]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/dgrs.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / net / dgrs.c
1 /*
2 * Digi RightSwitch SE-X loadable device driver for Linux
3 *
4 * The RightSwitch is a 4 (EISA) or 6 (PCI) port etherswitch and
5 * a NIC on an internal board.
6 *
7 * Author: Rick Richardson, rick@remotepoint.com
8 * Derived from the SVR4.2 (UnixWare) driver for the same card.
9 *
10 * Copyright 1995-1996 Digi International Inc.
11 *
12 * This software may be used and distributed according to the terms
13 * of the GNU General Public License, incorporated herein by reference.
14 *
15 * For information on purchasing a RightSwitch SE-4 or SE-6
16 * board, please contact Digi's sales department at 1-612-912-3444
17 * or 1-800-DIGIBRD. Outside the U.S., please check our Web page
18 * at http://www.dgii.com for sales offices worldwide.
19 *
20 * OPERATION:
21 * When compiled as a loadable module, this driver can operate
22 * the board as either a 4/6 port switch with a 5th or 7th port
23 * that is a conventional NIC interface as far as the host is
24 * concerned, OR as 4/6 independent NICs. To select multi-NIC
25 * mode, add "nicmode=1" on the insmod load line for the driver.
26 *
27 * This driver uses the "dev" common ethernet device structure
28 * and a private "priv" (dev->priv) structure that contains
29 * mostly DGRS-specific information and statistics. To keep
30 * the code for both the switch mode and the multi-NIC mode
31 * as similar as possible, I have introduced the concept of
32 * "dev0"/"priv0" and "devN"/"privN" pointer pairs in subroutines
33 * where needed. The first pair of pointers points to the
34 * "dev" and "priv" structures of the zeroth (0th) device
35 * interface associated with a board. The second pair of
36 * pointers points to the current (Nth) device interface
37 * for the board: the one for which we are processing data.
38 *
39 * In switch mode, the pairs of pointers are always the same,
40 * that is, dev0 == devN and priv0 == privN. This is just
41 * like previous releases of this driver which did not support
42 * NIC mode.
43 *
44 * In multi-NIC mode, the pairs of pointers may be different.
45 * We use the devN and privN pointers to reference just the
46 * name, port number, and statistics for the current interface.
47 * We use the dev0 and priv0 pointers to access the variables
48 * that control access to the board, such as board address
49 * and simulated 82596 variables. This is because there is
50 * only one "fake" 82596 that serves as the interface to
51 * the board. We do not want to try to keep the variables
52 * associated with this 82596 in sync across all devices.
53 *
54 * This scheme works well. As you will see, except for
55 * initialization, there is very little difference between
56 * the two modes as far as this driver is concerned. On the
57 * receive side in NIC mode, the interrupt *always* comes in on
58 * the 0th interface (dev0/priv0). We then figure out which
59 * real 82596 port it came in on from looking at the "chan"
60 * member that the board firmware adds at the end of each
61 * RBD (a.k.a. TBD). We get the channel number like this:
62 * int chan = ((I596_RBD *) S2H(cbp->xmit.tbdp))->chan;
63 *
64 * On the transmit side in multi-NIC mode, we specify the
65 * output 82596 port by setting the new "dstchan" structure
66 * member that is at the end of the RFD, like this:
67 * priv0->rfdp->dstchan = privN->chan;
68 *
69 * TODO:
70 * - Multi-NIC mode is not yet supported when the driver is linked
71 * into the kernel.
72 * - Better handling of multicast addresses.
73 *
74 * Fixes:
75 * Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
76 * - fix dgrs_found_device wrt checking kmalloc return and
77 * rollbacking the partial steps of the whole process when
78 * one of the devices can't be allocated. Fix SET_MODULE_OWNER
79 * on the loop to use devN instead of repeated calls to dev.
80 *
81 * davej <davej@suse.de> - 9/2/2001
82 * - Enable PCI device before reading ioaddr/irq
83 *
84 */
85
86 #include <linux/module.h>
87 #include <linux/eisa.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/delay.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/netdevice.h>
98 #include <linux/etherdevice.h>
99 #include <linux/skbuff.h>
100 #include <linux/bitops.h>
101
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105
106 static char version[] __initdata =
107 "$Id: dgrs.c,v 1.13 2000/06/06 04:07:00 rick Exp $";
108
109 /*
110 * DGRS include files
111 */
112 typedef unsigned char uchar;
113 typedef unsigned int bool;
114 #define vol volatile
115
116 #include "dgrs.h"
117 #include "dgrs_es4h.h"
118 #include "dgrs_plx9060.h"
119 #include "dgrs_i82596.h"
120 #include "dgrs_ether.h"
121 #include "dgrs_asstruct.h"
122 #include "dgrs_bcomm.h"
123
124 #ifdef CONFIG_PCI
125 static struct pci_device_id dgrs_pci_tbl[] = {
126 { SE6_PCI_VENDOR_ID, SE6_PCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, },
127 { } /* Terminating entry */
128 };
129 MODULE_DEVICE_TABLE(pci, dgrs_pci_tbl);
130 #endif
131
132 #ifdef CONFIG_EISA
133 static struct eisa_device_id dgrs_eisa_tbl[] = {
134 { "DBI0A01" },
135 { }
136 };
137 MODULE_DEVICE_TABLE(eisa, dgrs_eisa_tbl);
138 #endif
139
140 MODULE_LICENSE("GPL");
141
142
143 /*
144 * Firmware. Compiled separately for local compilation,
145 * but #included for Linux distribution.
146 */
147 #ifndef NOFW
148 #include "dgrs_firmware.c"
149 #else
150 extern int dgrs_firmnum;
151 extern char dgrs_firmver[];
152 extern char dgrs_firmdate[];
153 extern uchar dgrs_code[];
154 extern int dgrs_ncode;
155 #endif
156
157 /*
158 * Linux out*() is backwards from all other operating systems
159 */
160 #define OUTB(ADDR, VAL) outb(VAL, ADDR)
161 #define OUTW(ADDR, VAL) outw(VAL, ADDR)
162 #define OUTL(ADDR, VAL) outl(VAL, ADDR)
163
164 /*
165 * Macros to convert switch to host and host to switch addresses
166 * (assumes a local variable priv points to board dependent struct)
167 */
168 #define S2H(A) ( ((unsigned long)(A)&0x00ffffff) + priv0->vmem )
169 #define S2HN(A) ( ((unsigned long)(A)&0x00ffffff) + privN->vmem )
170 #define H2S(A) ( ((char *) (A) - priv0->vmem) + 0xA3000000 )
171
172 /*
173 * Convert a switch address to a "safe" address for use with the
174 * PLX 9060 DMA registers and the associated HW kludge that allows
175 * for host access of the DMA registers.
176 */
177 #define S2DMA(A) ( (unsigned long)(A) & 0x00ffffff)
178
179 /*
180 * "Space.c" variables, now settable from module interface
181 * Use the name below, minus the "dgrs_" prefix. See init_module().
182 */
183 static int dgrs_debug = 1;
184 static int dgrs_dma = 1;
185 static int dgrs_spantree = -1;
186 static int dgrs_hashexpire = -1;
187 static uchar dgrs_ipaddr[4] = { 0xff, 0xff, 0xff, 0xff};
188 static uchar dgrs_iptrap[4] = { 0xff, 0xff, 0xff, 0xff};
189 static __u32 dgrs_ipxnet = -1;
190 static int dgrs_nicmode;
191
192 /*
193 * Private per-board data structure (dev->priv)
194 */
195 typedef struct
196 {
197 /*
198 * Stuff for generic ethercard I/F
199 */
200 struct net_device_stats stats;
201
202 /*
203 * DGRS specific data
204 */
205 char *vmem;
206
207 struct bios_comm *bcomm; /* Firmware BIOS comm structure */
208 PORT *port; /* Ptr to PORT[0] struct in VM */
209 I596_SCB *scbp; /* Ptr to SCB struct in VM */
210 I596_RFD *rfdp; /* Current RFD list */
211 I596_RBD *rbdp; /* Current RBD list */
212
213 volatile int intrcnt; /* Count of interrupts */
214
215 /*
216 * SE-4 (EISA) board variables
217 */
218 uchar is_reg; /* EISA: Value for ES4H_IS reg */
219
220 /*
221 * SE-6 (PCI) board variables
222 *
223 * The PLX "expansion rom" space is used for DMA register
224 * access from the host on the SE-6. These are the physical
225 * and virtual addresses of that space.
226 */
227 ulong plxreg; /* Phys address of PLX chip */
228 char *vplxreg; /* Virtual address of PLX chip */
229 ulong plxdma; /* Phys addr of PLX "expansion rom" */
230 ulong volatile *vplxdma; /* Virtual addr of "expansion rom" */
231 int use_dma; /* Flag: use DMA */
232 DMACHAIN *dmadesc_s; /* area for DMA chains (SW addr.) */
233 DMACHAIN *dmadesc_h; /* area for DMA chains (Host Virtual) */
234
235 /*
236 * Multi-NIC mode variables
237 *
238 * All entries of the devtbl[] array are valid for the 0th
239 * device (i.e. eth0, but not eth1...eth5). devtbl[0] is
240 * valid for all devices (i.e. eth0, eth1, ..., eth5).
241 */
242 int nports; /* Number of physical ports (4 or 6) */
243 int chan; /* Channel # (1-6) for this device */
244 struct net_device *devtbl[6]; /* Ptrs to N device structs */
245
246 } DGRS_PRIV;
247
248
249 /*
250 * reset or un-reset the IDT processor
251 */
252 static void
253 proc_reset(struct net_device *dev0, int reset)
254 {
255 DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
256
257 if (priv0->plxreg)
258 {
259 ulong val;
260 val = inl(dev0->base_addr + PLX_MISC_CSR);
261 if (reset)
262 val |= SE6_RESET;
263 else
264 val &= ~SE6_RESET;
265 OUTL(dev0->base_addr + PLX_MISC_CSR, val);
266 }
267 else
268 {
269 OUTB(dev0->base_addr + ES4H_PC, reset ? ES4H_PC_RESET : 0);
270 }
271 }
272
273 /*
274 * See if the board supports bus master DMA
275 */
276 static int
277 check_board_dma(struct net_device *dev0)
278 {
279 DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
280 ulong x;
281
282 /*
283 * If Space.c says not to use DMA, or if it's not a PLX based
284 * PCI board, or if the expansion ROM space is not PCI
285 * configured, then return false.
286 */
287 if (!dgrs_dma || !priv0->plxreg || !priv0->plxdma)
288 return (0);
289
290 /*
291 * Set the local address remap register of the "expansion rom"
292 * area to 0x80000000 so that we can use it to access the DMA
293 * registers from the host side.
294 */
295 OUTL(dev0->base_addr + PLX_ROM_BASE_ADDR, 0x80000000);
296
297 /*
298 * Set the PCI region descriptor to:
299 * Space 0:
300 * disable read-prefetch
301 * enable READY
302 * enable BURST
303 * 0 internal wait states
304 * Expansion ROM: (used for host DMA register access)
305 * disable read-prefetch
306 * enable READY
307 * disable BURST
308 * 0 internal wait states
309 */
310 OUTL(dev0->base_addr + PLX_BUS_REGION, 0x49430343);
311
312 /*
313 * Now map the DMA registers into our virtual space
314 */
315 priv0->vplxdma = (ulong *) ioremap (priv0->plxdma, 256);
316 if (!priv0->vplxdma)
317 {
318 printk("%s: can't *remap() the DMA regs\n", dev0->name);
319 return (0);
320 }
321
322 /*
323 * Now test to see if we can access the DMA registers
324 * If we write -1 and get back 1FFF, then we accessed the
325 * DMA register. Otherwise, we probably have an old board
326 * and wrote into regular RAM.
327 */
328 priv0->vplxdma[PLX_DMA0_MODE/4] = 0xFFFFFFFF;
329 x = priv0->vplxdma[PLX_DMA0_MODE/4];
330 if (x != 0x00001FFF) {
331 iounmap((void *)priv0->vplxdma);
332 return (0);
333 }
334
335 return (1);
336 }
337
338 /*
339 * Initiate DMA using PLX part on PCI board. Spin the
340 * processor until completed. All addresses are physical!
341 *
342 * If pciaddr is NULL, then it's a chaining DMA, and lcladdr is
343 * the address of the first DMA descriptor in the chain.
344 *
345 * If pciaddr is not NULL, then it's a single DMA.
346 *
347 * In either case, "lcladdr" must have been fixed up to make
348 * sure the MSB isn't set using the S2DMA macro before passing
349 * the address to this routine.
350 */
351 static int
352 do_plx_dma(
353 struct net_device *dev,
354 ulong pciaddr,
355 ulong lcladdr,
356 int len,
357 int to_host
358 )
359 {
360 int i;
361 ulong csr = 0;
362 DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
363
364 if (pciaddr)
365 {
366 /*
367 * Do a single, non-chain DMA
368 */
369 priv->vplxdma[PLX_DMA0_PCI_ADDR/4] = pciaddr;
370 priv->vplxdma[PLX_DMA0_LCL_ADDR/4] = lcladdr;
371 priv->vplxdma[PLX_DMA0_SIZE/4] = len;
372 priv->vplxdma[PLX_DMA0_DESCRIPTOR/4] = to_host
373 ? PLX_DMA_DESC_TO_HOST
374 : PLX_DMA_DESC_TO_BOARD;
375 priv->vplxdma[PLX_DMA0_MODE/4] =
376 PLX_DMA_MODE_WIDTH32
377 | PLX_DMA_MODE_WAITSTATES(0)
378 | PLX_DMA_MODE_READY
379 | PLX_DMA_MODE_NOBTERM
380 | PLX_DMA_MODE_BURST
381 | PLX_DMA_MODE_NOCHAIN;
382 }
383 else
384 {
385 /*
386 * Do a chaining DMA
387 */
388 priv->vplxdma[PLX_DMA0_MODE/4] =
389 PLX_DMA_MODE_WIDTH32
390 | PLX_DMA_MODE_WAITSTATES(0)
391 | PLX_DMA_MODE_READY
392 | PLX_DMA_MODE_NOBTERM
393 | PLX_DMA_MODE_BURST
394 | PLX_DMA_MODE_CHAIN;
395 priv->vplxdma[PLX_DMA0_DESCRIPTOR/4] = lcladdr;
396 }
397
398 priv->vplxdma[PLX_DMA_CSR/4] =
399 PLX_DMA_CSR_0_ENABLE | PLX_DMA_CSR_0_START;
400
401 /*
402 * Wait for DMA to complete
403 */
404 for (i = 0; i < 1000000; ++i)
405 {
406 /*
407 * Spin the host CPU for 1 usec, so we don't thrash
408 * the PCI bus while the PLX 9060 is doing DMA.
409 */
410 udelay(1);
411
412 csr = (volatile unsigned long) priv->vplxdma[PLX_DMA_CSR/4];
413
414 if (csr & PLX_DMA_CSR_0_DONE)
415 break;
416 }
417
418 if ( ! (csr & PLX_DMA_CSR_0_DONE) )
419 {
420 printk("%s: DMA done never occurred. DMA disabled.\n",
421 dev->name);
422 priv->use_dma = 0;
423 return 1;
424 }
425 return 0;
426 }
427
428 /*
429 * dgrs_rcv_frame()
430 *
431 * Process a received frame. This is called from the interrupt
432 * routine, and works for both switch mode and multi-NIC mode.
433 *
434 * Note that when in multi-NIC mode, we want to always access the
435 * hardware using the dev and priv structures of the first port,
436 * so that we are using only one set of variables to maintain
437 * the board interface status, but we want to use the Nth port
438 * dev and priv structures to maintain statistics and to pass
439 * the packet up.
440 *
441 * Only the first device structure is attached to the interrupt.
442 * We use the special "chan" variable at the end of the first RBD
443 * to select the Nth device in multi-NIC mode.
444 *
445 * We currently do chained DMA on a per-packet basis when the
446 * packet is "long", and we spin the CPU a short time polling
447 * for DMA completion. This avoids a second interrupt overhead,
448 * and gives the best performance for light traffic to the host.
449 *
450 * However, a better scheme that could be implemented would be
451 * to see how many packets are outstanding for the host, and if
452 * the number is "large", create a long chain to DMA several
453 * packets into the host in one go. In this case, we would set
454 * up some state variables to let the host CPU continue doing
455 * other things until a DMA completion interrupt comes along.
456 */
457 static void
458 dgrs_rcv_frame(
459 struct net_device *dev0,
460 DGRS_PRIV *priv0,
461 I596_CB *cbp
462 )
463 {
464 int len;
465 I596_TBD *tbdp;
466 struct sk_buff *skb;
467 uchar *putp;
468 uchar *p;
469 struct net_device *devN;
470 DGRS_PRIV *privN;
471
472 /*
473 * Determine Nth priv and dev structure pointers
474 */
475 if (dgrs_nicmode)
476 { /* Multi-NIC mode */
477 int chan = ((I596_RBD *) S2H(cbp->xmit.tbdp))->chan;
478
479 devN = priv0->devtbl[chan-1];
480 /*
481 * If devN is null, we got an interrupt before the I/F
482 * has been initialized. Pitch the packet.
483 */
484 if (devN == NULL)
485 goto out;
486 privN = (DGRS_PRIV *) devN->priv;
487 }
488 else
489 { /* Switch mode */
490 devN = dev0;
491 privN = priv0;
492 }
493
494 if (0) printk("%s: rcv len=%ld\n", devN->name, cbp->xmit.count);
495
496 /*
497 * Allocate a message block big enough to hold the whole frame
498 */
499 len = cbp->xmit.count;
500 if ((skb = dev_alloc_skb(len+5)) == NULL)
501 {
502 printk("%s: dev_alloc_skb failed for rcv buffer\n", devN->name);
503 ++privN->stats.rx_dropped;
504 /* discarding the frame */
505 goto out;
506 }
507 skb->dev = devN;
508 skb_reserve(skb, 2); /* Align IP header */
509
510 again:
511 putp = p = skb_put(skb, len);
512
513 /*
514 * There are three modes here for doing the packet copy.
515 * If we have DMA, and the packet is "long", we use the
516 * chaining mode of DMA. If it's shorter, we use single
517 * DMA's. Otherwise, we use memcpy().
518 */
519 if (priv0->use_dma && priv0->dmadesc_h && len > 64)
520 {
521 /*
522 * If we can use DMA and it's a long frame, copy it using
523 * DMA chaining.
524 */
525 DMACHAIN *ddp_h; /* Host virtual DMA desc. pointer */
526 DMACHAIN *ddp_s; /* Switch physical DMA desc. pointer */
527 uchar *phys_p;
528
529 /*
530 * Get the physical address of the STREAMS buffer.
531 * NOTE: allocb() guarantees that the whole buffer
532 * is in a single page if the length < 4096.
533 */
534 phys_p = (uchar *) virt_to_phys(putp);
535
536 ddp_h = priv0->dmadesc_h;
537 ddp_s = priv0->dmadesc_s;
538 tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
539 for (;;)
540 {
541 int count;
542 int amt;
543
544 count = tbdp->count;
545 amt = count & 0x3fff;
546 if (amt == 0)
547 break; /* For safety */
548 if ( (p-putp) >= len)
549 {
550 printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
551 proc_reset(dev0, 1); /* Freeze IDT */
552 break; /* For Safety */
553 }
554
555 ddp_h->pciaddr = (ulong) phys_p;
556 ddp_h->lcladdr = S2DMA(tbdp->buf);
557 ddp_h->len = amt;
558
559 phys_p += amt;
560 p += amt;
561
562 if (count & I596_TBD_EOF)
563 {
564 ddp_h->next = PLX_DMA_DESC_TO_HOST
565 | PLX_DMA_DESC_EOC;
566 ++ddp_h;
567 break;
568 }
569 else
570 {
571 ++ddp_s;
572 ddp_h->next = PLX_DMA_DESC_TO_HOST
573 | (ulong) ddp_s;
574 tbdp = (I596_TBD *) S2H(tbdp->next);
575 ++ddp_h;
576 }
577 }
578 if (ddp_h - priv0->dmadesc_h)
579 {
580 int rc;
581
582 rc = do_plx_dma(dev0,
583 0, (ulong) priv0->dmadesc_s, len, 0);
584 if (rc)
585 {
586 printk("%s: Chained DMA failure\n", devN->name);
587 goto again;
588 }
589 }
590 }
591 else if (priv0->use_dma)
592 {
593 /*
594 * If we can use DMA and it's a shorter frame, copy it
595 * using single DMA transfers.
596 */
597 uchar *phys_p;
598
599 /*
600 * Get the physical address of the STREAMS buffer.
601 * NOTE: allocb() guarantees that the whole buffer
602 * is in a single page if the length < 4096.
603 */
604 phys_p = (uchar *) virt_to_phys(putp);
605
606 tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
607 for (;;)
608 {
609 int count;
610 int amt;
611 int rc;
612
613 count = tbdp->count;
614 amt = count & 0x3fff;
615 if (amt == 0)
616 break; /* For safety */
617 if ( (p-putp) >= len)
618 {
619 printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
620 proc_reset(dev0, 1); /* Freeze IDT */
621 break; /* For Safety */
622 }
623 rc = do_plx_dma(dev0, (ulong) phys_p,
624 S2DMA(tbdp->buf), amt, 1);
625 if (rc)
626 {
627 memcpy(p, S2H(tbdp->buf), amt);
628 printk("%s: Single DMA failed\n", devN->name);
629 }
630 phys_p += amt;
631 p += amt;
632 if (count & I596_TBD_EOF)
633 break;
634 tbdp = (I596_TBD *) S2H(tbdp->next);
635 }
636 }
637 else
638 {
639 /*
640 * Otherwise, copy it piece by piece using memcpy()
641 */
642 tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
643 for (;;)
644 {
645 int count;
646 int amt;
647
648 count = tbdp->count;
649 amt = count & 0x3fff;
650 if (amt == 0)
651 break; /* For safety */
652 if ( (p-putp) >= len)
653 {
654 printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
655 proc_reset(dev0, 1); /* Freeze IDT */
656 break; /* For Safety */
657 }
658 memcpy(p, S2H(tbdp->buf), amt);
659 p += amt;
660 if (count & I596_TBD_EOF)
661 break;
662 tbdp = (I596_TBD *) S2H(tbdp->next);
663 }
664 }
665
666 /*
667 * Pass the frame to upper half
668 */
669 skb->protocol = eth_type_trans(skb, devN);
670 netif_rx(skb);
671 devN->last_rx = jiffies;
672 ++privN->stats.rx_packets;
673 privN->stats.rx_bytes += len;
674
675 out:
676 cbp->xmit.status = I596_CB_STATUS_C | I596_CB_STATUS_OK;
677 }
678
679 /*
680 * Start transmission of a frame
681 *
682 * The interface to the board is simple: we pretend that we are
683 * a fifth 82596 ethernet controller 'receiving' data, and copy the
684 * data into the same structures that a real 82596 would. This way,
685 * the board firmware handles the host 'port' the same as any other.
686 *
687 * NOTE: we do not use Bus master DMA for this routine. Turns out
688 * that it is not needed. Slave writes over the PCI bus are about
689 * as fast as DMA, due to the fact that the PLX part can do burst
690 * writes. The same is not true for data being read from the board.
691 *
692 * For multi-NIC mode, we tell the firmware the desired 82596
693 * output port by setting the special "dstchan" member at the
694 * end of the traditional 82596 RFD structure.
695 */
696
697 static int dgrs_start_xmit(struct sk_buff *skb, struct net_device *devN)
698 {
699 DGRS_PRIV *privN = (DGRS_PRIV *) devN->priv;
700 struct net_device *dev0;
701 DGRS_PRIV *priv0;
702 I596_RBD *rbdp;
703 int count;
704 int i, len, amt;
705
706 /*
707 * Determine 0th priv and dev structure pointers
708 */
709 if (dgrs_nicmode)
710 {
711 dev0 = privN->devtbl[0];
712 priv0 = (DGRS_PRIV *) dev0->priv;
713 }
714 else
715 {
716 dev0 = devN;
717 priv0 = privN;
718 }
719
720 if (dgrs_debug > 1)
721 printk("%s: xmit len=%d\n", devN->name, (int) skb->len);
722
723 devN->trans_start = jiffies;
724 netif_start_queue(devN);
725
726 if (priv0->rfdp->cmd & I596_RFD_EL)
727 { /* Out of RFD's */
728 if (0) printk("%s: NO RFD's\n", devN->name);
729 goto no_resources;
730 }
731
732 rbdp = priv0->rbdp;
733 count = 0;
734 priv0->rfdp->rbdp = (I596_RBD *) H2S(rbdp);
735
736 i = 0; len = skb->len;
737 for (;;)
738 {
739 if (rbdp->size & I596_RBD_EL)
740 { /* Out of RBD's */
741 if (0) printk("%s: NO RBD's\n", devN->name);
742 goto no_resources;
743 }
744
745 amt = min_t(unsigned int, len, rbdp->size - count);
746 memcpy( (char *) S2H(rbdp->buf) + count, skb->data + i, amt);
747 i += amt;
748 count += amt;
749 len -= amt;
750 if (len == 0)
751 {
752 if (skb->len < 60)
753 rbdp->count = 60 | I596_RBD_EOF;
754 else
755 rbdp->count = count | I596_RBD_EOF;
756 rbdp = (I596_RBD *) S2H(rbdp->next);
757 goto frame_done;
758 }
759 else if (count < 32)
760 {
761 /* More data to come, but we used less than 32
762 * bytes of this RBD. Keep filling this RBD.
763 */
764 {} /* Yes, we do nothing here */
765 }
766 else
767 {
768 rbdp->count = count;
769 rbdp = (I596_RBD *) S2H(rbdp->next);
770 count = 0;
771 }
772 }
773
774 frame_done:
775 priv0->rbdp = rbdp;
776 if (dgrs_nicmode)
777 priv0->rfdp->dstchan = privN->chan;
778 priv0->rfdp->status = I596_RFD_C | I596_RFD_OK;
779 priv0->rfdp = (I596_RFD *) S2H(priv0->rfdp->next);
780
781 ++privN->stats.tx_packets;
782
783 dev_kfree_skb (skb);
784 return (0);
785
786 no_resources:
787 priv0->scbp->status |= I596_SCB_RNR; /* simulate I82596 */
788 return (-EAGAIN);
789 }
790
791 /*
792 * Open the interface
793 */
794 static int
795 dgrs_open( struct net_device *dev )
796 {
797 netif_start_queue(dev);
798 return (0);
799 }
800
801 /*
802 * Close the interface
803 */
804 static int dgrs_close( struct net_device *dev )
805 {
806 netif_stop_queue(dev);
807 return (0);
808 }
809
810 /*
811 * Get statistics
812 */
813 static struct net_device_stats *dgrs_get_stats( struct net_device *dev )
814 {
815 DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
816
817 return (&priv->stats);
818 }
819
820 /*
821 * Set multicast list and/or promiscuous mode
822 */
823
824 static void dgrs_set_multicast_list( struct net_device *dev)
825 {
826 DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
827
828 priv->port->is_promisc = (dev->flags & IFF_PROMISC) ? 1 : 0;
829 }
830
831 /*
832 * Unique ioctl's
833 */
834 static int dgrs_ioctl(struct net_device *devN, struct ifreq *ifr, int cmd)
835 {
836 DGRS_PRIV *privN = (DGRS_PRIV *) devN->priv;
837 DGRS_IOCTL ioc;
838 int i;
839
840 if (cmd != DGRSIOCTL)
841 return -EINVAL;
842
843 if(copy_from_user(&ioc, ifr->ifr_data, sizeof(DGRS_IOCTL)))
844 return -EFAULT;
845
846 switch (ioc.cmd)
847 {
848 case DGRS_GETMEM:
849 if (ioc.len != sizeof(ulong))
850 return -EINVAL;
851 if(copy_to_user(ioc.data, &devN->mem_start, ioc.len))
852 return -EFAULT;
853 return (0);
854 case DGRS_SETFILTER:
855 if (!capable(CAP_NET_ADMIN))
856 return -EPERM;
857 if (ioc.port > privN->bcomm->bc_nports)
858 return -EINVAL;
859 if (ioc.filter >= NFILTERS)
860 return -EINVAL;
861 if (ioc.len > privN->bcomm->bc_filter_area_len)
862 return -EINVAL;
863
864 /* Wait for old command to finish */
865 for (i = 0; i < 1000; ++i)
866 {
867 if ( (volatile long) privN->bcomm->bc_filter_cmd <= 0 )
868 break;
869 udelay(1);
870 }
871 if (i >= 1000)
872 return -EIO;
873
874 privN->bcomm->bc_filter_port = ioc.port;
875 privN->bcomm->bc_filter_num = ioc.filter;
876 privN->bcomm->bc_filter_len = ioc.len;
877
878 if (ioc.len)
879 {
880 if(copy_from_user(S2HN(privN->bcomm->bc_filter_area),
881 ioc.data, ioc.len))
882 return -EFAULT;
883 privN->bcomm->bc_filter_cmd = BC_FILTER_SET;
884 }
885 else
886 privN->bcomm->bc_filter_cmd = BC_FILTER_CLR;
887 return(0);
888 default:
889 return -EOPNOTSUPP;
890 }
891 }
892
893 /*
894 * Process interrupts
895 *
896 * dev, priv will always refer to the 0th device in Multi-NIC mode.
897 */
898
899 static irqreturn_t dgrs_intr(int irq, void *dev_id, struct pt_regs *regs)
900 {
901 struct net_device *dev0 = (struct net_device *) dev_id;
902 DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
903 I596_CB *cbp;
904 int cmd;
905 int i;
906
907 ++priv0->intrcnt;
908 if (1) ++priv0->bcomm->bc_cnt[4];
909 if (0)
910 {
911 static int cnt = 100;
912 if (--cnt > 0)
913 printk("%s: interrupt: irq %d\n", dev0->name, irq);
914 }
915
916 /*
917 * Get 596 command
918 */
919 cmd = priv0->scbp->cmd;
920
921 /*
922 * See if RU has been restarted
923 */
924 if ( (cmd & I596_SCB_RUC) == I596_SCB_RUC_START)
925 {
926 if (0) printk("%s: RUC start\n", dev0->name);
927 priv0->rfdp = (I596_RFD *) S2H(priv0->scbp->rfdp);
928 priv0->rbdp = (I596_RBD *) S2H(priv0->rfdp->rbdp);
929 priv0->scbp->status &= ~(I596_SCB_RNR|I596_SCB_RUS);
930 /*
931 * Tell upper half (halves)
932 */
933 if (dgrs_nicmode)
934 {
935 for (i = 0; i < priv0->nports; ++i)
936 netif_wake_queue (priv0->devtbl[i]);
937 }
938 else
939 netif_wake_queue (dev0);
940 /* if (bd->flags & TX_QUEUED)
941 DL_sched(bd, bdd); */
942 }
943
944 /*
945 * See if any CU commands to process
946 */
947 if ( (cmd & I596_SCB_CUC) != I596_SCB_CUC_START)
948 {
949 priv0->scbp->cmd = 0; /* Ignore all other commands */
950 goto ack_intr;
951 }
952 priv0->scbp->status &= ~(I596_SCB_CNA|I596_SCB_CUS);
953
954 /*
955 * Process a command
956 */
957 cbp = (I596_CB *) S2H(priv0->scbp->cbp);
958 priv0->scbp->cmd = 0; /* Safe to clear the command */
959 for (;;)
960 {
961 switch (cbp->nop.cmd & I596_CB_CMD)
962 {
963 case I596_CB_CMD_XMIT:
964 dgrs_rcv_frame(dev0, priv0, cbp);
965 break;
966 default:
967 cbp->nop.status = I596_CB_STATUS_C | I596_CB_STATUS_OK;
968 break;
969 }
970 if (cbp->nop.cmd & I596_CB_CMD_EL)
971 break;
972 cbp = (I596_CB *) S2H(cbp->nop.next);
973 }
974 priv0->scbp->status |= I596_SCB_CNA;
975
976 /*
977 * Ack the interrupt
978 */
979 ack_intr:
980 if (priv0->plxreg)
981 OUTL(dev0->base_addr + PLX_LCL2PCI_DOORBELL, 1);
982
983 return IRQ_HANDLED;
984 }
985
986 /*
987 * Download the board firmware
988 */
989 static int __init
990 dgrs_download(struct net_device *dev0)
991 {
992 DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
993 int is;
994 unsigned long i;
995
996 static int iv2is[16] = {
997 0, 0, 0, ES4H_IS_INT3,
998 0, ES4H_IS_INT5, 0, ES4H_IS_INT7,
999 0, 0, ES4H_IS_INT10, ES4H_IS_INT11,
1000 ES4H_IS_INT12, 0, 0, ES4H_IS_INT15 };
1001
1002 /*
1003 * Map in the dual port memory
1004 */
1005 priv0->vmem = ioremap(dev0->mem_start, 2048*1024);
1006 if (!priv0->vmem)
1007 {
1008 printk("%s: cannot map in board memory\n", dev0->name);
1009 return -ENXIO;
1010 }
1011
1012 /*
1013 * Hold the processor and configure the board addresses
1014 */
1015 if (priv0->plxreg)
1016 { /* PCI bus */
1017 proc_reset(dev0, 1);
1018 }
1019 else
1020 { /* EISA bus */
1021 is = iv2is[dev0->irq & 0x0f];
1022 if (!is)
1023 {
1024 printk("%s: Illegal IRQ %d\n", dev0->name, dev0->irq);
1025 iounmap(priv0->vmem);
1026 priv0->vmem = NULL;
1027 return -ENXIO;
1028 }
1029 OUTB(dev0->base_addr + ES4H_AS_31_24,
1030 (uchar) (dev0->mem_start >> 24) );
1031 OUTB(dev0->base_addr + ES4H_AS_23_16,
1032 (uchar) (dev0->mem_start >> 16) );
1033 priv0->is_reg = ES4H_IS_LINEAR | is |
1034 ((uchar) (dev0->mem_start >> 8) & ES4H_IS_AS15);
1035 OUTB(dev0->base_addr + ES4H_IS, priv0->is_reg);
1036 OUTB(dev0->base_addr + ES4H_EC, ES4H_EC_ENABLE);
1037 OUTB(dev0->base_addr + ES4H_PC, ES4H_PC_RESET);
1038 OUTB(dev0->base_addr + ES4H_MW, ES4H_MW_ENABLE | 0x00);
1039 }
1040
1041 /*
1042 * See if we can do DMA on the SE-6
1043 */
1044 priv0->use_dma = check_board_dma(dev0);
1045 if (priv0->use_dma)
1046 printk("%s: Bus Master DMA is enabled.\n", dev0->name);
1047
1048 /*
1049 * Load and verify the code at the desired address
1050 */
1051 memcpy(priv0->vmem, dgrs_code, dgrs_ncode); /* Load code */
1052 if (memcmp(priv0->vmem, dgrs_code, dgrs_ncode))
1053 {
1054 iounmap(priv0->vmem);
1055 priv0->vmem = NULL;
1056 printk("%s: download compare failed\n", dev0->name);
1057 return -ENXIO;
1058 }
1059
1060 /*
1061 * Configurables
1062 */
1063 priv0->bcomm = (struct bios_comm *) (priv0->vmem + 0x0100);
1064 priv0->bcomm->bc_nowait = 1; /* Tell board to make printf not wait */
1065 priv0->bcomm->bc_squelch = 0; /* Flag from Space.c */
1066 priv0->bcomm->bc_150ohm = 0; /* Flag from Space.c */
1067
1068 priv0->bcomm->bc_spew = 0; /* Debug flag from Space.c */
1069 priv0->bcomm->bc_maxrfd = 0; /* Debug flag from Space.c */
1070 priv0->bcomm->bc_maxrbd = 0; /* Debug flag from Space.c */
1071
1072 /*
1073 * Tell board we are operating in switch mode (1) or in
1074 * multi-NIC mode (2).
1075 */
1076 priv0->bcomm->bc_host = dgrs_nicmode ? BC_MULTINIC : BC_SWITCH;
1077
1078 /*
1079 * Request memory space on board for DMA chains
1080 */
1081 if (priv0->use_dma)
1082 priv0->bcomm->bc_hostarea_len = (2048/64) * 16;
1083
1084 /*
1085 * NVRAM configurables from Space.c
1086 */
1087 priv0->bcomm->bc_spantree = dgrs_spantree;
1088 priv0->bcomm->bc_hashexpire = dgrs_hashexpire;
1089 memcpy(priv0->bcomm->bc_ipaddr, dgrs_ipaddr, 4);
1090 memcpy(priv0->bcomm->bc_iptrap, dgrs_iptrap, 4);
1091 memcpy(priv0->bcomm->bc_ipxnet, &dgrs_ipxnet, 4);
1092
1093 /*
1094 * Release processor, wait 8 seconds for board to initialize
1095 */
1096 proc_reset(dev0, 0);
1097
1098 for (i = jiffies + 8 * HZ; time_after(i, jiffies); )
1099 {
1100 barrier(); /* Gcc 2.95 needs this */
1101 if (priv0->bcomm->bc_status >= BC_RUN)
1102 break;
1103 }
1104
1105 if (priv0->bcomm->bc_status < BC_RUN)
1106 {
1107 printk("%s: board not operating\n", dev0->name);
1108 iounmap(priv0->vmem);
1109 priv0->vmem = NULL;
1110 return -ENXIO;
1111 }
1112
1113 priv0->port = (PORT *) S2H(priv0->bcomm->bc_port);
1114 priv0->scbp = (I596_SCB *) S2H(priv0->port->scbp);
1115 priv0->rfdp = (I596_RFD *) S2H(priv0->scbp->rfdp);
1116 priv0->rbdp = (I596_RBD *) S2H(priv0->rfdp->rbdp);
1117
1118 priv0->scbp->status = I596_SCB_CNA; /* CU is idle */
1119
1120 /*
1121 * Get switch physical and host virtual pointers to DMA
1122 * chaining area. NOTE: the MSB of the switch physical
1123 * address *must* be turned off. Otherwise, the HW kludge
1124 * that allows host access of the PLX DMA registers will
1125 * erroneously select the PLX registers.
1126 */
1127 priv0->dmadesc_s = (DMACHAIN *) S2DMA(priv0->bcomm->bc_hostarea);
1128 if (priv0->dmadesc_s)
1129 priv0->dmadesc_h = (DMACHAIN *) S2H(priv0->dmadesc_s);
1130 else
1131 priv0->dmadesc_h = NULL;
1132
1133 /*
1134 * Enable board interrupts
1135 */
1136 if (priv0->plxreg)
1137 { /* PCI bus */
1138 OUTL(dev0->base_addr + PLX_INT_CSR,
1139 inl(dev0->base_addr + PLX_INT_CSR)
1140 | PLX_PCI_DOORBELL_IE); /* Enable intr to host */
1141 OUTL(dev0->base_addr + PLX_LCL2PCI_DOORBELL, 1);
1142 }
1143 else
1144 { /* EISA bus */
1145 }
1146
1147 return (0);
1148 }
1149
1150 /*
1151 * Probe (init) a board
1152 */
1153 static int __init
1154 dgrs_probe1(struct net_device *dev)
1155 {
1156 DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
1157 unsigned long i;
1158 int rc;
1159
1160 printk("%s: Digi RightSwitch io=%lx mem=%lx irq=%d plx=%lx dma=%lx\n",
1161 dev->name, dev->base_addr, dev->mem_start, dev->irq,
1162 priv->plxreg, priv->plxdma);
1163
1164 /*
1165 * Download the firmware and light the processor
1166 */
1167 rc = dgrs_download(dev);
1168 if (rc)
1169 goto err_out;
1170
1171 /*
1172 * Get ether address of board
1173 */
1174 printk("%s: Ethernet address", dev->name);
1175 memcpy(dev->dev_addr, priv->port->ethaddr, 6);
1176 for (i = 0; i < 6; ++i)
1177 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1178 printk("\n");
1179
1180 if (dev->dev_addr[0] & 1)
1181 {
1182 printk("%s: Illegal Ethernet Address\n", dev->name);
1183 rc = -ENXIO;
1184 goto err_out;
1185 }
1186
1187 /*
1188 * ACK outstanding interrupts, hook the interrupt,
1189 * and verify that we are getting interrupts from the board.
1190 */
1191 if (priv->plxreg)
1192 OUTL(dev->base_addr + PLX_LCL2PCI_DOORBELL, 1);
1193
1194 rc = request_irq(dev->irq, &dgrs_intr, SA_SHIRQ, "RightSwitch", dev);
1195 if (rc)
1196 goto err_out;
1197
1198 priv->intrcnt = 0;
1199 for (i = jiffies + 2*HZ + HZ/2; time_after(i, jiffies); )
1200 {
1201 cpu_relax();
1202 if (priv->intrcnt >= 2)
1203 break;
1204 }
1205 if (priv->intrcnt < 2)
1206 {
1207 printk(KERN_ERR "%s: Not interrupting on IRQ %d (%d)\n",
1208 dev->name, dev->irq, priv->intrcnt);
1209 rc = -ENXIO;
1210 goto err_free_irq;
1211 }
1212
1213 /*
1214 * Entry points...
1215 */
1216 dev->open = &dgrs_open;
1217 dev->stop = &dgrs_close;
1218 dev->get_stats = &dgrs_get_stats;
1219 dev->hard_start_xmit = &dgrs_start_xmit;
1220 dev->set_multicast_list = &dgrs_set_multicast_list;
1221 dev->do_ioctl = &dgrs_ioctl;
1222
1223 return rc;
1224
1225 err_free_irq:
1226 free_irq(dev->irq, dev);
1227 err_out:
1228 return rc;
1229 }
1230
1231 static int __init
1232 dgrs_initclone(struct net_device *dev)
1233 {
1234 DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
1235 int i;
1236
1237 printk("%s: Digi RightSwitch port %d ",
1238 dev->name, priv->chan);
1239 for (i = 0; i < 6; ++i)
1240 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1241 printk("\n");
1242
1243 return (0);
1244 }
1245
1246 static struct net_device * __init
1247 dgrs_found_device(
1248 int io,
1249 ulong mem,
1250 int irq,
1251 ulong plxreg,
1252 ulong plxdma,
1253 struct device *pdev
1254 )
1255 {
1256 DGRS_PRIV *priv;
1257 struct net_device *dev;
1258 int i, ret = -ENOMEM;
1259
1260 dev = alloc_etherdev(sizeof(DGRS_PRIV));
1261 if (!dev)
1262 goto err0;
1263
1264 priv = (DGRS_PRIV *)dev->priv;
1265
1266 dev->base_addr = io;
1267 dev->mem_start = mem;
1268 dev->mem_end = mem + 2048 * 1024 - 1;
1269 dev->irq = irq;
1270 priv->plxreg = plxreg;
1271 priv->plxdma = plxdma;
1272 priv->vplxdma = NULL;
1273
1274 priv->chan = 1;
1275 priv->devtbl[0] = dev;
1276
1277 SET_MODULE_OWNER(dev);
1278 SET_NETDEV_DEV(dev, pdev);
1279
1280 ret = dgrs_probe1(dev);
1281 if (ret)
1282 goto err1;
1283
1284 ret = register_netdev(dev);
1285 if (ret)
1286 goto err2;
1287
1288 if ( !dgrs_nicmode )
1289 return dev; /* Switch mode, we are done */
1290
1291 /*
1292 * Operating card as N separate NICs
1293 */
1294
1295 priv->nports = priv->bcomm->bc_nports;
1296
1297 for (i = 1; i < priv->nports; ++i)
1298 {
1299 struct net_device *devN;
1300 DGRS_PRIV *privN;
1301 /* Allocate new dev and priv structures */
1302 devN = alloc_etherdev(sizeof(DGRS_PRIV));
1303 ret = -ENOMEM;
1304 if (!devN)
1305 goto fail;
1306
1307 /* Don't copy the network device structure! */
1308
1309 /* copy the priv structure of dev[0] */
1310 privN = (DGRS_PRIV *)devN->priv;
1311 *privN = *priv;
1312
1313 /* ... and zero out VM areas */
1314 privN->vmem = NULL;
1315 privN->vplxdma = NULL;
1316 /* ... and zero out IRQ */
1317 devN->irq = 0;
1318 /* ... and base MAC address off address of 1st port */
1319 devN->dev_addr[5] += i;
1320
1321 ret = dgrs_initclone(devN);
1322 if (ret)
1323 goto fail;
1324
1325 SET_MODULE_OWNER(devN);
1326 SET_NETDEV_DEV(dev, pdev);
1327
1328 ret = register_netdev(devN);
1329 if (ret) {
1330 free_netdev(devN);
1331 goto fail;
1332 }
1333 privN->chan = i+1;
1334 priv->devtbl[i] = devN;
1335 }
1336 return dev;
1337
1338 fail:
1339 while (i >= 0) {
1340 struct net_device *d = priv->devtbl[i--];
1341 unregister_netdev(d);
1342 free_netdev(d);
1343 }
1344
1345 err2:
1346 free_irq(dev->irq, dev);
1347 err1:
1348 free_netdev(dev);
1349 err0:
1350 return ERR_PTR(ret);
1351 }
1352
1353 static void __devexit dgrs_remove(struct net_device *dev)
1354 {
1355 DGRS_PRIV *priv = dev->priv;
1356 int i;
1357
1358 unregister_netdev(dev);
1359
1360 for (i = 1; i < priv->nports; ++i) {
1361 struct net_device *d = priv->devtbl[i];
1362 if (d) {
1363 unregister_netdev(d);
1364 free_netdev(d);
1365 }
1366 }
1367
1368 proc_reset(priv->devtbl[0], 1);
1369
1370 if (priv->vmem)
1371 iounmap(priv->vmem);
1372 if (priv->vplxdma)
1373 iounmap((uchar *) priv->vplxdma);
1374
1375 if (dev->irq)
1376 free_irq(dev->irq, dev);
1377
1378 for (i = 1; i < priv->nports; ++i) {
1379 if (priv->devtbl[i])
1380 unregister_netdev(priv->devtbl[i]);
1381 }
1382 }
1383
1384 #ifdef CONFIG_PCI
1385 static int __init dgrs_pci_probe(struct pci_dev *pdev,
1386 const struct pci_device_id *ent)
1387 {
1388 struct net_device *dev;
1389 int err;
1390 uint io;
1391 uint mem;
1392 uint irq;
1393 uint plxreg;
1394 uint plxdma;
1395
1396 /*
1397 * Get and check the bus-master and latency values.
1398 * Some PCI BIOSes fail to set the master-enable bit,
1399 * and the latency timer must be set to the maximum
1400 * value to avoid data corruption that occurs when the
1401 * timer expires during a transfer. Yes, it's a bug.
1402 */
1403 err = pci_enable_device(pdev);
1404 if (err)
1405 return err;
1406 err = pci_request_regions(pdev, "RightSwitch");
1407 if (err)
1408 return err;
1409
1410 pci_set_master(pdev);
1411
1412 plxreg = pci_resource_start (pdev, 0);
1413 io = pci_resource_start (pdev, 1);
1414 mem = pci_resource_start (pdev, 2);
1415 pci_read_config_dword(pdev, 0x30, &plxdma);
1416 irq = pdev->irq;
1417 plxdma &= ~15;
1418
1419 /*
1420 * On some BIOSES, the PLX "expansion rom" (used for DMA)
1421 * address comes up as "0". This is probably because
1422 * the BIOS doesn't see a valid 55 AA ROM signature at
1423 * the "ROM" start and zeroes the address. To get
1424 * around this problem the SE-6 is configured to ask
1425 * for 4 MB of space for the dual port memory. We then
1426 * must set its range back to 2 MB, and use the upper
1427 * half for DMA register access
1428 */
1429 OUTL(io + PLX_SPACE0_RANGE, 0xFFE00000L);
1430 if (plxdma == 0)
1431 plxdma = mem + (2048L * 1024L);
1432 pci_write_config_dword(pdev, 0x30, plxdma + 1);
1433 pci_read_config_dword(pdev, 0x30, &plxdma);
1434 plxdma &= ~15;
1435
1436 dev = dgrs_found_device(io, mem, irq, plxreg, plxdma, &pdev->dev);
1437 if (IS_ERR(dev)) {
1438 pci_release_regions(pdev);
1439 return PTR_ERR(dev);
1440 }
1441
1442 pci_set_drvdata(pdev, dev);
1443 return 0;
1444 }
1445
1446 static void __devexit dgrs_pci_remove(struct pci_dev *pdev)
1447 {
1448 struct net_device *dev = pci_get_drvdata(pdev);
1449
1450 dgrs_remove(dev);
1451 pci_release_regions(pdev);
1452 free_netdev(dev);
1453 }
1454
1455 static struct pci_driver dgrs_pci_driver = {
1456 .name = "dgrs",
1457 .id_table = dgrs_pci_tbl,
1458 .probe = dgrs_pci_probe,
1459 .remove = __devexit_p(dgrs_pci_remove),
1460 };
1461 #endif
1462
1463
1464 #ifdef CONFIG_EISA
1465 static int is2iv[8] __initdata = { 0, 3, 5, 7, 10, 11, 12, 15 };
1466
1467 static int __init dgrs_eisa_probe (struct device *gendev)
1468 {
1469 struct net_device *dev;
1470 struct eisa_device *edev = to_eisa_device(gendev);
1471 uint io = edev->base_addr;
1472 uint mem;
1473 uint irq;
1474 int rc = -ENODEV; /* Not EISA configured */
1475
1476 if (!request_region(io, 256, "RightSwitch")) {
1477 printk(KERN_ERR "dgrs: eisa io 0x%x, which is busy.\n", io);
1478 return -EBUSY;
1479 }
1480
1481 if ( ! (inb(io+ES4H_EC) & ES4H_EC_ENABLE) )
1482 goto err_out;
1483
1484 mem = (inb(io+ES4H_AS_31_24) << 24)
1485 + (inb(io+ES4H_AS_23_16) << 16);
1486
1487 irq = is2iv[ inb(io+ES4H_IS) & ES4H_IS_INTMASK ];
1488
1489 dev = dgrs_found_device(io, mem, irq, 0L, 0L, gendev);
1490 if (IS_ERR(dev)) {
1491 rc = PTR_ERR(dev);
1492 goto err_out;
1493 }
1494
1495 gendev->driver_data = dev;
1496 return 0;
1497 err_out:
1498 release_region(io, 256);
1499 return rc;
1500 }
1501
1502 static int __devexit dgrs_eisa_remove(struct device *gendev)
1503 {
1504 struct net_device *dev = gendev->driver_data;
1505
1506 dgrs_remove(dev);
1507
1508 release_region(dev->base_addr, 256);
1509
1510 free_netdev(dev);
1511 return 0;
1512 }
1513
1514
1515 static struct eisa_driver dgrs_eisa_driver = {
1516 .id_table = dgrs_eisa_tbl,
1517 .driver = {
1518 .name = "dgrs",
1519 .probe = dgrs_eisa_probe,
1520 .remove = __devexit_p(dgrs_eisa_remove),
1521 }
1522 };
1523 #endif
1524
1525 /*
1526 * Variables that can be overriden from module command line
1527 */
1528 static int debug = -1;
1529 static int dma = -1;
1530 static int hashexpire = -1;
1531 static int spantree = -1;
1532 static int ipaddr[4] = { -1 };
1533 static int iptrap[4] = { -1 };
1534 static __u32 ipxnet = -1;
1535 static int nicmode = -1;
1536
1537 module_param(debug, int, 0);
1538 module_param(dma, int, 0);
1539 module_param(hashexpire, int, 0);
1540 module_param(spantree, int, 0);
1541 module_param_array(ipaddr, int, NULL, 0);
1542 module_param_array(iptrap, int, NULL, 0);
1543 module_param(ipxnet, int, 0);
1544 module_param(nicmode, int, 0);
1545 MODULE_PARM_DESC(debug, "Digi RightSwitch enable debugging (0-1)");
1546 MODULE_PARM_DESC(dma, "Digi RightSwitch enable BM DMA (0-1)");
1547 MODULE_PARM_DESC(nicmode, "Digi RightSwitch operating mode (1: switch, 2: multi-NIC)");
1548
1549 static int __init dgrs_init_module (void)
1550 {
1551 int i;
1552 int eisacount = 0, pcicount = 0;
1553
1554 /*
1555 * Command line variable overrides
1556 * debug=NNN
1557 * dma=0/1
1558 * spantree=0/1
1559 * hashexpire=NNN
1560 * ipaddr=A,B,C,D
1561 * iptrap=A,B,C,D
1562 * ipxnet=NNN
1563 * nicmode=NNN
1564 */
1565 if (debug >= 0)
1566 dgrs_debug = debug;
1567 if (dma >= 0)
1568 dgrs_dma = dma;
1569 if (nicmode >= 0)
1570 dgrs_nicmode = nicmode;
1571 if (hashexpire >= 0)
1572 dgrs_hashexpire = hashexpire;
1573 if (spantree >= 0)
1574 dgrs_spantree = spantree;
1575 if (ipaddr[0] != -1)
1576 for (i = 0; i < 4; ++i)
1577 dgrs_ipaddr[i] = ipaddr[i];
1578 if (iptrap[0] != -1)
1579 for (i = 0; i < 4; ++i)
1580 dgrs_iptrap[i] = iptrap[i];
1581 if (ipxnet != -1)
1582 dgrs_ipxnet = htonl( ipxnet );
1583
1584 if (dgrs_debug)
1585 {
1586 printk(KERN_INFO "dgrs: SW=%s FW=Build %d %s\nFW Version=%s\n",
1587 version, dgrs_firmnum, dgrs_firmdate, dgrs_firmver);
1588 }
1589
1590 /*
1591 * Find and configure all the cards
1592 */
1593 #ifdef CONFIG_EISA
1594 eisacount = eisa_driver_register(&dgrs_eisa_driver);
1595 if (eisacount < 0)
1596 return eisacount;
1597 #endif
1598 #ifdef CONFIG_PCI
1599 pcicount = pci_register_driver(&dgrs_pci_driver);
1600 if (pcicount)
1601 return pcicount;
1602 #endif
1603 return 0;
1604 }
1605
1606 static void __exit dgrs_cleanup_module (void)
1607 {
1608 #ifdef CONFIG_EISA
1609 eisa_driver_unregister (&dgrs_eisa_driver);
1610 #endif
1611 #ifdef CONFIG_PCI
1612 pci_unregister_driver (&dgrs_pci_driver);
1613 #endif
1614 }
1615
1616 module_init(dgrs_init_module);
1617 module_exit(dgrs_cleanup_module);