
1620 return tot;
1621 }
1622
1623 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1624 u64 *data)
1625 {
1626 struct port_info *pi = netdev_priv(dev);
1627 struct adapter *adapter = pi->adapter;
1628 const struct mac_stats *s;
1629
1630 spin_lock(&adapter->stats_lock);
1631 s = t3_mac_update_stats(&pi->mac);
1632 spin_unlock(&adapter->stats_lock);
1633
1634 *data++ = s->tx_octets;
1635 *data++ = s->tx_frames;
1636 *data++ = s->tx_mcast_frames;
1637 *data++ = s->tx_bcast_frames;
1638 *data++ = s->tx_pause;
1639 *data++ = s->tx_underrun;
1640 *data++ = s->tx_fifo_urun;
1641
1642 *data++ = s->tx_frames_64;
1643 *data++ = s->tx_frames_65_127;
1644 *data++ = s->tx_frames_128_255;
1645 *data++ = s->tx_frames_256_511;
1646 *data++ = s->tx_frames_512_1023;
1647 *data++ = s->tx_frames_1024_1518;
1648 *data++ = s->tx_frames_1519_max;
1649
1650 *data++ = s->rx_octets;
1651 *data++ = s->rx_frames;
1652 *data++ = s->rx_mcast_frames;
1653 *data++ = s->rx_bcast_frames;
1654 *data++ = s->rx_pause;
1655 *data++ = s->rx_fcs_errs;
1656 *data++ = s->rx_symbol_errs;
1657 *data++ = s->rx_short;
1658 *data++ = s->rx_jabber;
1659 *data++ = s->rx_too_long;
1660 *data++ = s->rx_fifo_ovfl;
1661
1662 *data++ = s->rx_frames_64;
1663 *data++ = s->rx_frames_65_127;
1664 *data++ = s->rx_frames_128_255;
1665 *data++ = s->rx_frames_256_511;
1666 *data++ = s->rx_frames_512_1023;
1667 *data++ = s->rx_frames_1024_1518;
1668 *data++ = s->rx_frames_1519_max;
1669
1670 *data++ = pi->phy.fifo_errors;
1671
1672 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1673 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1674 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1675 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1676 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1677 *data++ = 0;
1678 *data++ = 0;
1679 *data++ = 0;
1680 *data++ = s->rx_cong_drops;
1681
1682 *data++ = s->num_toggled;
1683 *data++ = s->num_resets;
1684
1685 *data++ = s->link_faults;
1686 }
1687
1688 static inline void reg_block_dump(struct adapter *ap, void *buf,
1689 unsigned int start, unsigned int end)
1690 {
1691 u32 *p = buf + start;
1692
1693 for (; start <= end; start += sizeof(u32))
1694 *p++ = t3_read_reg(ap, start);
1695 }
1696
1697 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1698 void *buf)
1699 {
1700 struct port_info *pi = netdev_priv(dev);
1701 struct adapter *ap = pi->adapter;
1702
1703 /*
1704 * Version scheme:
1705 * bits 0..9: chip version
1706 * bits 10..15: chip revision
1707 * bit 31: set for PCIe cards
1708 */
1709 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1710
1711 /*
1712 * We skip the MAC statistics registers because they are clear-on-read.
1713 * Also reading multi-register stats would need to synchronize with the
1714 * periodic mac stats accumulation. Hard to justify the complexity.
1715 */
1716 memset(buf, 0, T3_REGMAP_SIZE);
1717 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1718 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1719 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1720 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1721 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1722 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1723 XGM_REG(A_XGM_SERDES_STAT3, 1));
1724 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1725 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1726 }
1727
1728 static int restart_autoneg(struct net_device *dev)
1729 {
1730 struct port_info *p = netdev_priv(dev);
1731
1732 if (!netif_running(dev))
1733 return -EAGAIN;
1734 if (p->link_config.autoneg != AUTONEG_ENABLE)
1735 return -EINVAL;
1736 p->phy.ops->autoneg_restart(&p->phy);
1737 return 0;
1738 }
1739
1740 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1741 {
1742 struct port_info *pi = netdev_priv(dev);
1743 struct adapter *adapter = pi->adapter;
1744 int i;
1745
1746 if (data == 0)
1747 data = 2;
1748
1749 for (i = 0; i < data * 2; i++) {
1750 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1751 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1752 if (msleep_interruptible(500))
1753 break;
1754 }
1755 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1756 F_GPIO0_OUT_VAL);
1757 return 0;
1758 }
1759
1760 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1761 {
1762 struct port_info *p = netdev_priv(dev);
1763
1764 cmd->supported = p->link_config.supported;
1765 cmd->advertising = p->link_config.advertising;
1766
1767 if (netif_carrier_ok(dev)) {
1768 cmd->speed = p->link_config.speed;
1769 cmd->duplex = p->link_config.duplex;
1770 } else {
1771 cmd->speed = -1;
1772 cmd->duplex = -1;
1773 }
1774
1775 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1776 cmd->phy_address = p->phy.mdio.prtad;
1777 cmd->transceiver = XCVR_EXTERNAL;
1778 cmd->autoneg = p->link_config.autoneg;
1779 cmd->maxtxpkt = 0;
1780 cmd->maxrxpkt = 0;
1781 return 0;
1782 }
1783
1784 static int speed_duplex_to_caps(int speed, int duplex)
1785 {
1786 int cap = 0;
1787
1788 switch (speed) {
1789 case SPEED_10:
1790 if (duplex == DUPLEX_FULL)
1791 cap = SUPPORTED_10baseT_Full;
1792 else
1793 cap = SUPPORTED_10baseT_Half;
1794 break;
1795 case SPEED_100:
1796 if (duplex == DUPLEX_FULL)
1797 cap = SUPPORTED_100baseT_Full;
1798 else
1799 cap = SUPPORTED_100baseT_Half;
1800 break;
1801 case SPEED_1000:
1802 if (duplex == DUPLEX_FULL)
1803 cap = SUPPORTED_1000baseT_Full;
1804 else
1805 cap = SUPPORTED_1000baseT_Half;
1806 break;
1807 case SPEED_10000:
1808 if (duplex == DUPLEX_FULL)
1809 cap = SUPPORTED_10000baseT_Full;
1810 }
1811 return cap;
1812 }
1813
1814 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1815 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1816 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1817 ADVERTISED_10000baseT_Full)
1818
1819 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1820 {
1821 struct port_info *p = netdev_priv(dev);
1822 struct link_config *lc = &p->link_config;
1823
1824 if (!(lc->supported & SUPPORTED_Autoneg)) {
1825 /*
1826 * PHY offers a single speed/duplex. See if that's what's
1827 * being requested.
1828 */
1829 if (cmd->autoneg == AUTONEG_DISABLE) {
1830 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1831 if (lc->supported & cap)
1832 return 0;
1833 }
1834 return -EINVAL;
1835 }
1836
1837 if (cmd->autoneg == AUTONEG_DISABLE) {
1838 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1839
1840 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1841 return -EINVAL;
1842 lc->requested_speed = cmd->speed;
1843 lc->requested_duplex = cmd->duplex;
1844 lc->advertising = 0;
1845 } else {
1846 cmd->advertising &= ADVERTISED_MASK;
1847 cmd->advertising &= lc->supported;
1848 if (!cmd->advertising)
1849 return -EINVAL;
1850 lc->requested_speed = SPEED_INVALID;
1851 lc->requested_duplex = DUPLEX_INVALID;
1852 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1853 }
1854 lc->autoneg = cmd->autoneg;
1855 if (netif_running(dev))
1856 t3_link_start(&p->phy, &p->mac, lc);
1857 return 0;
1858 }
1859
1860 static void get_pauseparam(struct net_device *dev,
1861 struct ethtool_pauseparam *epause)
1862 {
1863 struct port_info *p = netdev_priv(dev);
1864
1865 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1866 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1867 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1868 }
1869
1870 static int set_pauseparam(struct net_device *dev,
1871 struct ethtool_pauseparam *epause)
1872 {
1873 struct port_info *p = netdev_priv(dev);
1874 struct link_config *lc = &p->link_config;
1875
1876 if (epause->autoneg == AUTONEG_DISABLE)
1877 lc->requested_fc = 0;
1878 else if (lc->supported & SUPPORTED_Autoneg)
1879 lc->requested_fc = PAUSE_AUTONEG;
1880 else
1881 return -EINVAL;
1882
1883 if (epause->rx_pause)
1884 lc->requested_fc |= PAUSE_RX;
1885 if (epause->tx_pause)
1886 lc->requested_fc |= PAUSE_TX;
1887 if (lc->autoneg == AUTONEG_ENABLE) {
1888 if (netif_running(dev))
1889 t3_link_start(&p->phy, &p->mac, lc);
1890 } else {
1891 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1892 if (netif_running(dev))
1893 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1894 }
1895 return 0;
1896 }
1897
1898 static u32 get_rx_csum(struct net_device *dev)
1899 {
1900 struct port_info *p = netdev_priv(dev);
1901
1902 return p->rx_offload & T3_RX_CSUM;
1903 }
1904
1905 static int set_rx_csum(struct net_device *dev, u32 data)
1906 {
1907 struct port_info *p = netdev_priv(dev);
1908
1909 if (data) {
1910 p->rx_offload |= T3_RX_CSUM;
1911 } else {
1912 int i;
1913
1914 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1915 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1916 set_qset_lro(dev, i, 0);
1917 }
1918 return 0;
1919 }
1920
1921 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1922 {
1923 struct port_info *pi = netdev_priv(dev);
1924 struct adapter *adapter = pi->adapter;
1925 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1926
1927 e->rx_max_pending = MAX_RX_BUFFERS;
1928 e->rx_mini_max_pending = 0;
1929 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1930 e->tx_max_pending = MAX_TXQ_ENTRIES;
1931
1932 e->rx_pending = q->fl_size;
1933 e->rx_mini_pending = q->rspq_size;
1934 e->rx_jumbo_pending = q->jumbo_size;
1935 e->tx_pending = q->txq_size[0];
1936 }
1937
1938 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1939 {
1940 struct port_info *pi = netdev_priv(dev);
1941 struct adapter *adapter = pi->adapter;
1942 struct qset_params *q;
1943 int i;
1944
1945 if (e->rx_pending > MAX_RX_BUFFERS ||
1946 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1947 e->tx_pending > MAX_TXQ_ENTRIES ||
1948 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1949 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1950 e->rx_pending < MIN_FL_ENTRIES ||
1951 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1952 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1953 return -EINVAL;
1954
1955 if (adapter->flags & FULL_INIT_DONE)
1956 return -EBUSY;
1957
1958 q = &adapter->params.sge.qset[pi->first_qset];
1959 for (i = 0; i < pi->nqsets; ++i, ++q) {
1960 q->rspq_size = e->rx_mini_pending;
1961 q->fl_size = e->rx_pending;
1962 q->jumbo_size = e->rx_jumbo_pending;
1963 q->txq_size[0] = e->tx_pending;
1964 q->txq_size[1] = e->tx_pending;
1965 q->txq_size[2] = e->tx_pending;
1966 }
1967 return 0;
1968 }
1969
1970 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1971 {
1972 struct port_info *pi = netdev_priv(dev);
1973 struct adapter *adapter = pi->adapter;
1974 struct qset_params *qsp = &adapter->params.sge.qset[0];
1975 struct sge_qset *qs = &adapter->sge.qs[0];
1976
1977 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1978 return -EINVAL;
1979
1980 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1981 t3_update_qset_coalesce(qs, qsp);
1982 return 0;
1983 }
1984
1985 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1986 {
1987 struct port_info *pi = netdev_priv(dev);
1988 struct adapter *adapter = pi->adapter;
1989 struct qset_params *q = adapter->params.sge.qset;
1990
1991 c->rx_coalesce_usecs = q->coalesce_usecs;
1992 return 0;
1993 }
1994
1995 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1996 u8 * data)
1997 {
1998 struct port_info *pi = netdev_priv(dev);
1999 struct adapter *adapter = pi->adapter;
2000 int i, err = 0;
2001
2002 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2003 if (!buf)
2004 return -ENOMEM;
2005
2006 e->magic = EEPROM_MAGIC;
2007 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2008 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2009
2010 if (!err)
2011 memcpy(data, buf + e->offset, e->len);
2012 kfree(buf);
2013 return err;
2014 }
2015
2016 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2017 u8 * data)
2018 {
2019 struct port_info *pi = netdev_priv(dev);
2020 struct adapter *adapter = pi->adapter;
2021 u32 aligned_offset, aligned_len;
2022 __le32 *p;
2023 u8 *buf;
2024 int err;
2025
2026 if (eeprom->magic != EEPROM_MAGIC)
2027 return -EINVAL;
2028
2029 aligned_offset = eeprom->offset & ~3;
2030 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2031
2032 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2033 buf = kmalloc(aligned_len, GFP_KERNEL);
2034 if (!buf)
2035 return -ENOMEM;
2036 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2037 if (!err && aligned_len > 4)
2038 err = t3_seeprom_read(adapter,
2039 aligned_offset + aligned_len - 4,
2040 (__le32 *) & buf[aligned_len - 4]);
2041 if (err)
2042 goto out;
2043 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2044 } else
2045 buf = data;
2046
2047 err = t3_seeprom_wp(adapter, 0);
2048 if (err)
2049 goto out;
2050
2051 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2052 err = t3_seeprom_write(adapter, aligned_offset, *p);
2053 aligned_offset += 4;
2054 }
2055
2056 if (!err)
2057 err = t3_seeprom_wp(adapter, 1);
2058 out:
2059 if (buf != data)
2060 kfree(buf);
2061 return err;
2062 }
2063
2064 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2065 {
2066 wol->supported = 0;
2067 wol->wolopts = 0;
2068 memset(&wol->sopass, 0, sizeof(wol->sopass));
2069 }
2070
2071 static const struct ethtool_ops cxgb_ethtool_ops = {
2072 .get_settings = get_settings,
2073 .set_settings = set_settings,
2074 .get_drvinfo = get_drvinfo,
2075 .get_msglevel = get_msglevel,
2076 .set_msglevel = set_msglevel,
2077 .get_ringparam = get_sge_param,
2078 .set_ringparam = set_sge_param,
2079 .get_coalesce = get_coalesce,
2080 .set_coalesce = set_coalesce,
2081 .get_eeprom_len = get_eeprom_len,
2082 .get_eeprom = get_eeprom,
2083 .set_eeprom = set_eeprom,
2084 .get_pauseparam = get_pauseparam,
2085 .set_pauseparam = set_pauseparam,
2086 .get_rx_csum = get_rx_csum,
2087 .set_rx_csum = set_rx_csum,
2088 .set_tx_csum = ethtool_op_set_tx_csum,
2089 .set_sg = ethtool_op_set_sg,
2090 .get_link = ethtool_op_get_link,
2091 .get_strings = get_strings,
2092 .phys_id = cxgb3_phys_id,
2093 .nway_reset = restart_autoneg,
2094 .get_sset_count = get_sset_count,
2095 .get_ethtool_stats = get_stats,
2096 .get_regs_len = get_regs_len,
2097 .get_regs = get_regs,
2098 .get_wol = get_wol,
2099 .set_tso = ethtool_op_set_tso,
2100 };
2101
2102 static int in_range(int val, int lo, int hi)
2103 {
2104 return val < 0 || (val <= hi && val >= lo);
2105 }
2106
2107 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2108 {
2109 struct port_info *pi = netdev_priv(dev);
2110 struct adapter *adapter = pi->adapter;
2111 u32 cmd;
2112 int ret;
2113
2114 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2115 return -EFAULT;
2116
2117 switch (cmd) {
2118 case CHELSIO_SET_QSET_PARAMS:{
2119 int i;
2120 struct qset_params *q;
2121 struct ch_qset_params t;
2122 int q1 = pi->first_qset;
2123 int nqsets = pi->nqsets;
2124
2125 if (!capable(CAP_NET_ADMIN))
2126 return -EPERM;
2127 if (copy_from_user(&t, useraddr, sizeof(t)))
2128 return -EFAULT;
2129 if (t.qset_idx >= SGE_QSETS)
2130 return -EINVAL;
2131 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2132 !in_range(t.cong_thres, 0, 255) ||
2133 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2134 MAX_TXQ_ENTRIES) ||
2135 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2136 MAX_TXQ_ENTRIES) ||
2137 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2138 MAX_CTRL_TXQ_ENTRIES) ||
2139 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2140 MAX_RX_BUFFERS) ||
2141 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2142 MAX_RX_JUMBO_BUFFERS) ||
2143 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2144 MAX_RSPQ_ENTRIES))
2145 return -EINVAL;
2146
2147 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2148 for_each_port(adapter, i) {
2149 pi = adap2pinfo(adapter, i);
2150 if (t.qset_idx >= pi->first_qset &&
2151 t.qset_idx < pi->first_qset + pi->nqsets &&
2152 !(pi->rx_offload & T3_RX_CSUM))
2153 return -EINVAL;
2154 }
2155
2156 if ((adapter->flags & FULL_INIT_DONE) &&
2157 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2158 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2159 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2160 t.polling >= 0 || t.cong_thres >= 0))
2161 return -EBUSY;
2162
2163 /* Allow setting of any available qset when offload enabled */
2164 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2165 q1 = 0;
2166 for_each_port(adapter, i) {
2167 pi = adap2pinfo(adapter, i);
2168 nqsets += pi->first_qset + pi->nqsets;
2169 }
2170 }
2171
2172 if (t.qset_idx < q1)
2173 return -EINVAL;
2174 if (t.qset_idx > q1 + nqsets - 1)
2175 return -EINVAL;
2176
2177 q = &adapter->params.sge.qset[t.qset_idx];
2178
2179 if (t.rspq_size >= 0)
2180 q->rspq_size = t.rspq_size;
2181 if (t.fl_size[0] >= 0)
2182 q->fl_size = t.fl_size[0];
2183 if (t.fl_size[1] >= 0)
2184 q->jumbo_size = t.fl_size[1];
2185 if (t.txq_size[0] >= 0)
2186 q->txq_size[0] = t.txq_size[0];
2187 if (t.txq_size[1] >= 0)
2188 q->txq_size[1] = t.txq_size[1];
2189 if (t.txq_size[2] >= 0)
2190 q->txq_size[2] = t.txq_size[2];
2191 if (t.cong_thres >= 0)
2192 q->cong_thres = t.cong_thres;
2193 if (t.intr_lat >= 0) {
2194 struct sge_qset *qs =
2195 &adapter->sge.qs[t.qset_idx];
2196
2197 q->coalesce_usecs = t.intr_lat;
2198 t3_update_qset_coalesce(qs, q);
2199 }
2200 if (t.polling >= 0) {
2201 if (adapter->flags & USING_MSIX)
2202 q->polling = t.polling;
2203 else {
2204 /* No polling with INTx for T3A */
2205 if (adapter->params.rev == 0 &&
2206 !(adapter->flags & USING_MSI))
2207 t.polling = 0;
2208
2209 for (i = 0; i < SGE_QSETS; i++) {
2210 q = &adapter->params.sge.
2211 qset[i];
2212 q->polling = t.polling;
2213 }
2214 }
2215 }
2216 if (t.lro >= 0)
2217 set_qset_lro(dev, t.qset_idx, t.lro);
2218
2219 break;
2220 }
2221 case CHELSIO_GET_QSET_PARAMS:{
2222 struct qset_params *q;
2223 struct ch_qset_params t;
2224 int q1 = pi->first_qset;
2225 int nqsets = pi->nqsets;
2226 int i;
2227
2228 if (copy_from_user(&t, useraddr, sizeof(t)))
2229 return -EFAULT;
2230
2231 /* Display qsets for all ports when offload enabled */
2232 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2233 q1 = 0;
2234 for_each_port(adapter, i) {
2235 pi = adap2pinfo(adapter, i);
2236 nqsets = pi->first_qset + pi->nqsets;
2237 }
2238 }
2239
2240 if (t.qset_idx >= nqsets)
2241 return -EINVAL;
2242
2243 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2244 t.rspq_size = q->rspq_size;
2245 t.txq_size[0] = q->txq_size[0];
2246 t.txq_size[1] = q->txq_size[1];
2247 t.txq_size[2] = q->txq_size[2];
2248 t.fl_size[0] = q->fl_size;
2249 t.fl_size[1] = q->jumbo_size;
2250 t.polling = q->polling;
2251 t.lro = q->lro;
2252 t.intr_lat = q->coalesce_usecs;
2253 t.cong_thres = q->cong_thres;
2254 t.qnum = q1;
2255
2256 if (adapter->flags & USING_MSIX)
2257 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2258 else
2259 t.vector = adapter->pdev->irq;
2260
2261 if (copy_to_user(useraddr, &t, sizeof(t)))
2262 return -EFAULT;
2263 break;
2264 }
2265 case CHELSIO_SET_QSET_NUM:{
2266 struct ch_reg edata;
2267 unsigned int i, first_qset = 0, other_qsets = 0;
2268
2269 if (!capable(CAP_NET_ADMIN))
2270 return -EPERM;
2271 if (adapter->flags & FULL_INIT_DONE)
2272 return -EBUSY;
2273 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2274 return -EFAULT;
2275 if (edata.val < 1 ||
2276 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2277 return -EINVAL;
2278
2279 for_each_port(adapter, i)
2280 if (adapter->port[i] && adapter->port[i] != dev)
2281 other_qsets += adap2pinfo(adapter, i)->nqsets;
2282
2283 if (edata.val + other_qsets > SGE_QSETS)
2284 return -EINVAL;
2285
2286 pi->nqsets = edata.val;
2287
2288 for_each_port(adapter, i)
2289 if (adapter->port[i]) {
2290 pi = adap2pinfo(adapter, i);
2291 pi->first_qset = first_qset;
2292 first_qset += pi->nqsets;
2293 }
2294 break;
2295 }
2296 case CHELSIO_GET_QSET_NUM:{
2297 struct ch_reg edata;
2298
2299 edata.cmd = CHELSIO_GET_QSET_NUM;
2300 edata.val = pi->nqsets;
2301 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2302 return -EFAULT;
2303 break;
2304 }
2305 case CHELSIO_LOAD_FW:{
2306 u8 *fw_data;
2307 struct ch_mem_range t;
2308
2309 if (!capable(CAP_SYS_RAWIO))
2310 return -EPERM;
2311 if (copy_from_user(&t, useraddr, sizeof(t)))
2312 return -EFAULT;
2313 /* Check t.len sanity ? */
2314 fw_data = kmalloc(t.len, GFP_KERNEL);
2315 if (!fw_data)
2316 return -ENOMEM;
2317
2318 if (copy_from_user
2319 (fw_data, useraddr + sizeof(t), t.len)) {
2320 kfree(fw_data);
2321 return -EFAULT;
2322 }
2323
2324 ret = t3_load_fw(adapter, fw_data, t.len);
2325 kfree(fw_data);
2326 if (ret)
2327 return ret;
2328 break;
2329 }
2330 case CHELSIO_SETMTUTAB:{
2331 struct ch_mtus m;
2332 int i;
2333
2334 if (!is_offload(adapter))
2335 return -EOPNOTSUPP;
2336 if (!capable(CAP_NET_ADMIN))
2337 return -EPERM;
2338 if (offload_running(adapter))
2339 return -EBUSY;
2340 if (copy_from_user(&m, useraddr, sizeof(m)))
2341 return -EFAULT;
2342 if (m.nmtus != NMTUS)
2343 return -EINVAL;
2344 if (m.mtus[0] < 81) /* accommodate SACK */
2345 return -EINVAL;
2346
2347 /* MTUs must be in ascending order */
2348 for (i = 1; i < NMTUS; ++i)
2349 if (m.mtus[i] < m.mtus[i - 1])
2350 return -EINVAL;
2351
2352 memcpy(adapter->params.mtus, m.mtus,
2353 sizeof(adapter->params.mtus));
2354 break;
2355 }
2356 case CHELSIO_GET_PM:{
2357 struct tp_params *p = &adapter->params.tp;
2358 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2359
2360 if (!is_offload(adapter))
2361 return -EOPNOTSUPP;
2362 m.tx_pg_sz = p->tx_pg_size;
2363 m.tx_num_pg = p->tx_num_pgs;
2364 m.rx_pg_sz = p->rx_pg_size;
2365 m.rx_num_pg = p->rx_num_pgs;
2366 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2367 if (copy_to_user(useraddr, &m, sizeof(m)))
2368 return -EFAULT;
2369 break;
2370 }
2371 case CHELSIO_SET_PM:{
2372 struct ch_pm m;
2373 struct tp_params *p = &adapter->params.tp;
2374
2375 if (!is_offload(adapter))
2376 return -EOPNOTSUPP;
2377 if (!capable(CAP_NET_ADMIN))
2378 return -EPERM;
2379 if (adapter->flags & FULL_INIT_DONE)
2380 return -EBUSY;
2381 if (copy_from_user(&m, useraddr, sizeof(m)))
2382 return -EFAULT;
2383 if (!is_power_of_2(m.rx_pg_sz) ||
2384 !is_power_of_2(m.tx_pg_sz))
2385 return -EINVAL; /* not power of 2 */
2386 if (!(m.rx_pg_sz & 0x14000))
2387 return -EINVAL; /* not 16KB or 64KB */
2388 if (!(m.tx_pg_sz & 0x1554000))
2389 return -EINVAL;
2390 if (m.tx_num_pg == -1)
2391 m.tx_num_pg = p->tx_num_pgs;
2392 if (m.rx_num_pg == -1)
2393 m.rx_num_pg = p->rx_num_pgs;
2394 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2395 return -EINVAL;
2396 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2397 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2398 return -EINVAL;
2399 p->rx_pg_size = m.rx_pg_sz;
2400 p->tx_pg_size = m.tx_pg_sz;
2401 p->rx_num_pgs = m.rx_num_pg;
2402 p->tx_num_pgs = m.tx_num_pg;
2403 break;
2404 }
2405 case CHELSIO_GET_MEM:{
2406 struct ch_mem_range t;
2407 struct mc7 *mem;
2408 u64 buf[32];
2409
2410 if (!is_offload(adapter))
2411 return -EOPNOTSUPP;
2412 if (!(adapter->flags & FULL_INIT_DONE))
2413 return -EIO; /* need the memory controllers */
2414 if (copy_from_user(&t, useraddr, sizeof(t)))
2415 return -EFAULT;
2416 if ((t.addr & 7) || (t.len & 7))
2417 return -EINVAL;
2418 if (t.mem_id == MEM_CM)
2419 mem = &adapter->cm;
2420 else if (t.mem_id == MEM_PMRX)
2421 mem = &adapter->pmrx;
2422 else if (t.mem_id == MEM_PMTX)
2423 mem = &adapter->pmtx;
2424 else
2425 return -EINVAL;
2426
2427 /*
2428 * Version scheme:
2429 * bits 0..9: chip version
2430 * bits 10..15: chip revision
2431 */
2432 t.version = 3 | (adapter->params.rev << 10);
2433 if (copy_to_user(useraddr, &t, sizeof(t)))
2434 return -EFAULT;
2435
2436 /*
2437 * Read 256 bytes at a time as len can be large and we don't
2438 * want to use huge intermediate buffers.
2439 */
2440 useraddr += sizeof(t); /* advance to start of buffer */
2441 while (t.len) {
2442 unsigned int chunk =
2443 min_t(unsigned int, t.len, sizeof(buf));
2444
2445 ret =
2446 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2447 buf);
2448 if (ret)
2449 return ret;
2450 if (copy_to_user(useraddr, buf, chunk))
2451 return -EFAULT;
2452 useraddr += chunk;
2453 t.addr += chunk;
2454 t.len -= chunk;
2455 }
2456 break;
2457 }
2458 case CHELSIO_SET_TRACE_FILTER:{
2459 struct ch_trace t;
2460 const struct trace_params *tp;
2461
2462 if (!capable(CAP_NET_ADMIN))
2463 return -EPERM;
2464 if (!offload_running(adapter))
2465 return -EAGAIN;
2466 if (copy_from_user(&t, useraddr, sizeof(t)))
2467 return -EFAULT;
2468
2469 tp = (const struct trace_params *)&t.sip;
2470 if (t.config_tx)
2471 t3_config_trace_filter(adapter, tp, 0,
2472 t.invert_match,
2473 t.trace_tx);
2474 if (t.config_rx)
2475 t3_config_trace_filter(adapter, tp, 1,
2476 t.invert_match,
2477 t.trace_rx);
2478 break;
2479 }
2480 default:
2481 return -EOPNOTSUPP;
2482 }
2483 return 0;
2484 }
2485
2486 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2487 {
2488 struct mii_ioctl_data *data = if_mii(req);
2489 struct port_info *pi = netdev_priv(dev);
2490 struct adapter *adapter = pi->adapter;
2491
2492 switch (cmd) {
2493 case SIOCGMIIREG:
2494 case SIOCSMIIREG:
2495 /* Convert phy_id from older PRTAD/DEVAD format */
2496 if (is_10G(adapter) &&
2497 !mdio_phy_id_is_c45(data->phy_id) &&
2498 (data->phy_id & 0x1f00) &&
2499 !(data->phy_id & 0xe0e0))
2500 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2501 data->phy_id & 0x1f);
2502 /* FALLTHRU */
2503 case SIOCGMIIPHY:
2504 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2505 case SIOCCHIOCTL:
2506 return cxgb_extension_ioctl(dev, req->ifr_data);
2507 default:
2508 return -EOPNOTSUPP;
2509 }
2510 }
2511
2512 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2513 {
2514 struct port_info *pi = netdev_priv(dev);
2515 struct adapter *adapter = pi->adapter;
2516 int ret;
2517
2518 if (new_mtu < 81) /* accommodate SACK */
2519 return -EINVAL;
2520 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2521 return ret;
2522 dev->mtu = new_mtu;
2523 init_port_mtus(adapter);
2524 if (adapter->params.rev == 0 && offload_running(adapter))
2525 t3_load_mtus(adapter, adapter->params.mtus,
2526 adapter->params.a_wnd, adapter->params.b_wnd,
2527 adapter->port[0]->mtu);
2528 return 0;
2529 }
2530
2531 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2532 {
2533 struct port_info *pi = netdev_priv(dev);
2534 struct adapter *adapter = pi->adapter;
2535 struct sockaddr *addr = p;
2536
2537 if (!is_valid_ether_addr(addr->sa_data))
2538 return -EINVAL;
2539
2540 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2541 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2542 if (offload_running(adapter))
2543 write_smt_entry(adapter, pi->port_id);
2544 return 0;
2545 }
2546
2547 /**
2548 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2549 * @adap: the adapter
2550 * @p: the port
2551 *
2552 * Ensures that current Rx processing on any of the queues associated with
2553 * the given port completes before returning. We do this by acquiring and
2554 * releasing the locks of the response queues associated with the port.
2555 */
2556 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2557 {
2558 int i;
2559
2560 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2561 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2562
2563 spin_lock_irq(&q->lock);
2564 spin_unlock_irq(&q->lock);
2565 }
2566 }
2567
2568 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2569 {
2570 struct port_info *pi = netdev_priv(dev);
2571 struct adapter *adapter = pi->adapter;
2572
2573 pi->vlan_grp = grp;
2574 if (adapter->params.rev > 0)
2575 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2576 else {
2577 /* single control for all ports */
2578 unsigned int i, have_vlans = 0;
2579 for_each_port(adapter, i)
2580 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2581
2582 t3_set_vlan_accel(adapter, 1, have_vlans);
2583 }
2584 t3_synchronize_rx(adapter, pi);
2585 }
2586
2587 #ifdef CONFIG_NET_POLL_CONTROLLER
2588 static void cxgb_netpoll(struct net_device *dev)
2589 {
2590 struct port_info *pi = netdev_priv(dev);
2591 struct adapter *adapter = pi->adapter;
2592 int qidx;
2593
2594 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2595 struct sge_qset *qs = &adapter->sge.qs[qidx];
2596 void *source;
2597
2598 if (adapter->flags & USING_MSIX)
2599 source = qs;
2600 else
2601 source = adapter;
2602
2603 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2604 }
2605 }
2606 #endif
2607
2608 /*
2609 * Periodic accumulation of MAC statistics.
2610 */
2611 static void mac_stats_update(struct adapter *adapter)
2612 {
2613 int i;
2614
2615 for_each_port(adapter, i) {
2616 struct net_device *dev = adapter->port[i];
2617 struct port_info *p = netdev_priv(dev);
2618
2619 if (netif_running(dev)) {
2620 spin_lock(&adapter->stats_lock);
2621 t3_mac_update_stats(&p->mac);
2622 spin_unlock(&adapter->stats_lock);
2623 }
2624 }
2625 }
2626
2627 static void check_link_status(struct adapter *adapter)
2628 {
2629 int i;
2630
2631 for_each_port(adapter, i) {
2632 struct net_device *dev = adapter->port[i];
2633 struct port_info *p = netdev_priv(dev);
2634 int link_fault;
2635
2636 spin_lock_irq(&adapter->work_lock);
2637 link_fault = p->link_fault;
2638 spin_unlock_irq(&adapter->work_lock);
2639
2640 if (link_fault) {
2641 t3_link_fault(adapter, i);
2642 continue;
2643 }
2644
2645 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2646 t3_xgm_intr_disable(adapter, i);
2647 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2648
2649 t3_link_changed(adapter, i);
2650 t3_xgm_intr_enable(adapter, i);
2651 }
2652 }
2653 }
2654
2655 static void check_t3b2_mac(struct adapter *adapter)
2656 {
2657 int i;
2658
2659 if (!rtnl_trylock()) /* synchronize with ifdown */
2660 return;
2661
2662 for_each_port(adapter, i) {
2663 struct net_device *dev = adapter->port[i];
2664 struct port_info *p = netdev_priv(dev);
2665 int status;
2666
2667 if (!netif_running(dev))
2668 continue;
2669
2670 status = 0;
2671 if (netif_running(dev) && netif_carrier_ok(dev))
2672 status = t3b2_mac_watchdog_task(&p->mac);
2673 if (status == 1)
2674 p->mac.stats.num_toggled++;
2675 else if (status == 2) {
2676 struct cmac *mac = &p->mac;
2677
2678 t3_mac_set_mtu(mac, dev->mtu);
2679 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2680 cxgb_set_rxmode(dev);
2681 t3_link_start(&p->phy, mac, &p->link_config);
2682 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2683 t3_port_intr_enable(adapter, p->port_id);
2684 p->mac.stats.num_resets++;
2685 }
2686 }
2687 rtnl_unlock();
2688 }
2689
2690
2691 static void t3_adap_check_task(struct work_struct *work)
2692 {
2693 struct adapter *adapter = container_of(work, struct adapter,
2694 adap_check_task.work);
2695 const struct adapter_params *p = &adapter->params;
2696 int port;
2697 unsigned int v, status, reset;
2698
2699 adapter->check_task_cnt++;
2700
2701 check_link_status(adapter);
2702
2703 /* Accumulate MAC stats if needed */
2704 if (!p->linkpoll_period ||
2705 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2706 p->stats_update_period) {
2707 mac_stats_update(adapter);
2708 adapter->check_task_cnt = 0;
2709 }
2710
2711 if (p->rev == T3_REV_B2)
2712 check_t3b2_mac(adapter);
2713
2714 /*
2715 * Scan the XGMAC's to check for various conditions which we want to
2716 * monitor in a periodic polling manner rather than via an interrupt
2717 * condition. This is used for conditions which would otherwise flood
2718 * the system with interrupts and we only really need to know that the
2719 * conditions are "happening" ... For each condition we count the
2720 * detection of the condition and reset it for the next polling loop.
2721 */
2722 for_each_port(adapter, port) {
2723 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2724 u32 cause;
2725
2726 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2727 reset = 0;
2728 if (cause & F_RXFIFO_OVERFLOW) {
2729 mac->stats.rx_fifo_ovfl++;
2730 reset |= F_RXFIFO_OVERFLOW;
2731 }
2732
2733 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2734 }
2735
2736 /*
2737 * We do the same as above for FL_EMPTY interrupts.
2738 */
2739 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2740 reset = 0;
2741
2742 if (status & F_FLEMPTY) {
2743 struct sge_qset *qs = &adapter->sge.qs[0];
2744 int i = 0;
2745
2746 reset |= F_FLEMPTY;
2747
2748 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2749 0xffff;
2750
2751 while (v) {
2752 qs->fl[i].empty += (v & 1);
2753 if (i)
2754 qs++;
2755 i ^= 1;
2756 v >>= 1;
2757 }
2758 }
2759
2760 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2761
2762 /* Schedule the next check update if any port is active. */
2763 spin_lock_irq(&adapter->work_lock);
2764 if (adapter->open_device_map & PORT_MASK)
2765 schedule_chk_task(adapter);
2766 spin_unlock_irq(&adapter->work_lock);
2767 }
2768
2769 static void db_full_task(struct work_struct *work)
2770 {
2771 struct adapter *adapter = container_of(work, struct adapter,
2772 db_full_task);
2773
2774 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2775 }
2776
2777 static void db_empty_task(struct work_struct *work)
2778 {
2779 struct adapter *adapter = container_of(work, struct adapter,
2780 db_empty_task);
2781
2782 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2783 }
2784
2785 static void db_drop_task(struct work_struct *work)
2786 {
2787 struct adapter *adapter = container_of(work, struct adapter,
2788 db_drop_task);
2789 unsigned long delay = 1000;
2790 unsigned short r;
2791
2792 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2793
2794 /*
2795 * Sleep a while before ringing the driver qset dbs.
2796 * The delay is between 1000-2023 usecs.
2797 */
2798 get_random_bytes(&r, 2);
2799 delay += r & 1023;
2800 set_current_state(TASK_UNINTERRUPTIBLE);
2801 schedule_timeout(usecs_to_jiffies(delay));
2802 ring_dbs(adapter);
2803 }
2804
2805 /*
2806 * Processes external (PHY) interrupts in process context.
2807 */
2808 static void ext_intr_task(struct work_struct *work)
2809 {
2810 struct adapter *adapter = container_of(work, struct adapter,
2811 ext_intr_handler_task);
2812 int i;
2813
2814 /* Disable link fault interrupts */
2815 for_each_port(adapter, i) {
2816 struct net_device *dev = adapter->port[i];
2817 struct port_info *p = netdev_priv(dev);
2818
2819 t3_xgm_intr_disable(adapter, i);
2820 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2821 }
2822
2823 /* Re-enable link fault interrupts */
2824 t3_phy_intr_handler(adapter);
2825
2826 for_each_port(adapter, i)
2827 t3_xgm_intr_enable(adapter, i);
2828
2829 /* Now reenable external interrupts */
2830 spin_lock_irq(&adapter->work_lock);
2831 if (adapter->slow_intr_mask) {
2832 adapter->slow_intr_mask |= F_T3DBG;
2833 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2834 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2835 adapter->slow_intr_mask);
2836 }
2837 spin_unlock_irq(&adapter->work_lock);
2838 }
2839
2840 /*
2841 * Interrupt-context handler for external (PHY) interrupts.
2842 */
2843 void t3_os_ext_intr_handler(struct adapter *adapter)
2844 {
2845 /*
2846 * Schedule a task to handle external interrupts as they may be slow
2847 * and we use a mutex to protect MDIO registers. We disable PHY
2848 * interrupts in the meantime and let the task reenable them when
2849 * it's done.
2850 */
2851 spin_lock(&adapter->work_lock);
2852 if (adapter->slow_intr_mask) {
2853 adapter->slow_intr_mask &= ~F_T3DBG;
2854 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2855 adapter->slow_intr_mask);
2856 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2857 }
2858 spin_unlock(&adapter->work_lock);
2859 }
2860
2861 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2862 {
2863 struct net_device *netdev = adapter->port[port_id];
2864 struct port_info *pi = netdev_priv(netdev);
2865
2866 spin_lock(&adapter->work_lock);
2867 pi->link_fault = 1;
2868 spin_unlock(&adapter->work_lock);
2869 }
2870
2871 static int t3_adapter_error(struct adapter *adapter, int reset)
2872 {
2873 int i, ret = 0;
2874
2875 if (is_offload(adapter) &&
2876 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2877 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2878 offload_close(&adapter->tdev);
2879 }
2880
2881 /* Stop all ports */
2882 for_each_port(adapter, i) {
2883 struct net_device *netdev = adapter->port[i];
2884
2885 if (netif_running(netdev))
2886 cxgb_close(netdev);
2887 }
2888
2889 /* Stop SGE timers */
2890 t3_stop_sge_timers(adapter);
2891
2892 adapter->flags &= ~FULL_INIT_DONE;
2893
2894 if (reset)
2895 ret = t3_reset_adapter(adapter);
2896
2897 pci_disable_device(adapter->pdev);
2898
2899 return ret;
2900 }
2901
2902 static int t3_reenable_adapter(struct adapter *adapter)
2903 {
2904 if (pci_enable_device(adapter->pdev)) {
2905 dev_err(&adapter->pdev->dev,
2906 "Cannot re-enable PCI device after reset.\n");
2907 goto err;
2908 }
2909 pci_set_master(adapter->pdev);
2910 pci_restore_state(adapter->pdev);
2911 pci_save_state(adapter->pdev);
2912
2913 /* Free sge resources */
2914 t3_free_sge_resources(adapter);
2915
2916 if (t3_replay_prep_adapter(adapter))
2917 goto err;
2918
2919 return 0;
2920 err:
2921 return -1;
2922 }
2923
2924 static void t3_resume_ports(struct adapter *adapter)
2925 {
2926 int i;
2927
2928 /* Restart the ports */
2929 for_each_port(adapter, i) {
2930 struct net_device *netdev = adapter->port[i];
2931
2932 if (netif_running(netdev)) {
2933 if (cxgb_open(netdev)) {
2934 dev_err(&adapter->pdev->dev,
2935 "can't bring device back up"
2936 " after reset\n");
2937 continue;
2938 }
2939 }
2940 }
2941
2942 if (is_offload(adapter) && !ofld_disable)
2943 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2944 }
2945
2946 /*
2947 * processes a fatal error.
2948 * Bring the ports down, reset the chip, bring the ports back up.
2949 */
2950 static void fatal_error_task(struct work_struct *work)
2951 {
2952 struct adapter *adapter = container_of(work, struct adapter,
2953 fatal_error_handler_task);
2954 int err = 0;
2955
2956 rtnl_lock();
2957 err = t3_adapter_error(adapter, 1);
2958 if (!err)
2959 err = t3_reenable_adapter(adapter);
2960 if (!err)
2961 t3_resume_ports(adapter);
2962
2963 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2964 rtnl_unlock();
2965 }
2966
2967 void t3_fatal_err(struct adapter *adapter)
2968 {
2969 unsigned int fw_status[4];
2970
2971 if (adapter->flags & FULL_INIT_DONE) {
2972 t3_sge_stop(adapter);
2973 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2974 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2975 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2976 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2977
2978 spin_lock(&adapter->work_lock);
2979 t3_intr_disable(adapter);
2980 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2981 spin_unlock(&adapter->work_lock);
2982 }
2983 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2984 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2985 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2986 fw_status[0], fw_status[1],
2987 fw_status[2], fw_status[3]);
2988 }
2989
2990 /**
2991 * t3_io_error_detected - called when PCI error is detected
2992 * @pdev: Pointer to PCI device
2993 * @state: The current pci connection state
2994 *
2995 * This function is called after a PCI bus error affecting
2996 * this device has been detected.
2997 */
2998 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2999 pci_channel_state_t state)
3000 {
3001 struct adapter *adapter = pci_get_drvdata(pdev);
3002 int ret;
3003
3004 if (state == pci_channel_io_perm_failure)
3005 return PCI_ERS_RESULT_DISCONNECT;
3006
3007 ret = t3_adapter_error(adapter, 0);
3008
3009 /* Request a slot reset. */
3010 return PCI_ERS_RESULT_NEED_RESET;
3011 }
3012
3013 /**
3014 * t3_io_slot_reset - called after the pci bus has been reset.
3015 * @pdev: Pointer to PCI device
3016 *
3017 * Restart the card from scratch, as if from a cold-boot.
3018 */
3019 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3020 {
3021 struct adapter *adapter = pci_get_drvdata(pdev);
3022
3023 if (!t3_reenable_adapter(adapter))
3024 return PCI_ERS_RESULT_RECOVERED;
3025
3026 return PCI_ERS_RESULT_DISCONNECT;
3027 }
3028
3029 /**
3030 * t3_io_resume - called when traffic can start flowing again.
3031 * @pdev: Pointer to PCI device
3032 *
3033 * This callback is called when the error recovery driver tells us that
3034 * its OK to resume normal operation.
3035 */
3036 static void t3_io_resume(struct pci_dev *pdev)
3037 {
3038 struct adapter *adapter = pci_get_drvdata(pdev);
3039
3040 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3041 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3042
3043 t3_resume_ports(adapter);
3044 }
3045
3046 static struct pci_error_handlers t3_err_handler = {
3047 .error_detected = t3_io_error_detected,
3048 .slot_reset = t3_io_slot_reset,
3049 .resume = t3_io_resume,
3050 };
3051
3052 /*
3053 * Set the number of qsets based on the number of CPUs and the number of ports,
3054 * not to exceed the number of available qsets, assuming there are enough qsets
3055 * per port in HW.
3056 */
3057 static void set_nqsets(struct adapter *adap)
3058 {
3059 int i, j = 0;
3060 int num_cpus = num_online_cpus();
3061 int hwports = adap->params.nports;
3062 int nqsets = adap->msix_nvectors - 1;
3063
3064 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3065 if (hwports == 2 &&
3066 (hwports * nqsets > SGE_QSETS ||
3067 num_cpus >= nqsets / hwports))
3068 nqsets /= hwports;
3069 if (nqsets > num_cpus)
3070 nqsets = num_cpus;
3071 if (nqsets < 1 || hwports == 4)
3072 nqsets = 1;
3073 } else
3074 nqsets = 1;
3075
3076 for_each_port(adap, i) {
3077 struct port_info *pi = adap2pinfo(adap, i);
3078
3079 pi->first_qset = j;
3080 pi->nqsets = nqsets;
3081 j = pi->first_qset + nqsets;
3082
3083 dev_info(&adap->pdev->dev,
3084 "Port %d using %d queue sets.\n", i, nqsets);
3085 }
3086 }
3087
3088 static int __devinit cxgb_enable_msix(struct adapter *adap)
3089 {
3090 struct msix_entry entries[SGE_QSETS + 1];
3091 int vectors;
3092 int i, err;
3093
3094 vectors = ARRAY_SIZE(entries);
3095 for (i = 0; i < vectors; ++i)
3096 entries[i].entry = i;
3097
3098 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3099 vectors = err;
3100
3101 if (err < 0)
3102 pci_disable_msix(adap->pdev);
3103
3104 if (!err && vectors < (adap->params.nports + 1)) {
3105 pci_disable_msix(adap->pdev);
3106 err = -1;
3107 }
3108
3109 if (!err) {
3110 for (i = 0; i < vectors; ++i)
3111 adap->msix_info[i].vec = entries[i].vector;
3112 adap->msix_nvectors = vectors;
3113 }
3114
3115 return err;
3116 }
3117
3118 static void __devinit print_port_info(struct adapter *adap,
3119 const struct adapter_info *ai)
3120 {
3121 static const char *pci_variant[] = {
3122 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3123 };
3124
3125 int i;
3126 char buf[80];
3127
3128 if (is_pcie(adap))
3129 snprintf(buf, sizeof(buf), "%s x%d",
3130 pci_variant[adap->params.pci.variant],
3131 adap->params.pci.width);
3132 else
3133 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3134 pci_variant[adap->params.pci.variant],
3135 adap->params.pci.speed, adap->params.pci.width);
3136
3137 for_each_port(adap, i) {
3138 struct net_device *dev = adap->port[i];
3139 const struct port_info *pi = netdev_priv(dev);
3140
3141 if (!test_bit(i, &adap->registered_device_map))
3142 continue;
3143 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3144 dev->name, ai->desc, pi->phy.desc,
3145 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3146 (adap->flags & USING_MSIX) ? " MSI-X" :
3147 (adap->flags & USING_MSI) ? " MSI" : "");
3148 if (adap->name == dev->name && adap->params.vpd.mclk)
3149 printk(KERN_INFO
3150 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3151 adap->name, t3_mc7_size(&adap->cm) >> 20,
3152 t3_mc7_size(&adap->pmtx) >> 20,
3153 t3_mc7_size(&adap->pmrx) >> 20,
3154 adap->params.vpd.sn);
3155 }
3156 }
3157
3158 static const struct net_device_ops cxgb_netdev_ops = {
3159 .ndo_open = cxgb_open,
3160 .ndo_stop = cxgb_close,
3161 .ndo_start_xmit = t3_eth_xmit,
3162 .ndo_get_stats = cxgb_get_stats,
3163 .ndo_validate_addr = eth_validate_addr,
3164 .ndo_set_multicast_list = cxgb_set_rxmode,
3165 .ndo_do_ioctl = cxgb_ioctl,
3166 .ndo_change_mtu = cxgb_change_mtu,
3167 .ndo_set_mac_address = cxgb_set_mac_addr,
3168 .ndo_vlan_rx_register = vlan_rx_register,
3169 #ifdef CONFIG_NET_POLL_CONTROLLER
3170 .ndo_poll_controller = cxgb_netpoll,
3171 #endif
3172 };
3173
3174 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3175 {
3176 struct port_info *pi = netdev_priv(dev);
3177
3178 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3179 pi->iscsic.mac_addr[3] |= 0x80;
3180 }
3181
3182 static int __devinit init_one(struct pci_dev *pdev,
3183 const struct pci_device_id *ent)
3184 {
3185 static int version_printed;
3186
3187 int i, err, pci_using_dac = 0;
3188 resource_size_t mmio_start, mmio_len;
3189 const struct adapter_info *ai;
3190 struct adapter *adapter = NULL;
3191 struct port_info *pi;
3192
3193 if (!version_printed) {
3194 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3195 ++version_printed;
3196 }
3197
3198 if (!cxgb3_wq) {
3199 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3200 if (!cxgb3_wq) {
3201 printk(KERN_ERR DRV_NAME
3202 ": cannot initialize work queue\n");
3203 return -ENOMEM;
3204 }
3205 }
3206
3207 err = pci_request_regions(pdev, DRV_NAME);
3208 if (err) {
3209 /* Just info, some other driver may have claimed the device. */
3210 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3211 return err;
3212 }
3213
3214 err = pci_enable_device(pdev);
3215 if (err) {
3216 dev_err(&pdev->dev, "cannot enable PCI device\n");
3217 goto out_release_regions;
3218 }
3219
3220 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3221 pci_using_dac = 1;
3222 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3223 if (err) {
3224 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3225 "coherent allocations\n");
3226 goto out_disable_device;
3227 }
3228 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3229 dev_err(&pdev->dev, "no usable DMA configuration\n");
3230 goto out_disable_device;
3231 }
3232
3233 pci_set_master(pdev);
3234 pci_save_state(pdev);
3235
3236 mmio_start = pci_resource_start(pdev, 0);
3237 mmio_len = pci_resource_len(pdev, 0);
3238 ai = t3_get_adapter_info(ent->driver_data);
3239
3240 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3241 if (!adapter) {
3242 err = -ENOMEM;
3243 goto out_disable_device;
3244 }
3245
3246 adapter->nofail_skb =
3247 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3248 if (!adapter->nofail_skb) {
3249 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3250 err = -ENOMEM;
3251 goto out_free_adapter;
3252 }
3253
3254 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3255 if (!adapter->regs) {
3256 dev_err(&pdev->dev, "cannot map device registers\n");
3257 err = -ENOMEM;
3258 goto out_free_adapter;
3259 }
3260
3261 adapter->pdev = pdev;
3262 adapter->name = pci_name(pdev);
3263 adapter->msg_enable = dflt_msg_enable;
3264 adapter->mmio_len = mmio_len;
3265
3266 mutex_init(&adapter->mdio_lock);
3267 spin_lock_init(&adapter->work_lock);
3268 spin_lock_init(&adapter->stats_lock);
3269
3270 INIT_LIST_HEAD(&adapter->adapter_list);
3271 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3272 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3273
3274 INIT_WORK(&adapter->db_full_task, db_full_task);
3275 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3276 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3277
3278 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3279
3280 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3281 struct net_device *netdev;
3282
3283 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3284 if (!netdev) {
3285 err = -ENOMEM;
3286 goto out_free_dev;
3287 }
3288
3289 SET_NETDEV_DEV(netdev, &pdev->dev);
3290
3291 adapter->port[i] = netdev;
3292 pi = netdev_priv(netdev);
3293 pi->adapter = adapter;
3294 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3295 pi->port_id = i;
3296 netif_carrier_off(netdev);
3297 netif_tx_stop_all_queues(netdev);
3298 netdev->irq = pdev->irq;
3299 netdev->mem_start = mmio_start;
3300 netdev->mem_end = mmio_start + mmio_len - 1;
3301 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3302 netdev->features |= NETIF_F_GRO;
3303 if (pci_using_dac)
3304 netdev->features |= NETIF_F_HIGHDMA;
3305
3306 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3307 netdev->netdev_ops = &cxgb_netdev_ops;
3308 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3309 }
3310
3311 pci_set_drvdata(pdev, adapter);
3312 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3313 err = -ENODEV;
3314 goto out_free_dev;
3315 }
3316
3317 /*
3318 * The card is now ready to go. If any errors occur during device
3319 * registration we do not fail the whole card but rather proceed only
3320 * with the ports we manage to register successfully. However we must
3321 * register at least one net device.
3322 */
3323 for_each_port(adapter, i) {
3324 err = register_netdev(adapter->port[i]);
3325 if (err)
3326 dev_warn(&pdev->dev,
3327 "cannot register net device %s, skipping\n",
3328 adapter->port[i]->name);
3329 else {
3330 /*
3331 * Change the name we use for messages to the name of
3332 * the first successfully registered interface.
3333 */
3334 if (!adapter->registered_device_map)
3335 adapter->name = adapter->port[i]->name;
3336
3337 __set_bit(i, &adapter->registered_device_map);
3338 }
3339 }
3340 if (!adapter->registered_device_map) {
3341 dev_err(&pdev->dev, "could not register any net devices\n");
3342 goto out_free_dev;
3343 }
3344
3345 for_each_port(adapter, i)
3346 cxgb3_init_iscsi_mac(adapter->port[i]);
3347
3348 /* Driver's ready. Reflect it on LEDs */
3349 t3_led_ready(adapter);
3350
3351 if (is_offload(adapter)) {
3352 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3353 cxgb3_adapter_ofld(adapter);
3354 }
3355
3356 /* See what interrupts we'll be using */
3357 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3358 adapter->flags |= USING_MSIX;
3359 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3360 adapter->flags |= USING_MSI;
3361
3362 set_nqsets(adapter);
3363
3364 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3365 &cxgb3_attr_group);
3366
3367 print_port_info(adapter, ai);
3368 return 0;
3369
3370 out_free_dev:
3371 iounmap(adapter->regs);
3372 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3373 if (adapter->port[i])
3374 free_netdev(adapter->port[i]);
3375
3376 out_free_adapter:
3377 kfree(adapter);
3378
3379 out_disable_device:
3380 pci_disable_device(pdev);
3381 out_release_regions:
3382 pci_release_regions(pdev);
3383 pci_set_drvdata(pdev, NULL);
3384 return err;
3385 }
3386
3387 static void __devexit remove_one(struct pci_dev *pdev)
3388 {
3389 struct adapter *adapter = pci_get_drvdata(pdev);
3390
3391 if (adapter) {
3392 int i;
3393
3394 t3_sge_stop(adapter);
3395 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3396 &cxgb3_attr_group);
3397
3398 if (is_offload(adapter)) {
3399 cxgb3_adapter_unofld(adapter);
3400 if (test_bit(OFFLOAD_DEVMAP_BIT,
3401 &adapter->open_device_map))
3402 offload_close(&adapter->tdev);
3403 }
3404
3405 for_each_port(adapter, i)
3406 if (test_bit(i, &adapter->registered_device_map))
3407 unregister_netdev(adapter->port[i]);
3408
3409 t3_stop_sge_timers(adapter);
3410 t3_free_sge_resources(adapter);
3411 cxgb_disable_msi(adapter);
3412
3413 for_each_port(adapter, i)
3414 if (adapter->port[i])
3415 free_netdev(adapter->port[i]);
3416
3417 iounmap(adapter->regs);
3418 if (adapter->nofail_skb)
3419 kfree_skb(adapter->nofail_skb);
3420 kfree(adapter);
3421 pci_release_regions(pdev);
3422 pci_disable_device(pdev);
3423 pci_set_drvdata(pdev, NULL);
3424 }
3425 }
3426
3427 static struct pci_driver driver = {
3428 .name = DRV_NAME,
3429 .id_table = cxgb3_pci_tbl,
3430 .probe = init_one,
3431 .remove = __devexit_p(remove_one),
3432 .err_handler = &t3_err_handler,
3433 };
3434
3435 static int __init cxgb3_init_module(void)
3436 {
3437 int ret;
3438
3439 cxgb3_offload_init();
3440
3441 ret = pci_register_driver(&driver);
3442 return ret;
3443 }
3444
3445 static void __exit cxgb3_cleanup_module(void)
3446 {
3447 pci_unregister_driver(&driver);
3448 if (cxgb3_wq)
3449 destroy_workqueue(cxgb3_wq);
3450 }
3451
3452 module_init(cxgb3_init_module);
3453 module_exit(cxgb3_cleanup_module);