]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/dsa/bcm_sf2_cfp.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / drivers / net / dsa / bcm_sf2_cfp.c
1 /*
2 * Broadcom Starfighter 2 DSA switch CFP support
3 *
4 * Copyright (C) 2016, Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22
23 struct cfp_udf_slice_layout {
24 u8 slices[UDFS_PER_SLICE];
25 u32 mask_value;
26 u32 base_offset;
27 };
28
29 struct cfp_udf_layout {
30 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37 .udfs = {
38 [1] = {
39 .slices = {
40 /* End of L2, byte offset 12, src IP[0:15] */
41 CFG_UDF_EOL2 | 6,
42 /* End of L2, byte offset 14, src IP[16:31] */
43 CFG_UDF_EOL2 | 7,
44 /* End of L2, byte offset 16, dst IP[0:15] */
45 CFG_UDF_EOL2 | 8,
46 /* End of L2, byte offset 18, dst IP[16:31] */
47 CFG_UDF_EOL2 | 9,
48 /* End of L3, byte offset 0, src port */
49 CFG_UDF_EOL3 | 0,
50 /* End of L3, byte offset 2, dst port */
51 CFG_UDF_EOL3 | 1,
52 0, 0, 0
53 },
54 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 },
57 },
58 };
59
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62 .udfs = {
63 [0] = {
64 .slices = {
65 /* End of L2, byte offset 8, src IP[0:15] */
66 CFG_UDF_EOL2 | 4,
67 /* End of L2, byte offset 10, src IP[16:31] */
68 CFG_UDF_EOL2 | 5,
69 /* End of L2, byte offset 12, src IP[32:47] */
70 CFG_UDF_EOL2 | 6,
71 /* End of L2, byte offset 14, src IP[48:63] */
72 CFG_UDF_EOL2 | 7,
73 /* End of L2, byte offset 16, src IP[64:79] */
74 CFG_UDF_EOL2 | 8,
75 /* End of L2, byte offset 18, src IP[80:95] */
76 CFG_UDF_EOL2 | 9,
77 /* End of L2, byte offset 20, src IP[96:111] */
78 CFG_UDF_EOL2 | 10,
79 /* End of L2, byte offset 22, src IP[112:127] */
80 CFG_UDF_EOL2 | 11,
81 /* End of L3, byte offset 0, src port */
82 CFG_UDF_EOL3 | 0,
83 },
84 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 },
87 [3] = {
88 .slices = {
89 /* End of L2, byte offset 24, dst IP[0:15] */
90 CFG_UDF_EOL2 | 12,
91 /* End of L2, byte offset 26, dst IP[16:31] */
92 CFG_UDF_EOL2 | 13,
93 /* End of L2, byte offset 28, dst IP[32:47] */
94 CFG_UDF_EOL2 | 14,
95 /* End of L2, byte offset 30, dst IP[48:63] */
96 CFG_UDF_EOL2 | 15,
97 /* End of L2, byte offset 32, dst IP[64:79] */
98 CFG_UDF_EOL2 | 16,
99 /* End of L2, byte offset 34, dst IP[80:95] */
100 CFG_UDF_EOL2 | 17,
101 /* End of L2, byte offset 36, dst IP[96:111] */
102 CFG_UDF_EOL2 | 18,
103 /* End of L2, byte offset 38, dst IP[112:127] */
104 CFG_UDF_EOL2 | 19,
105 /* End of L3, byte offset 2, dst port */
106 CFG_UDF_EOL3 | 1,
107 },
108 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 },
111 },
112 };
113
114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116 unsigned int i, count = 0;
117
118 for (i = 0; i < UDFS_PER_SLICE; i++) {
119 if (layout[i] != 0)
120 count++;
121 }
122
123 return count;
124 }
125
126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130
131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133 return (u8)GENMASK(num_udf - 1, 0);
134 }
135
136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 unsigned int start)
138 {
139 const struct cfp_udf_slice_layout *slice_layout;
140 unsigned int slice_idx;
141
142 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 slice_layout = &l->udfs[slice_idx];
144 if (memcmp(slice_layout->slices, zero_slice,
145 sizeof(zero_slice)))
146 break;
147 }
148
149 return slice_idx;
150 }
151
152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 const struct cfp_udf_layout *layout,
154 unsigned int slice_num)
155 {
156 u32 offset = layout->udfs[slice_num].base_offset;
157 unsigned int i;
158
159 for (i = 0; i < UDFS_PER_SLICE; i++)
160 core_writel(priv, layout->udfs[slice_num].slices[i],
161 offset + i * 4);
162 }
163
164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166 unsigned int timeout = 1000;
167 u32 reg;
168
169 reg = core_readl(priv, CORE_CFP_ACC);
170 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 reg |= OP_STR_DONE | op;
172 core_writel(priv, reg, CORE_CFP_ACC);
173
174 do {
175 reg = core_readl(priv, CORE_CFP_ACC);
176 if (!(reg & OP_STR_DONE))
177 break;
178
179 cpu_relax();
180 } while (timeout--);
181
182 if (!timeout)
183 return -ETIMEDOUT;
184
185 return 0;
186 }
187
188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 unsigned int addr)
190 {
191 u32 reg;
192
193 WARN_ON(addr >= priv->num_cfp_rules);
194
195 reg = core_readl(priv, CORE_CFP_ACC);
196 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 reg |= addr << XCESS_ADDR_SHIFT;
198 core_writel(priv, reg, CORE_CFP_ACC);
199 }
200
201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203 /* Entry #0 is reserved */
204 return priv->num_cfp_rules - 1;
205 }
206
207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 unsigned int rule_index,
209 unsigned int port_num,
210 unsigned int queue_num,
211 bool fwd_map_change)
212 {
213 int ret;
214 u32 reg;
215
216 /* Replace ARL derived destination with DST_MAP derived, define
217 * which port and queue this should be forwarded to.
218 */
219 if (fwd_map_change)
220 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 BIT(port_num + DST_MAP_IB_SHIFT) |
222 CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 else
224 reg = 0;
225
226 core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228 /* Set classification ID that needs to be put in Broadcom tag */
229 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231 core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233 /* Configure policer RAM now */
234 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 if (ret) {
236 pr_err("Policer entry at %d failed\n", rule_index);
237 return ret;
238 }
239
240 /* Disable the policer */
241 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243 /* Now the rate meter */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 if (ret) {
246 pr_err("Meter entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 return 0;
251 }
252
253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 struct ethtool_tcpip4_spec *v4_spec,
255 unsigned int slice_num,
256 bool mask)
257 {
258 u32 reg, offset;
259
260 /* C-Tag [31:24]
261 * UDF_n_A8 [23:8]
262 * UDF_n_A7 [7:0]
263 */
264 reg = 0;
265 if (mask)
266 offset = CORE_CFP_MASK_PORT(4);
267 else
268 offset = CORE_CFP_DATA_PORT(4);
269 core_writel(priv, reg, offset);
270
271 /* UDF_n_A7 [31:24]
272 * UDF_n_A6 [23:8]
273 * UDF_n_A5 [7:0]
274 */
275 reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 if (mask)
277 offset = CORE_CFP_MASK_PORT(3);
278 else
279 offset = CORE_CFP_DATA_PORT(3);
280 core_writel(priv, reg, offset);
281
282 /* UDF_n_A5 [31:24]
283 * UDF_n_A4 [23:8]
284 * UDF_n_A3 [7:0]
285 */
286 reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 if (mask)
290 offset = CORE_CFP_MASK_PORT(2);
291 else
292 offset = CORE_CFP_DATA_PORT(2);
293 core_writel(priv, reg, offset);
294
295 /* UDF_n_A3 [31:24]
296 * UDF_n_A2 [23:8]
297 * UDF_n_A1 [7:0]
298 */
299 reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 if (mask)
303 offset = CORE_CFP_MASK_PORT(1);
304 else
305 offset = CORE_CFP_DATA_PORT(1);
306 core_writel(priv, reg, offset);
307
308 /* UDF_n_A1 [31:24]
309 * UDF_n_A0 [23:8]
310 * Reserved [7:4]
311 * Slice ID [3:2]
312 * Slice valid [1:0]
313 */
314 reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 SLICE_NUM(slice_num) | SLICE_VALID;
317 if (mask)
318 offset = CORE_CFP_MASK_PORT(0);
319 else
320 offset = CORE_CFP_DATA_PORT(0);
321 core_writel(priv, reg, offset);
322 }
323
324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 unsigned int port_num,
326 unsigned int queue_num,
327 struct ethtool_rx_flow_spec *fs)
328 {
329 struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 const struct cfp_udf_layout *layout;
331 unsigned int slice_num, rule_index;
332 u8 ip_proto, ip_frag;
333 u8 num_udf;
334 u32 reg;
335 int ret;
336
337 switch (fs->flow_type & ~FLOW_EXT) {
338 case TCP_V4_FLOW:
339 ip_proto = IPPROTO_TCP;
340 v4_spec = &fs->h_u.tcp_ip4_spec;
341 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 break;
343 case UDP_V4_FLOW:
344 ip_proto = IPPROTO_UDP;
345 v4_spec = &fs->h_u.udp_ip4_spec;
346 v4_m_spec = &fs->m_u.udp_ip4_spec;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354 /* Locate the first rule available */
355 if (fs->location == RX_CLS_LOC_ANY)
356 rule_index = find_first_zero_bit(priv->cfp.used,
357 bcm_sf2_cfp_rule_size(priv));
358 else
359 rule_index = fs->location;
360
361 layout = &udf_tcpip4_layout;
362 /* We only use one UDF slice for now */
363 slice_num = bcm_sf2_get_slice_number(layout, 0);
364 if (slice_num == UDF_NUM_SLICES)
365 return -EINVAL;
366
367 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
368
369 /* Apply the UDF layout for this filter */
370 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
371
372 /* Apply to all packets received through this port */
373 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
374
375 /* Source port map match */
376 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
377
378 /* S-Tag status [31:30]
379 * C-Tag status [29:28]
380 * L2 framing [27:26]
381 * L3 framing [25:24]
382 * IP ToS [23:16]
383 * IP proto [15:08]
384 * IP Fragm [7]
385 * Non 1st frag [6]
386 * IP Authen [5]
387 * TTL range [4:3]
388 * PPPoE session [2]
389 * Reserved [1]
390 * UDF_Valid[8] [0]
391 */
392 core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
393 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
394 udf_upper_bits(num_udf),
395 CORE_CFP_DATA_PORT(6));
396
397 /* Mask with the specific layout for IPv4 packets */
398 core_writel(priv, layout->udfs[slice_num].mask_value |
399 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
400
401 /* UDF_Valid[7:0] [31:24]
402 * S-Tag [23:8]
403 * C-Tag [7:0]
404 */
405 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
406
407 /* Mask all but valid UDFs */
408 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
409
410 /* Program the match and the mask */
411 bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
412 bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
413
414 /* Insert into TCAM now */
415 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
416
417 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
418 if (ret) {
419 pr_err("TCAM entry at addr %d failed\n", rule_index);
420 return ret;
421 }
422
423 /* Insert into Action and policer RAMs now */
424 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
425 queue_num, true);
426 if (ret)
427 return ret;
428
429 /* Turn on CFP for this rule now */
430 reg = core_readl(priv, CORE_CFP_CTL_REG);
431 reg |= BIT(port);
432 core_writel(priv, reg, CORE_CFP_CTL_REG);
433
434 /* Flag the rule as being used and return it */
435 set_bit(rule_index, priv->cfp.used);
436 set_bit(rule_index, priv->cfp.unique);
437 fs->location = rule_index;
438
439 return 0;
440 }
441
442 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
443 const __be32 *ip6_addr, const __be16 port,
444 unsigned int slice_num,
445 bool mask)
446 {
447 u32 reg, tmp, val, offset;
448
449 /* C-Tag [31:24]
450 * UDF_n_B8 [23:8] (port)
451 * UDF_n_B7 (upper) [7:0] (addr[15:8])
452 */
453 reg = be32_to_cpu(ip6_addr[3]);
454 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
455 if (mask)
456 offset = CORE_CFP_MASK_PORT(4);
457 else
458 offset = CORE_CFP_DATA_PORT(4);
459 core_writel(priv, val, offset);
460
461 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
462 * UDF_n_B6 [23:8] (addr[31:16])
463 * UDF_n_B5 (upper) [7:0] (addr[47:40])
464 */
465 tmp = be32_to_cpu(ip6_addr[2]);
466 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
467 ((tmp >> 8) & 0xff);
468 if (mask)
469 offset = CORE_CFP_MASK_PORT(3);
470 else
471 offset = CORE_CFP_DATA_PORT(3);
472 core_writel(priv, val, offset);
473
474 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
475 * UDF_n_B4 [23:8] (addr[63:48])
476 * UDF_n_B3 (upper) [7:0] (addr[79:72])
477 */
478 reg = be32_to_cpu(ip6_addr[1]);
479 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
480 ((reg >> 8) & 0xff);
481 if (mask)
482 offset = CORE_CFP_MASK_PORT(2);
483 else
484 offset = CORE_CFP_DATA_PORT(2);
485 core_writel(priv, val, offset);
486
487 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
488 * UDF_n_B2 [23:8] (addr[95:80])
489 * UDF_n_B1 (upper) [7:0] (addr[111:104])
490 */
491 tmp = be32_to_cpu(ip6_addr[0]);
492 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
493 ((tmp >> 8) & 0xff);
494 if (mask)
495 offset = CORE_CFP_MASK_PORT(1);
496 else
497 offset = CORE_CFP_DATA_PORT(1);
498 core_writel(priv, val, offset);
499
500 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
501 * UDF_n_B0 [23:8] (addr[127:112])
502 * Reserved [7:4]
503 * Slice ID [3:2]
504 * Slice valid [1:0]
505 */
506 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507 SLICE_NUM(slice_num) | SLICE_VALID;
508 if (mask)
509 offset = CORE_CFP_MASK_PORT(0);
510 else
511 offset = CORE_CFP_DATA_PORT(0);
512 core_writel(priv, reg, offset);
513 }
514
515 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
516 unsigned int port_num,
517 unsigned int queue_num,
518 struct ethtool_rx_flow_spec *fs)
519 {
520 struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
521 unsigned int slice_num, rule_index[2];
522 const struct cfp_udf_layout *layout;
523 u8 ip_proto, ip_frag;
524 int ret = 0;
525 u8 num_udf;
526 u32 reg;
527
528 switch (fs->flow_type & ~FLOW_EXT) {
529 case TCP_V6_FLOW:
530 ip_proto = IPPROTO_TCP;
531 v6_spec = &fs->h_u.tcp_ip6_spec;
532 v6_m_spec = &fs->m_u.tcp_ip6_spec;
533 break;
534 case UDP_V6_FLOW:
535 ip_proto = IPPROTO_UDP;
536 v6_spec = &fs->h_u.udp_ip6_spec;
537 v6_m_spec = &fs->m_u.udp_ip6_spec;
538 break;
539 default:
540 return -EINVAL;
541 }
542
543 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
544
545 layout = &udf_tcpip6_layout;
546 slice_num = bcm_sf2_get_slice_number(layout, 0);
547 if (slice_num == UDF_NUM_SLICES)
548 return -EINVAL;
549
550 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
551
552 /* Negotiate two indexes, one for the second half which we are chained
553 * from, which is what we will return to user-space, and a second one
554 * which is used to store its first half. That first half does not
555 * allow any choice of placement, so it just needs to find the next
556 * available bit. We return the second half as fs->location because
557 * that helps with the rule lookup later on since the second half is
558 * chained from its first half, we can easily identify IPv6 CFP rules
559 * by looking whether they carry a CHAIN_ID.
560 *
561 * We also want the second half to have a lower rule_index than its
562 * first half because the HW search is by incrementing addresses.
563 */
564 if (fs->location == RX_CLS_LOC_ANY)
565 rule_index[0] = find_first_zero_bit(priv->cfp.used,
566 bcm_sf2_cfp_rule_size(priv));
567 else
568 rule_index[0] = fs->location;
569
570 /* Flag it as used (cleared on error path) such that we can immediately
571 * obtain a second one to chain from.
572 */
573 set_bit(rule_index[0], priv->cfp.used);
574
575 rule_index[1] = find_first_zero_bit(priv->cfp.used,
576 bcm_sf2_cfp_rule_size(priv));
577 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
578 ret = -ENOSPC;
579 goto out_err;
580 }
581
582 /* Apply the UDF layout for this filter */
583 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
584
585 /* Apply to all packets received through this port */
586 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
587
588 /* Source port map match */
589 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
590
591 /* S-Tag status [31:30]
592 * C-Tag status [29:28]
593 * L2 framing [27:26]
594 * L3 framing [25:24]
595 * IP ToS [23:16]
596 * IP proto [15:08]
597 * IP Fragm [7]
598 * Non 1st frag [6]
599 * IP Authen [5]
600 * TTL range [4:3]
601 * PPPoE session [2]
602 * Reserved [1]
603 * UDF_Valid[8] [0]
604 */
605 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
606 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
607 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
608
609 /* Mask with the specific layout for IPv6 packets including
610 * UDF_Valid[8]
611 */
612 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
613 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
614
615 /* UDF_Valid[7:0] [31:24]
616 * S-Tag [23:8]
617 * C-Tag [7:0]
618 */
619 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
620
621 /* Mask all but valid UDFs */
622 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
623
624 /* Slice the IPv6 source address and port */
625 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
626 slice_num, false);
627 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
628 SLICE_NUM_MASK, true);
629
630 /* Insert into TCAM now because we need to insert a second rule */
631 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
632
633 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
634 if (ret) {
635 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
636 goto out_err;
637 }
638
639 /* Insert into Action and policer RAMs now */
640 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
641 queue_num, false);
642 if (ret)
643 goto out_err;
644
645 /* Now deal with the second slice to chain this rule */
646 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
647 if (slice_num == UDF_NUM_SLICES) {
648 ret = -EINVAL;
649 goto out_err;
650 }
651
652 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
653
654 /* Apply the UDF layout for this filter */
655 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
656
657 /* Chained rule, source port match is coming from the rule we are
658 * chained from.
659 */
660 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
661 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
662
663 /*
664 * CHAIN ID [31:24] chain to previous slice
665 * Reserved [23:20]
666 * UDF_Valid[11:8] [19:16]
667 * UDF_Valid[7:0] [15:8]
668 * UDF_n_D11 [7:0]
669 */
670 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
671 udf_lower_bits(num_udf) << 8;
672 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
673
674 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
675 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
676 udf_lower_bits(num_udf) << 8;
677 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
678
679 /* Don't care */
680 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
681
682 /* Mask all */
683 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
684
685 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
686 false);
687 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
688 SLICE_NUM_MASK, true);
689
690 /* Insert into TCAM now */
691 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
692
693 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
694 if (ret) {
695 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
696 goto out_err;
697 }
698
699 /* Insert into Action and policer RAMs now, set chain ID to
700 * the one we are chained to
701 */
702 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
703 queue_num, true);
704 if (ret)
705 goto out_err;
706
707 /* Turn on CFP for this rule now */
708 reg = core_readl(priv, CORE_CFP_CTL_REG);
709 reg |= BIT(port);
710 core_writel(priv, reg, CORE_CFP_CTL_REG);
711
712 /* Flag the second half rule as being used now, return it as the
713 * location, and flag it as unique while dumping rules
714 */
715 set_bit(rule_index[1], priv->cfp.used);
716 set_bit(rule_index[1], priv->cfp.unique);
717 fs->location = rule_index[1];
718
719 return ret;
720
721 out_err:
722 clear_bit(rule_index[0], priv->cfp.used);
723 return ret;
724 }
725
726 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
727 struct ethtool_rx_flow_spec *fs)
728 {
729 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
730 unsigned int queue_num, port_num;
731 int ret = -EINVAL;
732
733 /* Check for unsupported extensions */
734 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
735 fs->m_ext.data[1]))
736 return -EINVAL;
737
738 if (fs->location != RX_CLS_LOC_ANY &&
739 test_bit(fs->location, priv->cfp.used))
740 return -EBUSY;
741
742 if (fs->location != RX_CLS_LOC_ANY &&
743 fs->location > bcm_sf2_cfp_rule_size(priv))
744 return -EINVAL;
745
746 /* We do not support discarding packets, check that the
747 * destination port is enabled and that we are within the
748 * number of ports supported by the switch
749 */
750 port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
751
752 if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
753 !dsa_is_user_port(ds, port_num) ||
754 port_num >= priv->hw_params.num_ports)
755 return -EINVAL;
756 /*
757 * We have a small oddity where Port 6 just does not have a
758 * valid bit here (so we substract by one).
759 */
760 queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
761 if (port_num >= 7)
762 port_num -= 1;
763
764 switch (fs->flow_type & ~FLOW_EXT) {
765 case TCP_V4_FLOW:
766 case UDP_V4_FLOW:
767 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
768 queue_num, fs);
769 break;
770 case TCP_V6_FLOW:
771 case UDP_V6_FLOW:
772 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
773 queue_num, fs);
774 break;
775 default:
776 break;
777 }
778
779 return ret;
780 }
781
782 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
783 u32 loc, u32 *next_loc)
784 {
785 int ret;
786 u32 reg;
787
788 /* Refuse deletion of unused rules, and the default reserved rule */
789 if (!test_bit(loc, priv->cfp.used) || loc == 0)
790 return -EINVAL;
791
792 /* Indicate which rule we want to read */
793 bcm_sf2_cfp_rule_addr_set(priv, loc);
794
795 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
796 if (ret)
797 return ret;
798
799 /* Check if this is possibly an IPv6 rule that would
800 * indicate we need to delete its companion rule
801 * as well
802 */
803 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
804 if (next_loc)
805 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
806
807 /* Clear its valid bits */
808 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
809 reg &= ~SLICE_VALID;
810 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
811
812 /* Write back this entry into the TCAM now */
813 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
814 if (ret)
815 return ret;
816
817 clear_bit(loc, priv->cfp.used);
818 clear_bit(loc, priv->cfp.unique);
819
820 return 0;
821 }
822
823 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
824 u32 loc)
825 {
826 u32 next_loc = 0;
827 int ret;
828
829 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
830 if (ret)
831 return ret;
832
833 /* If this was an IPv6 rule, delete is companion rule too */
834 if (next_loc)
835 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
836
837 return ret;
838 }
839
840 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
841 {
842 unsigned int i;
843
844 for (i = 0; i < sizeof(flow->m_u); i++)
845 flow->m_u.hdata[i] ^= 0xff;
846
847 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
848 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
849 flow->m_ext.data[0] ^= cpu_to_be32(~0);
850 flow->m_ext.data[1] ^= cpu_to_be32(~0);
851 }
852
853 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
854 struct ethtool_tcpip4_spec *v4_spec,
855 bool mask)
856 {
857 u32 reg, offset, ipv4;
858 u16 src_dst_port;
859
860 if (mask)
861 offset = CORE_CFP_MASK_PORT(3);
862 else
863 offset = CORE_CFP_DATA_PORT(3);
864
865 reg = core_readl(priv, offset);
866 /* src port [15:8] */
867 src_dst_port = reg << 8;
868
869 if (mask)
870 offset = CORE_CFP_MASK_PORT(2);
871 else
872 offset = CORE_CFP_DATA_PORT(2);
873
874 reg = core_readl(priv, offset);
875 /* src port [7:0] */
876 src_dst_port |= (reg >> 24);
877
878 v4_spec->pdst = cpu_to_be16(src_dst_port);
879 v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
880
881 /* IPv4 dst [15:8] */
882 ipv4 = (reg & 0xff) << 8;
883
884 if (mask)
885 offset = CORE_CFP_MASK_PORT(1);
886 else
887 offset = CORE_CFP_DATA_PORT(1);
888
889 reg = core_readl(priv, offset);
890 /* IPv4 dst [31:16] */
891 ipv4 |= ((reg >> 8) & 0xffff) << 16;
892 /* IPv4 dst [7:0] */
893 ipv4 |= (reg >> 24) & 0xff;
894 v4_spec->ip4dst = cpu_to_be32(ipv4);
895
896 /* IPv4 src [15:8] */
897 ipv4 = (reg & 0xff) << 8;
898
899 if (mask)
900 offset = CORE_CFP_MASK_PORT(0);
901 else
902 offset = CORE_CFP_DATA_PORT(0);
903 reg = core_readl(priv, offset);
904
905 /* Once the TCAM is programmed, the mask reflects the slice number
906 * being matched, don't bother checking it when reading back the
907 * mask spec
908 */
909 if (!mask && !(reg & SLICE_VALID))
910 return -EINVAL;
911
912 /* IPv4 src [7:0] */
913 ipv4 |= (reg >> 24) & 0xff;
914 /* IPv4 src [31:16] */
915 ipv4 |= ((reg >> 8) & 0xffff) << 16;
916 v4_spec->ip4src = cpu_to_be32(ipv4);
917
918 return 0;
919 }
920
921 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
922 struct ethtool_rx_flow_spec *fs)
923 {
924 struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
925 u32 reg;
926 int ret;
927
928 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
929
930 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
931 case IPPROTO_TCP:
932 fs->flow_type = TCP_V4_FLOW;
933 v4_spec = &fs->h_u.tcp_ip4_spec;
934 v4_m_spec = &fs->m_u.tcp_ip4_spec;
935 break;
936 case IPPROTO_UDP:
937 fs->flow_type = UDP_V4_FLOW;
938 v4_spec = &fs->h_u.udp_ip4_spec;
939 v4_m_spec = &fs->m_u.udp_ip4_spec;
940 break;
941 default:
942 return -EINVAL;
943 }
944
945 fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
946 v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
947
948 ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
949 if (ret)
950 return ret;
951
952 return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
953 }
954
955 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
956 __be32 *ip6_addr, __be16 *port,
957 bool mask)
958 {
959 u32 reg, tmp, offset;
960
961 /* C-Tag [31:24]
962 * UDF_n_B8 [23:8] (port)
963 * UDF_n_B7 (upper) [7:0] (addr[15:8])
964 */
965 if (mask)
966 offset = CORE_CFP_MASK_PORT(4);
967 else
968 offset = CORE_CFP_DATA_PORT(4);
969 reg = core_readl(priv, offset);
970 *port = cpu_to_be32(reg) >> 8;
971 tmp = (u32)(reg & 0xff) << 8;
972
973 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
974 * UDF_n_B6 [23:8] (addr[31:16])
975 * UDF_n_B5 (upper) [7:0] (addr[47:40])
976 */
977 if (mask)
978 offset = CORE_CFP_MASK_PORT(3);
979 else
980 offset = CORE_CFP_DATA_PORT(3);
981 reg = core_readl(priv, offset);
982 tmp |= (reg >> 24) & 0xff;
983 tmp |= (u32)((reg >> 8) << 16);
984 ip6_addr[3] = cpu_to_be32(tmp);
985 tmp = (u32)(reg & 0xff) << 8;
986
987 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
988 * UDF_n_B4 [23:8] (addr[63:48])
989 * UDF_n_B3 (upper) [7:0] (addr[79:72])
990 */
991 if (mask)
992 offset = CORE_CFP_MASK_PORT(2);
993 else
994 offset = CORE_CFP_DATA_PORT(2);
995 reg = core_readl(priv, offset);
996 tmp |= (reg >> 24) & 0xff;
997 tmp |= (u32)((reg >> 8) << 16);
998 ip6_addr[2] = cpu_to_be32(tmp);
999 tmp = (u32)(reg & 0xff) << 8;
1000
1001 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
1002 * UDF_n_B2 [23:8] (addr[95:80])
1003 * UDF_n_B1 (upper) [7:0] (addr[111:104])
1004 */
1005 if (mask)
1006 offset = CORE_CFP_MASK_PORT(1);
1007 else
1008 offset = CORE_CFP_DATA_PORT(1);
1009 reg = core_readl(priv, offset);
1010 tmp |= (reg >> 24) & 0xff;
1011 tmp |= (u32)((reg >> 8) << 16);
1012 ip6_addr[1] = cpu_to_be32(tmp);
1013 tmp = (u32)(reg & 0xff) << 8;
1014
1015 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
1016 * UDF_n_B0 [23:8] (addr[127:112])
1017 * Reserved [7:4]
1018 * Slice ID [3:2]
1019 * Slice valid [1:0]
1020 */
1021 if (mask)
1022 offset = CORE_CFP_MASK_PORT(0);
1023 else
1024 offset = CORE_CFP_DATA_PORT(0);
1025 reg = core_readl(priv, offset);
1026 tmp |= (reg >> 24) & 0xff;
1027 tmp |= (u32)((reg >> 8) << 16);
1028 ip6_addr[0] = cpu_to_be32(tmp);
1029
1030 if (!mask && !(reg & SLICE_VALID))
1031 return -EINVAL;
1032
1033 return 0;
1034 }
1035
1036 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1037 struct ethtool_rx_flow_spec *fs,
1038 u32 next_loc)
1039 {
1040 struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1041 u32 reg;
1042 int ret;
1043
1044 /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1045 * assuming tcp_ip6_spec here being an union.
1046 */
1047 v6_spec = &fs->h_u.tcp_ip6_spec;
1048 v6_m_spec = &fs->m_u.tcp_ip6_spec;
1049
1050 /* Read the second half first */
1051 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1052 false);
1053 if (ret)
1054 return ret;
1055
1056 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1057 &v6_m_spec->pdst, true);
1058 if (ret)
1059 return ret;
1060
1061 /* Read last to avoid next entry clobbering the results during search
1062 * operations. We would not have the port enabled for this rule, so
1063 * don't bother checking it.
1064 */
1065 (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1066
1067 /* The slice number is valid, so read the rule we are chained from now
1068 * which is our first half.
1069 */
1070 bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1071 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1072 if (ret)
1073 return ret;
1074
1075 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1076
1077 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1078 case IPPROTO_TCP:
1079 fs->flow_type = TCP_V6_FLOW;
1080 break;
1081 case IPPROTO_UDP:
1082 fs->flow_type = UDP_V6_FLOW;
1083 break;
1084 default:
1085 return -EINVAL;
1086 }
1087
1088 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1089 false);
1090 if (ret)
1091 return ret;
1092
1093 return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1094 &v6_m_spec->psrc, true);
1095 }
1096
1097 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1098 struct ethtool_rxnfc *nfc)
1099 {
1100 u32 reg, ipv4_or_chain_id;
1101 unsigned int queue_num;
1102 int ret;
1103
1104 bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1105
1106 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1107 if (ret)
1108 return ret;
1109
1110 reg = core_readl(priv, CORE_ACT_POL_DATA0);
1111
1112 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1113 if (ret)
1114 return ret;
1115
1116 /* Extract the destination port */
1117 nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1118 DST_MAP_IB_MASK) - 1;
1119
1120 /* There is no Port 6, so we compensate for that here */
1121 if (nfc->fs.ring_cookie >= 6)
1122 nfc->fs.ring_cookie++;
1123 nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1124
1125 /* Extract the destination queue */
1126 queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1127 nfc->fs.ring_cookie += queue_num;
1128
1129 /* Extract the L3_FRAMING or CHAIN_ID */
1130 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1131
1132 /* With IPv6 rules this would contain a non-zero chain ID since
1133 * we reserve entry 0 and it cannot be used. So if we read 0 here
1134 * this means an IPv4 rule.
1135 */
1136 ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1137 if (ipv4_or_chain_id == 0)
1138 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1139 else
1140 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1141 ipv4_or_chain_id);
1142 if (ret)
1143 return ret;
1144
1145 /* Read last to avoid next entry clobbering the results during search
1146 * operations
1147 */
1148 reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1149 if (!(reg & 1 << port))
1150 return -EINVAL;
1151
1152 bcm_sf2_invert_masks(&nfc->fs);
1153
1154 /* Put the TCAM size here */
1155 nfc->data = bcm_sf2_cfp_rule_size(priv);
1156
1157 return 0;
1158 }
1159
1160 /* We implement the search doing a TCAM search operation */
1161 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1162 int port, struct ethtool_rxnfc *nfc,
1163 u32 *rule_locs)
1164 {
1165 unsigned int index = 1, rules_cnt = 0;
1166
1167 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1168 rule_locs[rules_cnt] = index;
1169 rules_cnt++;
1170 }
1171
1172 /* Put the TCAM size here */
1173 nfc->data = bcm_sf2_cfp_rule_size(priv);
1174 nfc->rule_cnt = rules_cnt;
1175
1176 return 0;
1177 }
1178
1179 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1180 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1181 {
1182 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1183 int ret = 0;
1184
1185 mutex_lock(&priv->cfp.lock);
1186
1187 switch (nfc->cmd) {
1188 case ETHTOOL_GRXCLSRLCNT:
1189 /* Subtract the default, unusable rule */
1190 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1191 priv->num_cfp_rules) - 1;
1192 /* We support specifying rule locations */
1193 nfc->data |= RX_CLS_LOC_SPECIAL;
1194 break;
1195 case ETHTOOL_GRXCLSRULE:
1196 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1197 break;
1198 case ETHTOOL_GRXCLSRLALL:
1199 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1200 break;
1201 default:
1202 ret = -EOPNOTSUPP;
1203 break;
1204 }
1205
1206 mutex_unlock(&priv->cfp.lock);
1207
1208 return ret;
1209 }
1210
1211 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1212 struct ethtool_rxnfc *nfc)
1213 {
1214 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215 int ret = 0;
1216
1217 mutex_lock(&priv->cfp.lock);
1218
1219 switch (nfc->cmd) {
1220 case ETHTOOL_SRXCLSRLINS:
1221 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1222 break;
1223
1224 case ETHTOOL_SRXCLSRLDEL:
1225 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1226 break;
1227 default:
1228 ret = -EOPNOTSUPP;
1229 break;
1230 }
1231
1232 mutex_unlock(&priv->cfp.lock);
1233
1234 return ret;
1235 }
1236
1237 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1238 {
1239 unsigned int timeout = 1000;
1240 u32 reg;
1241
1242 reg = core_readl(priv, CORE_CFP_ACC);
1243 reg |= TCAM_RESET;
1244 core_writel(priv, reg, CORE_CFP_ACC);
1245
1246 do {
1247 reg = core_readl(priv, CORE_CFP_ACC);
1248 if (!(reg & TCAM_RESET))
1249 break;
1250
1251 cpu_relax();
1252 } while (timeout--);
1253
1254 if (!timeout)
1255 return -ETIMEDOUT;
1256
1257 return 0;
1258 }