]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/cxgb3/sge.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <net/arp.h>
40 #include "common.h"
41 #include "regs.h"
42 #include "sge_defs.h"
43 #include "t3_cpl.h"
44 #include "firmware_exports.h"
45
46 #define USE_GTS 0
47
48 #define SGE_RX_SM_BUF_SIZE 1536
49
50 #define SGE_RX_COPY_THRES 256
51 #define SGE_RX_PULL_LEN 128
52
53 #define SGE_PG_RSVD SMP_CACHE_BYTES
54 /*
55 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
56 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
57 * directly.
58 */
59 #define FL0_PG_CHUNK_SIZE 2048
60 #define FL0_PG_ORDER 0
61 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
62 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
63 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
64 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
65
66 #define SGE_RX_DROP_THRES 16
67 #define RX_RECLAIM_PERIOD (HZ/4)
68
69 /*
70 * Max number of Rx buffers we replenish at a time.
71 */
72 #define MAX_RX_REFILL 16U
73 /*
74 * Period of the Tx buffer reclaim timer. This timer does not need to run
75 * frequently as Tx buffers are usually reclaimed by new Tx packets.
76 */
77 #define TX_RECLAIM_PERIOD (HZ / 4)
78 #define TX_RECLAIM_TIMER_CHUNK 64U
79 #define TX_RECLAIM_CHUNK 16U
80
81 /* WR size in bytes */
82 #define WR_LEN (WR_FLITS * 8)
83
84 /*
85 * Types of Tx queues in each queue set. Order here matters, do not change.
86 */
87 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
88
89 /* Values for sge_txq.flags */
90 enum {
91 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
92 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
93 };
94
95 struct tx_desc {
96 __be64 flit[TX_DESC_FLITS];
97 };
98
99 struct rx_desc {
100 __be32 addr_lo;
101 __be32 len_gen;
102 __be32 gen2;
103 __be32 addr_hi;
104 };
105
106 struct tx_sw_desc { /* SW state per Tx descriptor */
107 struct sk_buff *skb;
108 u8 eop; /* set if last descriptor for packet */
109 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
110 u8 fragidx; /* first page fragment associated with descriptor */
111 s8 sflit; /* start flit of first SGL entry in descriptor */
112 };
113
114 struct rx_sw_desc { /* SW state per Rx descriptor */
115 union {
116 struct sk_buff *skb;
117 struct fl_pg_chunk pg_chunk;
118 };
119 DECLARE_PCI_UNMAP_ADDR(dma_addr);
120 };
121
122 struct rsp_desc { /* response queue descriptor */
123 struct rss_header rss_hdr;
124 __be32 flags;
125 __be32 len_cq;
126 u8 imm_data[47];
127 u8 intr_gen;
128 };
129
130 /*
131 * Holds unmapping information for Tx packets that need deferred unmapping.
132 * This structure lives at skb->head and must be allocated by callers.
133 */
134 struct deferred_unmap_info {
135 struct pci_dev *pdev;
136 dma_addr_t addr[MAX_SKB_FRAGS + 1];
137 };
138
139 /*
140 * Maps a number of flits to the number of Tx descriptors that can hold them.
141 * The formula is
142 *
143 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
144 *
145 * HW allows up to 4 descriptors to be combined into a WR.
146 */
147 static u8 flit_desc_map[] = {
148 0,
149 #if SGE_NUM_GENBITS == 1
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
151 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
152 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
153 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
154 #elif SGE_NUM_GENBITS == 2
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
159 #else
160 # error "SGE_NUM_GENBITS must be 1 or 2"
161 #endif
162 };
163
164 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
165 {
166 return container_of(q, struct sge_qset, fl[qidx]);
167 }
168
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 return container_of(q, struct sge_qset, rspq);
172 }
173
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 return container_of(q, struct sge_qset, txq[qidx]);
177 }
178
179 /**
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
184 *
185 * Replenishes a response queue by making the supplied number of responses
186 * available to HW.
187 */
188 static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
190 {
191 rmb();
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195
196 /**
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
198 *
199 * Returns true if the platfrom needs sk_buff unmapping. The compiler
200 * optimizes away unecessary code if this returns true.
201 */
202 static inline int need_skb_unmap(void)
203 {
204 /*
205 * This structure is used to tell if the platfrom needs buffer
206 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
207 */
208 struct dummy {
209 DECLARE_PCI_UNMAP_ADDR(addr);
210 };
211
212 return sizeof(struct dummy) != 0;
213 }
214
215 /**
216 * unmap_skb - unmap a packet main body and its page fragments
217 * @skb: the packet
218 * @q: the Tx queue containing Tx descriptors for the packet
219 * @cidx: index of Tx descriptor
220 * @pdev: the PCI device
221 *
222 * Unmap the main body of an sk_buff and its page fragments, if any.
223 * Because of the fairly complicated structure of our SGLs and the desire
224 * to conserve space for metadata, the information necessary to unmap an
225 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
226 * descriptors (the physical addresses of the various data buffers), and
227 * the SW descriptor state (assorted indices). The send functions
228 * initialize the indices for the first packet descriptor so we can unmap
229 * the buffers held in the first Tx descriptor here, and we have enough
230 * information at this point to set the state for the next Tx descriptor.
231 *
232 * Note that it is possible to clean up the first descriptor of a packet
233 * before the send routines have written the next descriptors, but this
234 * race does not cause any problem. We just end up writing the unmapping
235 * info for the descriptor first.
236 */
237 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
238 unsigned int cidx, struct pci_dev *pdev)
239 {
240 const struct sg_ent *sgp;
241 struct tx_sw_desc *d = &q->sdesc[cidx];
242 int nfrags, frag_idx, curflit, j = d->addr_idx;
243
244 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
245 frag_idx = d->fragidx;
246
247 if (frag_idx == 0 && skb_headlen(skb)) {
248 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
249 skb_headlen(skb), PCI_DMA_TODEVICE);
250 j = 1;
251 }
252
253 curflit = d->sflit + 1 + j;
254 nfrags = skb_shinfo(skb)->nr_frags;
255
256 while (frag_idx < nfrags && curflit < WR_FLITS) {
257 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
258 skb_shinfo(skb)->frags[frag_idx].size,
259 PCI_DMA_TODEVICE);
260 j ^= 1;
261 if (j == 0) {
262 sgp++;
263 curflit++;
264 }
265 curflit++;
266 frag_idx++;
267 }
268
269 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
270 d = cidx + 1 == q->size ? q->sdesc : d + 1;
271 d->fragidx = frag_idx;
272 d->addr_idx = j;
273 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
274 }
275 }
276
277 /**
278 * free_tx_desc - reclaims Tx descriptors and their buffers
279 * @adapter: the adapter
280 * @q: the Tx queue to reclaim descriptors from
281 * @n: the number of descriptors to reclaim
282 *
283 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
284 * Tx buffers. Called with the Tx queue lock held.
285 */
286 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
287 unsigned int n)
288 {
289 struct tx_sw_desc *d;
290 struct pci_dev *pdev = adapter->pdev;
291 unsigned int cidx = q->cidx;
292
293 const int need_unmap = need_skb_unmap() &&
294 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295
296 d = &q->sdesc[cidx];
297 while (n--) {
298 if (d->skb) { /* an SGL is present */
299 if (need_unmap)
300 unmap_skb(d->skb, q, cidx, pdev);
301 if (d->eop)
302 kfree_skb(d->skb);
303 }
304 ++d;
305 if (++cidx == q->size) {
306 cidx = 0;
307 d = q->sdesc;
308 }
309 }
310 q->cidx = cidx;
311 }
312
313 /**
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
317 * @chunk: maximum number of descriptors to reclaim
318 *
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
321 * queue's lock held.
322 */
323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 struct sge_txq *q,
325 unsigned int chunk)
326 {
327 unsigned int reclaim = q->processed - q->cleaned;
328
329 reclaim = min(chunk, reclaim);
330 if (reclaim) {
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
334 }
335 return q->processed - q->cleaned;
336 }
337
338 /**
339 * should_restart_tx - are there enough resources to restart a Tx queue?
340 * @q: the Tx queue
341 *
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
343 */
344 static inline int should_restart_tx(const struct sge_txq *q)
345 {
346 unsigned int r = q->processed - q->cleaned;
347
348 return q->in_use - r < (q->size >> 1);
349 }
350
351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
353 {
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
357 pci_unmap_page(pdev,
358 d->pg_chunk.mapping,
359 q->alloc_size, PCI_DMA_FROMDEVICE);
360
361 put_page(d->pg_chunk.page);
362 d->pg_chunk.page = NULL;
363 } else {
364 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
366 kfree_skb(d->skb);
367 d->skb = NULL;
368 }
369 }
370
371 /**
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
375 *
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
378 */
379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380 {
381 unsigned int cidx = q->cidx;
382
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
385
386
387 clear_rx_desc(pdev, q, d);
388 if (++cidx == q->size)
389 cidx = 0;
390 }
391
392 if (q->pg_chunk.page) {
393 __free_pages(q->pg_chunk.page, q->order);
394 q->pg_chunk.page = NULL;
395 }
396 }
397
398 /**
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
400 * @va: buffer start VA
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
406 *
407 * Add a buffer of the given length to the supplied HW and SW Rx
408 * descriptors.
409 */
410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
413 {
414 dma_addr_t mapping;
415
416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
418 return -ENOMEM;
419
420 pci_unmap_addr_set(sd, dma_addr, mapping);
421
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 wmb();
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
427 return 0;
428 }
429
430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 unsigned int gen)
432 {
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 wmb();
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 return 0;
439 }
440
441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
443 unsigned int order)
444 {
445 if (!q->pg_chunk.page) {
446 dma_addr_t mapping;
447
448 q->pg_chunk.page = alloc_pages(gfp, order);
449 if (unlikely(!q->pg_chunk.page))
450 return -ENOMEM;
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 SGE_PG_RSVD;
454 q->pg_chunk.offset = 0;
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 q->pg_chunk.mapping = mapping;
458 }
459 sd->pg_chunk = q->pg_chunk;
460
461 prefetch(sd->pg_chunk.p_cnt);
462
463 q->pg_chunk.offset += q->buf_size;
464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 q->pg_chunk.page = NULL;
466 else {
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
469 }
470
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
473 else
474 *sd->pg_chunk.p_cnt += 1;
475
476 return 0;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= q->credits / 4) {
482 q->pend_cred = 0;
483 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
484 }
485 }
486
487 /**
488 * refill_fl - refill an SGE free-buffer list
489 * @adapter: the adapter
490 * @q: the free-list to refill
491 * @n: the number of new buffers to allocate
492 * @gfp: the gfp flags for allocating new buffers
493 *
494 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
495 * allocated with the supplied gfp flags. The caller must assure that
496 * @n does not exceed the queue's capacity.
497 */
498 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
499 {
500 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
501 struct rx_desc *d = &q->desc[q->pidx];
502 unsigned int count = 0;
503
504 while (n--) {
505 dma_addr_t mapping;
506 int err;
507
508 if (q->use_pages) {
509 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
510 q->order))) {
511 nomem: q->alloc_failed++;
512 break;
513 }
514 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
515 pci_unmap_addr_set(sd, dma_addr, mapping);
516
517 add_one_rx_chunk(mapping, d, q->gen);
518 pci_dma_sync_single_for_device(adap->pdev, mapping,
519 q->buf_size - SGE_PG_RSVD,
520 PCI_DMA_FROMDEVICE);
521 } else {
522 void *buf_start;
523
524 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
525 if (!skb)
526 goto nomem;
527
528 sd->skb = skb;
529 buf_start = skb->data;
530 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
531 q->gen, adap->pdev);
532 if (unlikely(err)) {
533 clear_rx_desc(adap->pdev, q, sd);
534 break;
535 }
536 }
537
538 d++;
539 sd++;
540 if (++q->pidx == q->size) {
541 q->pidx = 0;
542 q->gen ^= 1;
543 sd = q->sdesc;
544 d = q->desc;
545 }
546 count++;
547 }
548
549 q->credits += count;
550 q->pend_cred += count;
551 ring_fl_db(adap, q);
552
553 return count;
554 }
555
556 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
557 {
558 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
559 GFP_ATOMIC | __GFP_COMP);
560 }
561
562 /**
563 * recycle_rx_buf - recycle a receive buffer
564 * @adapter: the adapter
565 * @q: the SGE free list
566 * @idx: index of buffer to recycle
567 *
568 * Recycles the specified buffer on the given free list by adding it at
569 * the next available slot on the list.
570 */
571 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
572 unsigned int idx)
573 {
574 struct rx_desc *from = &q->desc[idx];
575 struct rx_desc *to = &q->desc[q->pidx];
576
577 q->sdesc[q->pidx] = q->sdesc[idx];
578 to->addr_lo = from->addr_lo; /* already big endian */
579 to->addr_hi = from->addr_hi; /* likewise */
580 wmb();
581 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
582 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
583
584 if (++q->pidx == q->size) {
585 q->pidx = 0;
586 q->gen ^= 1;
587 }
588
589 q->credits++;
590 q->pend_cred++;
591 ring_fl_db(adap, q);
592 }
593
594 /**
595 * alloc_ring - allocate resources for an SGE descriptor ring
596 * @pdev: the PCI device
597 * @nelem: the number of descriptors
598 * @elem_size: the size of each descriptor
599 * @sw_size: the size of the SW state associated with each ring element
600 * @phys: the physical address of the allocated ring
601 * @metadata: address of the array holding the SW state for the ring
602 *
603 * Allocates resources for an SGE descriptor ring, such as Tx queues,
604 * free buffer lists, or response queues. Each SGE ring requires
605 * space for its HW descriptors plus, optionally, space for the SW state
606 * associated with each HW entry (the metadata). The function returns
607 * three values: the virtual address for the HW ring (the return value
608 * of the function), the physical address of the HW ring, and the address
609 * of the SW ring.
610 */
611 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
612 size_t sw_size, dma_addr_t * phys, void *metadata)
613 {
614 size_t len = nelem * elem_size;
615 void *s = NULL;
616 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
617
618 if (!p)
619 return NULL;
620 if (sw_size && metadata) {
621 s = kcalloc(nelem, sw_size, GFP_KERNEL);
622
623 if (!s) {
624 dma_free_coherent(&pdev->dev, len, p, *phys);
625 return NULL;
626 }
627 *(void **)metadata = s;
628 }
629 memset(p, 0, len);
630 return p;
631 }
632
633 /**
634 * t3_reset_qset - reset a sge qset
635 * @q: the queue set
636 *
637 * Reset the qset structure.
638 * the NAPI structure is preserved in the event of
639 * the qset's reincarnation, for example during EEH recovery.
640 */
641 static void t3_reset_qset(struct sge_qset *q)
642 {
643 if (q->adap &&
644 !(q->adap->flags & NAPI_INIT)) {
645 memset(q, 0, sizeof(*q));
646 return;
647 }
648
649 q->adap = NULL;
650 memset(&q->rspq, 0, sizeof(q->rspq));
651 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
652 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
653 q->txq_stopped = 0;
654 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
655 q->rx_reclaim_timer.function = NULL;
656 q->nomem = 0;
657 napi_free_frags(&q->napi);
658 }
659
660
661 /**
662 * free_qset - free the resources of an SGE queue set
663 * @adapter: the adapter owning the queue set
664 * @q: the queue set
665 *
666 * Release the HW and SW resources associated with an SGE queue set, such
667 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
668 * queue set must be quiesced prior to calling this.
669 */
670 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
671 {
672 int i;
673 struct pci_dev *pdev = adapter->pdev;
674
675 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
676 if (q->fl[i].desc) {
677 spin_lock_irq(&adapter->sge.reg_lock);
678 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
679 spin_unlock_irq(&adapter->sge.reg_lock);
680 free_rx_bufs(pdev, &q->fl[i]);
681 kfree(q->fl[i].sdesc);
682 dma_free_coherent(&pdev->dev,
683 q->fl[i].size *
684 sizeof(struct rx_desc), q->fl[i].desc,
685 q->fl[i].phys_addr);
686 }
687
688 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
689 if (q->txq[i].desc) {
690 spin_lock_irq(&adapter->sge.reg_lock);
691 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
692 spin_unlock_irq(&adapter->sge.reg_lock);
693 if (q->txq[i].sdesc) {
694 free_tx_desc(adapter, &q->txq[i],
695 q->txq[i].in_use);
696 kfree(q->txq[i].sdesc);
697 }
698 dma_free_coherent(&pdev->dev,
699 q->txq[i].size *
700 sizeof(struct tx_desc),
701 q->txq[i].desc, q->txq[i].phys_addr);
702 __skb_queue_purge(&q->txq[i].sendq);
703 }
704
705 if (q->rspq.desc) {
706 spin_lock_irq(&adapter->sge.reg_lock);
707 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
708 spin_unlock_irq(&adapter->sge.reg_lock);
709 dma_free_coherent(&pdev->dev,
710 q->rspq.size * sizeof(struct rsp_desc),
711 q->rspq.desc, q->rspq.phys_addr);
712 }
713
714 t3_reset_qset(q);
715 }
716
717 /**
718 * init_qset_cntxt - initialize an SGE queue set context info
719 * @qs: the queue set
720 * @id: the queue set id
721 *
722 * Initializes the TIDs and context ids for the queues of a queue set.
723 */
724 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
725 {
726 qs->rspq.cntxt_id = id;
727 qs->fl[0].cntxt_id = 2 * id;
728 qs->fl[1].cntxt_id = 2 * id + 1;
729 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
730 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
731 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
732 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
734 }
735
736 /**
737 * sgl_len - calculates the size of an SGL of the given capacity
738 * @n: the number of SGL entries
739 *
740 * Calculates the number of flits needed for a scatter/gather list that
741 * can hold the given number of entries.
742 */
743 static inline unsigned int sgl_len(unsigned int n)
744 {
745 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
746 return (3 * n) / 2 + (n & 1);
747 }
748
749 /**
750 * flits_to_desc - returns the num of Tx descriptors for the given flits
751 * @n: the number of flits
752 *
753 * Calculates the number of Tx descriptors needed for the supplied number
754 * of flits.
755 */
756 static inline unsigned int flits_to_desc(unsigned int n)
757 {
758 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
759 return flit_desc_map[n];
760 }
761
762 /**
763 * get_packet - return the next ingress packet buffer from a free list
764 * @adap: the adapter that received the packet
765 * @fl: the SGE free list holding the packet
766 * @len: the packet length including any SGE padding
767 * @drop_thres: # of remaining buffers before we start dropping packets
768 *
769 * Get the next packet from a free list and complete setup of the
770 * sk_buff. If the packet is small we make a copy and recycle the
771 * original buffer, otherwise we use the original buffer itself. If a
772 * positive drop threshold is supplied packets are dropped and their
773 * buffers recycled if (a) the number of remaining buffers is under the
774 * threshold and the packet is too big to copy, or (b) the packet should
775 * be copied but there is no memory for the copy.
776 */
777 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
778 unsigned int len, unsigned int drop_thres)
779 {
780 struct sk_buff *skb = NULL;
781 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
782
783 prefetch(sd->skb->data);
784 fl->credits--;
785
786 if (len <= SGE_RX_COPY_THRES) {
787 skb = alloc_skb(len, GFP_ATOMIC);
788 if (likely(skb != NULL)) {
789 __skb_put(skb, len);
790 pci_dma_sync_single_for_cpu(adap->pdev,
791 pci_unmap_addr(sd, dma_addr), len,
792 PCI_DMA_FROMDEVICE);
793 memcpy(skb->data, sd->skb->data, len);
794 pci_dma_sync_single_for_device(adap->pdev,
795 pci_unmap_addr(sd, dma_addr), len,
796 PCI_DMA_FROMDEVICE);
797 } else if (!drop_thres)
798 goto use_orig_buf;
799 recycle:
800 recycle_rx_buf(adap, fl, fl->cidx);
801 return skb;
802 }
803
804 if (unlikely(fl->credits < drop_thres) &&
805 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
806 GFP_ATOMIC | __GFP_COMP) == 0)
807 goto recycle;
808
809 use_orig_buf:
810 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
811 fl->buf_size, PCI_DMA_FROMDEVICE);
812 skb = sd->skb;
813 skb_put(skb, len);
814 __refill_fl(adap, fl);
815 return skb;
816 }
817
818 /**
819 * get_packet_pg - return the next ingress packet buffer from a free list
820 * @adap: the adapter that received the packet
821 * @fl: the SGE free list holding the packet
822 * @len: the packet length including any SGE padding
823 * @drop_thres: # of remaining buffers before we start dropping packets
824 *
825 * Get the next packet from a free list populated with page chunks.
826 * If the packet is small we make a copy and recycle the original buffer,
827 * otherwise we attach the original buffer as a page fragment to a fresh
828 * sk_buff. If a positive drop threshold is supplied packets are dropped
829 * and their buffers recycled if (a) the number of remaining buffers is
830 * under the threshold and the packet is too big to copy, or (b) there's
831 * no system memory.
832 *
833 * Note: this function is similar to @get_packet but deals with Rx buffers
834 * that are page chunks rather than sk_buffs.
835 */
836 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
837 struct sge_rspq *q, unsigned int len,
838 unsigned int drop_thres)
839 {
840 struct sk_buff *newskb, *skb;
841 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
842
843 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
844
845 newskb = skb = q->pg_skb;
846 if (!skb && (len <= SGE_RX_COPY_THRES)) {
847 newskb = alloc_skb(len, GFP_ATOMIC);
848 if (likely(newskb != NULL)) {
849 __skb_put(newskb, len);
850 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
851 PCI_DMA_FROMDEVICE);
852 memcpy(newskb->data, sd->pg_chunk.va, len);
853 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
854 len,
855 PCI_DMA_FROMDEVICE);
856 } else if (!drop_thres)
857 return NULL;
858 recycle:
859 fl->credits--;
860 recycle_rx_buf(adap, fl, fl->cidx);
861 q->rx_recycle_buf++;
862 return newskb;
863 }
864
865 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
866 goto recycle;
867
868 prefetch(sd->pg_chunk.p_cnt);
869
870 if (!skb)
871 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
872
873 if (unlikely(!newskb)) {
874 if (!drop_thres)
875 return NULL;
876 goto recycle;
877 }
878
879 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
880 PCI_DMA_FROMDEVICE);
881 (*sd->pg_chunk.p_cnt)--;
882 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
883 pci_unmap_page(adap->pdev,
884 sd->pg_chunk.mapping,
885 fl->alloc_size,
886 PCI_DMA_FROMDEVICE);
887 if (!skb) {
888 __skb_put(newskb, SGE_RX_PULL_LEN);
889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 len - SGE_RX_PULL_LEN);
893 newskb->len = len;
894 newskb->data_len = len - SGE_RX_PULL_LEN;
895 newskb->truesize += newskb->data_len;
896 } else {
897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 sd->pg_chunk.page,
899 sd->pg_chunk.offset, len);
900 newskb->len += len;
901 newskb->data_len += len;
902 newskb->truesize += len;
903 }
904
905 fl->credits--;
906 /*
907 * We do not refill FLs here, we let the caller do it to overlap a
908 * prefetch.
909 */
910 return newskb;
911 }
912
913 /**
914 * get_imm_packet - return the next ingress packet buffer from a response
915 * @resp: the response descriptor containing the packet data
916 *
917 * Return a packet containing the immediate data of the given response.
918 */
919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920 {
921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922
923 if (skb) {
924 __skb_put(skb, IMMED_PKT_SIZE);
925 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
926 }
927 return skb;
928 }
929
930 /**
931 * calc_tx_descs - calculate the number of Tx descriptors for a packet
932 * @skb: the packet
933 *
934 * Returns the number of Tx descriptors needed for the given Ethernet
935 * packet. Ethernet packets require addition of WR and CPL headers.
936 */
937 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
938 {
939 unsigned int flits;
940
941 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
942 return 1;
943
944 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
945 if (skb_shinfo(skb)->gso_size)
946 flits++;
947 return flits_to_desc(flits);
948 }
949
950 /**
951 * make_sgl - populate a scatter/gather list for a packet
952 * @skb: the packet
953 * @sgp: the SGL to populate
954 * @start: start address of skb main body data to include in the SGL
955 * @len: length of skb main body data to include in the SGL
956 * @pdev: the PCI device
957 *
958 * Generates a scatter/gather list for the buffers that make up a packet
959 * and returns the SGL size in 8-byte words. The caller must size the SGL
960 * appropriately.
961 */
962 static inline unsigned int make_sgl(const struct sk_buff *skb,
963 struct sg_ent *sgp, unsigned char *start,
964 unsigned int len, struct pci_dev *pdev)
965 {
966 dma_addr_t mapping;
967 unsigned int i, j = 0, nfrags;
968
969 if (len) {
970 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
971 sgp->len[0] = cpu_to_be32(len);
972 sgp->addr[0] = cpu_to_be64(mapping);
973 j = 1;
974 }
975
976 nfrags = skb_shinfo(skb)->nr_frags;
977 for (i = 0; i < nfrags; i++) {
978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
979
980 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
981 frag->size, PCI_DMA_TODEVICE);
982 sgp->len[j] = cpu_to_be32(frag->size);
983 sgp->addr[j] = cpu_to_be64(mapping);
984 j ^= 1;
985 if (j == 0)
986 ++sgp;
987 }
988 if (j)
989 sgp->len[j] = 0;
990 return ((nfrags + (len != 0)) * 3) / 2 + j;
991 }
992
993 /**
994 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
995 * @adap: the adapter
996 * @q: the Tx queue
997 *
998 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
999 * where the HW is going to sleep just after we checked, however,
1000 * then the interrupt handler will detect the outstanding TX packet
1001 * and ring the doorbell for us.
1002 *
1003 * When GTS is disabled we unconditionally ring the doorbell.
1004 */
1005 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1006 {
1007 #if USE_GTS
1008 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1009 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1010 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 t3_write_reg(adap, A_SG_KDOORBELL,
1012 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1013 }
1014 #else
1015 wmb(); /* write descriptors before telling HW */
1016 t3_write_reg(adap, A_SG_KDOORBELL,
1017 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1018 #endif
1019 }
1020
1021 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1022 {
1023 #if SGE_NUM_GENBITS == 2
1024 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1025 #endif
1026 }
1027
1028 /**
1029 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1030 * @ndesc: number of Tx descriptors spanned by the SGL
1031 * @skb: the packet corresponding to the WR
1032 * @d: first Tx descriptor to be written
1033 * @pidx: index of above descriptors
1034 * @q: the SGE Tx queue
1035 * @sgl: the SGL
1036 * @flits: number of flits to the start of the SGL in the first descriptor
1037 * @sgl_flits: the SGL size in flits
1038 * @gen: the Tx descriptor generation
1039 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1040 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1041 *
1042 * Write a work request header and an associated SGL. If the SGL is
1043 * small enough to fit into one Tx descriptor it has already been written
1044 * and we just need to write the WR header. Otherwise we distribute the
1045 * SGL across the number of descriptors it spans.
1046 */
1047 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1048 struct tx_desc *d, unsigned int pidx,
1049 const struct sge_txq *q,
1050 const struct sg_ent *sgl,
1051 unsigned int flits, unsigned int sgl_flits,
1052 unsigned int gen, __be32 wr_hi,
1053 __be32 wr_lo)
1054 {
1055 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1056 struct tx_sw_desc *sd = &q->sdesc[pidx];
1057
1058 sd->skb = skb;
1059 if (need_skb_unmap()) {
1060 sd->fragidx = 0;
1061 sd->addr_idx = 0;
1062 sd->sflit = flits;
1063 }
1064
1065 if (likely(ndesc == 1)) {
1066 sd->eop = 1;
1067 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1068 V_WR_SGLSFLT(flits)) | wr_hi;
1069 wmb();
1070 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1071 V_WR_GEN(gen)) | wr_lo;
1072 wr_gen2(d, gen);
1073 } else {
1074 unsigned int ogen = gen;
1075 const u64 *fp = (const u64 *)sgl;
1076 struct work_request_hdr *wp = wrp;
1077
1078 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1079 V_WR_SGLSFLT(flits)) | wr_hi;
1080
1081 while (sgl_flits) {
1082 unsigned int avail = WR_FLITS - flits;
1083
1084 if (avail > sgl_flits)
1085 avail = sgl_flits;
1086 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1087 sgl_flits -= avail;
1088 ndesc--;
1089 if (!sgl_flits)
1090 break;
1091
1092 fp += avail;
1093 d++;
1094 sd->eop = 0;
1095 sd++;
1096 if (++pidx == q->size) {
1097 pidx = 0;
1098 gen ^= 1;
1099 d = q->desc;
1100 sd = q->sdesc;
1101 }
1102
1103 sd->skb = skb;
1104 wrp = (struct work_request_hdr *)d;
1105 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1106 V_WR_SGLSFLT(1)) | wr_hi;
1107 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1108 sgl_flits + 1)) |
1109 V_WR_GEN(gen)) | wr_lo;
1110 wr_gen2(d, gen);
1111 flits = 1;
1112 }
1113 sd->eop = 1;
1114 wrp->wr_hi |= htonl(F_WR_EOP);
1115 wmb();
1116 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1117 wr_gen2((struct tx_desc *)wp, ogen);
1118 WARN_ON(ndesc != 0);
1119 }
1120 }
1121
1122 /**
1123 * write_tx_pkt_wr - write a TX_PKT work request
1124 * @adap: the adapter
1125 * @skb: the packet to send
1126 * @pi: the egress interface
1127 * @pidx: index of the first Tx descriptor to write
1128 * @gen: the generation value to use
1129 * @q: the Tx queue
1130 * @ndesc: number of descriptors the packet will occupy
1131 * @compl: the value of the COMPL bit to use
1132 *
1133 * Generate a TX_PKT work request to send the supplied packet.
1134 */
1135 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1136 const struct port_info *pi,
1137 unsigned int pidx, unsigned int gen,
1138 struct sge_txq *q, unsigned int ndesc,
1139 unsigned int compl)
1140 {
1141 unsigned int flits, sgl_flits, cntrl, tso_info;
1142 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1143 struct tx_desc *d = &q->desc[pidx];
1144 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1145
1146 cpl->len = htonl(skb->len);
1147 cntrl = V_TXPKT_INTF(pi->port_id);
1148
1149 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1150 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1151
1152 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1153 if (tso_info) {
1154 int eth_type;
1155 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1156
1157 d->flit[2] = 0;
1158 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1159 hdr->cntrl = htonl(cntrl);
1160 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1161 CPL_ETH_II : CPL_ETH_II_VLAN;
1162 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1163 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1164 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1165 hdr->lso_info = htonl(tso_info);
1166 flits = 3;
1167 } else {
1168 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1169 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1170 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1171 cpl->cntrl = htonl(cntrl);
1172
1173 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1174 q->sdesc[pidx].skb = NULL;
1175 if (!skb->data_len)
1176 skb_copy_from_linear_data(skb, &d->flit[2],
1177 skb->len);
1178 else
1179 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1180
1181 flits = (skb->len + 7) / 8 + 2;
1182 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1183 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1184 | F_WR_SOP | F_WR_EOP | compl);
1185 wmb();
1186 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1187 V_WR_TID(q->token));
1188 wr_gen2(d, gen);
1189 kfree_skb(skb);
1190 return;
1191 }
1192
1193 flits = 2;
1194 }
1195
1196 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1197 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1198
1199 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1200 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1201 htonl(V_WR_TID(q->token)));
1202 }
1203
1204 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1205 struct sge_qset *qs, struct sge_txq *q)
1206 {
1207 netif_tx_stop_queue(txq);
1208 set_bit(TXQ_ETH, &qs->txq_stopped);
1209 q->stops++;
1210 }
1211
1212 /**
1213 * eth_xmit - add a packet to the Ethernet Tx queue
1214 * @skb: the packet
1215 * @dev: the egress net device
1216 *
1217 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1218 */
1219 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1220 {
1221 int qidx;
1222 unsigned int ndesc, pidx, credits, gen, compl;
1223 const struct port_info *pi = netdev_priv(dev);
1224 struct adapter *adap = pi->adapter;
1225 struct netdev_queue *txq;
1226 struct sge_qset *qs;
1227 struct sge_txq *q;
1228
1229 /*
1230 * The chip min packet length is 9 octets but play safe and reject
1231 * anything shorter than an Ethernet header.
1232 */
1233 if (unlikely(skb->len < ETH_HLEN)) {
1234 dev_kfree_skb(skb);
1235 return NETDEV_TX_OK;
1236 }
1237
1238 qidx = skb_get_queue_mapping(skb);
1239 qs = &pi->qs[qidx];
1240 q = &qs->txq[TXQ_ETH];
1241 txq = netdev_get_tx_queue(dev, qidx);
1242
1243 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1244
1245 credits = q->size - q->in_use;
1246 ndesc = calc_tx_descs(skb);
1247
1248 if (unlikely(credits < ndesc)) {
1249 t3_stop_tx_queue(txq, qs, q);
1250 dev_err(&adap->pdev->dev,
1251 "%s: Tx ring %u full while queue awake!\n",
1252 dev->name, q->cntxt_id & 7);
1253 return NETDEV_TX_BUSY;
1254 }
1255
1256 q->in_use += ndesc;
1257 if (unlikely(credits - ndesc < q->stop_thres)) {
1258 t3_stop_tx_queue(txq, qs, q);
1259
1260 if (should_restart_tx(q) &&
1261 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1262 q->restarts++;
1263 netif_tx_start_queue(txq);
1264 }
1265 }
1266
1267 gen = q->gen;
1268 q->unacked += ndesc;
1269 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1270 q->unacked &= 7;
1271 pidx = q->pidx;
1272 q->pidx += ndesc;
1273 if (q->pidx >= q->size) {
1274 q->pidx -= q->size;
1275 q->gen ^= 1;
1276 }
1277
1278 /* update port statistics */
1279 if (skb->ip_summed == CHECKSUM_COMPLETE)
1280 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1281 if (skb_shinfo(skb)->gso_size)
1282 qs->port_stats[SGE_PSTAT_TSO]++;
1283 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1284 qs->port_stats[SGE_PSTAT_VLANINS]++;
1285
1286 /*
1287 * We do not use Tx completion interrupts to free DMAd Tx packets.
1288 * This is good for performance but means that we rely on new Tx
1289 * packets arriving to run the destructors of completed packets,
1290 * which open up space in their sockets' send queues. Sometimes
1291 * we do not get such new packets causing Tx to stall. A single
1292 * UDP transmitter is a good example of this situation. We have
1293 * a clean up timer that periodically reclaims completed packets
1294 * but it doesn't run often enough (nor do we want it to) to prevent
1295 * lengthy stalls. A solution to this problem is to run the
1296 * destructor early, after the packet is queued but before it's DMAd.
1297 * A cons is that we lie to socket memory accounting, but the amount
1298 * of extra memory is reasonable (limited by the number of Tx
1299 * descriptors), the packets do actually get freed quickly by new
1300 * packets almost always, and for protocols like TCP that wait for
1301 * acks to really free up the data the extra memory is even less.
1302 * On the positive side we run the destructors on the sending CPU
1303 * rather than on a potentially different completing CPU, usually a
1304 * good thing. We also run them without holding our Tx queue lock,
1305 * unlike what reclaim_completed_tx() would otherwise do.
1306 *
1307 * Run the destructor before telling the DMA engine about the packet
1308 * to make sure it doesn't complete and get freed prematurely.
1309 */
1310 if (likely(!skb_shared(skb)))
1311 skb_orphan(skb);
1312
1313 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1314 check_ring_tx_db(adap, q);
1315 return NETDEV_TX_OK;
1316 }
1317
1318 /**
1319 * write_imm - write a packet into a Tx descriptor as immediate data
1320 * @d: the Tx descriptor to write
1321 * @skb: the packet
1322 * @len: the length of packet data to write as immediate data
1323 * @gen: the generation bit value to write
1324 *
1325 * Writes a packet as immediate data into a Tx descriptor. The packet
1326 * contains a work request at its beginning. We must write the packet
1327 * carefully so the SGE doesn't read it accidentally before it's written
1328 * in its entirety.
1329 */
1330 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1331 unsigned int len, unsigned int gen)
1332 {
1333 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1334 struct work_request_hdr *to = (struct work_request_hdr *)d;
1335
1336 if (likely(!skb->data_len))
1337 memcpy(&to[1], &from[1], len - sizeof(*from));
1338 else
1339 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1340
1341 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1342 V_WR_BCNTLFLT(len & 7));
1343 wmb();
1344 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1345 V_WR_LEN((len + 7) / 8));
1346 wr_gen2(d, gen);
1347 kfree_skb(skb);
1348 }
1349
1350 /**
1351 * check_desc_avail - check descriptor availability on a send queue
1352 * @adap: the adapter
1353 * @q: the send queue
1354 * @skb: the packet needing the descriptors
1355 * @ndesc: the number of Tx descriptors needed
1356 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1357 *
1358 * Checks if the requested number of Tx descriptors is available on an
1359 * SGE send queue. If the queue is already suspended or not enough
1360 * descriptors are available the packet is queued for later transmission.
1361 * Must be called with the Tx queue locked.
1362 *
1363 * Returns 0 if enough descriptors are available, 1 if there aren't
1364 * enough descriptors and the packet has been queued, and 2 if the caller
1365 * needs to retry because there weren't enough descriptors at the
1366 * beginning of the call but some freed up in the mean time.
1367 */
1368 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1369 struct sk_buff *skb, unsigned int ndesc,
1370 unsigned int qid)
1371 {
1372 if (unlikely(!skb_queue_empty(&q->sendq))) {
1373 addq_exit:__skb_queue_tail(&q->sendq, skb);
1374 return 1;
1375 }
1376 if (unlikely(q->size - q->in_use < ndesc)) {
1377 struct sge_qset *qs = txq_to_qset(q, qid);
1378
1379 set_bit(qid, &qs->txq_stopped);
1380 smp_mb__after_clear_bit();
1381
1382 if (should_restart_tx(q) &&
1383 test_and_clear_bit(qid, &qs->txq_stopped))
1384 return 2;
1385
1386 q->stops++;
1387 goto addq_exit;
1388 }
1389 return 0;
1390 }
1391
1392 /**
1393 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1394 * @q: the SGE control Tx queue
1395 *
1396 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1397 * that send only immediate data (presently just the control queues) and
1398 * thus do not have any sk_buffs to release.
1399 */
1400 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1401 {
1402 unsigned int reclaim = q->processed - q->cleaned;
1403
1404 q->in_use -= reclaim;
1405 q->cleaned += reclaim;
1406 }
1407
1408 static inline int immediate(const struct sk_buff *skb)
1409 {
1410 return skb->len <= WR_LEN;
1411 }
1412
1413 /**
1414 * ctrl_xmit - send a packet through an SGE control Tx queue
1415 * @adap: the adapter
1416 * @q: the control queue
1417 * @skb: the packet
1418 *
1419 * Send a packet through an SGE control Tx queue. Packets sent through
1420 * a control queue must fit entirely as immediate data in a single Tx
1421 * descriptor and have no page fragments.
1422 */
1423 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1424 struct sk_buff *skb)
1425 {
1426 int ret;
1427 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1428
1429 if (unlikely(!immediate(skb))) {
1430 WARN_ON(1);
1431 dev_kfree_skb(skb);
1432 return NET_XMIT_SUCCESS;
1433 }
1434
1435 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1436 wrp->wr_lo = htonl(V_WR_TID(q->token));
1437
1438 spin_lock(&q->lock);
1439 again:reclaim_completed_tx_imm(q);
1440
1441 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1442 if (unlikely(ret)) {
1443 if (ret == 1) {
1444 spin_unlock(&q->lock);
1445 return NET_XMIT_CN;
1446 }
1447 goto again;
1448 }
1449
1450 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1451
1452 q->in_use++;
1453 if (++q->pidx >= q->size) {
1454 q->pidx = 0;
1455 q->gen ^= 1;
1456 }
1457 spin_unlock(&q->lock);
1458 wmb();
1459 t3_write_reg(adap, A_SG_KDOORBELL,
1460 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1461 return NET_XMIT_SUCCESS;
1462 }
1463
1464 /**
1465 * restart_ctrlq - restart a suspended control queue
1466 * @qs: the queue set cotaining the control queue
1467 *
1468 * Resumes transmission on a suspended Tx control queue.
1469 */
1470 static void restart_ctrlq(unsigned long data)
1471 {
1472 struct sk_buff *skb;
1473 struct sge_qset *qs = (struct sge_qset *)data;
1474 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1475
1476 spin_lock(&q->lock);
1477 again:reclaim_completed_tx_imm(q);
1478
1479 while (q->in_use < q->size &&
1480 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1481
1482 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1483
1484 if (++q->pidx >= q->size) {
1485 q->pidx = 0;
1486 q->gen ^= 1;
1487 }
1488 q->in_use++;
1489 }
1490
1491 if (!skb_queue_empty(&q->sendq)) {
1492 set_bit(TXQ_CTRL, &qs->txq_stopped);
1493 smp_mb__after_clear_bit();
1494
1495 if (should_restart_tx(q) &&
1496 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1497 goto again;
1498 q->stops++;
1499 }
1500
1501 spin_unlock(&q->lock);
1502 wmb();
1503 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1504 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1505 }
1506
1507 /*
1508 * Send a management message through control queue 0
1509 */
1510 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1511 {
1512 int ret;
1513 local_bh_disable();
1514 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1515 local_bh_enable();
1516
1517 return ret;
1518 }
1519
1520 /**
1521 * deferred_unmap_destructor - unmap a packet when it is freed
1522 * @skb: the packet
1523 *
1524 * This is the packet destructor used for Tx packets that need to remain
1525 * mapped until they are freed rather than until their Tx descriptors are
1526 * freed.
1527 */
1528 static void deferred_unmap_destructor(struct sk_buff *skb)
1529 {
1530 int i;
1531 const dma_addr_t *p;
1532 const struct skb_shared_info *si;
1533 const struct deferred_unmap_info *dui;
1534
1535 dui = (struct deferred_unmap_info *)skb->head;
1536 p = dui->addr;
1537
1538 if (skb->tail - skb->transport_header)
1539 pci_unmap_single(dui->pdev, *p++,
1540 skb->tail - skb->transport_header,
1541 PCI_DMA_TODEVICE);
1542
1543 si = skb_shinfo(skb);
1544 for (i = 0; i < si->nr_frags; i++)
1545 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1546 PCI_DMA_TODEVICE);
1547 }
1548
1549 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1550 const struct sg_ent *sgl, int sgl_flits)
1551 {
1552 dma_addr_t *p;
1553 struct deferred_unmap_info *dui;
1554
1555 dui = (struct deferred_unmap_info *)skb->head;
1556 dui->pdev = pdev;
1557 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1558 *p++ = be64_to_cpu(sgl->addr[0]);
1559 *p++ = be64_to_cpu(sgl->addr[1]);
1560 }
1561 if (sgl_flits)
1562 *p = be64_to_cpu(sgl->addr[0]);
1563 }
1564
1565 /**
1566 * write_ofld_wr - write an offload work request
1567 * @adap: the adapter
1568 * @skb: the packet to send
1569 * @q: the Tx queue
1570 * @pidx: index of the first Tx descriptor to write
1571 * @gen: the generation value to use
1572 * @ndesc: number of descriptors the packet will occupy
1573 *
1574 * Write an offload work request to send the supplied packet. The packet
1575 * data already carry the work request with most fields populated.
1576 */
1577 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1578 struct sge_txq *q, unsigned int pidx,
1579 unsigned int gen, unsigned int ndesc)
1580 {
1581 unsigned int sgl_flits, flits;
1582 struct work_request_hdr *from;
1583 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1584 struct tx_desc *d = &q->desc[pidx];
1585
1586 if (immediate(skb)) {
1587 q->sdesc[pidx].skb = NULL;
1588 write_imm(d, skb, skb->len, gen);
1589 return;
1590 }
1591
1592 /* Only TX_DATA builds SGLs */
1593
1594 from = (struct work_request_hdr *)skb->data;
1595 memcpy(&d->flit[1], &from[1],
1596 skb_transport_offset(skb) - sizeof(*from));
1597
1598 flits = skb_transport_offset(skb) / 8;
1599 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1600 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1601 skb->tail - skb->transport_header,
1602 adap->pdev);
1603 if (need_skb_unmap()) {
1604 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1605 skb->destructor = deferred_unmap_destructor;
1606 }
1607
1608 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1609 gen, from->wr_hi, from->wr_lo);
1610 }
1611
1612 /**
1613 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1614 * @skb: the packet
1615 *
1616 * Returns the number of Tx descriptors needed for the given offload
1617 * packet. These packets are already fully constructed.
1618 */
1619 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1620 {
1621 unsigned int flits, cnt;
1622
1623 if (skb->len <= WR_LEN)
1624 return 1; /* packet fits as immediate data */
1625
1626 flits = skb_transport_offset(skb) / 8; /* headers */
1627 cnt = skb_shinfo(skb)->nr_frags;
1628 if (skb->tail != skb->transport_header)
1629 cnt++;
1630 return flits_to_desc(flits + sgl_len(cnt));
1631 }
1632
1633 /**
1634 * ofld_xmit - send a packet through an offload queue
1635 * @adap: the adapter
1636 * @q: the Tx offload queue
1637 * @skb: the packet
1638 *
1639 * Send an offload packet through an SGE offload queue.
1640 */
1641 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1642 struct sk_buff *skb)
1643 {
1644 int ret;
1645 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1646
1647 spin_lock(&q->lock);
1648 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1649
1650 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1651 if (unlikely(ret)) {
1652 if (ret == 1) {
1653 skb->priority = ndesc; /* save for restart */
1654 spin_unlock(&q->lock);
1655 return NET_XMIT_CN;
1656 }
1657 goto again;
1658 }
1659
1660 gen = q->gen;
1661 q->in_use += ndesc;
1662 pidx = q->pidx;
1663 q->pidx += ndesc;
1664 if (q->pidx >= q->size) {
1665 q->pidx -= q->size;
1666 q->gen ^= 1;
1667 }
1668 spin_unlock(&q->lock);
1669
1670 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1671 check_ring_tx_db(adap, q);
1672 return NET_XMIT_SUCCESS;
1673 }
1674
1675 /**
1676 * restart_offloadq - restart a suspended offload queue
1677 * @qs: the queue set cotaining the offload queue
1678 *
1679 * Resumes transmission on a suspended Tx offload queue.
1680 */
1681 static void restart_offloadq(unsigned long data)
1682 {
1683 struct sk_buff *skb;
1684 struct sge_qset *qs = (struct sge_qset *)data;
1685 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1686 const struct port_info *pi = netdev_priv(qs->netdev);
1687 struct adapter *adap = pi->adapter;
1688
1689 spin_lock(&q->lock);
1690 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1691
1692 while ((skb = skb_peek(&q->sendq)) != NULL) {
1693 unsigned int gen, pidx;
1694 unsigned int ndesc = skb->priority;
1695
1696 if (unlikely(q->size - q->in_use < ndesc)) {
1697 set_bit(TXQ_OFLD, &qs->txq_stopped);
1698 smp_mb__after_clear_bit();
1699
1700 if (should_restart_tx(q) &&
1701 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1702 goto again;
1703 q->stops++;
1704 break;
1705 }
1706
1707 gen = q->gen;
1708 q->in_use += ndesc;
1709 pidx = q->pidx;
1710 q->pidx += ndesc;
1711 if (q->pidx >= q->size) {
1712 q->pidx -= q->size;
1713 q->gen ^= 1;
1714 }
1715 __skb_unlink(skb, &q->sendq);
1716 spin_unlock(&q->lock);
1717
1718 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1719 spin_lock(&q->lock);
1720 }
1721 spin_unlock(&q->lock);
1722
1723 #if USE_GTS
1724 set_bit(TXQ_RUNNING, &q->flags);
1725 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1726 #endif
1727 wmb();
1728 t3_write_reg(adap, A_SG_KDOORBELL,
1729 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1730 }
1731
1732 /**
1733 * queue_set - return the queue set a packet should use
1734 * @skb: the packet
1735 *
1736 * Maps a packet to the SGE queue set it should use. The desired queue
1737 * set is carried in bits 1-3 in the packet's priority.
1738 */
1739 static inline int queue_set(const struct sk_buff *skb)
1740 {
1741 return skb->priority >> 1;
1742 }
1743
1744 /**
1745 * is_ctrl_pkt - return whether an offload packet is a control packet
1746 * @skb: the packet
1747 *
1748 * Determines whether an offload packet should use an OFLD or a CTRL
1749 * Tx queue. This is indicated by bit 0 in the packet's priority.
1750 */
1751 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1752 {
1753 return skb->priority & 1;
1754 }
1755
1756 /**
1757 * t3_offload_tx - send an offload packet
1758 * @tdev: the offload device to send to
1759 * @skb: the packet
1760 *
1761 * Sends an offload packet. We use the packet priority to select the
1762 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1763 * should be sent as regular or control, bits 1-3 select the queue set.
1764 */
1765 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1766 {
1767 struct adapter *adap = tdev2adap(tdev);
1768 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1769
1770 if (unlikely(is_ctrl_pkt(skb)))
1771 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1772
1773 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1774 }
1775
1776 /**
1777 * offload_enqueue - add an offload packet to an SGE offload receive queue
1778 * @q: the SGE response queue
1779 * @skb: the packet
1780 *
1781 * Add a new offload packet to an SGE response queue's offload packet
1782 * queue. If the packet is the first on the queue it schedules the RX
1783 * softirq to process the queue.
1784 */
1785 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1786 {
1787 int was_empty = skb_queue_empty(&q->rx_queue);
1788
1789 __skb_queue_tail(&q->rx_queue, skb);
1790
1791 if (was_empty) {
1792 struct sge_qset *qs = rspq_to_qset(q);
1793
1794 napi_schedule(&qs->napi);
1795 }
1796 }
1797
1798 /**
1799 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1800 * @tdev: the offload device that will be receiving the packets
1801 * @q: the SGE response queue that assembled the bundle
1802 * @skbs: the partial bundle
1803 * @n: the number of packets in the bundle
1804 *
1805 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1806 */
1807 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1808 struct sge_rspq *q,
1809 struct sk_buff *skbs[], int n)
1810 {
1811 if (n) {
1812 q->offload_bundles++;
1813 tdev->recv(tdev, skbs, n);
1814 }
1815 }
1816
1817 /**
1818 * ofld_poll - NAPI handler for offload packets in interrupt mode
1819 * @dev: the network device doing the polling
1820 * @budget: polling budget
1821 *
1822 * The NAPI handler for offload packets when a response queue is serviced
1823 * by the hard interrupt handler, i.e., when it's operating in non-polling
1824 * mode. Creates small packet batches and sends them through the offload
1825 * receive handler. Batches need to be of modest size as we do prefetches
1826 * on the packets in each.
1827 */
1828 static int ofld_poll(struct napi_struct *napi, int budget)
1829 {
1830 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1831 struct sge_rspq *q = &qs->rspq;
1832 struct adapter *adapter = qs->adap;
1833 int work_done = 0;
1834
1835 while (work_done < budget) {
1836 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1837 struct sk_buff_head queue;
1838 int ngathered;
1839
1840 spin_lock_irq(&q->lock);
1841 __skb_queue_head_init(&queue);
1842 skb_queue_splice_init(&q->rx_queue, &queue);
1843 if (skb_queue_empty(&queue)) {
1844 napi_complete(napi);
1845 spin_unlock_irq(&q->lock);
1846 return work_done;
1847 }
1848 spin_unlock_irq(&q->lock);
1849
1850 ngathered = 0;
1851 skb_queue_walk_safe(&queue, skb, tmp) {
1852 if (work_done >= budget)
1853 break;
1854 work_done++;
1855
1856 __skb_unlink(skb, &queue);
1857 prefetch(skb->data);
1858 skbs[ngathered] = skb;
1859 if (++ngathered == RX_BUNDLE_SIZE) {
1860 q->offload_bundles++;
1861 adapter->tdev.recv(&adapter->tdev, skbs,
1862 ngathered);
1863 ngathered = 0;
1864 }
1865 }
1866 if (!skb_queue_empty(&queue)) {
1867 /* splice remaining packets back onto Rx queue */
1868 spin_lock_irq(&q->lock);
1869 skb_queue_splice(&queue, &q->rx_queue);
1870 spin_unlock_irq(&q->lock);
1871 }
1872 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1873 }
1874
1875 return work_done;
1876 }
1877
1878 /**
1879 * rx_offload - process a received offload packet
1880 * @tdev: the offload device receiving the packet
1881 * @rq: the response queue that received the packet
1882 * @skb: the packet
1883 * @rx_gather: a gather list of packets if we are building a bundle
1884 * @gather_idx: index of the next available slot in the bundle
1885 *
1886 * Process an ingress offload pakcet and add it to the offload ingress
1887 * queue. Returns the index of the next available slot in the bundle.
1888 */
1889 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1890 struct sk_buff *skb, struct sk_buff *rx_gather[],
1891 unsigned int gather_idx)
1892 {
1893 skb_reset_mac_header(skb);
1894 skb_reset_network_header(skb);
1895 skb_reset_transport_header(skb);
1896
1897 if (rq->polling) {
1898 rx_gather[gather_idx++] = skb;
1899 if (gather_idx == RX_BUNDLE_SIZE) {
1900 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1901 gather_idx = 0;
1902 rq->offload_bundles++;
1903 }
1904 } else
1905 offload_enqueue(rq, skb);
1906
1907 return gather_idx;
1908 }
1909
1910 /**
1911 * restart_tx - check whether to restart suspended Tx queues
1912 * @qs: the queue set to resume
1913 *
1914 * Restarts suspended Tx queues of an SGE queue set if they have enough
1915 * free resources to resume operation.
1916 */
1917 static void restart_tx(struct sge_qset *qs)
1918 {
1919 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1920 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1921 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1922 qs->txq[TXQ_ETH].restarts++;
1923 if (netif_running(qs->netdev))
1924 netif_tx_wake_queue(qs->tx_q);
1925 }
1926
1927 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1928 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1929 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1930 qs->txq[TXQ_OFLD].restarts++;
1931 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1932 }
1933 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1934 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1935 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1936 qs->txq[TXQ_CTRL].restarts++;
1937 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1938 }
1939 }
1940
1941 /**
1942 * cxgb3_arp_process - process an ARP request probing a private IP address
1943 * @adapter: the adapter
1944 * @skb: the skbuff containing the ARP request
1945 *
1946 * Check if the ARP request is probing the private IP address
1947 * dedicated to iSCSI, generate an ARP reply if so.
1948 */
1949 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1950 {
1951 struct net_device *dev = skb->dev;
1952 struct arphdr *arp;
1953 unsigned char *arp_ptr;
1954 unsigned char *sha;
1955 __be32 sip, tip;
1956
1957 if (!dev)
1958 return;
1959
1960 skb_reset_network_header(skb);
1961 arp = arp_hdr(skb);
1962
1963 if (arp->ar_op != htons(ARPOP_REQUEST))
1964 return;
1965
1966 arp_ptr = (unsigned char *)(arp + 1);
1967 sha = arp_ptr;
1968 arp_ptr += dev->addr_len;
1969 memcpy(&sip, arp_ptr, sizeof(sip));
1970 arp_ptr += sizeof(sip);
1971 arp_ptr += dev->addr_len;
1972 memcpy(&tip, arp_ptr, sizeof(tip));
1973
1974 if (tip != pi->iscsi_ipv4addr)
1975 return;
1976
1977 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1978 pi->iscsic.mac_addr, sha);
1979
1980 }
1981
1982 static inline int is_arp(struct sk_buff *skb)
1983 {
1984 return skb->protocol == htons(ETH_P_ARP);
1985 }
1986
1987 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1988 struct sk_buff *skb)
1989 {
1990 if (is_arp(skb)) {
1991 cxgb3_arp_process(pi, skb);
1992 return;
1993 }
1994
1995 if (pi->iscsic.recv)
1996 pi->iscsic.recv(pi, skb);
1997
1998 }
1999
2000 /**
2001 * rx_eth - process an ingress ethernet packet
2002 * @adap: the adapter
2003 * @rq: the response queue that received the packet
2004 * @skb: the packet
2005 * @pad: amount of padding at the start of the buffer
2006 *
2007 * Process an ingress ethernet pakcet and deliver it to the stack.
2008 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2009 * if it was immediate data in a response.
2010 */
2011 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2012 struct sk_buff *skb, int pad, int lro)
2013 {
2014 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2015 struct sge_qset *qs = rspq_to_qset(rq);
2016 struct port_info *pi;
2017
2018 skb_pull(skb, sizeof(*p) + pad);
2019 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2020 pi = netdev_priv(skb->dev);
2021 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2022 p->csum == htons(0xffff) && !p->fragment) {
2023 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2024 skb->ip_summed = CHECKSUM_UNNECESSARY;
2025 } else
2026 skb->ip_summed = CHECKSUM_NONE;
2027 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2028
2029 if (unlikely(p->vlan_valid)) {
2030 struct vlan_group *grp = pi->vlan_grp;
2031
2032 qs->port_stats[SGE_PSTAT_VLANEX]++;
2033 if (likely(grp))
2034 if (lro)
2035 vlan_gro_receive(&qs->napi, grp,
2036 ntohs(p->vlan), skb);
2037 else {
2038 if (unlikely(pi->iscsic.flags)) {
2039 unsigned short vtag = ntohs(p->vlan) &
2040 VLAN_VID_MASK;
2041 skb->dev = vlan_group_get_device(grp,
2042 vtag);
2043 cxgb3_process_iscsi_prov_pack(pi, skb);
2044 }
2045 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2046 rq->polling);
2047 }
2048 else
2049 dev_kfree_skb_any(skb);
2050 } else if (rq->polling) {
2051 if (lro)
2052 napi_gro_receive(&qs->napi, skb);
2053 else {
2054 if (unlikely(pi->iscsic.flags))
2055 cxgb3_process_iscsi_prov_pack(pi, skb);
2056 netif_receive_skb(skb);
2057 }
2058 } else
2059 netif_rx(skb);
2060 }
2061
2062 static inline int is_eth_tcp(u32 rss)
2063 {
2064 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2065 }
2066
2067 /**
2068 * lro_add_page - add a page chunk to an LRO session
2069 * @adap: the adapter
2070 * @qs: the associated queue set
2071 * @fl: the free list containing the page chunk to add
2072 * @len: packet length
2073 * @complete: Indicates the last fragment of a frame
2074 *
2075 * Add a received packet contained in a page chunk to an existing LRO
2076 * session.
2077 */
2078 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2079 struct sge_fl *fl, int len, int complete)
2080 {
2081 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2082 struct port_info *pi = netdev_priv(qs->netdev);
2083 struct sk_buff *skb = NULL;
2084 struct cpl_rx_pkt *cpl;
2085 struct skb_frag_struct *rx_frag;
2086 int nr_frags;
2087 int offset = 0;
2088
2089 if (!qs->nomem) {
2090 skb = napi_get_frags(&qs->napi);
2091 qs->nomem = !skb;
2092 }
2093
2094 fl->credits--;
2095
2096 pci_dma_sync_single_for_cpu(adap->pdev,
2097 pci_unmap_addr(sd, dma_addr),
2098 fl->buf_size - SGE_PG_RSVD,
2099 PCI_DMA_FROMDEVICE);
2100
2101 (*sd->pg_chunk.p_cnt)--;
2102 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2103 pci_unmap_page(adap->pdev,
2104 sd->pg_chunk.mapping,
2105 fl->alloc_size,
2106 PCI_DMA_FROMDEVICE);
2107
2108 if (!skb) {
2109 put_page(sd->pg_chunk.page);
2110 if (complete)
2111 qs->nomem = 0;
2112 return;
2113 }
2114
2115 rx_frag = skb_shinfo(skb)->frags;
2116 nr_frags = skb_shinfo(skb)->nr_frags;
2117
2118 if (!nr_frags) {
2119 offset = 2 + sizeof(struct cpl_rx_pkt);
2120 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2121
2122 if ((pi->rx_offload & T3_RX_CSUM) &&
2123 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2124 skb->ip_summed = CHECKSUM_UNNECESSARY;
2125 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2126 } else
2127 skb->ip_summed = CHECKSUM_NONE;
2128 } else
2129 cpl = qs->lro_va;
2130
2131 len -= offset;
2132
2133 rx_frag += nr_frags;
2134 rx_frag->page = sd->pg_chunk.page;
2135 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2136 rx_frag->size = len;
2137
2138 skb->len += len;
2139 skb->data_len += len;
2140 skb->truesize += len;
2141 skb_shinfo(skb)->nr_frags++;
2142
2143 if (!complete)
2144 return;
2145
2146 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2147
2148 if (unlikely(cpl->vlan_valid)) {
2149 struct vlan_group *grp = pi->vlan_grp;
2150
2151 if (likely(grp != NULL)) {
2152 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2153 return;
2154 }
2155 }
2156 napi_gro_frags(&qs->napi);
2157 }
2158
2159 /**
2160 * handle_rsp_cntrl_info - handles control information in a response
2161 * @qs: the queue set corresponding to the response
2162 * @flags: the response control flags
2163 *
2164 * Handles the control information of an SGE response, such as GTS
2165 * indications and completion credits for the queue set's Tx queues.
2166 * HW coalesces credits, we don't do any extra SW coalescing.
2167 */
2168 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2169 {
2170 unsigned int credits;
2171
2172 #if USE_GTS
2173 if (flags & F_RSPD_TXQ0_GTS)
2174 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2175 #endif
2176
2177 credits = G_RSPD_TXQ0_CR(flags);
2178 if (credits)
2179 qs->txq[TXQ_ETH].processed += credits;
2180
2181 credits = G_RSPD_TXQ2_CR(flags);
2182 if (credits)
2183 qs->txq[TXQ_CTRL].processed += credits;
2184
2185 # if USE_GTS
2186 if (flags & F_RSPD_TXQ1_GTS)
2187 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2188 # endif
2189 credits = G_RSPD_TXQ1_CR(flags);
2190 if (credits)
2191 qs->txq[TXQ_OFLD].processed += credits;
2192 }
2193
2194 /**
2195 * check_ring_db - check if we need to ring any doorbells
2196 * @adapter: the adapter
2197 * @qs: the queue set whose Tx queues are to be examined
2198 * @sleeping: indicates which Tx queue sent GTS
2199 *
2200 * Checks if some of a queue set's Tx queues need to ring their doorbells
2201 * to resume transmission after idling while they still have unprocessed
2202 * descriptors.
2203 */
2204 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2205 unsigned int sleeping)
2206 {
2207 if (sleeping & F_RSPD_TXQ0_GTS) {
2208 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2209
2210 if (txq->cleaned + txq->in_use != txq->processed &&
2211 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2212 set_bit(TXQ_RUNNING, &txq->flags);
2213 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2214 V_EGRCNTX(txq->cntxt_id));
2215 }
2216 }
2217
2218 if (sleeping & F_RSPD_TXQ1_GTS) {
2219 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2220
2221 if (txq->cleaned + txq->in_use != txq->processed &&
2222 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2223 set_bit(TXQ_RUNNING, &txq->flags);
2224 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2225 V_EGRCNTX(txq->cntxt_id));
2226 }
2227 }
2228 }
2229
2230 /**
2231 * is_new_response - check if a response is newly written
2232 * @r: the response descriptor
2233 * @q: the response queue
2234 *
2235 * Returns true if a response descriptor contains a yet unprocessed
2236 * response.
2237 */
2238 static inline int is_new_response(const struct rsp_desc *r,
2239 const struct sge_rspq *q)
2240 {
2241 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2242 }
2243
2244 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2245 {
2246 q->pg_skb = NULL;
2247 q->rx_recycle_buf = 0;
2248 }
2249
2250 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2251 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2252 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2253 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2254 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2255
2256 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2257 #define NOMEM_INTR_DELAY 2500
2258
2259 /**
2260 * process_responses - process responses from an SGE response queue
2261 * @adap: the adapter
2262 * @qs: the queue set to which the response queue belongs
2263 * @budget: how many responses can be processed in this round
2264 *
2265 * Process responses from an SGE response queue up to the supplied budget.
2266 * Responses include received packets as well as credits and other events
2267 * for the queues that belong to the response queue's queue set.
2268 * A negative budget is effectively unlimited.
2269 *
2270 * Additionally choose the interrupt holdoff time for the next interrupt
2271 * on this queue. If the system is under memory shortage use a fairly
2272 * long delay to help recovery.
2273 */
2274 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2275 int budget)
2276 {
2277 struct sge_rspq *q = &qs->rspq;
2278 struct rsp_desc *r = &q->desc[q->cidx];
2279 int budget_left = budget;
2280 unsigned int sleeping = 0;
2281 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2282 int ngathered = 0;
2283
2284 q->next_holdoff = q->holdoff_tmr;
2285
2286 while (likely(budget_left && is_new_response(r, q))) {
2287 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2288 struct sk_buff *skb = NULL;
2289 u32 len, flags = ntohl(r->flags);
2290 __be32 rss_hi = *(const __be32 *)r,
2291 rss_lo = r->rss_hdr.rss_hash_val;
2292
2293 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2294
2295 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2296 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2297 if (!skb)
2298 goto no_mem;
2299
2300 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2301 skb->data[0] = CPL_ASYNC_NOTIF;
2302 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2303 q->async_notif++;
2304 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2305 skb = get_imm_packet(r);
2306 if (unlikely(!skb)) {
2307 no_mem:
2308 q->next_holdoff = NOMEM_INTR_DELAY;
2309 q->nomem++;
2310 /* consume one credit since we tried */
2311 budget_left--;
2312 break;
2313 }
2314 q->imm_data++;
2315 ethpad = 0;
2316 } else if ((len = ntohl(r->len_cq)) != 0) {
2317 struct sge_fl *fl;
2318
2319 lro &= eth && is_eth_tcp(rss_hi);
2320
2321 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2322 if (fl->use_pages) {
2323 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2324
2325 prefetch(addr);
2326 #if L1_CACHE_BYTES < 128
2327 prefetch(addr + L1_CACHE_BYTES);
2328 #endif
2329 __refill_fl(adap, fl);
2330 if (lro > 0) {
2331 lro_add_page(adap, qs, fl,
2332 G_RSPD_LEN(len),
2333 flags & F_RSPD_EOP);
2334 goto next_fl;
2335 }
2336
2337 skb = get_packet_pg(adap, fl, q,
2338 G_RSPD_LEN(len),
2339 eth ?
2340 SGE_RX_DROP_THRES : 0);
2341 q->pg_skb = skb;
2342 } else
2343 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2344 eth ? SGE_RX_DROP_THRES : 0);
2345 if (unlikely(!skb)) {
2346 if (!eth)
2347 goto no_mem;
2348 q->rx_drops++;
2349 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2350 __skb_pull(skb, 2);
2351 next_fl:
2352 if (++fl->cidx == fl->size)
2353 fl->cidx = 0;
2354 } else
2355 q->pure_rsps++;
2356
2357 if (flags & RSPD_CTRL_MASK) {
2358 sleeping |= flags & RSPD_GTS_MASK;
2359 handle_rsp_cntrl_info(qs, flags);
2360 }
2361
2362 r++;
2363 if (unlikely(++q->cidx == q->size)) {
2364 q->cidx = 0;
2365 q->gen ^= 1;
2366 r = q->desc;
2367 }
2368 prefetch(r);
2369
2370 if (++q->credits >= (q->size / 4)) {
2371 refill_rspq(adap, q, q->credits);
2372 q->credits = 0;
2373 }
2374
2375 packet_complete = flags &
2376 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2377 F_RSPD_ASYNC_NOTIF);
2378
2379 if (skb != NULL && packet_complete) {
2380 if (eth)
2381 rx_eth(adap, q, skb, ethpad, lro);
2382 else {
2383 q->offload_pkts++;
2384 /* Preserve the RSS info in csum & priority */
2385 skb->csum = rss_hi;
2386 skb->priority = rss_lo;
2387 ngathered = rx_offload(&adap->tdev, q, skb,
2388 offload_skbs,
2389 ngathered);
2390 }
2391
2392 if (flags & F_RSPD_EOP)
2393 clear_rspq_bufstate(q);
2394 }
2395 --budget_left;
2396 }
2397
2398 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2399
2400 if (sleeping)
2401 check_ring_db(adap, qs, sleeping);
2402
2403 smp_mb(); /* commit Tx queue .processed updates */
2404 if (unlikely(qs->txq_stopped != 0))
2405 restart_tx(qs);
2406
2407 budget -= budget_left;
2408 return budget;
2409 }
2410
2411 static inline int is_pure_response(const struct rsp_desc *r)
2412 {
2413 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2414
2415 return (n | r->len_cq) == 0;
2416 }
2417
2418 /**
2419 * napi_rx_handler - the NAPI handler for Rx processing
2420 * @napi: the napi instance
2421 * @budget: how many packets we can process in this round
2422 *
2423 * Handler for new data events when using NAPI.
2424 */
2425 static int napi_rx_handler(struct napi_struct *napi, int budget)
2426 {
2427 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2428 struct adapter *adap = qs->adap;
2429 int work_done = process_responses(adap, qs, budget);
2430
2431 if (likely(work_done < budget)) {
2432 napi_complete(napi);
2433
2434 /*
2435 * Because we don't atomically flush the following
2436 * write it is possible that in very rare cases it can
2437 * reach the device in a way that races with a new
2438 * response being written plus an error interrupt
2439 * causing the NAPI interrupt handler below to return
2440 * unhandled status to the OS. To protect against
2441 * this would require flushing the write and doing
2442 * both the write and the flush with interrupts off.
2443 * Way too expensive and unjustifiable given the
2444 * rarity of the race.
2445 *
2446 * The race cannot happen at all with MSI-X.
2447 */
2448 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2449 V_NEWTIMER(qs->rspq.next_holdoff) |
2450 V_NEWINDEX(qs->rspq.cidx));
2451 }
2452 return work_done;
2453 }
2454
2455 /*
2456 * Returns true if the device is already scheduled for polling.
2457 */
2458 static inline int napi_is_scheduled(struct napi_struct *napi)
2459 {
2460 return test_bit(NAPI_STATE_SCHED, &napi->state);
2461 }
2462
2463 /**
2464 * process_pure_responses - process pure responses from a response queue
2465 * @adap: the adapter
2466 * @qs: the queue set owning the response queue
2467 * @r: the first pure response to process
2468 *
2469 * A simpler version of process_responses() that handles only pure (i.e.,
2470 * non data-carrying) responses. Such respones are too light-weight to
2471 * justify calling a softirq under NAPI, so we handle them specially in
2472 * the interrupt handler. The function is called with a pointer to a
2473 * response, which the caller must ensure is a valid pure response.
2474 *
2475 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2476 */
2477 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2478 struct rsp_desc *r)
2479 {
2480 struct sge_rspq *q = &qs->rspq;
2481 unsigned int sleeping = 0;
2482
2483 do {
2484 u32 flags = ntohl(r->flags);
2485
2486 r++;
2487 if (unlikely(++q->cidx == q->size)) {
2488 q->cidx = 0;
2489 q->gen ^= 1;
2490 r = q->desc;
2491 }
2492 prefetch(r);
2493
2494 if (flags & RSPD_CTRL_MASK) {
2495 sleeping |= flags & RSPD_GTS_MASK;
2496 handle_rsp_cntrl_info(qs, flags);
2497 }
2498
2499 q->pure_rsps++;
2500 if (++q->credits >= (q->size / 4)) {
2501 refill_rspq(adap, q, q->credits);
2502 q->credits = 0;
2503 }
2504 } while (is_new_response(r, q) && is_pure_response(r));
2505
2506 if (sleeping)
2507 check_ring_db(adap, qs, sleeping);
2508
2509 smp_mb(); /* commit Tx queue .processed updates */
2510 if (unlikely(qs->txq_stopped != 0))
2511 restart_tx(qs);
2512
2513 return is_new_response(r, q);
2514 }
2515
2516 /**
2517 * handle_responses - decide what to do with new responses in NAPI mode
2518 * @adap: the adapter
2519 * @q: the response queue
2520 *
2521 * This is used by the NAPI interrupt handlers to decide what to do with
2522 * new SGE responses. If there are no new responses it returns -1. If
2523 * there are new responses and they are pure (i.e., non-data carrying)
2524 * it handles them straight in hard interrupt context as they are very
2525 * cheap and don't deliver any packets. Finally, if there are any data
2526 * signaling responses it schedules the NAPI handler. Returns 1 if it
2527 * schedules NAPI, 0 if all new responses were pure.
2528 *
2529 * The caller must ascertain NAPI is not already running.
2530 */
2531 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2532 {
2533 struct sge_qset *qs = rspq_to_qset(q);
2534 struct rsp_desc *r = &q->desc[q->cidx];
2535
2536 if (!is_new_response(r, q))
2537 return -1;
2538 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2539 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2540 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2541 return 0;
2542 }
2543 napi_schedule(&qs->napi);
2544 return 1;
2545 }
2546
2547 /*
2548 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2549 * (i.e., response queue serviced in hard interrupt).
2550 */
2551 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2552 {
2553 struct sge_qset *qs = cookie;
2554 struct adapter *adap = qs->adap;
2555 struct sge_rspq *q = &qs->rspq;
2556
2557 spin_lock(&q->lock);
2558 if (process_responses(adap, qs, -1) == 0)
2559 q->unhandled_irqs++;
2560 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2561 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2562 spin_unlock(&q->lock);
2563 return IRQ_HANDLED;
2564 }
2565
2566 /*
2567 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2568 * (i.e., response queue serviced by NAPI polling).
2569 */
2570 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2571 {
2572 struct sge_qset *qs = cookie;
2573 struct sge_rspq *q = &qs->rspq;
2574
2575 spin_lock(&q->lock);
2576
2577 if (handle_responses(qs->adap, q) < 0)
2578 q->unhandled_irqs++;
2579 spin_unlock(&q->lock);
2580 return IRQ_HANDLED;
2581 }
2582
2583 /*
2584 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2585 * SGE response queues as well as error and other async events as they all use
2586 * the same MSI vector. We use one SGE response queue per port in this mode
2587 * and protect all response queues with queue 0's lock.
2588 */
2589 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2590 {
2591 int new_packets = 0;
2592 struct adapter *adap = cookie;
2593 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2594
2595 spin_lock(&q->lock);
2596
2597 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2598 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2599 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2600 new_packets = 1;
2601 }
2602
2603 if (adap->params.nports == 2 &&
2604 process_responses(adap, &adap->sge.qs[1], -1)) {
2605 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2606
2607 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2608 V_NEWTIMER(q1->next_holdoff) |
2609 V_NEWINDEX(q1->cidx));
2610 new_packets = 1;
2611 }
2612
2613 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2614 q->unhandled_irqs++;
2615
2616 spin_unlock(&q->lock);
2617 return IRQ_HANDLED;
2618 }
2619
2620 static int rspq_check_napi(struct sge_qset *qs)
2621 {
2622 struct sge_rspq *q = &qs->rspq;
2623
2624 if (!napi_is_scheduled(&qs->napi) &&
2625 is_new_response(&q->desc[q->cidx], q)) {
2626 napi_schedule(&qs->napi);
2627 return 1;
2628 }
2629 return 0;
2630 }
2631
2632 /*
2633 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2634 * by NAPI polling). Handles data events from SGE response queues as well as
2635 * error and other async events as they all use the same MSI vector. We use
2636 * one SGE response queue per port in this mode and protect all response
2637 * queues with queue 0's lock.
2638 */
2639 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2640 {
2641 int new_packets;
2642 struct adapter *adap = cookie;
2643 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2644
2645 spin_lock(&q->lock);
2646
2647 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2648 if (adap->params.nports == 2)
2649 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2650 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2651 q->unhandled_irqs++;
2652
2653 spin_unlock(&q->lock);
2654 return IRQ_HANDLED;
2655 }
2656
2657 /*
2658 * A helper function that processes responses and issues GTS.
2659 */
2660 static inline int process_responses_gts(struct adapter *adap,
2661 struct sge_rspq *rq)
2662 {
2663 int work;
2664
2665 work = process_responses(adap, rspq_to_qset(rq), -1);
2666 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2667 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2668 return work;
2669 }
2670
2671 /*
2672 * The legacy INTx interrupt handler. This needs to handle data events from
2673 * SGE response queues as well as error and other async events as they all use
2674 * the same interrupt pin. We use one SGE response queue per port in this mode
2675 * and protect all response queues with queue 0's lock.
2676 */
2677 static irqreturn_t t3_intr(int irq, void *cookie)
2678 {
2679 int work_done, w0, w1;
2680 struct adapter *adap = cookie;
2681 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2682 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2683
2684 spin_lock(&q0->lock);
2685
2686 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2687 w1 = adap->params.nports == 2 &&
2688 is_new_response(&q1->desc[q1->cidx], q1);
2689
2690 if (likely(w0 | w1)) {
2691 t3_write_reg(adap, A_PL_CLI, 0);
2692 t3_read_reg(adap, A_PL_CLI); /* flush */
2693
2694 if (likely(w0))
2695 process_responses_gts(adap, q0);
2696
2697 if (w1)
2698 process_responses_gts(adap, q1);
2699
2700 work_done = w0 | w1;
2701 } else
2702 work_done = t3_slow_intr_handler(adap);
2703
2704 spin_unlock(&q0->lock);
2705 return IRQ_RETVAL(work_done != 0);
2706 }
2707
2708 /*
2709 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2710 * Handles data events from SGE response queues as well as error and other
2711 * async events as they all use the same interrupt pin. We use one SGE
2712 * response queue per port in this mode and protect all response queues with
2713 * queue 0's lock.
2714 */
2715 static irqreturn_t t3b_intr(int irq, void *cookie)
2716 {
2717 u32 map;
2718 struct adapter *adap = cookie;
2719 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2720
2721 t3_write_reg(adap, A_PL_CLI, 0);
2722 map = t3_read_reg(adap, A_SG_DATA_INTR);
2723
2724 if (unlikely(!map)) /* shared interrupt, most likely */
2725 return IRQ_NONE;
2726
2727 spin_lock(&q0->lock);
2728
2729 if (unlikely(map & F_ERRINTR))
2730 t3_slow_intr_handler(adap);
2731
2732 if (likely(map & 1))
2733 process_responses_gts(adap, q0);
2734
2735 if (map & 2)
2736 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2737
2738 spin_unlock(&q0->lock);
2739 return IRQ_HANDLED;
2740 }
2741
2742 /*
2743 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2744 * Handles data events from SGE response queues as well as error and other
2745 * async events as they all use the same interrupt pin. We use one SGE
2746 * response queue per port in this mode and protect all response queues with
2747 * queue 0's lock.
2748 */
2749 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2750 {
2751 u32 map;
2752 struct adapter *adap = cookie;
2753 struct sge_qset *qs0 = &adap->sge.qs[0];
2754 struct sge_rspq *q0 = &qs0->rspq;
2755
2756 t3_write_reg(adap, A_PL_CLI, 0);
2757 map = t3_read_reg(adap, A_SG_DATA_INTR);
2758
2759 if (unlikely(!map)) /* shared interrupt, most likely */
2760 return IRQ_NONE;
2761
2762 spin_lock(&q0->lock);
2763
2764 if (unlikely(map & F_ERRINTR))
2765 t3_slow_intr_handler(adap);
2766
2767 if (likely(map & 1))
2768 napi_schedule(&qs0->napi);
2769
2770 if (map & 2)
2771 napi_schedule(&adap->sge.qs[1].napi);
2772
2773 spin_unlock(&q0->lock);
2774 return IRQ_HANDLED;
2775 }
2776
2777 /**
2778 * t3_intr_handler - select the top-level interrupt handler
2779 * @adap: the adapter
2780 * @polling: whether using NAPI to service response queues
2781 *
2782 * Selects the top-level interrupt handler based on the type of interrupts
2783 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2784 * response queues.
2785 */
2786 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2787 {
2788 if (adap->flags & USING_MSIX)
2789 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2790 if (adap->flags & USING_MSI)
2791 return polling ? t3_intr_msi_napi : t3_intr_msi;
2792 if (adap->params.rev > 0)
2793 return polling ? t3b_intr_napi : t3b_intr;
2794 return t3_intr;
2795 }
2796
2797 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2798 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2799 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2800 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2801 F_HIRCQPARITYERROR)
2802 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2803 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2804 F_RSPQDISABLED)
2805
2806 /**
2807 * t3_sge_err_intr_handler - SGE async event interrupt handler
2808 * @adapter: the adapter
2809 *
2810 * Interrupt handler for SGE asynchronous (non-data) events.
2811 */
2812 void t3_sge_err_intr_handler(struct adapter *adapter)
2813 {
2814 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2815 ~F_FLEMPTY;
2816
2817 if (status & SGE_PARERR)
2818 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2819 status & SGE_PARERR);
2820 if (status & SGE_FRAMINGERR)
2821 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2822 status & SGE_FRAMINGERR);
2823
2824 if (status & F_RSPQCREDITOVERFOW)
2825 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2826
2827 if (status & F_RSPQDISABLED) {
2828 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2829
2830 CH_ALERT(adapter,
2831 "packet delivered to disabled response queue "
2832 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2833 }
2834
2835 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2836 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2837 status & F_HIPIODRBDROPERR ? "high" : "lo");
2838
2839 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2840 if (status & SGE_FATALERR)
2841 t3_fatal_err(adapter);
2842 }
2843
2844 /**
2845 * sge_timer_tx - perform periodic maintenance of an SGE qset
2846 * @data: the SGE queue set to maintain
2847 *
2848 * Runs periodically from a timer to perform maintenance of an SGE queue
2849 * set. It performs two tasks:
2850 *
2851 * Cleans up any completed Tx descriptors that may still be pending.
2852 * Normal descriptor cleanup happens when new packets are added to a Tx
2853 * queue so this timer is relatively infrequent and does any cleanup only
2854 * if the Tx queue has not seen any new packets in a while. We make a
2855 * best effort attempt to reclaim descriptors, in that we don't wait
2856 * around if we cannot get a queue's lock (which most likely is because
2857 * someone else is queueing new packets and so will also handle the clean
2858 * up). Since control queues use immediate data exclusively we don't
2859 * bother cleaning them up here.
2860 *
2861 */
2862 static void sge_timer_tx(unsigned long data)
2863 {
2864 struct sge_qset *qs = (struct sge_qset *)data;
2865 struct port_info *pi = netdev_priv(qs->netdev);
2866 struct adapter *adap = pi->adapter;
2867 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2868 unsigned long next_period;
2869
2870 if (__netif_tx_trylock(qs->tx_q)) {
2871 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2872 TX_RECLAIM_TIMER_CHUNK);
2873 __netif_tx_unlock(qs->tx_q);
2874 }
2875
2876 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2877 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2878 TX_RECLAIM_TIMER_CHUNK);
2879 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2880 }
2881
2882 next_period = TX_RECLAIM_PERIOD >>
2883 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2884 TX_RECLAIM_TIMER_CHUNK);
2885 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2886 }
2887
2888 /*
2889 * sge_timer_rx - perform periodic maintenance of an SGE qset
2890 * @data: the SGE queue set to maintain
2891 *
2892 * a) Replenishes Rx queues that have run out due to memory shortage.
2893 * Normally new Rx buffers are added when existing ones are consumed but
2894 * when out of memory a queue can become empty. We try to add only a few
2895 * buffers here, the queue will be replenished fully as these new buffers
2896 * are used up if memory shortage has subsided.
2897 *
2898 * b) Return coalesced response queue credits in case a response queue is
2899 * starved.
2900 *
2901 */
2902 static void sge_timer_rx(unsigned long data)
2903 {
2904 spinlock_t *lock;
2905 struct sge_qset *qs = (struct sge_qset *)data;
2906 struct port_info *pi = netdev_priv(qs->netdev);
2907 struct adapter *adap = pi->adapter;
2908 u32 status;
2909
2910 lock = adap->params.rev > 0 ?
2911 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2912
2913 if (!spin_trylock_irq(lock))
2914 goto out;
2915
2916 if (napi_is_scheduled(&qs->napi))
2917 goto unlock;
2918
2919 if (adap->params.rev < 4) {
2920 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2921
2922 if (status & (1 << qs->rspq.cntxt_id)) {
2923 qs->rspq.starved++;
2924 if (qs->rspq.credits) {
2925 qs->rspq.credits--;
2926 refill_rspq(adap, &qs->rspq, 1);
2927 qs->rspq.restarted++;
2928 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2929 1 << qs->rspq.cntxt_id);
2930 }
2931 }
2932 }
2933
2934 if (qs->fl[0].credits < qs->fl[0].size)
2935 __refill_fl(adap, &qs->fl[0]);
2936 if (qs->fl[1].credits < qs->fl[1].size)
2937 __refill_fl(adap, &qs->fl[1]);
2938
2939 unlock:
2940 spin_unlock_irq(lock);
2941 out:
2942 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2943 }
2944
2945 /**
2946 * t3_update_qset_coalesce - update coalescing settings for a queue set
2947 * @qs: the SGE queue set
2948 * @p: new queue set parameters
2949 *
2950 * Update the coalescing settings for an SGE queue set. Nothing is done
2951 * if the queue set is not initialized yet.
2952 */
2953 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2954 {
2955 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2956 qs->rspq.polling = p->polling;
2957 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2958 }
2959
2960 /**
2961 * t3_sge_alloc_qset - initialize an SGE queue set
2962 * @adapter: the adapter
2963 * @id: the queue set id
2964 * @nports: how many Ethernet ports will be using this queue set
2965 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2966 * @p: configuration parameters for this queue set
2967 * @ntxq: number of Tx queues for the queue set
2968 * @netdev: net device associated with this queue set
2969 * @netdevq: net device TX queue associated with this queue set
2970 *
2971 * Allocate resources and initialize an SGE queue set. A queue set
2972 * comprises a response queue, two Rx free-buffer queues, and up to 3
2973 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2974 * queue, offload queue, and control queue.
2975 */
2976 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2977 int irq_vec_idx, const struct qset_params *p,
2978 int ntxq, struct net_device *dev,
2979 struct netdev_queue *netdevq)
2980 {
2981 int i, avail, ret = -ENOMEM;
2982 struct sge_qset *q = &adapter->sge.qs[id];
2983
2984 init_qset_cntxt(q, id);
2985 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2986 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2987
2988 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2989 sizeof(struct rx_desc),
2990 sizeof(struct rx_sw_desc),
2991 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2992 if (!q->fl[0].desc)
2993 goto err;
2994
2995 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2996 sizeof(struct rx_desc),
2997 sizeof(struct rx_sw_desc),
2998 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2999 if (!q->fl[1].desc)
3000 goto err;
3001
3002 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3003 sizeof(struct rsp_desc), 0,
3004 &q->rspq.phys_addr, NULL);
3005 if (!q->rspq.desc)
3006 goto err;
3007
3008 for (i = 0; i < ntxq; ++i) {
3009 /*
3010 * The control queue always uses immediate data so does not
3011 * need to keep track of any sk_buffs.
3012 */
3013 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3014
3015 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3016 sizeof(struct tx_desc), sz,
3017 &q->txq[i].phys_addr,
3018 &q->txq[i].sdesc);
3019 if (!q->txq[i].desc)
3020 goto err;
3021
3022 q->txq[i].gen = 1;
3023 q->txq[i].size = p->txq_size[i];
3024 spin_lock_init(&q->txq[i].lock);
3025 skb_queue_head_init(&q->txq[i].sendq);
3026 }
3027
3028 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3029 (unsigned long)q);
3030 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3031 (unsigned long)q);
3032
3033 q->fl[0].gen = q->fl[1].gen = 1;
3034 q->fl[0].size = p->fl_size;
3035 q->fl[1].size = p->jumbo_size;
3036
3037 q->rspq.gen = 1;
3038 q->rspq.size = p->rspq_size;
3039 spin_lock_init(&q->rspq.lock);
3040 skb_queue_head_init(&q->rspq.rx_queue);
3041
3042 q->txq[TXQ_ETH].stop_thres = nports *
3043 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3044
3045 #if FL0_PG_CHUNK_SIZE > 0
3046 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3047 #else
3048 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3049 #endif
3050 #if FL1_PG_CHUNK_SIZE > 0
3051 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3052 #else
3053 q->fl[1].buf_size = is_offload(adapter) ?
3054 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3055 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3056 #endif
3057
3058 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3059 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3060 q->fl[0].order = FL0_PG_ORDER;
3061 q->fl[1].order = FL1_PG_ORDER;
3062 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3063 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3064
3065 spin_lock_irq(&adapter->sge.reg_lock);
3066
3067 /* FL threshold comparison uses < */
3068 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3069 q->rspq.phys_addr, q->rspq.size,
3070 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3071 if (ret)
3072 goto err_unlock;
3073
3074 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3075 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3076 q->fl[i].phys_addr, q->fl[i].size,
3077 q->fl[i].buf_size - SGE_PG_RSVD,
3078 p->cong_thres, 1, 0);
3079 if (ret)
3080 goto err_unlock;
3081 }
3082
3083 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3084 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3085 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3086 1, 0);
3087 if (ret)
3088 goto err_unlock;
3089
3090 if (ntxq > 1) {
3091 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3092 USE_GTS, SGE_CNTXT_OFLD, id,
3093 q->txq[TXQ_OFLD].phys_addr,
3094 q->txq[TXQ_OFLD].size, 0, 1, 0);
3095 if (ret)
3096 goto err_unlock;
3097 }
3098
3099 if (ntxq > 2) {
3100 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3101 SGE_CNTXT_CTRL, id,
3102 q->txq[TXQ_CTRL].phys_addr,
3103 q->txq[TXQ_CTRL].size,
3104 q->txq[TXQ_CTRL].token, 1, 0);
3105 if (ret)
3106 goto err_unlock;
3107 }
3108
3109 spin_unlock_irq(&adapter->sge.reg_lock);
3110
3111 q->adap = adapter;
3112 q->netdev = dev;
3113 q->tx_q = netdevq;
3114 t3_update_qset_coalesce(q, p);
3115
3116 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3117 GFP_KERNEL | __GFP_COMP);
3118 if (!avail) {
3119 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3120 goto err;
3121 }
3122 if (avail < q->fl[0].size)
3123 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3124 avail);
3125
3126 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3127 GFP_KERNEL | __GFP_COMP);
3128 if (avail < q->fl[1].size)
3129 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3130 avail);
3131 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3132
3133 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3134 V_NEWTIMER(q->rspq.holdoff_tmr));
3135
3136 return 0;
3137
3138 err_unlock:
3139 spin_unlock_irq(&adapter->sge.reg_lock);
3140 err:
3141 t3_free_qset(adapter, q);
3142 return ret;
3143 }
3144
3145 /**
3146 * t3_start_sge_timers - start SGE timer call backs
3147 * @adap: the adapter
3148 *
3149 * Starts each SGE queue set's timer call back
3150 */
3151 void t3_start_sge_timers(struct adapter *adap)
3152 {
3153 int i;
3154
3155 for (i = 0; i < SGE_QSETS; ++i) {
3156 struct sge_qset *q = &adap->sge.qs[i];
3157
3158 if (q->tx_reclaim_timer.function)
3159 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3160
3161 if (q->rx_reclaim_timer.function)
3162 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3163 }
3164 }
3165
3166 /**
3167 * t3_stop_sge_timers - stop SGE timer call backs
3168 * @adap: the adapter
3169 *
3170 * Stops each SGE queue set's timer call back
3171 */
3172 void t3_stop_sge_timers(struct adapter *adap)
3173 {
3174 int i;
3175
3176 for (i = 0; i < SGE_QSETS; ++i) {
3177 struct sge_qset *q = &adap->sge.qs[i];
3178
3179 if (q->tx_reclaim_timer.function)
3180 del_timer_sync(&q->tx_reclaim_timer);
3181 if (q->rx_reclaim_timer.function)
3182 del_timer_sync(&q->rx_reclaim_timer);
3183 }
3184 }
3185
3186 /**
3187 * t3_free_sge_resources - free SGE resources
3188 * @adap: the adapter
3189 *
3190 * Frees resources used by the SGE queue sets.
3191 */
3192 void t3_free_sge_resources(struct adapter *adap)
3193 {
3194 int i;
3195
3196 for (i = 0; i < SGE_QSETS; ++i)
3197 t3_free_qset(adap, &adap->sge.qs[i]);
3198 }
3199
3200 /**
3201 * t3_sge_start - enable SGE
3202 * @adap: the adapter
3203 *
3204 * Enables the SGE for DMAs. This is the last step in starting packet
3205 * transfers.
3206 */
3207 void t3_sge_start(struct adapter *adap)
3208 {
3209 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3210 }
3211
3212 /**
3213 * t3_sge_stop - disable SGE operation
3214 * @adap: the adapter
3215 *
3216 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3217 * from error interrupts) or from normal process context. In the latter
3218 * case it also disables any pending queue restart tasklets. Note that
3219 * if it is called in interrupt context it cannot disable the restart
3220 * tasklets as it cannot wait, however the tasklets will have no effect
3221 * since the doorbells are disabled and the driver will call this again
3222 * later from process context, at which time the tasklets will be stopped
3223 * if they are still running.
3224 */
3225 void t3_sge_stop(struct adapter *adap)
3226 {
3227 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3228 if (!in_interrupt()) {
3229 int i;
3230
3231 for (i = 0; i < SGE_QSETS; ++i) {
3232 struct sge_qset *qs = &adap->sge.qs[i];
3233
3234 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3235 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3236 }
3237 }
3238 }
3239
3240 /**
3241 * t3_sge_init - initialize SGE
3242 * @adap: the adapter
3243 * @p: the SGE parameters
3244 *
3245 * Performs SGE initialization needed every time after a chip reset.
3246 * We do not initialize any of the queue sets here, instead the driver
3247 * top-level must request those individually. We also do not enable DMA
3248 * here, that should be done after the queues have been set up.
3249 */
3250 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3251 {
3252 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3253
3254 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3255 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3256 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3257 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3258 #if SGE_NUM_GENBITS == 1
3259 ctrl |= F_EGRGENCTRL;
3260 #endif
3261 if (adap->params.rev > 0) {
3262 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3263 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3264 }
3265 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3266 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3267 V_LORCQDRBTHRSH(512));
3268 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3269 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3270 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3271 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3272 adap->params.rev < T3_REV_C ? 1000 : 500);
3273 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3274 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3275 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3276 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3277 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3278 }
3279
3280 /**
3281 * t3_sge_prep - one-time SGE initialization
3282 * @adap: the associated adapter
3283 * @p: SGE parameters
3284 *
3285 * Performs one-time initialization of SGE SW state. Includes determining
3286 * defaults for the assorted SGE parameters, which admins can change until
3287 * they are used to initialize the SGE.
3288 */
3289 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3290 {
3291 int i;
3292
3293 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3295
3296 for (i = 0; i < SGE_QSETS; ++i) {
3297 struct qset_params *q = p->qset + i;
3298
3299 q->polling = adap->params.rev > 0;
3300 q->coalesce_usecs = 5;
3301 q->rspq_size = 1024;
3302 q->fl_size = 1024;
3303 q->jumbo_size = 512;
3304 q->txq_size[TXQ_ETH] = 1024;
3305 q->txq_size[TXQ_OFLD] = 1024;
3306 q->txq_size[TXQ_CTRL] = 256;
3307 q->cong_thres = 0;
3308 }
3309
3310 spin_lock_init(&adap->sge.reg_lock);
3311 }
3312
3313 /**
3314 * t3_get_desc - dump an SGE descriptor for debugging purposes
3315 * @qs: the queue set
3316 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3317 * @idx: the descriptor index in the queue
3318 * @data: where to dump the descriptor contents
3319 *
3320 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3321 * size of the descriptor.
3322 */
3323 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3324 unsigned char *data)
3325 {
3326 if (qnum >= 6)
3327 return -EINVAL;
3328
3329 if (qnum < 3) {
3330 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3331 return -EINVAL;
3332 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3333 return sizeof(struct tx_desc);
3334 }
3335
3336 if (qnum == 3) {
3337 if (!qs->rspq.desc || idx >= qs->rspq.size)
3338 return -EINVAL;
3339 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3340 return sizeof(struct rsp_desc);
3341 }
3342
3343 qnum -= 4;
3344 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3345 return -EINVAL;
3346 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3347 return sizeof(struct rx_desc);
3348 }