]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/cxgb3/sge.c
net: dont update dev->trans_start in 10GB drivers
[mirror_ubuntu-zesty-kernel.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <net/arp.h>
40 #include "common.h"
41 #include "regs.h"
42 #include "sge_defs.h"
43 #include "t3_cpl.h"
44 #include "firmware_exports.h"
45
46 #define USE_GTS 0
47
48 #define SGE_RX_SM_BUF_SIZE 1536
49
50 #define SGE_RX_COPY_THRES 256
51 #define SGE_RX_PULL_LEN 128
52
53 #define SGE_PG_RSVD SMP_CACHE_BYTES
54 /*
55 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
56 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
57 * directly.
58 */
59 #define FL0_PG_CHUNK_SIZE 2048
60 #define FL0_PG_ORDER 0
61 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
62 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
63 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
64 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
65
66 #define SGE_RX_DROP_THRES 16
67 #define RX_RECLAIM_PERIOD (HZ/4)
68
69 /*
70 * Max number of Rx buffers we replenish at a time.
71 */
72 #define MAX_RX_REFILL 16U
73 /*
74 * Period of the Tx buffer reclaim timer. This timer does not need to run
75 * frequently as Tx buffers are usually reclaimed by new Tx packets.
76 */
77 #define TX_RECLAIM_PERIOD (HZ / 4)
78 #define TX_RECLAIM_TIMER_CHUNK 64U
79 #define TX_RECLAIM_CHUNK 16U
80
81 /* WR size in bytes */
82 #define WR_LEN (WR_FLITS * 8)
83
84 /*
85 * Types of Tx queues in each queue set. Order here matters, do not change.
86 */
87 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
88
89 /* Values for sge_txq.flags */
90 enum {
91 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
92 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
93 };
94
95 struct tx_desc {
96 __be64 flit[TX_DESC_FLITS];
97 };
98
99 struct rx_desc {
100 __be32 addr_lo;
101 __be32 len_gen;
102 __be32 gen2;
103 __be32 addr_hi;
104 };
105
106 struct tx_sw_desc { /* SW state per Tx descriptor */
107 struct sk_buff *skb;
108 u8 eop; /* set if last descriptor for packet */
109 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
110 u8 fragidx; /* first page fragment associated with descriptor */
111 s8 sflit; /* start flit of first SGL entry in descriptor */
112 };
113
114 struct rx_sw_desc { /* SW state per Rx descriptor */
115 union {
116 struct sk_buff *skb;
117 struct fl_pg_chunk pg_chunk;
118 };
119 DECLARE_PCI_UNMAP_ADDR(dma_addr);
120 };
121
122 struct rsp_desc { /* response queue descriptor */
123 struct rss_header rss_hdr;
124 __be32 flags;
125 __be32 len_cq;
126 u8 imm_data[47];
127 u8 intr_gen;
128 };
129
130 /*
131 * Holds unmapping information for Tx packets that need deferred unmapping.
132 * This structure lives at skb->head and must be allocated by callers.
133 */
134 struct deferred_unmap_info {
135 struct pci_dev *pdev;
136 dma_addr_t addr[MAX_SKB_FRAGS + 1];
137 };
138
139 /*
140 * Maps a number of flits to the number of Tx descriptors that can hold them.
141 * The formula is
142 *
143 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
144 *
145 * HW allows up to 4 descriptors to be combined into a WR.
146 */
147 static u8 flit_desc_map[] = {
148 0,
149 #if SGE_NUM_GENBITS == 1
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
151 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
152 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
153 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
154 #elif SGE_NUM_GENBITS == 2
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
159 #else
160 # error "SGE_NUM_GENBITS must be 1 or 2"
161 #endif
162 };
163
164 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
165 {
166 return container_of(q, struct sge_qset, fl[qidx]);
167 }
168
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 return container_of(q, struct sge_qset, rspq);
172 }
173
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 return container_of(q, struct sge_qset, txq[qidx]);
177 }
178
179 /**
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
184 *
185 * Replenishes a response queue by making the supplied number of responses
186 * available to HW.
187 */
188 static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
190 {
191 rmb();
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195
196 /**
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
198 *
199 * Returns true if the platfrom needs sk_buff unmapping. The compiler
200 * optimizes away unecessary code if this returns true.
201 */
202 static inline int need_skb_unmap(void)
203 {
204 /*
205 * This structure is used to tell if the platfrom needs buffer
206 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
207 */
208 struct dummy {
209 DECLARE_PCI_UNMAP_ADDR(addr);
210 };
211
212 return sizeof(struct dummy) != 0;
213 }
214
215 /**
216 * unmap_skb - unmap a packet main body and its page fragments
217 * @skb: the packet
218 * @q: the Tx queue containing Tx descriptors for the packet
219 * @cidx: index of Tx descriptor
220 * @pdev: the PCI device
221 *
222 * Unmap the main body of an sk_buff and its page fragments, if any.
223 * Because of the fairly complicated structure of our SGLs and the desire
224 * to conserve space for metadata, the information necessary to unmap an
225 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
226 * descriptors (the physical addresses of the various data buffers), and
227 * the SW descriptor state (assorted indices). The send functions
228 * initialize the indices for the first packet descriptor so we can unmap
229 * the buffers held in the first Tx descriptor here, and we have enough
230 * information at this point to set the state for the next Tx descriptor.
231 *
232 * Note that it is possible to clean up the first descriptor of a packet
233 * before the send routines have written the next descriptors, but this
234 * race does not cause any problem. We just end up writing the unmapping
235 * info for the descriptor first.
236 */
237 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
238 unsigned int cidx, struct pci_dev *pdev)
239 {
240 const struct sg_ent *sgp;
241 struct tx_sw_desc *d = &q->sdesc[cidx];
242 int nfrags, frag_idx, curflit, j = d->addr_idx;
243
244 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
245 frag_idx = d->fragidx;
246
247 if (frag_idx == 0 && skb_headlen(skb)) {
248 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
249 skb_headlen(skb), PCI_DMA_TODEVICE);
250 j = 1;
251 }
252
253 curflit = d->sflit + 1 + j;
254 nfrags = skb_shinfo(skb)->nr_frags;
255
256 while (frag_idx < nfrags && curflit < WR_FLITS) {
257 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
258 skb_shinfo(skb)->frags[frag_idx].size,
259 PCI_DMA_TODEVICE);
260 j ^= 1;
261 if (j == 0) {
262 sgp++;
263 curflit++;
264 }
265 curflit++;
266 frag_idx++;
267 }
268
269 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
270 d = cidx + 1 == q->size ? q->sdesc : d + 1;
271 d->fragidx = frag_idx;
272 d->addr_idx = j;
273 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
274 }
275 }
276
277 /**
278 * free_tx_desc - reclaims Tx descriptors and their buffers
279 * @adapter: the adapter
280 * @q: the Tx queue to reclaim descriptors from
281 * @n: the number of descriptors to reclaim
282 *
283 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
284 * Tx buffers. Called with the Tx queue lock held.
285 */
286 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
287 unsigned int n)
288 {
289 struct tx_sw_desc *d;
290 struct pci_dev *pdev = adapter->pdev;
291 unsigned int cidx = q->cidx;
292
293 const int need_unmap = need_skb_unmap() &&
294 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295
296 d = &q->sdesc[cidx];
297 while (n--) {
298 if (d->skb) { /* an SGL is present */
299 if (need_unmap)
300 unmap_skb(d->skb, q, cidx, pdev);
301 if (d->eop)
302 kfree_skb(d->skb);
303 }
304 ++d;
305 if (++cidx == q->size) {
306 cidx = 0;
307 d = q->sdesc;
308 }
309 }
310 q->cidx = cidx;
311 }
312
313 /**
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
317 * @chunk: maximum number of descriptors to reclaim
318 *
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
321 * queue's lock held.
322 */
323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 struct sge_txq *q,
325 unsigned int chunk)
326 {
327 unsigned int reclaim = q->processed - q->cleaned;
328
329 reclaim = min(chunk, reclaim);
330 if (reclaim) {
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
334 }
335 return q->processed - q->cleaned;
336 }
337
338 /**
339 * should_restart_tx - are there enough resources to restart a Tx queue?
340 * @q: the Tx queue
341 *
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
343 */
344 static inline int should_restart_tx(const struct sge_txq *q)
345 {
346 unsigned int r = q->processed - q->cleaned;
347
348 return q->in_use - r < (q->size >> 1);
349 }
350
351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
353 {
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
357 pci_unmap_page(pdev,
358 pci_unmap_addr(&d->pg_chunk, mapping),
359 q->alloc_size, PCI_DMA_FROMDEVICE);
360
361 put_page(d->pg_chunk.page);
362 d->pg_chunk.page = NULL;
363 } else {
364 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
366 kfree_skb(d->skb);
367 d->skb = NULL;
368 }
369 }
370
371 /**
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
375 *
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
378 */
379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380 {
381 unsigned int cidx = q->cidx;
382
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
385
386
387 clear_rx_desc(pdev, q, d);
388 if (++cidx == q->size)
389 cidx = 0;
390 }
391
392 if (q->pg_chunk.page) {
393 __free_pages(q->pg_chunk.page, q->order);
394 q->pg_chunk.page = NULL;
395 }
396 }
397
398 /**
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
400 * @va: buffer start VA
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
406 *
407 * Add a buffer of the given length to the supplied HW and SW Rx
408 * descriptors.
409 */
410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
413 {
414 dma_addr_t mapping;
415
416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
418 return -ENOMEM;
419
420 pci_unmap_addr_set(sd, dma_addr, mapping);
421
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 wmb();
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
427 return 0;
428 }
429
430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 unsigned int gen)
432 {
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 wmb();
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 return 0;
439 }
440
441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
443 unsigned int order)
444 {
445 if (!q->pg_chunk.page) {
446 dma_addr_t mapping;
447
448 q->pg_chunk.page = alloc_pages(gfp, order);
449 if (unlikely(!q->pg_chunk.page))
450 return -ENOMEM;
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 SGE_PG_RSVD;
454 q->pg_chunk.offset = 0;
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 pci_unmap_addr_set(&q->pg_chunk, mapping, mapping);
458 }
459 sd->pg_chunk = q->pg_chunk;
460
461 prefetch(sd->pg_chunk.p_cnt);
462
463 q->pg_chunk.offset += q->buf_size;
464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 q->pg_chunk.page = NULL;
466 else {
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
469 }
470
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
473 else
474 *sd->pg_chunk.p_cnt += 1;
475
476 return 0;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= q->credits / 4) {
482 q->pend_cred = 0;
483 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
484 }
485 }
486
487 /**
488 * refill_fl - refill an SGE free-buffer list
489 * @adapter: the adapter
490 * @q: the free-list to refill
491 * @n: the number of new buffers to allocate
492 * @gfp: the gfp flags for allocating new buffers
493 *
494 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
495 * allocated with the supplied gfp flags. The caller must assure that
496 * @n does not exceed the queue's capacity.
497 */
498 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
499 {
500 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
501 struct rx_desc *d = &q->desc[q->pidx];
502 unsigned int count = 0;
503
504 while (n--) {
505 dma_addr_t mapping;
506 int err;
507
508 if (q->use_pages) {
509 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
510 q->order))) {
511 nomem: q->alloc_failed++;
512 break;
513 }
514 mapping = pci_unmap_addr(&sd->pg_chunk, mapping) +
515 sd->pg_chunk.offset;
516 pci_unmap_addr_set(sd, dma_addr, mapping);
517
518 add_one_rx_chunk(mapping, d, q->gen);
519 pci_dma_sync_single_for_device(adap->pdev, mapping,
520 q->buf_size - SGE_PG_RSVD,
521 PCI_DMA_FROMDEVICE);
522 } else {
523 void *buf_start;
524
525 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
526 if (!skb)
527 goto nomem;
528
529 sd->skb = skb;
530 buf_start = skb->data;
531 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
532 q->gen, adap->pdev);
533 if (unlikely(err)) {
534 clear_rx_desc(adap->pdev, q, sd);
535 break;
536 }
537 }
538
539 d++;
540 sd++;
541 if (++q->pidx == q->size) {
542 q->pidx = 0;
543 q->gen ^= 1;
544 sd = q->sdesc;
545 d = q->desc;
546 }
547 count++;
548 }
549
550 q->credits += count;
551 q->pend_cred += count;
552 ring_fl_db(adap, q);
553
554 return count;
555 }
556
557 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
558 {
559 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
560 GFP_ATOMIC | __GFP_COMP);
561 }
562
563 /**
564 * recycle_rx_buf - recycle a receive buffer
565 * @adapter: the adapter
566 * @q: the SGE free list
567 * @idx: index of buffer to recycle
568 *
569 * Recycles the specified buffer on the given free list by adding it at
570 * the next available slot on the list.
571 */
572 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
573 unsigned int idx)
574 {
575 struct rx_desc *from = &q->desc[idx];
576 struct rx_desc *to = &q->desc[q->pidx];
577
578 q->sdesc[q->pidx] = q->sdesc[idx];
579 to->addr_lo = from->addr_lo; /* already big endian */
580 to->addr_hi = from->addr_hi; /* likewise */
581 wmb();
582 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
583 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
584
585 if (++q->pidx == q->size) {
586 q->pidx = 0;
587 q->gen ^= 1;
588 }
589
590 q->credits++;
591 q->pend_cred++;
592 ring_fl_db(adap, q);
593 }
594
595 /**
596 * alloc_ring - allocate resources for an SGE descriptor ring
597 * @pdev: the PCI device
598 * @nelem: the number of descriptors
599 * @elem_size: the size of each descriptor
600 * @sw_size: the size of the SW state associated with each ring element
601 * @phys: the physical address of the allocated ring
602 * @metadata: address of the array holding the SW state for the ring
603 *
604 * Allocates resources for an SGE descriptor ring, such as Tx queues,
605 * free buffer lists, or response queues. Each SGE ring requires
606 * space for its HW descriptors plus, optionally, space for the SW state
607 * associated with each HW entry (the metadata). The function returns
608 * three values: the virtual address for the HW ring (the return value
609 * of the function), the physical address of the HW ring, and the address
610 * of the SW ring.
611 */
612 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
613 size_t sw_size, dma_addr_t * phys, void *metadata)
614 {
615 size_t len = nelem * elem_size;
616 void *s = NULL;
617 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
618
619 if (!p)
620 return NULL;
621 if (sw_size && metadata) {
622 s = kcalloc(nelem, sw_size, GFP_KERNEL);
623
624 if (!s) {
625 dma_free_coherent(&pdev->dev, len, p, *phys);
626 return NULL;
627 }
628 *(void **)metadata = s;
629 }
630 memset(p, 0, len);
631 return p;
632 }
633
634 /**
635 * t3_reset_qset - reset a sge qset
636 * @q: the queue set
637 *
638 * Reset the qset structure.
639 * the NAPI structure is preserved in the event of
640 * the qset's reincarnation, for example during EEH recovery.
641 */
642 static void t3_reset_qset(struct sge_qset *q)
643 {
644 if (q->adap &&
645 !(q->adap->flags & NAPI_INIT)) {
646 memset(q, 0, sizeof(*q));
647 return;
648 }
649
650 q->adap = NULL;
651 memset(&q->rspq, 0, sizeof(q->rspq));
652 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
653 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
654 q->txq_stopped = 0;
655 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
656 q->rx_reclaim_timer.function = NULL;
657 q->nomem = 0;
658 napi_free_frags(&q->napi);
659 }
660
661
662 /**
663 * free_qset - free the resources of an SGE queue set
664 * @adapter: the adapter owning the queue set
665 * @q: the queue set
666 *
667 * Release the HW and SW resources associated with an SGE queue set, such
668 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
669 * queue set must be quiesced prior to calling this.
670 */
671 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
672 {
673 int i;
674 struct pci_dev *pdev = adapter->pdev;
675
676 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
677 if (q->fl[i].desc) {
678 spin_lock_irq(&adapter->sge.reg_lock);
679 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
680 spin_unlock_irq(&adapter->sge.reg_lock);
681 free_rx_bufs(pdev, &q->fl[i]);
682 kfree(q->fl[i].sdesc);
683 dma_free_coherent(&pdev->dev,
684 q->fl[i].size *
685 sizeof(struct rx_desc), q->fl[i].desc,
686 q->fl[i].phys_addr);
687 }
688
689 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
690 if (q->txq[i].desc) {
691 spin_lock_irq(&adapter->sge.reg_lock);
692 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
693 spin_unlock_irq(&adapter->sge.reg_lock);
694 if (q->txq[i].sdesc) {
695 free_tx_desc(adapter, &q->txq[i],
696 q->txq[i].in_use);
697 kfree(q->txq[i].sdesc);
698 }
699 dma_free_coherent(&pdev->dev,
700 q->txq[i].size *
701 sizeof(struct tx_desc),
702 q->txq[i].desc, q->txq[i].phys_addr);
703 __skb_queue_purge(&q->txq[i].sendq);
704 }
705
706 if (q->rspq.desc) {
707 spin_lock_irq(&adapter->sge.reg_lock);
708 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
709 spin_unlock_irq(&adapter->sge.reg_lock);
710 dma_free_coherent(&pdev->dev,
711 q->rspq.size * sizeof(struct rsp_desc),
712 q->rspq.desc, q->rspq.phys_addr);
713 }
714
715 t3_reset_qset(q);
716 }
717
718 /**
719 * init_qset_cntxt - initialize an SGE queue set context info
720 * @qs: the queue set
721 * @id: the queue set id
722 *
723 * Initializes the TIDs and context ids for the queues of a queue set.
724 */
725 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
726 {
727 qs->rspq.cntxt_id = id;
728 qs->fl[0].cntxt_id = 2 * id;
729 qs->fl[1].cntxt_id = 2 * id + 1;
730 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
731 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
732 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
735 }
736
737 /**
738 * sgl_len - calculates the size of an SGL of the given capacity
739 * @n: the number of SGL entries
740 *
741 * Calculates the number of flits needed for a scatter/gather list that
742 * can hold the given number of entries.
743 */
744 static inline unsigned int sgl_len(unsigned int n)
745 {
746 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
747 return (3 * n) / 2 + (n & 1);
748 }
749
750 /**
751 * flits_to_desc - returns the num of Tx descriptors for the given flits
752 * @n: the number of flits
753 *
754 * Calculates the number of Tx descriptors needed for the supplied number
755 * of flits.
756 */
757 static inline unsigned int flits_to_desc(unsigned int n)
758 {
759 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
760 return flit_desc_map[n];
761 }
762
763 /**
764 * get_packet - return the next ingress packet buffer from a free list
765 * @adap: the adapter that received the packet
766 * @fl: the SGE free list holding the packet
767 * @len: the packet length including any SGE padding
768 * @drop_thres: # of remaining buffers before we start dropping packets
769 *
770 * Get the next packet from a free list and complete setup of the
771 * sk_buff. If the packet is small we make a copy and recycle the
772 * original buffer, otherwise we use the original buffer itself. If a
773 * positive drop threshold is supplied packets are dropped and their
774 * buffers recycled if (a) the number of remaining buffers is under the
775 * threshold and the packet is too big to copy, or (b) the packet should
776 * be copied but there is no memory for the copy.
777 */
778 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
779 unsigned int len, unsigned int drop_thres)
780 {
781 struct sk_buff *skb = NULL;
782 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
783
784 prefetch(sd->skb->data);
785 fl->credits--;
786
787 if (len <= SGE_RX_COPY_THRES) {
788 skb = alloc_skb(len, GFP_ATOMIC);
789 if (likely(skb != NULL)) {
790 __skb_put(skb, len);
791 pci_dma_sync_single_for_cpu(adap->pdev,
792 pci_unmap_addr(sd, dma_addr), len,
793 PCI_DMA_FROMDEVICE);
794 memcpy(skb->data, sd->skb->data, len);
795 pci_dma_sync_single_for_device(adap->pdev,
796 pci_unmap_addr(sd, dma_addr), len,
797 PCI_DMA_FROMDEVICE);
798 } else if (!drop_thres)
799 goto use_orig_buf;
800 recycle:
801 recycle_rx_buf(adap, fl, fl->cidx);
802 return skb;
803 }
804
805 if (unlikely(fl->credits < drop_thres) &&
806 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
807 GFP_ATOMIC | __GFP_COMP) == 0)
808 goto recycle;
809
810 use_orig_buf:
811 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
812 fl->buf_size, PCI_DMA_FROMDEVICE);
813 skb = sd->skb;
814 skb_put(skb, len);
815 __refill_fl(adap, fl);
816 return skb;
817 }
818
819 /**
820 * get_packet_pg - return the next ingress packet buffer from a free list
821 * @adap: the adapter that received the packet
822 * @fl: the SGE free list holding the packet
823 * @len: the packet length including any SGE padding
824 * @drop_thres: # of remaining buffers before we start dropping packets
825 *
826 * Get the next packet from a free list populated with page chunks.
827 * If the packet is small we make a copy and recycle the original buffer,
828 * otherwise we attach the original buffer as a page fragment to a fresh
829 * sk_buff. If a positive drop threshold is supplied packets are dropped
830 * and their buffers recycled if (a) the number of remaining buffers is
831 * under the threshold and the packet is too big to copy, or (b) there's
832 * no system memory.
833 *
834 * Note: this function is similar to @get_packet but deals with Rx buffers
835 * that are page chunks rather than sk_buffs.
836 */
837 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
838 struct sge_rspq *q, unsigned int len,
839 unsigned int drop_thres)
840 {
841 struct sk_buff *newskb, *skb;
842 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
843
844 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
845
846 newskb = skb = q->pg_skb;
847 if (!skb && (len <= SGE_RX_COPY_THRES)) {
848 newskb = alloc_skb(len, GFP_ATOMIC);
849 if (likely(newskb != NULL)) {
850 __skb_put(newskb, len);
851 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
852 PCI_DMA_FROMDEVICE);
853 memcpy(newskb->data, sd->pg_chunk.va, len);
854 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
855 len,
856 PCI_DMA_FROMDEVICE);
857 } else if (!drop_thres)
858 return NULL;
859 recycle:
860 fl->credits--;
861 recycle_rx_buf(adap, fl, fl->cidx);
862 q->rx_recycle_buf++;
863 return newskb;
864 }
865
866 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
867 goto recycle;
868
869 prefetch(sd->pg_chunk.p_cnt);
870
871 if (!skb)
872 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
873
874 if (unlikely(!newskb)) {
875 if (!drop_thres)
876 return NULL;
877 goto recycle;
878 }
879
880 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
881 PCI_DMA_FROMDEVICE);
882 (*sd->pg_chunk.p_cnt)--;
883 if (!*sd->pg_chunk.p_cnt)
884 pci_unmap_page(adap->pdev,
885 pci_unmap_addr(&sd->pg_chunk, mapping),
886 fl->alloc_size,
887 PCI_DMA_FROMDEVICE);
888 if (!skb) {
889 __skb_put(newskb, SGE_RX_PULL_LEN);
890 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
891 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
892 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
893 len - SGE_RX_PULL_LEN);
894 newskb->len = len;
895 newskb->data_len = len - SGE_RX_PULL_LEN;
896 newskb->truesize += newskb->data_len;
897 } else {
898 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
899 sd->pg_chunk.page,
900 sd->pg_chunk.offset, len);
901 newskb->len += len;
902 newskb->data_len += len;
903 newskb->truesize += len;
904 }
905
906 fl->credits--;
907 /*
908 * We do not refill FLs here, we let the caller do it to overlap a
909 * prefetch.
910 */
911 return newskb;
912 }
913
914 /**
915 * get_imm_packet - return the next ingress packet buffer from a response
916 * @resp: the response descriptor containing the packet data
917 *
918 * Return a packet containing the immediate data of the given response.
919 */
920 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
921 {
922 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
923
924 if (skb) {
925 __skb_put(skb, IMMED_PKT_SIZE);
926 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
927 }
928 return skb;
929 }
930
931 /**
932 * calc_tx_descs - calculate the number of Tx descriptors for a packet
933 * @skb: the packet
934 *
935 * Returns the number of Tx descriptors needed for the given Ethernet
936 * packet. Ethernet packets require addition of WR and CPL headers.
937 */
938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 unsigned int flits;
941
942 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 return 1;
944
945 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 if (skb_shinfo(skb)->gso_size)
947 flits++;
948 return flits_to_desc(flits);
949 }
950
951 /**
952 * make_sgl - populate a scatter/gather list for a packet
953 * @skb: the packet
954 * @sgp: the SGL to populate
955 * @start: start address of skb main body data to include in the SGL
956 * @len: length of skb main body data to include in the SGL
957 * @pdev: the PCI device
958 *
959 * Generates a scatter/gather list for the buffers that make up a packet
960 * and returns the SGL size in 8-byte words. The caller must size the SGL
961 * appropriately.
962 */
963 static inline unsigned int make_sgl(const struct sk_buff *skb,
964 struct sg_ent *sgp, unsigned char *start,
965 unsigned int len, struct pci_dev *pdev)
966 {
967 dma_addr_t mapping;
968 unsigned int i, j = 0, nfrags;
969
970 if (len) {
971 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
972 sgp->len[0] = cpu_to_be32(len);
973 sgp->addr[0] = cpu_to_be64(mapping);
974 j = 1;
975 }
976
977 nfrags = skb_shinfo(skb)->nr_frags;
978 for (i = 0; i < nfrags; i++) {
979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
980
981 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
982 frag->size, PCI_DMA_TODEVICE);
983 sgp->len[j] = cpu_to_be32(frag->size);
984 sgp->addr[j] = cpu_to_be64(mapping);
985 j ^= 1;
986 if (j == 0)
987 ++sgp;
988 }
989 if (j)
990 sgp->len[j] = 0;
991 return ((nfrags + (len != 0)) * 3) / 2 + j;
992 }
993
994 /**
995 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
996 * @adap: the adapter
997 * @q: the Tx queue
998 *
999 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1000 * where the HW is going to sleep just after we checked, however,
1001 * then the interrupt handler will detect the outstanding TX packet
1002 * and ring the doorbell for us.
1003 *
1004 * When GTS is disabled we unconditionally ring the doorbell.
1005 */
1006 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1007 {
1008 #if USE_GTS
1009 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1010 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1011 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1012 t3_write_reg(adap, A_SG_KDOORBELL,
1013 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1014 }
1015 #else
1016 wmb(); /* write descriptors before telling HW */
1017 t3_write_reg(adap, A_SG_KDOORBELL,
1018 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1019 #endif
1020 }
1021
1022 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1023 {
1024 #if SGE_NUM_GENBITS == 2
1025 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1026 #endif
1027 }
1028
1029 /**
1030 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1031 * @ndesc: number of Tx descriptors spanned by the SGL
1032 * @skb: the packet corresponding to the WR
1033 * @d: first Tx descriptor to be written
1034 * @pidx: index of above descriptors
1035 * @q: the SGE Tx queue
1036 * @sgl: the SGL
1037 * @flits: number of flits to the start of the SGL in the first descriptor
1038 * @sgl_flits: the SGL size in flits
1039 * @gen: the Tx descriptor generation
1040 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1041 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1042 *
1043 * Write a work request header and an associated SGL. If the SGL is
1044 * small enough to fit into one Tx descriptor it has already been written
1045 * and we just need to write the WR header. Otherwise we distribute the
1046 * SGL across the number of descriptors it spans.
1047 */
1048 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1049 struct tx_desc *d, unsigned int pidx,
1050 const struct sge_txq *q,
1051 const struct sg_ent *sgl,
1052 unsigned int flits, unsigned int sgl_flits,
1053 unsigned int gen, __be32 wr_hi,
1054 __be32 wr_lo)
1055 {
1056 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1057 struct tx_sw_desc *sd = &q->sdesc[pidx];
1058
1059 sd->skb = skb;
1060 if (need_skb_unmap()) {
1061 sd->fragidx = 0;
1062 sd->addr_idx = 0;
1063 sd->sflit = flits;
1064 }
1065
1066 if (likely(ndesc == 1)) {
1067 sd->eop = 1;
1068 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1069 V_WR_SGLSFLT(flits)) | wr_hi;
1070 wmb();
1071 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1072 V_WR_GEN(gen)) | wr_lo;
1073 wr_gen2(d, gen);
1074 } else {
1075 unsigned int ogen = gen;
1076 const u64 *fp = (const u64 *)sgl;
1077 struct work_request_hdr *wp = wrp;
1078
1079 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1080 V_WR_SGLSFLT(flits)) | wr_hi;
1081
1082 while (sgl_flits) {
1083 unsigned int avail = WR_FLITS - flits;
1084
1085 if (avail > sgl_flits)
1086 avail = sgl_flits;
1087 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1088 sgl_flits -= avail;
1089 ndesc--;
1090 if (!sgl_flits)
1091 break;
1092
1093 fp += avail;
1094 d++;
1095 sd->eop = 0;
1096 sd++;
1097 if (++pidx == q->size) {
1098 pidx = 0;
1099 gen ^= 1;
1100 d = q->desc;
1101 sd = q->sdesc;
1102 }
1103
1104 sd->skb = skb;
1105 wrp = (struct work_request_hdr *)d;
1106 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1107 V_WR_SGLSFLT(1)) | wr_hi;
1108 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1109 sgl_flits + 1)) |
1110 V_WR_GEN(gen)) | wr_lo;
1111 wr_gen2(d, gen);
1112 flits = 1;
1113 }
1114 sd->eop = 1;
1115 wrp->wr_hi |= htonl(F_WR_EOP);
1116 wmb();
1117 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1118 wr_gen2((struct tx_desc *)wp, ogen);
1119 WARN_ON(ndesc != 0);
1120 }
1121 }
1122
1123 /**
1124 * write_tx_pkt_wr - write a TX_PKT work request
1125 * @adap: the adapter
1126 * @skb: the packet to send
1127 * @pi: the egress interface
1128 * @pidx: index of the first Tx descriptor to write
1129 * @gen: the generation value to use
1130 * @q: the Tx queue
1131 * @ndesc: number of descriptors the packet will occupy
1132 * @compl: the value of the COMPL bit to use
1133 *
1134 * Generate a TX_PKT work request to send the supplied packet.
1135 */
1136 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1137 const struct port_info *pi,
1138 unsigned int pidx, unsigned int gen,
1139 struct sge_txq *q, unsigned int ndesc,
1140 unsigned int compl)
1141 {
1142 unsigned int flits, sgl_flits, cntrl, tso_info;
1143 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1144 struct tx_desc *d = &q->desc[pidx];
1145 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1146
1147 cpl->len = htonl(skb->len);
1148 cntrl = V_TXPKT_INTF(pi->port_id);
1149
1150 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1151 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1152
1153 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1154 if (tso_info) {
1155 int eth_type;
1156 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1157
1158 d->flit[2] = 0;
1159 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1160 hdr->cntrl = htonl(cntrl);
1161 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1162 CPL_ETH_II : CPL_ETH_II_VLAN;
1163 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1164 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1165 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1166 hdr->lso_info = htonl(tso_info);
1167 flits = 3;
1168 } else {
1169 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1170 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1171 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1172 cpl->cntrl = htonl(cntrl);
1173
1174 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1175 q->sdesc[pidx].skb = NULL;
1176 if (!skb->data_len)
1177 skb_copy_from_linear_data(skb, &d->flit[2],
1178 skb->len);
1179 else
1180 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1181
1182 flits = (skb->len + 7) / 8 + 2;
1183 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1184 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1185 | F_WR_SOP | F_WR_EOP | compl);
1186 wmb();
1187 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1188 V_WR_TID(q->token));
1189 wr_gen2(d, gen);
1190 kfree_skb(skb);
1191 return;
1192 }
1193
1194 flits = 2;
1195 }
1196
1197 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1198 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1199
1200 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1201 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1202 htonl(V_WR_TID(q->token)));
1203 }
1204
1205 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1206 struct sge_qset *qs, struct sge_txq *q)
1207 {
1208 netif_tx_stop_queue(txq);
1209 set_bit(TXQ_ETH, &qs->txq_stopped);
1210 q->stops++;
1211 }
1212
1213 /**
1214 * eth_xmit - add a packet to the Ethernet Tx queue
1215 * @skb: the packet
1216 * @dev: the egress net device
1217 *
1218 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1219 */
1220 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1221 {
1222 int qidx;
1223 unsigned int ndesc, pidx, credits, gen, compl;
1224 const struct port_info *pi = netdev_priv(dev);
1225 struct adapter *adap = pi->adapter;
1226 struct netdev_queue *txq;
1227 struct sge_qset *qs;
1228 struct sge_txq *q;
1229
1230 /*
1231 * The chip min packet length is 9 octets but play safe and reject
1232 * anything shorter than an Ethernet header.
1233 */
1234 if (unlikely(skb->len < ETH_HLEN)) {
1235 dev_kfree_skb(skb);
1236 return NETDEV_TX_OK;
1237 }
1238
1239 qidx = skb_get_queue_mapping(skb);
1240 qs = &pi->qs[qidx];
1241 q = &qs->txq[TXQ_ETH];
1242 txq = netdev_get_tx_queue(dev, qidx);
1243
1244 spin_lock(&q->lock);
1245 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246
1247 credits = q->size - q->in_use;
1248 ndesc = calc_tx_descs(skb);
1249
1250 if (unlikely(credits < ndesc)) {
1251 t3_stop_tx_queue(txq, qs, q);
1252 dev_err(&adap->pdev->dev,
1253 "%s: Tx ring %u full while queue awake!\n",
1254 dev->name, q->cntxt_id & 7);
1255 spin_unlock(&q->lock);
1256 return NETDEV_TX_BUSY;
1257 }
1258
1259 q->in_use += ndesc;
1260 if (unlikely(credits - ndesc < q->stop_thres)) {
1261 t3_stop_tx_queue(txq, qs, q);
1262
1263 if (should_restart_tx(q) &&
1264 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1265 q->restarts++;
1266 netif_tx_wake_queue(txq);
1267 }
1268 }
1269
1270 gen = q->gen;
1271 q->unacked += ndesc;
1272 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1273 q->unacked &= 7;
1274 pidx = q->pidx;
1275 q->pidx += ndesc;
1276 if (q->pidx >= q->size) {
1277 q->pidx -= q->size;
1278 q->gen ^= 1;
1279 }
1280
1281 /* update port statistics */
1282 if (skb->ip_summed == CHECKSUM_COMPLETE)
1283 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1284 if (skb_shinfo(skb)->gso_size)
1285 qs->port_stats[SGE_PSTAT_TSO]++;
1286 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1287 qs->port_stats[SGE_PSTAT_VLANINS]++;
1288
1289 spin_unlock(&q->lock);
1290
1291 /*
1292 * We do not use Tx completion interrupts to free DMAd Tx packets.
1293 * This is good for performamce but means that we rely on new Tx
1294 * packets arriving to run the destructors of completed packets,
1295 * which open up space in their sockets' send queues. Sometimes
1296 * we do not get such new packets causing Tx to stall. A single
1297 * UDP transmitter is a good example of this situation. We have
1298 * a clean up timer that periodically reclaims completed packets
1299 * but it doesn't run often enough (nor do we want it to) to prevent
1300 * lengthy stalls. A solution to this problem is to run the
1301 * destructor early, after the packet is queued but before it's DMAd.
1302 * A cons is that we lie to socket memory accounting, but the amount
1303 * of extra memory is reasonable (limited by the number of Tx
1304 * descriptors), the packets do actually get freed quickly by new
1305 * packets almost always, and for protocols like TCP that wait for
1306 * acks to really free up the data the extra memory is even less.
1307 * On the positive side we run the destructors on the sending CPU
1308 * rather than on a potentially different completing CPU, usually a
1309 * good thing. We also run them without holding our Tx queue lock,
1310 * unlike what reclaim_completed_tx() would otherwise do.
1311 *
1312 * Run the destructor before telling the DMA engine about the packet
1313 * to make sure it doesn't complete and get freed prematurely.
1314 */
1315 if (likely(!skb_shared(skb)))
1316 skb_orphan(skb);
1317
1318 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1319 check_ring_tx_db(adap, q);
1320 return NETDEV_TX_OK;
1321 }
1322
1323 /**
1324 * write_imm - write a packet into a Tx descriptor as immediate data
1325 * @d: the Tx descriptor to write
1326 * @skb: the packet
1327 * @len: the length of packet data to write as immediate data
1328 * @gen: the generation bit value to write
1329 *
1330 * Writes a packet as immediate data into a Tx descriptor. The packet
1331 * contains a work request at its beginning. We must write the packet
1332 * carefully so the SGE doesn't read it accidentally before it's written
1333 * in its entirety.
1334 */
1335 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1336 unsigned int len, unsigned int gen)
1337 {
1338 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1339 struct work_request_hdr *to = (struct work_request_hdr *)d;
1340
1341 if (likely(!skb->data_len))
1342 memcpy(&to[1], &from[1], len - sizeof(*from));
1343 else
1344 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1345
1346 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1347 V_WR_BCNTLFLT(len & 7));
1348 wmb();
1349 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1350 V_WR_LEN((len + 7) / 8));
1351 wr_gen2(d, gen);
1352 kfree_skb(skb);
1353 }
1354
1355 /**
1356 * check_desc_avail - check descriptor availability on a send queue
1357 * @adap: the adapter
1358 * @q: the send queue
1359 * @skb: the packet needing the descriptors
1360 * @ndesc: the number of Tx descriptors needed
1361 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1362 *
1363 * Checks if the requested number of Tx descriptors is available on an
1364 * SGE send queue. If the queue is already suspended or not enough
1365 * descriptors are available the packet is queued for later transmission.
1366 * Must be called with the Tx queue locked.
1367 *
1368 * Returns 0 if enough descriptors are available, 1 if there aren't
1369 * enough descriptors and the packet has been queued, and 2 if the caller
1370 * needs to retry because there weren't enough descriptors at the
1371 * beginning of the call but some freed up in the mean time.
1372 */
1373 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1374 struct sk_buff *skb, unsigned int ndesc,
1375 unsigned int qid)
1376 {
1377 if (unlikely(!skb_queue_empty(&q->sendq))) {
1378 addq_exit:__skb_queue_tail(&q->sendq, skb);
1379 return 1;
1380 }
1381 if (unlikely(q->size - q->in_use < ndesc)) {
1382 struct sge_qset *qs = txq_to_qset(q, qid);
1383
1384 set_bit(qid, &qs->txq_stopped);
1385 smp_mb__after_clear_bit();
1386
1387 if (should_restart_tx(q) &&
1388 test_and_clear_bit(qid, &qs->txq_stopped))
1389 return 2;
1390
1391 q->stops++;
1392 goto addq_exit;
1393 }
1394 return 0;
1395 }
1396
1397 /**
1398 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1399 * @q: the SGE control Tx queue
1400 *
1401 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1402 * that send only immediate data (presently just the control queues) and
1403 * thus do not have any sk_buffs to release.
1404 */
1405 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1406 {
1407 unsigned int reclaim = q->processed - q->cleaned;
1408
1409 q->in_use -= reclaim;
1410 q->cleaned += reclaim;
1411 }
1412
1413 static inline int immediate(const struct sk_buff *skb)
1414 {
1415 return skb->len <= WR_LEN;
1416 }
1417
1418 /**
1419 * ctrl_xmit - send a packet through an SGE control Tx queue
1420 * @adap: the adapter
1421 * @q: the control queue
1422 * @skb: the packet
1423 *
1424 * Send a packet through an SGE control Tx queue. Packets sent through
1425 * a control queue must fit entirely as immediate data in a single Tx
1426 * descriptor and have no page fragments.
1427 */
1428 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1429 struct sk_buff *skb)
1430 {
1431 int ret;
1432 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1433
1434 if (unlikely(!immediate(skb))) {
1435 WARN_ON(1);
1436 dev_kfree_skb(skb);
1437 return NET_XMIT_SUCCESS;
1438 }
1439
1440 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1441 wrp->wr_lo = htonl(V_WR_TID(q->token));
1442
1443 spin_lock(&q->lock);
1444 again:reclaim_completed_tx_imm(q);
1445
1446 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1447 if (unlikely(ret)) {
1448 if (ret == 1) {
1449 spin_unlock(&q->lock);
1450 return NET_XMIT_CN;
1451 }
1452 goto again;
1453 }
1454
1455 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1456
1457 q->in_use++;
1458 if (++q->pidx >= q->size) {
1459 q->pidx = 0;
1460 q->gen ^= 1;
1461 }
1462 spin_unlock(&q->lock);
1463 wmb();
1464 t3_write_reg(adap, A_SG_KDOORBELL,
1465 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1466 return NET_XMIT_SUCCESS;
1467 }
1468
1469 /**
1470 * restart_ctrlq - restart a suspended control queue
1471 * @qs: the queue set cotaining the control queue
1472 *
1473 * Resumes transmission on a suspended Tx control queue.
1474 */
1475 static void restart_ctrlq(unsigned long data)
1476 {
1477 struct sk_buff *skb;
1478 struct sge_qset *qs = (struct sge_qset *)data;
1479 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1480
1481 spin_lock(&q->lock);
1482 again:reclaim_completed_tx_imm(q);
1483
1484 while (q->in_use < q->size &&
1485 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1486
1487 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1488
1489 if (++q->pidx >= q->size) {
1490 q->pidx = 0;
1491 q->gen ^= 1;
1492 }
1493 q->in_use++;
1494 }
1495
1496 if (!skb_queue_empty(&q->sendq)) {
1497 set_bit(TXQ_CTRL, &qs->txq_stopped);
1498 smp_mb__after_clear_bit();
1499
1500 if (should_restart_tx(q) &&
1501 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1502 goto again;
1503 q->stops++;
1504 }
1505
1506 spin_unlock(&q->lock);
1507 wmb();
1508 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1509 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1510 }
1511
1512 /*
1513 * Send a management message through control queue 0
1514 */
1515 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1516 {
1517 int ret;
1518 local_bh_disable();
1519 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1520 local_bh_enable();
1521
1522 return ret;
1523 }
1524
1525 /**
1526 * deferred_unmap_destructor - unmap a packet when it is freed
1527 * @skb: the packet
1528 *
1529 * This is the packet destructor used for Tx packets that need to remain
1530 * mapped until they are freed rather than until their Tx descriptors are
1531 * freed.
1532 */
1533 static void deferred_unmap_destructor(struct sk_buff *skb)
1534 {
1535 int i;
1536 const dma_addr_t *p;
1537 const struct skb_shared_info *si;
1538 const struct deferred_unmap_info *dui;
1539
1540 dui = (struct deferred_unmap_info *)skb->head;
1541 p = dui->addr;
1542
1543 if (skb->tail - skb->transport_header)
1544 pci_unmap_single(dui->pdev, *p++,
1545 skb->tail - skb->transport_header,
1546 PCI_DMA_TODEVICE);
1547
1548 si = skb_shinfo(skb);
1549 for (i = 0; i < si->nr_frags; i++)
1550 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1551 PCI_DMA_TODEVICE);
1552 }
1553
1554 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1555 const struct sg_ent *sgl, int sgl_flits)
1556 {
1557 dma_addr_t *p;
1558 struct deferred_unmap_info *dui;
1559
1560 dui = (struct deferred_unmap_info *)skb->head;
1561 dui->pdev = pdev;
1562 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1563 *p++ = be64_to_cpu(sgl->addr[0]);
1564 *p++ = be64_to_cpu(sgl->addr[1]);
1565 }
1566 if (sgl_flits)
1567 *p = be64_to_cpu(sgl->addr[0]);
1568 }
1569
1570 /**
1571 * write_ofld_wr - write an offload work request
1572 * @adap: the adapter
1573 * @skb: the packet to send
1574 * @q: the Tx queue
1575 * @pidx: index of the first Tx descriptor to write
1576 * @gen: the generation value to use
1577 * @ndesc: number of descriptors the packet will occupy
1578 *
1579 * Write an offload work request to send the supplied packet. The packet
1580 * data already carry the work request with most fields populated.
1581 */
1582 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1583 struct sge_txq *q, unsigned int pidx,
1584 unsigned int gen, unsigned int ndesc)
1585 {
1586 unsigned int sgl_flits, flits;
1587 struct work_request_hdr *from;
1588 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1589 struct tx_desc *d = &q->desc[pidx];
1590
1591 if (immediate(skb)) {
1592 q->sdesc[pidx].skb = NULL;
1593 write_imm(d, skb, skb->len, gen);
1594 return;
1595 }
1596
1597 /* Only TX_DATA builds SGLs */
1598
1599 from = (struct work_request_hdr *)skb->data;
1600 memcpy(&d->flit[1], &from[1],
1601 skb_transport_offset(skb) - sizeof(*from));
1602
1603 flits = skb_transport_offset(skb) / 8;
1604 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1605 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1606 skb->tail - skb->transport_header,
1607 adap->pdev);
1608 if (need_skb_unmap()) {
1609 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1610 skb->destructor = deferred_unmap_destructor;
1611 }
1612
1613 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1614 gen, from->wr_hi, from->wr_lo);
1615 }
1616
1617 /**
1618 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1619 * @skb: the packet
1620 *
1621 * Returns the number of Tx descriptors needed for the given offload
1622 * packet. These packets are already fully constructed.
1623 */
1624 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1625 {
1626 unsigned int flits, cnt;
1627
1628 if (skb->len <= WR_LEN)
1629 return 1; /* packet fits as immediate data */
1630
1631 flits = skb_transport_offset(skb) / 8; /* headers */
1632 cnt = skb_shinfo(skb)->nr_frags;
1633 if (skb->tail != skb->transport_header)
1634 cnt++;
1635 return flits_to_desc(flits + sgl_len(cnt));
1636 }
1637
1638 /**
1639 * ofld_xmit - send a packet through an offload queue
1640 * @adap: the adapter
1641 * @q: the Tx offload queue
1642 * @skb: the packet
1643 *
1644 * Send an offload packet through an SGE offload queue.
1645 */
1646 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1647 struct sk_buff *skb)
1648 {
1649 int ret;
1650 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1651
1652 spin_lock(&q->lock);
1653 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1654
1655 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1656 if (unlikely(ret)) {
1657 if (ret == 1) {
1658 skb->priority = ndesc; /* save for restart */
1659 spin_unlock(&q->lock);
1660 return NET_XMIT_CN;
1661 }
1662 goto again;
1663 }
1664
1665 gen = q->gen;
1666 q->in_use += ndesc;
1667 pidx = q->pidx;
1668 q->pidx += ndesc;
1669 if (q->pidx >= q->size) {
1670 q->pidx -= q->size;
1671 q->gen ^= 1;
1672 }
1673 spin_unlock(&q->lock);
1674
1675 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1676 check_ring_tx_db(adap, q);
1677 return NET_XMIT_SUCCESS;
1678 }
1679
1680 /**
1681 * restart_offloadq - restart a suspended offload queue
1682 * @qs: the queue set cotaining the offload queue
1683 *
1684 * Resumes transmission on a suspended Tx offload queue.
1685 */
1686 static void restart_offloadq(unsigned long data)
1687 {
1688 struct sk_buff *skb;
1689 struct sge_qset *qs = (struct sge_qset *)data;
1690 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1691 const struct port_info *pi = netdev_priv(qs->netdev);
1692 struct adapter *adap = pi->adapter;
1693
1694 spin_lock(&q->lock);
1695 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1696
1697 while ((skb = skb_peek(&q->sendq)) != NULL) {
1698 unsigned int gen, pidx;
1699 unsigned int ndesc = skb->priority;
1700
1701 if (unlikely(q->size - q->in_use < ndesc)) {
1702 set_bit(TXQ_OFLD, &qs->txq_stopped);
1703 smp_mb__after_clear_bit();
1704
1705 if (should_restart_tx(q) &&
1706 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1707 goto again;
1708 q->stops++;
1709 break;
1710 }
1711
1712 gen = q->gen;
1713 q->in_use += ndesc;
1714 pidx = q->pidx;
1715 q->pidx += ndesc;
1716 if (q->pidx >= q->size) {
1717 q->pidx -= q->size;
1718 q->gen ^= 1;
1719 }
1720 __skb_unlink(skb, &q->sendq);
1721 spin_unlock(&q->lock);
1722
1723 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1724 spin_lock(&q->lock);
1725 }
1726 spin_unlock(&q->lock);
1727
1728 #if USE_GTS
1729 set_bit(TXQ_RUNNING, &q->flags);
1730 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1731 #endif
1732 wmb();
1733 t3_write_reg(adap, A_SG_KDOORBELL,
1734 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1735 }
1736
1737 /**
1738 * queue_set - return the queue set a packet should use
1739 * @skb: the packet
1740 *
1741 * Maps a packet to the SGE queue set it should use. The desired queue
1742 * set is carried in bits 1-3 in the packet's priority.
1743 */
1744 static inline int queue_set(const struct sk_buff *skb)
1745 {
1746 return skb->priority >> 1;
1747 }
1748
1749 /**
1750 * is_ctrl_pkt - return whether an offload packet is a control packet
1751 * @skb: the packet
1752 *
1753 * Determines whether an offload packet should use an OFLD or a CTRL
1754 * Tx queue. This is indicated by bit 0 in the packet's priority.
1755 */
1756 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1757 {
1758 return skb->priority & 1;
1759 }
1760
1761 /**
1762 * t3_offload_tx - send an offload packet
1763 * @tdev: the offload device to send to
1764 * @skb: the packet
1765 *
1766 * Sends an offload packet. We use the packet priority to select the
1767 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1768 * should be sent as regular or control, bits 1-3 select the queue set.
1769 */
1770 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1771 {
1772 struct adapter *adap = tdev2adap(tdev);
1773 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1774
1775 if (unlikely(is_ctrl_pkt(skb)))
1776 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1777
1778 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1779 }
1780
1781 /**
1782 * offload_enqueue - add an offload packet to an SGE offload receive queue
1783 * @q: the SGE response queue
1784 * @skb: the packet
1785 *
1786 * Add a new offload packet to an SGE response queue's offload packet
1787 * queue. If the packet is the first on the queue it schedules the RX
1788 * softirq to process the queue.
1789 */
1790 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1791 {
1792 int was_empty = skb_queue_empty(&q->rx_queue);
1793
1794 __skb_queue_tail(&q->rx_queue, skb);
1795
1796 if (was_empty) {
1797 struct sge_qset *qs = rspq_to_qset(q);
1798
1799 napi_schedule(&qs->napi);
1800 }
1801 }
1802
1803 /**
1804 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1805 * @tdev: the offload device that will be receiving the packets
1806 * @q: the SGE response queue that assembled the bundle
1807 * @skbs: the partial bundle
1808 * @n: the number of packets in the bundle
1809 *
1810 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1811 */
1812 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1813 struct sge_rspq *q,
1814 struct sk_buff *skbs[], int n)
1815 {
1816 if (n) {
1817 q->offload_bundles++;
1818 tdev->recv(tdev, skbs, n);
1819 }
1820 }
1821
1822 /**
1823 * ofld_poll - NAPI handler for offload packets in interrupt mode
1824 * @dev: the network device doing the polling
1825 * @budget: polling budget
1826 *
1827 * The NAPI handler for offload packets when a response queue is serviced
1828 * by the hard interrupt handler, i.e., when it's operating in non-polling
1829 * mode. Creates small packet batches and sends them through the offload
1830 * receive handler. Batches need to be of modest size as we do prefetches
1831 * on the packets in each.
1832 */
1833 static int ofld_poll(struct napi_struct *napi, int budget)
1834 {
1835 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1836 struct sge_rspq *q = &qs->rspq;
1837 struct adapter *adapter = qs->adap;
1838 int work_done = 0;
1839
1840 while (work_done < budget) {
1841 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1842 struct sk_buff_head queue;
1843 int ngathered;
1844
1845 spin_lock_irq(&q->lock);
1846 __skb_queue_head_init(&queue);
1847 skb_queue_splice_init(&q->rx_queue, &queue);
1848 if (skb_queue_empty(&queue)) {
1849 napi_complete(napi);
1850 spin_unlock_irq(&q->lock);
1851 return work_done;
1852 }
1853 spin_unlock_irq(&q->lock);
1854
1855 ngathered = 0;
1856 skb_queue_walk_safe(&queue, skb, tmp) {
1857 if (work_done >= budget)
1858 break;
1859 work_done++;
1860
1861 __skb_unlink(skb, &queue);
1862 prefetch(skb->data);
1863 skbs[ngathered] = skb;
1864 if (++ngathered == RX_BUNDLE_SIZE) {
1865 q->offload_bundles++;
1866 adapter->tdev.recv(&adapter->tdev, skbs,
1867 ngathered);
1868 ngathered = 0;
1869 }
1870 }
1871 if (!skb_queue_empty(&queue)) {
1872 /* splice remaining packets back onto Rx queue */
1873 spin_lock_irq(&q->lock);
1874 skb_queue_splice(&queue, &q->rx_queue);
1875 spin_unlock_irq(&q->lock);
1876 }
1877 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1878 }
1879
1880 return work_done;
1881 }
1882
1883 /**
1884 * rx_offload - process a received offload packet
1885 * @tdev: the offload device receiving the packet
1886 * @rq: the response queue that received the packet
1887 * @skb: the packet
1888 * @rx_gather: a gather list of packets if we are building a bundle
1889 * @gather_idx: index of the next available slot in the bundle
1890 *
1891 * Process an ingress offload pakcet and add it to the offload ingress
1892 * queue. Returns the index of the next available slot in the bundle.
1893 */
1894 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1895 struct sk_buff *skb, struct sk_buff *rx_gather[],
1896 unsigned int gather_idx)
1897 {
1898 skb_reset_mac_header(skb);
1899 skb_reset_network_header(skb);
1900 skb_reset_transport_header(skb);
1901
1902 if (rq->polling) {
1903 rx_gather[gather_idx++] = skb;
1904 if (gather_idx == RX_BUNDLE_SIZE) {
1905 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1906 gather_idx = 0;
1907 rq->offload_bundles++;
1908 }
1909 } else
1910 offload_enqueue(rq, skb);
1911
1912 return gather_idx;
1913 }
1914
1915 /**
1916 * restart_tx - check whether to restart suspended Tx queues
1917 * @qs: the queue set to resume
1918 *
1919 * Restarts suspended Tx queues of an SGE queue set if they have enough
1920 * free resources to resume operation.
1921 */
1922 static void restart_tx(struct sge_qset *qs)
1923 {
1924 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1925 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1926 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1927 qs->txq[TXQ_ETH].restarts++;
1928 if (netif_running(qs->netdev))
1929 netif_tx_wake_queue(qs->tx_q);
1930 }
1931
1932 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1933 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1934 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1935 qs->txq[TXQ_OFLD].restarts++;
1936 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1937 }
1938 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1939 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1940 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1941 qs->txq[TXQ_CTRL].restarts++;
1942 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1943 }
1944 }
1945
1946 /**
1947 * cxgb3_arp_process - process an ARP request probing a private IP address
1948 * @adapter: the adapter
1949 * @skb: the skbuff containing the ARP request
1950 *
1951 * Check if the ARP request is probing the private IP address
1952 * dedicated to iSCSI, generate an ARP reply if so.
1953 */
1954 static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
1955 {
1956 struct net_device *dev = skb->dev;
1957 struct port_info *pi;
1958 struct arphdr *arp;
1959 unsigned char *arp_ptr;
1960 unsigned char *sha;
1961 __be32 sip, tip;
1962
1963 if (!dev)
1964 return;
1965
1966 skb_reset_network_header(skb);
1967 arp = arp_hdr(skb);
1968
1969 if (arp->ar_op != htons(ARPOP_REQUEST))
1970 return;
1971
1972 arp_ptr = (unsigned char *)(arp + 1);
1973 sha = arp_ptr;
1974 arp_ptr += dev->addr_len;
1975 memcpy(&sip, arp_ptr, sizeof(sip));
1976 arp_ptr += sizeof(sip);
1977 arp_ptr += dev->addr_len;
1978 memcpy(&tip, arp_ptr, sizeof(tip));
1979
1980 pi = netdev_priv(dev);
1981 if (tip != pi->iscsi_ipv4addr)
1982 return;
1983
1984 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1985 dev->dev_addr, sha);
1986
1987 }
1988
1989 static inline int is_arp(struct sk_buff *skb)
1990 {
1991 return skb->protocol == htons(ETH_P_ARP);
1992 }
1993
1994 /**
1995 * rx_eth - process an ingress ethernet packet
1996 * @adap: the adapter
1997 * @rq: the response queue that received the packet
1998 * @skb: the packet
1999 * @pad: amount of padding at the start of the buffer
2000 *
2001 * Process an ingress ethernet pakcet and deliver it to the stack.
2002 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2003 * if it was immediate data in a response.
2004 */
2005 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2006 struct sk_buff *skb, int pad, int lro)
2007 {
2008 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2009 struct sge_qset *qs = rspq_to_qset(rq);
2010 struct port_info *pi;
2011
2012 skb_pull(skb, sizeof(*p) + pad);
2013 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2014 pi = netdev_priv(skb->dev);
2015 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2016 p->csum == htons(0xffff) && !p->fragment) {
2017 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2018 skb->ip_summed = CHECKSUM_UNNECESSARY;
2019 } else
2020 skb->ip_summed = CHECKSUM_NONE;
2021 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2022
2023 if (unlikely(p->vlan_valid)) {
2024 struct vlan_group *grp = pi->vlan_grp;
2025
2026 qs->port_stats[SGE_PSTAT_VLANEX]++;
2027 if (likely(grp))
2028 if (lro)
2029 vlan_gro_receive(&qs->napi, grp,
2030 ntohs(p->vlan), skb);
2031 else {
2032 if (unlikely(pi->iscsi_ipv4addr &&
2033 is_arp(skb))) {
2034 unsigned short vtag = ntohs(p->vlan) &
2035 VLAN_VID_MASK;
2036 skb->dev = vlan_group_get_device(grp,
2037 vtag);
2038 cxgb3_arp_process(adap, skb);
2039 }
2040 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2041 rq->polling);
2042 }
2043 else
2044 dev_kfree_skb_any(skb);
2045 } else if (rq->polling) {
2046 if (lro)
2047 napi_gro_receive(&qs->napi, skb);
2048 else {
2049 if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
2050 cxgb3_arp_process(adap, skb);
2051 netif_receive_skb(skb);
2052 }
2053 } else
2054 netif_rx(skb);
2055 }
2056
2057 static inline int is_eth_tcp(u32 rss)
2058 {
2059 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2060 }
2061
2062 /**
2063 * lro_add_page - add a page chunk to an LRO session
2064 * @adap: the adapter
2065 * @qs: the associated queue set
2066 * @fl: the free list containing the page chunk to add
2067 * @len: packet length
2068 * @complete: Indicates the last fragment of a frame
2069 *
2070 * Add a received packet contained in a page chunk to an existing LRO
2071 * session.
2072 */
2073 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2074 struct sge_fl *fl, int len, int complete)
2075 {
2076 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2077 struct sk_buff *skb = NULL;
2078 struct cpl_rx_pkt *cpl;
2079 struct skb_frag_struct *rx_frag;
2080 int nr_frags;
2081 int offset = 0;
2082
2083 if (!qs->nomem) {
2084 skb = napi_get_frags(&qs->napi);
2085 qs->nomem = !skb;
2086 }
2087
2088 fl->credits--;
2089
2090 pci_dma_sync_single_for_cpu(adap->pdev,
2091 pci_unmap_addr(sd, dma_addr),
2092 fl->buf_size - SGE_PG_RSVD,
2093 PCI_DMA_FROMDEVICE);
2094
2095 (*sd->pg_chunk.p_cnt)--;
2096 if (!*sd->pg_chunk.p_cnt)
2097 pci_unmap_page(adap->pdev,
2098 pci_unmap_addr(&sd->pg_chunk, mapping),
2099 fl->alloc_size,
2100 PCI_DMA_FROMDEVICE);
2101
2102 if (!skb) {
2103 put_page(sd->pg_chunk.page);
2104 if (complete)
2105 qs->nomem = 0;
2106 return;
2107 }
2108
2109 rx_frag = skb_shinfo(skb)->frags;
2110 nr_frags = skb_shinfo(skb)->nr_frags;
2111
2112 if (!nr_frags) {
2113 offset = 2 + sizeof(struct cpl_rx_pkt);
2114 qs->lro_va = sd->pg_chunk.va + 2;
2115 }
2116 len -= offset;
2117
2118 prefetch(qs->lro_va);
2119
2120 rx_frag += nr_frags;
2121 rx_frag->page = sd->pg_chunk.page;
2122 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2123 rx_frag->size = len;
2124
2125 skb->len += len;
2126 skb->data_len += len;
2127 skb->truesize += len;
2128 skb_shinfo(skb)->nr_frags++;
2129
2130 if (!complete)
2131 return;
2132
2133 skb->ip_summed = CHECKSUM_UNNECESSARY;
2134 cpl = qs->lro_va;
2135
2136 if (unlikely(cpl->vlan_valid)) {
2137 struct net_device *dev = qs->netdev;
2138 struct port_info *pi = netdev_priv(dev);
2139 struct vlan_group *grp = pi->vlan_grp;
2140
2141 if (likely(grp != NULL)) {
2142 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2143 return;
2144 }
2145 }
2146 napi_gro_frags(&qs->napi);
2147 }
2148
2149 /**
2150 * handle_rsp_cntrl_info - handles control information in a response
2151 * @qs: the queue set corresponding to the response
2152 * @flags: the response control flags
2153 *
2154 * Handles the control information of an SGE response, such as GTS
2155 * indications and completion credits for the queue set's Tx queues.
2156 * HW coalesces credits, we don't do any extra SW coalescing.
2157 */
2158 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2159 {
2160 unsigned int credits;
2161
2162 #if USE_GTS
2163 if (flags & F_RSPD_TXQ0_GTS)
2164 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2165 #endif
2166
2167 credits = G_RSPD_TXQ0_CR(flags);
2168 if (credits)
2169 qs->txq[TXQ_ETH].processed += credits;
2170
2171 credits = G_RSPD_TXQ2_CR(flags);
2172 if (credits)
2173 qs->txq[TXQ_CTRL].processed += credits;
2174
2175 # if USE_GTS
2176 if (flags & F_RSPD_TXQ1_GTS)
2177 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2178 # endif
2179 credits = G_RSPD_TXQ1_CR(flags);
2180 if (credits)
2181 qs->txq[TXQ_OFLD].processed += credits;
2182 }
2183
2184 /**
2185 * check_ring_db - check if we need to ring any doorbells
2186 * @adapter: the adapter
2187 * @qs: the queue set whose Tx queues are to be examined
2188 * @sleeping: indicates which Tx queue sent GTS
2189 *
2190 * Checks if some of a queue set's Tx queues need to ring their doorbells
2191 * to resume transmission after idling while they still have unprocessed
2192 * descriptors.
2193 */
2194 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2195 unsigned int sleeping)
2196 {
2197 if (sleeping & F_RSPD_TXQ0_GTS) {
2198 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2199
2200 if (txq->cleaned + txq->in_use != txq->processed &&
2201 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2202 set_bit(TXQ_RUNNING, &txq->flags);
2203 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2204 V_EGRCNTX(txq->cntxt_id));
2205 }
2206 }
2207
2208 if (sleeping & F_RSPD_TXQ1_GTS) {
2209 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2210
2211 if (txq->cleaned + txq->in_use != txq->processed &&
2212 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2213 set_bit(TXQ_RUNNING, &txq->flags);
2214 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2215 V_EGRCNTX(txq->cntxt_id));
2216 }
2217 }
2218 }
2219
2220 /**
2221 * is_new_response - check if a response is newly written
2222 * @r: the response descriptor
2223 * @q: the response queue
2224 *
2225 * Returns true if a response descriptor contains a yet unprocessed
2226 * response.
2227 */
2228 static inline int is_new_response(const struct rsp_desc *r,
2229 const struct sge_rspq *q)
2230 {
2231 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2232 }
2233
2234 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2235 {
2236 q->pg_skb = NULL;
2237 q->rx_recycle_buf = 0;
2238 }
2239
2240 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2241 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2242 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2243 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2244 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2245
2246 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2247 #define NOMEM_INTR_DELAY 2500
2248
2249 /**
2250 * process_responses - process responses from an SGE response queue
2251 * @adap: the adapter
2252 * @qs: the queue set to which the response queue belongs
2253 * @budget: how many responses can be processed in this round
2254 *
2255 * Process responses from an SGE response queue up to the supplied budget.
2256 * Responses include received packets as well as credits and other events
2257 * for the queues that belong to the response queue's queue set.
2258 * A negative budget is effectively unlimited.
2259 *
2260 * Additionally choose the interrupt holdoff time for the next interrupt
2261 * on this queue. If the system is under memory shortage use a fairly
2262 * long delay to help recovery.
2263 */
2264 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2265 int budget)
2266 {
2267 struct sge_rspq *q = &qs->rspq;
2268 struct rsp_desc *r = &q->desc[q->cidx];
2269 int budget_left = budget;
2270 unsigned int sleeping = 0;
2271 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2272 int ngathered = 0;
2273
2274 q->next_holdoff = q->holdoff_tmr;
2275
2276 while (likely(budget_left && is_new_response(r, q))) {
2277 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2278 struct sk_buff *skb = NULL;
2279 u32 len, flags = ntohl(r->flags);
2280 __be32 rss_hi = *(const __be32 *)r,
2281 rss_lo = r->rss_hdr.rss_hash_val;
2282
2283 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2284
2285 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2286 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2287 if (!skb)
2288 goto no_mem;
2289
2290 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2291 skb->data[0] = CPL_ASYNC_NOTIF;
2292 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2293 q->async_notif++;
2294 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2295 skb = get_imm_packet(r);
2296 if (unlikely(!skb)) {
2297 no_mem:
2298 q->next_holdoff = NOMEM_INTR_DELAY;
2299 q->nomem++;
2300 /* consume one credit since we tried */
2301 budget_left--;
2302 break;
2303 }
2304 q->imm_data++;
2305 ethpad = 0;
2306 } else if ((len = ntohl(r->len_cq)) != 0) {
2307 struct sge_fl *fl;
2308
2309 lro &= eth && is_eth_tcp(rss_hi);
2310
2311 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2312 if (fl->use_pages) {
2313 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2314
2315 prefetch(addr);
2316 #if L1_CACHE_BYTES < 128
2317 prefetch(addr + L1_CACHE_BYTES);
2318 #endif
2319 __refill_fl(adap, fl);
2320 if (lro > 0) {
2321 lro_add_page(adap, qs, fl,
2322 G_RSPD_LEN(len),
2323 flags & F_RSPD_EOP);
2324 goto next_fl;
2325 }
2326
2327 skb = get_packet_pg(adap, fl, q,
2328 G_RSPD_LEN(len),
2329 eth ?
2330 SGE_RX_DROP_THRES : 0);
2331 q->pg_skb = skb;
2332 } else
2333 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2334 eth ? SGE_RX_DROP_THRES : 0);
2335 if (unlikely(!skb)) {
2336 if (!eth)
2337 goto no_mem;
2338 q->rx_drops++;
2339 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2340 __skb_pull(skb, 2);
2341 next_fl:
2342 if (++fl->cidx == fl->size)
2343 fl->cidx = 0;
2344 } else
2345 q->pure_rsps++;
2346
2347 if (flags & RSPD_CTRL_MASK) {
2348 sleeping |= flags & RSPD_GTS_MASK;
2349 handle_rsp_cntrl_info(qs, flags);
2350 }
2351
2352 r++;
2353 if (unlikely(++q->cidx == q->size)) {
2354 q->cidx = 0;
2355 q->gen ^= 1;
2356 r = q->desc;
2357 }
2358 prefetch(r);
2359
2360 if (++q->credits >= (q->size / 4)) {
2361 refill_rspq(adap, q, q->credits);
2362 q->credits = 0;
2363 }
2364
2365 packet_complete = flags &
2366 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2367 F_RSPD_ASYNC_NOTIF);
2368
2369 if (skb != NULL && packet_complete) {
2370 if (eth)
2371 rx_eth(adap, q, skb, ethpad, lro);
2372 else {
2373 q->offload_pkts++;
2374 /* Preserve the RSS info in csum & priority */
2375 skb->csum = rss_hi;
2376 skb->priority = rss_lo;
2377 ngathered = rx_offload(&adap->tdev, q, skb,
2378 offload_skbs,
2379 ngathered);
2380 }
2381
2382 if (flags & F_RSPD_EOP)
2383 clear_rspq_bufstate(q);
2384 }
2385 --budget_left;
2386 }
2387
2388 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2389
2390 if (sleeping)
2391 check_ring_db(adap, qs, sleeping);
2392
2393 smp_mb(); /* commit Tx queue .processed updates */
2394 if (unlikely(qs->txq_stopped != 0))
2395 restart_tx(qs);
2396
2397 budget -= budget_left;
2398 return budget;
2399 }
2400
2401 static inline int is_pure_response(const struct rsp_desc *r)
2402 {
2403 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2404
2405 return (n | r->len_cq) == 0;
2406 }
2407
2408 /**
2409 * napi_rx_handler - the NAPI handler for Rx processing
2410 * @napi: the napi instance
2411 * @budget: how many packets we can process in this round
2412 *
2413 * Handler for new data events when using NAPI.
2414 */
2415 static int napi_rx_handler(struct napi_struct *napi, int budget)
2416 {
2417 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2418 struct adapter *adap = qs->adap;
2419 int work_done = process_responses(adap, qs, budget);
2420
2421 if (likely(work_done < budget)) {
2422 napi_complete(napi);
2423
2424 /*
2425 * Because we don't atomically flush the following
2426 * write it is possible that in very rare cases it can
2427 * reach the device in a way that races with a new
2428 * response being written plus an error interrupt
2429 * causing the NAPI interrupt handler below to return
2430 * unhandled status to the OS. To protect against
2431 * this would require flushing the write and doing
2432 * both the write and the flush with interrupts off.
2433 * Way too expensive and unjustifiable given the
2434 * rarity of the race.
2435 *
2436 * The race cannot happen at all with MSI-X.
2437 */
2438 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2439 V_NEWTIMER(qs->rspq.next_holdoff) |
2440 V_NEWINDEX(qs->rspq.cidx));
2441 }
2442 return work_done;
2443 }
2444
2445 /*
2446 * Returns true if the device is already scheduled for polling.
2447 */
2448 static inline int napi_is_scheduled(struct napi_struct *napi)
2449 {
2450 return test_bit(NAPI_STATE_SCHED, &napi->state);
2451 }
2452
2453 /**
2454 * process_pure_responses - process pure responses from a response queue
2455 * @adap: the adapter
2456 * @qs: the queue set owning the response queue
2457 * @r: the first pure response to process
2458 *
2459 * A simpler version of process_responses() that handles only pure (i.e.,
2460 * non data-carrying) responses. Such respones are too light-weight to
2461 * justify calling a softirq under NAPI, so we handle them specially in
2462 * the interrupt handler. The function is called with a pointer to a
2463 * response, which the caller must ensure is a valid pure response.
2464 *
2465 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2466 */
2467 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2468 struct rsp_desc *r)
2469 {
2470 struct sge_rspq *q = &qs->rspq;
2471 unsigned int sleeping = 0;
2472
2473 do {
2474 u32 flags = ntohl(r->flags);
2475
2476 r++;
2477 if (unlikely(++q->cidx == q->size)) {
2478 q->cidx = 0;
2479 q->gen ^= 1;
2480 r = q->desc;
2481 }
2482 prefetch(r);
2483
2484 if (flags & RSPD_CTRL_MASK) {
2485 sleeping |= flags & RSPD_GTS_MASK;
2486 handle_rsp_cntrl_info(qs, flags);
2487 }
2488
2489 q->pure_rsps++;
2490 if (++q->credits >= (q->size / 4)) {
2491 refill_rspq(adap, q, q->credits);
2492 q->credits = 0;
2493 }
2494 } while (is_new_response(r, q) && is_pure_response(r));
2495
2496 if (sleeping)
2497 check_ring_db(adap, qs, sleeping);
2498
2499 smp_mb(); /* commit Tx queue .processed updates */
2500 if (unlikely(qs->txq_stopped != 0))
2501 restart_tx(qs);
2502
2503 return is_new_response(r, q);
2504 }
2505
2506 /**
2507 * handle_responses - decide what to do with new responses in NAPI mode
2508 * @adap: the adapter
2509 * @q: the response queue
2510 *
2511 * This is used by the NAPI interrupt handlers to decide what to do with
2512 * new SGE responses. If there are no new responses it returns -1. If
2513 * there are new responses and they are pure (i.e., non-data carrying)
2514 * it handles them straight in hard interrupt context as they are very
2515 * cheap and don't deliver any packets. Finally, if there are any data
2516 * signaling responses it schedules the NAPI handler. Returns 1 if it
2517 * schedules NAPI, 0 if all new responses were pure.
2518 *
2519 * The caller must ascertain NAPI is not already running.
2520 */
2521 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2522 {
2523 struct sge_qset *qs = rspq_to_qset(q);
2524 struct rsp_desc *r = &q->desc[q->cidx];
2525
2526 if (!is_new_response(r, q))
2527 return -1;
2528 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2529 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2530 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2531 return 0;
2532 }
2533 napi_schedule(&qs->napi);
2534 return 1;
2535 }
2536
2537 /*
2538 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2539 * (i.e., response queue serviced in hard interrupt).
2540 */
2541 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2542 {
2543 struct sge_qset *qs = cookie;
2544 struct adapter *adap = qs->adap;
2545 struct sge_rspq *q = &qs->rspq;
2546
2547 spin_lock(&q->lock);
2548 if (process_responses(adap, qs, -1) == 0)
2549 q->unhandled_irqs++;
2550 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2551 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2552 spin_unlock(&q->lock);
2553 return IRQ_HANDLED;
2554 }
2555
2556 /*
2557 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2558 * (i.e., response queue serviced by NAPI polling).
2559 */
2560 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2561 {
2562 struct sge_qset *qs = cookie;
2563 struct sge_rspq *q = &qs->rspq;
2564
2565 spin_lock(&q->lock);
2566
2567 if (handle_responses(qs->adap, q) < 0)
2568 q->unhandled_irqs++;
2569 spin_unlock(&q->lock);
2570 return IRQ_HANDLED;
2571 }
2572
2573 /*
2574 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2575 * SGE response queues as well as error and other async events as they all use
2576 * the same MSI vector. We use one SGE response queue per port in this mode
2577 * and protect all response queues with queue 0's lock.
2578 */
2579 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2580 {
2581 int new_packets = 0;
2582 struct adapter *adap = cookie;
2583 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2584
2585 spin_lock(&q->lock);
2586
2587 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2588 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2589 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2590 new_packets = 1;
2591 }
2592
2593 if (adap->params.nports == 2 &&
2594 process_responses(adap, &adap->sge.qs[1], -1)) {
2595 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2596
2597 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2598 V_NEWTIMER(q1->next_holdoff) |
2599 V_NEWINDEX(q1->cidx));
2600 new_packets = 1;
2601 }
2602
2603 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2604 q->unhandled_irqs++;
2605
2606 spin_unlock(&q->lock);
2607 return IRQ_HANDLED;
2608 }
2609
2610 static int rspq_check_napi(struct sge_qset *qs)
2611 {
2612 struct sge_rspq *q = &qs->rspq;
2613
2614 if (!napi_is_scheduled(&qs->napi) &&
2615 is_new_response(&q->desc[q->cidx], q)) {
2616 napi_schedule(&qs->napi);
2617 return 1;
2618 }
2619 return 0;
2620 }
2621
2622 /*
2623 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2624 * by NAPI polling). Handles data events from SGE response queues as well as
2625 * error and other async events as they all use the same MSI vector. We use
2626 * one SGE response queue per port in this mode and protect all response
2627 * queues with queue 0's lock.
2628 */
2629 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2630 {
2631 int new_packets;
2632 struct adapter *adap = cookie;
2633 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2634
2635 spin_lock(&q->lock);
2636
2637 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2638 if (adap->params.nports == 2)
2639 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2640 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2641 q->unhandled_irqs++;
2642
2643 spin_unlock(&q->lock);
2644 return IRQ_HANDLED;
2645 }
2646
2647 /*
2648 * A helper function that processes responses and issues GTS.
2649 */
2650 static inline int process_responses_gts(struct adapter *adap,
2651 struct sge_rspq *rq)
2652 {
2653 int work;
2654
2655 work = process_responses(adap, rspq_to_qset(rq), -1);
2656 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2657 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2658 return work;
2659 }
2660
2661 /*
2662 * The legacy INTx interrupt handler. This needs to handle data events from
2663 * SGE response queues as well as error and other async events as they all use
2664 * the same interrupt pin. We use one SGE response queue per port in this mode
2665 * and protect all response queues with queue 0's lock.
2666 */
2667 static irqreturn_t t3_intr(int irq, void *cookie)
2668 {
2669 int work_done, w0, w1;
2670 struct adapter *adap = cookie;
2671 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2672 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2673
2674 spin_lock(&q0->lock);
2675
2676 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2677 w1 = adap->params.nports == 2 &&
2678 is_new_response(&q1->desc[q1->cidx], q1);
2679
2680 if (likely(w0 | w1)) {
2681 t3_write_reg(adap, A_PL_CLI, 0);
2682 t3_read_reg(adap, A_PL_CLI); /* flush */
2683
2684 if (likely(w0))
2685 process_responses_gts(adap, q0);
2686
2687 if (w1)
2688 process_responses_gts(adap, q1);
2689
2690 work_done = w0 | w1;
2691 } else
2692 work_done = t3_slow_intr_handler(adap);
2693
2694 spin_unlock(&q0->lock);
2695 return IRQ_RETVAL(work_done != 0);
2696 }
2697
2698 /*
2699 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2700 * Handles data events from SGE response queues as well as error and other
2701 * async events as they all use the same interrupt pin. We use one SGE
2702 * response queue per port in this mode and protect all response queues with
2703 * queue 0's lock.
2704 */
2705 static irqreturn_t t3b_intr(int irq, void *cookie)
2706 {
2707 u32 map;
2708 struct adapter *adap = cookie;
2709 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2710
2711 t3_write_reg(adap, A_PL_CLI, 0);
2712 map = t3_read_reg(adap, A_SG_DATA_INTR);
2713
2714 if (unlikely(!map)) /* shared interrupt, most likely */
2715 return IRQ_NONE;
2716
2717 spin_lock(&q0->lock);
2718
2719 if (unlikely(map & F_ERRINTR))
2720 t3_slow_intr_handler(adap);
2721
2722 if (likely(map & 1))
2723 process_responses_gts(adap, q0);
2724
2725 if (map & 2)
2726 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2727
2728 spin_unlock(&q0->lock);
2729 return IRQ_HANDLED;
2730 }
2731
2732 /*
2733 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2734 * Handles data events from SGE response queues as well as error and other
2735 * async events as they all use the same interrupt pin. We use one SGE
2736 * response queue per port in this mode and protect all response queues with
2737 * queue 0's lock.
2738 */
2739 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2740 {
2741 u32 map;
2742 struct adapter *adap = cookie;
2743 struct sge_qset *qs0 = &adap->sge.qs[0];
2744 struct sge_rspq *q0 = &qs0->rspq;
2745
2746 t3_write_reg(adap, A_PL_CLI, 0);
2747 map = t3_read_reg(adap, A_SG_DATA_INTR);
2748
2749 if (unlikely(!map)) /* shared interrupt, most likely */
2750 return IRQ_NONE;
2751
2752 spin_lock(&q0->lock);
2753
2754 if (unlikely(map & F_ERRINTR))
2755 t3_slow_intr_handler(adap);
2756
2757 if (likely(map & 1))
2758 napi_schedule(&qs0->napi);
2759
2760 if (map & 2)
2761 napi_schedule(&adap->sge.qs[1].napi);
2762
2763 spin_unlock(&q0->lock);
2764 return IRQ_HANDLED;
2765 }
2766
2767 /**
2768 * t3_intr_handler - select the top-level interrupt handler
2769 * @adap: the adapter
2770 * @polling: whether using NAPI to service response queues
2771 *
2772 * Selects the top-level interrupt handler based on the type of interrupts
2773 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2774 * response queues.
2775 */
2776 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2777 {
2778 if (adap->flags & USING_MSIX)
2779 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2780 if (adap->flags & USING_MSI)
2781 return polling ? t3_intr_msi_napi : t3_intr_msi;
2782 if (adap->params.rev > 0)
2783 return polling ? t3b_intr_napi : t3b_intr;
2784 return t3_intr;
2785 }
2786
2787 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2788 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2789 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2790 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2791 F_HIRCQPARITYERROR)
2792 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2793 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2794 F_RSPQDISABLED)
2795
2796 /**
2797 * t3_sge_err_intr_handler - SGE async event interrupt handler
2798 * @adapter: the adapter
2799 *
2800 * Interrupt handler for SGE asynchronous (non-data) events.
2801 */
2802 void t3_sge_err_intr_handler(struct adapter *adapter)
2803 {
2804 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2805 ~F_FLEMPTY;
2806
2807 if (status & SGE_PARERR)
2808 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2809 status & SGE_PARERR);
2810 if (status & SGE_FRAMINGERR)
2811 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2812 status & SGE_FRAMINGERR);
2813
2814 if (status & F_RSPQCREDITOVERFOW)
2815 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2816
2817 if (status & F_RSPQDISABLED) {
2818 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2819
2820 CH_ALERT(adapter,
2821 "packet delivered to disabled response queue "
2822 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2823 }
2824
2825 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2826 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2827 status & F_HIPIODRBDROPERR ? "high" : "lo");
2828
2829 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2830 if (status & SGE_FATALERR)
2831 t3_fatal_err(adapter);
2832 }
2833
2834 /**
2835 * sge_timer_tx - perform periodic maintenance of an SGE qset
2836 * @data: the SGE queue set to maintain
2837 *
2838 * Runs periodically from a timer to perform maintenance of an SGE queue
2839 * set. It performs two tasks:
2840 *
2841 * Cleans up any completed Tx descriptors that may still be pending.
2842 * Normal descriptor cleanup happens when new packets are added to a Tx
2843 * queue so this timer is relatively infrequent and does any cleanup only
2844 * if the Tx queue has not seen any new packets in a while. We make a
2845 * best effort attempt to reclaim descriptors, in that we don't wait
2846 * around if we cannot get a queue's lock (which most likely is because
2847 * someone else is queueing new packets and so will also handle the clean
2848 * up). Since control queues use immediate data exclusively we don't
2849 * bother cleaning them up here.
2850 *
2851 */
2852 static void sge_timer_tx(unsigned long data)
2853 {
2854 struct sge_qset *qs = (struct sge_qset *)data;
2855 struct port_info *pi = netdev_priv(qs->netdev);
2856 struct adapter *adap = pi->adapter;
2857 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2858 unsigned long next_period;
2859
2860 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2861 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2862 TX_RECLAIM_TIMER_CHUNK);
2863 spin_unlock(&qs->txq[TXQ_ETH].lock);
2864 }
2865 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2866 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2867 TX_RECLAIM_TIMER_CHUNK);
2868 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2869 }
2870
2871 next_period = TX_RECLAIM_PERIOD >>
2872 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2873 TX_RECLAIM_TIMER_CHUNK);
2874 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2875 }
2876
2877 /*
2878 * sge_timer_rx - perform periodic maintenance of an SGE qset
2879 * @data: the SGE queue set to maintain
2880 *
2881 * a) Replenishes Rx queues that have run out due to memory shortage.
2882 * Normally new Rx buffers are added when existing ones are consumed but
2883 * when out of memory a queue can become empty. We try to add only a few
2884 * buffers here, the queue will be replenished fully as these new buffers
2885 * are used up if memory shortage has subsided.
2886 *
2887 * b) Return coalesced response queue credits in case a response queue is
2888 * starved.
2889 *
2890 */
2891 static void sge_timer_rx(unsigned long data)
2892 {
2893 spinlock_t *lock;
2894 struct sge_qset *qs = (struct sge_qset *)data;
2895 struct port_info *pi = netdev_priv(qs->netdev);
2896 struct adapter *adap = pi->adapter;
2897 u32 status;
2898
2899 lock = adap->params.rev > 0 ?
2900 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2901
2902 if (!spin_trylock_irq(lock))
2903 goto out;
2904
2905 if (napi_is_scheduled(&qs->napi))
2906 goto unlock;
2907
2908 if (adap->params.rev < 4) {
2909 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2910
2911 if (status & (1 << qs->rspq.cntxt_id)) {
2912 qs->rspq.starved++;
2913 if (qs->rspq.credits) {
2914 qs->rspq.credits--;
2915 refill_rspq(adap, &qs->rspq, 1);
2916 qs->rspq.restarted++;
2917 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2918 1 << qs->rspq.cntxt_id);
2919 }
2920 }
2921 }
2922
2923 if (qs->fl[0].credits < qs->fl[0].size)
2924 __refill_fl(adap, &qs->fl[0]);
2925 if (qs->fl[1].credits < qs->fl[1].size)
2926 __refill_fl(adap, &qs->fl[1]);
2927
2928 unlock:
2929 spin_unlock_irq(lock);
2930 out:
2931 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2932 }
2933
2934 /**
2935 * t3_update_qset_coalesce - update coalescing settings for a queue set
2936 * @qs: the SGE queue set
2937 * @p: new queue set parameters
2938 *
2939 * Update the coalescing settings for an SGE queue set. Nothing is done
2940 * if the queue set is not initialized yet.
2941 */
2942 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2943 {
2944 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2945 qs->rspq.polling = p->polling;
2946 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2947 }
2948
2949 /**
2950 * t3_sge_alloc_qset - initialize an SGE queue set
2951 * @adapter: the adapter
2952 * @id: the queue set id
2953 * @nports: how many Ethernet ports will be using this queue set
2954 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2955 * @p: configuration parameters for this queue set
2956 * @ntxq: number of Tx queues for the queue set
2957 * @netdev: net device associated with this queue set
2958 * @netdevq: net device TX queue associated with this queue set
2959 *
2960 * Allocate resources and initialize an SGE queue set. A queue set
2961 * comprises a response queue, two Rx free-buffer queues, and up to 3
2962 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2963 * queue, offload queue, and control queue.
2964 */
2965 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2966 int irq_vec_idx, const struct qset_params *p,
2967 int ntxq, struct net_device *dev,
2968 struct netdev_queue *netdevq)
2969 {
2970 int i, avail, ret = -ENOMEM;
2971 struct sge_qset *q = &adapter->sge.qs[id];
2972
2973 init_qset_cntxt(q, id);
2974 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2975 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2976
2977 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2978 sizeof(struct rx_desc),
2979 sizeof(struct rx_sw_desc),
2980 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2981 if (!q->fl[0].desc)
2982 goto err;
2983
2984 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2985 sizeof(struct rx_desc),
2986 sizeof(struct rx_sw_desc),
2987 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2988 if (!q->fl[1].desc)
2989 goto err;
2990
2991 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2992 sizeof(struct rsp_desc), 0,
2993 &q->rspq.phys_addr, NULL);
2994 if (!q->rspq.desc)
2995 goto err;
2996
2997 for (i = 0; i < ntxq; ++i) {
2998 /*
2999 * The control queue always uses immediate data so does not
3000 * need to keep track of any sk_buffs.
3001 */
3002 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3003
3004 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3005 sizeof(struct tx_desc), sz,
3006 &q->txq[i].phys_addr,
3007 &q->txq[i].sdesc);
3008 if (!q->txq[i].desc)
3009 goto err;
3010
3011 q->txq[i].gen = 1;
3012 q->txq[i].size = p->txq_size[i];
3013 spin_lock_init(&q->txq[i].lock);
3014 skb_queue_head_init(&q->txq[i].sendq);
3015 }
3016
3017 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3018 (unsigned long)q);
3019 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3020 (unsigned long)q);
3021
3022 q->fl[0].gen = q->fl[1].gen = 1;
3023 q->fl[0].size = p->fl_size;
3024 q->fl[1].size = p->jumbo_size;
3025
3026 q->rspq.gen = 1;
3027 q->rspq.size = p->rspq_size;
3028 spin_lock_init(&q->rspq.lock);
3029 skb_queue_head_init(&q->rspq.rx_queue);
3030
3031 q->txq[TXQ_ETH].stop_thres = nports *
3032 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3033
3034 #if FL0_PG_CHUNK_SIZE > 0
3035 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3036 #else
3037 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3038 #endif
3039 #if FL1_PG_CHUNK_SIZE > 0
3040 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3041 #else
3042 q->fl[1].buf_size = is_offload(adapter) ?
3043 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3044 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3045 #endif
3046
3047 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3048 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3049 q->fl[0].order = FL0_PG_ORDER;
3050 q->fl[1].order = FL1_PG_ORDER;
3051 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3052 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3053
3054 spin_lock_irq(&adapter->sge.reg_lock);
3055
3056 /* FL threshold comparison uses < */
3057 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3058 q->rspq.phys_addr, q->rspq.size,
3059 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3060 if (ret)
3061 goto err_unlock;
3062
3063 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3064 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3065 q->fl[i].phys_addr, q->fl[i].size,
3066 q->fl[i].buf_size - SGE_PG_RSVD,
3067 p->cong_thres, 1, 0);
3068 if (ret)
3069 goto err_unlock;
3070 }
3071
3072 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3073 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3074 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3075 1, 0);
3076 if (ret)
3077 goto err_unlock;
3078
3079 if (ntxq > 1) {
3080 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3081 USE_GTS, SGE_CNTXT_OFLD, id,
3082 q->txq[TXQ_OFLD].phys_addr,
3083 q->txq[TXQ_OFLD].size, 0, 1, 0);
3084 if (ret)
3085 goto err_unlock;
3086 }
3087
3088 if (ntxq > 2) {
3089 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3090 SGE_CNTXT_CTRL, id,
3091 q->txq[TXQ_CTRL].phys_addr,
3092 q->txq[TXQ_CTRL].size,
3093 q->txq[TXQ_CTRL].token, 1, 0);
3094 if (ret)
3095 goto err_unlock;
3096 }
3097
3098 spin_unlock_irq(&adapter->sge.reg_lock);
3099
3100 q->adap = adapter;
3101 q->netdev = dev;
3102 q->tx_q = netdevq;
3103 t3_update_qset_coalesce(q, p);
3104
3105 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3106 GFP_KERNEL | __GFP_COMP);
3107 if (!avail) {
3108 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3109 goto err;
3110 }
3111 if (avail < q->fl[0].size)
3112 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3113 avail);
3114
3115 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3116 GFP_KERNEL | __GFP_COMP);
3117 if (avail < q->fl[1].size)
3118 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3119 avail);
3120 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3121
3122 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3123 V_NEWTIMER(q->rspq.holdoff_tmr));
3124
3125 return 0;
3126
3127 err_unlock:
3128 spin_unlock_irq(&adapter->sge.reg_lock);
3129 err:
3130 t3_free_qset(adapter, q);
3131 return ret;
3132 }
3133
3134 /**
3135 * t3_start_sge_timers - start SGE timer call backs
3136 * @adap: the adapter
3137 *
3138 * Starts each SGE queue set's timer call back
3139 */
3140 void t3_start_sge_timers(struct adapter *adap)
3141 {
3142 int i;
3143
3144 for (i = 0; i < SGE_QSETS; ++i) {
3145 struct sge_qset *q = &adap->sge.qs[i];
3146
3147 if (q->tx_reclaim_timer.function)
3148 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3149
3150 if (q->rx_reclaim_timer.function)
3151 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3152 }
3153 }
3154
3155 /**
3156 * t3_stop_sge_timers - stop SGE timer call backs
3157 * @adap: the adapter
3158 *
3159 * Stops each SGE queue set's timer call back
3160 */
3161 void t3_stop_sge_timers(struct adapter *adap)
3162 {
3163 int i;
3164
3165 for (i = 0; i < SGE_QSETS; ++i) {
3166 struct sge_qset *q = &adap->sge.qs[i];
3167
3168 if (q->tx_reclaim_timer.function)
3169 del_timer_sync(&q->tx_reclaim_timer);
3170 if (q->rx_reclaim_timer.function)
3171 del_timer_sync(&q->rx_reclaim_timer);
3172 }
3173 }
3174
3175 /**
3176 * t3_free_sge_resources - free SGE resources
3177 * @adap: the adapter
3178 *
3179 * Frees resources used by the SGE queue sets.
3180 */
3181 void t3_free_sge_resources(struct adapter *adap)
3182 {
3183 int i;
3184
3185 for (i = 0; i < SGE_QSETS; ++i)
3186 t3_free_qset(adap, &adap->sge.qs[i]);
3187 }
3188
3189 /**
3190 * t3_sge_start - enable SGE
3191 * @adap: the adapter
3192 *
3193 * Enables the SGE for DMAs. This is the last step in starting packet
3194 * transfers.
3195 */
3196 void t3_sge_start(struct adapter *adap)
3197 {
3198 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3199 }
3200
3201 /**
3202 * t3_sge_stop - disable SGE operation
3203 * @adap: the adapter
3204 *
3205 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3206 * from error interrupts) or from normal process context. In the latter
3207 * case it also disables any pending queue restart tasklets. Note that
3208 * if it is called in interrupt context it cannot disable the restart
3209 * tasklets as it cannot wait, however the tasklets will have no effect
3210 * since the doorbells are disabled and the driver will call this again
3211 * later from process context, at which time the tasklets will be stopped
3212 * if they are still running.
3213 */
3214 void t3_sge_stop(struct adapter *adap)
3215 {
3216 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3217 if (!in_interrupt()) {
3218 int i;
3219
3220 for (i = 0; i < SGE_QSETS; ++i) {
3221 struct sge_qset *qs = &adap->sge.qs[i];
3222
3223 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3224 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3225 }
3226 }
3227 }
3228
3229 /**
3230 * t3_sge_init - initialize SGE
3231 * @adap: the adapter
3232 * @p: the SGE parameters
3233 *
3234 * Performs SGE initialization needed every time after a chip reset.
3235 * We do not initialize any of the queue sets here, instead the driver
3236 * top-level must request those individually. We also do not enable DMA
3237 * here, that should be done after the queues have been set up.
3238 */
3239 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3240 {
3241 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3242
3243 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3244 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3245 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3246 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3247 #if SGE_NUM_GENBITS == 1
3248 ctrl |= F_EGRGENCTRL;
3249 #endif
3250 if (adap->params.rev > 0) {
3251 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3252 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3253 }
3254 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3255 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3256 V_LORCQDRBTHRSH(512));
3257 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3258 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3259 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3260 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3261 adap->params.rev < T3_REV_C ? 1000 : 500);
3262 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3263 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3264 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3265 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3266 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3267 }
3268
3269 /**
3270 * t3_sge_prep - one-time SGE initialization
3271 * @adap: the associated adapter
3272 * @p: SGE parameters
3273 *
3274 * Performs one-time initialization of SGE SW state. Includes determining
3275 * defaults for the assorted SGE parameters, which admins can change until
3276 * they are used to initialize the SGE.
3277 */
3278 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3279 {
3280 int i;
3281
3282 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3283 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3284
3285 for (i = 0; i < SGE_QSETS; ++i) {
3286 struct qset_params *q = p->qset + i;
3287
3288 q->polling = adap->params.rev > 0;
3289 q->coalesce_usecs = 5;
3290 q->rspq_size = 1024;
3291 q->fl_size = 1024;
3292 q->jumbo_size = 512;
3293 q->txq_size[TXQ_ETH] = 1024;
3294 q->txq_size[TXQ_OFLD] = 1024;
3295 q->txq_size[TXQ_CTRL] = 256;
3296 q->cong_thres = 0;
3297 }
3298
3299 spin_lock_init(&adap->sge.reg_lock);
3300 }
3301
3302 /**
3303 * t3_get_desc - dump an SGE descriptor for debugging purposes
3304 * @qs: the queue set
3305 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3306 * @idx: the descriptor index in the queue
3307 * @data: where to dump the descriptor contents
3308 *
3309 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3310 * size of the descriptor.
3311 */
3312 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3313 unsigned char *data)
3314 {
3315 if (qnum >= 6)
3316 return -EINVAL;
3317
3318 if (qnum < 3) {
3319 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3320 return -EINVAL;
3321 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3322 return sizeof(struct tx_desc);
3323 }
3324
3325 if (qnum == 3) {
3326 if (!qs->rspq.desc || idx >= qs->rspq.size)
3327 return -EINVAL;
3328 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3329 return sizeof(struct rsp_desc);
3330 }
3331
3332 qnum -= 4;
3333 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3334 return -EINVAL;
3335 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3336 return sizeof(struct rx_desc);
3337 }