]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/dsa/lantiq_gswip.c
net: dsa: be compatible with masters which unregister on shutdown
[mirror_ubuntu-jammy-kernel.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB 0x00
52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
53 #define GSWIP_MDIO_CTRL 0x08
54 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
55 #define GSWIP_MDIO_CTRL_RD BIT(11)
56 #define GSWIP_MDIO_CTRL_WR BIT(10)
57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
60 #define GSWIP_MDIO_READ 0x09
61 #define GSWIP_MDIO_WRITE 0x0A
62 #define GSWIP_MDIO_MDC_CFG0 0x0B
63 #define GSWIP_MDIO_MDC_CFG1 0x0C
64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
88 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 GSWIP_MDIO_PHY_LINK_MASK | \
91 GSWIP_MDIO_PHY_SPEED_MASK | \
92 GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p) (0x2 * (p))
96 #define GSWIP_MII_CFG_RESET BIT(15)
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_ISOLATE BIT(13)
99 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
100 #define GSWIP_MII_CFG_RGMII_IBS BIT(8)
101 #define GSWIP_MII_CFG_RMII_CLK BIT(7)
102 #define GSWIP_MII_CFG_MODE_MIIP 0x0
103 #define GSWIP_MII_CFG_MODE_MIIM 0x1
104 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
105 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
106 #define GSWIP_MII_CFG_MODE_RGMII 0x4
107 #define GSWIP_MII_CFG_MODE_GMII 0x9
108 #define GSWIP_MII_CFG_MODE_MASK 0xf
109 #define GSWIP_MII_CFG_RATE_M2P5 0x00
110 #define GSWIP_MII_CFG_RATE_M25 0x10
111 #define GSWIP_MII_CFG_RATE_M125 0x20
112 #define GSWIP_MII_CFG_RATE_M50 0x30
113 #define GSWIP_MII_CFG_RATE_AUTO 0x40
114 #define GSWIP_MII_CFG_RATE_MASK 0x70
115 #define GSWIP_MII_PCDU0 0x01
116 #define GSWIP_MII_PCDU1 0x03
117 #define GSWIP_MII_PCDU5 0x05
118 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
119 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES 0x000
123 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
124 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
125 #define GSWIP_VERSION 0x013
126 #define GSWIP_VERSION_REV_SHIFT 0
127 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
128 #define GSWIP_VERSION_MOD_SHIFT 8
129 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
130 #define GSWIP_VERSION_2_0 0x100
131 #define GSWIP_VERSION_2_1 0x021
132 #define GSWIP_VERSION_2_2 0x122
133 #define GSWIP_VERSION_2_2_ETC 0x022
134
135 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR 0x044
137 #define GSWIP_BM_RAM_CTRL 0x045
138 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
139 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
140 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL 0x04A
142 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
145 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
146 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
149 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
150 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK 0x448
155 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR 0x44E
157 #define GSWIP_PCE_TBL_CTRL 0x44F
158 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
159 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
160 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
161 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
162 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
164 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
165 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
166 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
167 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
168 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0 0x456
173 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
174 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
175 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1 0x457
177 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
178 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
180 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
181 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
182 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
183 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
184 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
185 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
186 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
187 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
188 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
190 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
191 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
192 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
193 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
194 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN 0x8C5
198 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC))
199 #define GSWIP_MAC_CTRL_0_PADEN BIT(8)
200 #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7)
201 #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070
202 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000
203 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010
204 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020
205 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030
206 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040
207 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C
208 #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000
209 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004
210 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C
211 #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003
212 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000
213 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001
214 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002
215 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
217
218 /* Ethernet Switch Fetch DMA Port Control Register */
219 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
220 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
221 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
222 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
223 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
224 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228
229 /* Ethernet Switch Store DMA Port Control Register */
230 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
231 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
232 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
233 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */
234
235 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
236 #define GSWIP_TABLE_VLAN_MAPPING 0x02
237 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
238 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
239
240 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
241
242 struct gswip_hw_info {
243 int max_ports;
244 int cpu_port;
245 const struct dsa_switch_ops *ops;
246 };
247
248 struct xway_gphy_match_data {
249 char *fe_firmware_name;
250 char *ge_firmware_name;
251 };
252
253 struct gswip_gphy_fw {
254 struct clk *clk_gate;
255 struct reset_control *reset;
256 u32 fw_addr_offset;
257 char *fw_name;
258 };
259
260 struct gswip_vlan {
261 struct net_device *bridge;
262 u16 vid;
263 u8 fid;
264 };
265
266 struct gswip_priv {
267 __iomem void *gswip;
268 __iomem void *mdio;
269 __iomem void *mii;
270 const struct gswip_hw_info *hw_info;
271 const struct xway_gphy_match_data *gphy_fw_name_cfg;
272 struct dsa_switch *ds;
273 struct device *dev;
274 struct regmap *rcu_regmap;
275 struct gswip_vlan vlans[64];
276 int num_gphy_fw;
277 struct gswip_gphy_fw *gphy_fw;
278 u32 port_vlan_filter;
279 };
280
281 struct gswip_pce_table_entry {
282 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
283 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
284 u16 key[8];
285 u16 val[5];
286 u16 mask;
287 u8 gmap;
288 bool type;
289 bool valid;
290 bool key_mode;
291 };
292
293 struct gswip_rmon_cnt_desc {
294 unsigned int size;
295 unsigned int offset;
296 const char *name;
297 };
298
299 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
300
301 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
302 /** Receive Packet Count (only packets that are accepted and not discarded). */
303 MIB_DESC(1, 0x1F, "RxGoodPkts"),
304 MIB_DESC(1, 0x23, "RxUnicastPkts"),
305 MIB_DESC(1, 0x22, "RxMulticastPkts"),
306 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
307 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
308 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
309 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
310 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
311 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
312 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
313 MIB_DESC(1, 0x12, "Rx64BytePkts"),
314 MIB_DESC(1, 0x13, "Rx127BytePkts"),
315 MIB_DESC(1, 0x14, "Rx255BytePkts"),
316 MIB_DESC(1, 0x15, "Rx511BytePkts"),
317 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
318 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
319 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
320 MIB_DESC(1, 0x18, "RxDroppedPkts"),
321 MIB_DESC(1, 0x19, "RxFilteredPkts"),
322 MIB_DESC(2, 0x24, "RxGoodBytes"),
323 MIB_DESC(2, 0x26, "RxBadBytes"),
324 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
325 MIB_DESC(1, 0x0C, "TxGoodPkts"),
326 MIB_DESC(1, 0x06, "TxUnicastPkts"),
327 MIB_DESC(1, 0x07, "TxMulticastPkts"),
328 MIB_DESC(1, 0x00, "Tx64BytePkts"),
329 MIB_DESC(1, 0x01, "Tx127BytePkts"),
330 MIB_DESC(1, 0x02, "Tx255BytePkts"),
331 MIB_DESC(1, 0x03, "Tx511BytePkts"),
332 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
333 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
334 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
335 MIB_DESC(1, 0x08, "TxSingleCollCount"),
336 MIB_DESC(1, 0x09, "TxMultCollCount"),
337 MIB_DESC(1, 0x0A, "TxLateCollCount"),
338 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
339 MIB_DESC(1, 0x0D, "TxPauseCount"),
340 MIB_DESC(1, 0x10, "TxDroppedPkts"),
341 MIB_DESC(2, 0x0E, "TxGoodBytes"),
342 };
343
344 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
345 {
346 return __raw_readl(priv->gswip + (offset * 4));
347 }
348
349 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
350 {
351 __raw_writel(val, priv->gswip + (offset * 4));
352 }
353
354 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
355 u32 offset)
356 {
357 u32 val = gswip_switch_r(priv, offset);
358
359 val &= ~(clear);
360 val |= set;
361 gswip_switch_w(priv, val, offset);
362 }
363
364 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
365 u32 cleared)
366 {
367 u32 val;
368
369 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
370 (val & cleared) == 0, 20, 50000);
371 }
372
373 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
374 {
375 return __raw_readl(priv->mdio + (offset * 4));
376 }
377
378 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
379 {
380 __raw_writel(val, priv->mdio + (offset * 4));
381 }
382
383 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
384 u32 offset)
385 {
386 u32 val = gswip_mdio_r(priv, offset);
387
388 val &= ~(clear);
389 val |= set;
390 gswip_mdio_w(priv, val, offset);
391 }
392
393 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
394 {
395 return __raw_readl(priv->mii + (offset * 4));
396 }
397
398 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
399 {
400 __raw_writel(val, priv->mii + (offset * 4));
401 }
402
403 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
404 u32 offset)
405 {
406 u32 val = gswip_mii_r(priv, offset);
407
408 val &= ~(clear);
409 val |= set;
410 gswip_mii_w(priv, val, offset);
411 }
412
413 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
414 int port)
415 {
416 /* There's no MII_CFG register for the CPU port */
417 if (!dsa_is_cpu_port(priv->ds, port))
418 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
419 }
420
421 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
422 int port)
423 {
424 switch (port) {
425 case 0:
426 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
427 break;
428 case 1:
429 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
430 break;
431 case 5:
432 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
433 break;
434 }
435 }
436
437 static int gswip_mdio_poll(struct gswip_priv *priv)
438 {
439 int cnt = 100;
440
441 while (likely(cnt--)) {
442 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
443
444 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
445 return 0;
446 usleep_range(20, 40);
447 }
448
449 return -ETIMEDOUT;
450 }
451
452 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
453 {
454 struct gswip_priv *priv = bus->priv;
455 int err;
456
457 err = gswip_mdio_poll(priv);
458 if (err) {
459 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
460 return err;
461 }
462
463 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
464 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
465 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
466 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
467 GSWIP_MDIO_CTRL);
468
469 return 0;
470 }
471
472 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
473 {
474 struct gswip_priv *priv = bus->priv;
475 int err;
476
477 err = gswip_mdio_poll(priv);
478 if (err) {
479 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
480 return err;
481 }
482
483 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
484 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
485 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
486 GSWIP_MDIO_CTRL);
487
488 err = gswip_mdio_poll(priv);
489 if (err) {
490 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 return err;
492 }
493
494 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
495 }
496
497 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
498 {
499 struct dsa_switch *ds = priv->ds;
500
501 ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
502 if (!ds->slave_mii_bus)
503 return -ENOMEM;
504
505 ds->slave_mii_bus->priv = priv;
506 ds->slave_mii_bus->read = gswip_mdio_rd;
507 ds->slave_mii_bus->write = gswip_mdio_wr;
508 ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
509 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
510 dev_name(priv->dev));
511 ds->slave_mii_bus->parent = priv->dev;
512 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
513
514 return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
515 }
516
517 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
518 struct gswip_pce_table_entry *tbl)
519 {
520 int i;
521 int err;
522 u16 crtl;
523 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
524 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
525
526 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
527 GSWIP_PCE_TBL_CTRL_BAS);
528 if (err)
529 return err;
530
531 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
532 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
533 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
534 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
535 GSWIP_PCE_TBL_CTRL);
536
537 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
538 GSWIP_PCE_TBL_CTRL_BAS);
539 if (err)
540 return err;
541
542 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
543 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
544
545 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
546 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
547
548 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
549
550 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
551
552 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
553 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
554 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
555
556 return 0;
557 }
558
559 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
560 struct gswip_pce_table_entry *tbl)
561 {
562 int i;
563 int err;
564 u16 crtl;
565 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
566 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
567
568 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
569 GSWIP_PCE_TBL_CTRL_BAS);
570 if (err)
571 return err;
572
573 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
574 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
575 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
576 tbl->table | addr_mode,
577 GSWIP_PCE_TBL_CTRL);
578
579 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
580 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
581
582 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
583 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
584
585 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
586 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
587 tbl->table | addr_mode,
588 GSWIP_PCE_TBL_CTRL);
589
590 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
591
592 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
593 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
594 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
595 if (tbl->type)
596 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
597 if (tbl->valid)
598 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
599 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
600 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
601 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
602
603 return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604 GSWIP_PCE_TBL_CTRL_BAS);
605 }
606
607 /* Add the LAN port into a bridge with the CPU port by
608 * default. This prevents automatic forwarding of
609 * packages between the LAN ports when no explicit
610 * bridge is configured.
611 */
612 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
613 {
614 struct gswip_pce_table_entry vlan_active = {0,};
615 struct gswip_pce_table_entry vlan_mapping = {0,};
616 unsigned int cpu_port = priv->hw_info->cpu_port;
617 unsigned int max_ports = priv->hw_info->max_ports;
618 int err;
619
620 if (port >= max_ports) {
621 dev_err(priv->dev, "single port for %i supported\n", port);
622 return -EIO;
623 }
624
625 vlan_active.index = port + 1;
626 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
627 vlan_active.key[0] = 0; /* vid */
628 vlan_active.val[0] = port + 1 /* fid */;
629 vlan_active.valid = add;
630 err = gswip_pce_table_entry_write(priv, &vlan_active);
631 if (err) {
632 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
633 return err;
634 }
635
636 if (!add)
637 return 0;
638
639 vlan_mapping.index = port + 1;
640 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
641 vlan_mapping.val[0] = 0 /* vid */;
642 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
643 vlan_mapping.val[2] = 0;
644 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
645 if (err) {
646 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
647 return err;
648 }
649
650 return 0;
651 }
652
653 static int gswip_port_enable(struct dsa_switch *ds, int port,
654 struct phy_device *phydev)
655 {
656 struct gswip_priv *priv = ds->priv;
657 int err;
658
659 if (!dsa_is_user_port(ds, port))
660 return 0;
661
662 if (!dsa_is_cpu_port(ds, port)) {
663 err = gswip_add_single_port_br(priv, port, true);
664 if (err)
665 return err;
666 }
667
668 /* RMON Counter Enable for port */
669 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
670
671 /* enable port fetch/store dma & VLAN Modification */
672 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
673 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
674 GSWIP_FDMA_PCTRLp(port));
675 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
676 GSWIP_SDMA_PCTRLp(port));
677
678 if (!dsa_is_cpu_port(ds, port)) {
679 u32 mdio_phy = 0;
680
681 if (phydev)
682 mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
683
684 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
685 GSWIP_MDIO_PHYp(port));
686 }
687
688 return 0;
689 }
690
691 static void gswip_port_disable(struct dsa_switch *ds, int port)
692 {
693 struct gswip_priv *priv = ds->priv;
694
695 if (!dsa_is_user_port(ds, port))
696 return;
697
698 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
699 GSWIP_FDMA_PCTRLp(port));
700 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
701 GSWIP_SDMA_PCTRLp(port));
702 }
703
704 static int gswip_pce_load_microcode(struct gswip_priv *priv)
705 {
706 int i;
707 int err;
708
709 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
710 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
711 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
712 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
713
714 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
715 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
716 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
717 GSWIP_PCE_TBL_VAL(0));
718 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
719 GSWIP_PCE_TBL_VAL(1));
720 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
721 GSWIP_PCE_TBL_VAL(2));
722 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
723 GSWIP_PCE_TBL_VAL(3));
724
725 /* start the table access: */
726 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
727 GSWIP_PCE_TBL_CTRL);
728 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
729 GSWIP_PCE_TBL_CTRL_BAS);
730 if (err)
731 return err;
732 }
733
734 /* tell the switch that the microcode is loaded */
735 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
736 GSWIP_PCE_GCTRL_0);
737
738 return 0;
739 }
740
741 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
742 bool vlan_filtering,
743 struct netlink_ext_ack *extack)
744 {
745 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
746 struct gswip_priv *priv = ds->priv;
747
748 /* Do not allow changing the VLAN filtering options while in bridge */
749 if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
750 NL_SET_ERR_MSG_MOD(extack,
751 "Dynamic toggling of vlan_filtering not supported");
752 return -EIO;
753 }
754
755 if (vlan_filtering) {
756 /* Use port based VLAN tag */
757 gswip_switch_mask(priv,
758 GSWIP_PCE_VCTRL_VSR,
759 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
760 GSWIP_PCE_VCTRL_VEMR,
761 GSWIP_PCE_VCTRL(port));
762 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
763 GSWIP_PCE_PCTRL_0p(port));
764 } else {
765 /* Use port based VLAN tag */
766 gswip_switch_mask(priv,
767 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
768 GSWIP_PCE_VCTRL_VEMR,
769 GSWIP_PCE_VCTRL_VSR,
770 GSWIP_PCE_VCTRL(port));
771 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
772 GSWIP_PCE_PCTRL_0p(port));
773 }
774
775 return 0;
776 }
777
778 static int gswip_setup(struct dsa_switch *ds)
779 {
780 struct gswip_priv *priv = ds->priv;
781 unsigned int cpu_port = priv->hw_info->cpu_port;
782 int i;
783 int err;
784
785 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
786 usleep_range(5000, 10000);
787 gswip_switch_w(priv, 0, GSWIP_SWRES);
788
789 /* disable port fetch/store dma on all ports */
790 for (i = 0; i < priv->hw_info->max_ports; i++) {
791 gswip_port_disable(ds, i);
792 gswip_port_vlan_filtering(ds, i, false, NULL);
793 }
794
795 /* enable Switch */
796 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
797
798 err = gswip_pce_load_microcode(priv);
799 if (err) {
800 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
801 return err;
802 }
803
804 /* Default unknown Broadcast/Multicast/Unicast port maps */
805 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
806 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
807 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
808
809 /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
810 * interoperability problem with this auto polling mechanism because
811 * their status registers think that the link is in a different state
812 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
813 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
814 * auto polling state machine consider the link being negotiated with
815 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
816 * to the switch port being completely dead (RX and TX are both not
817 * working).
818 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
819 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
820 * it would work fine for a few minutes to hours and then stop, on
821 * other device it would no traffic could be sent or received at all.
822 * Testing shows that when PHY auto polling is disabled these problems
823 * go away.
824 */
825 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
826
827 /* Configure the MDIO Clock 2.5 MHz */
828 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
829
830 /* Disable the xMII interface and clear it's isolation bit */
831 for (i = 0; i < priv->hw_info->max_ports; i++)
832 gswip_mii_mask_cfg(priv,
833 GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
834 0, i);
835
836 /* enable special tag insertion on cpu port */
837 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
838 GSWIP_FDMA_PCTRLp(cpu_port));
839
840 /* accept special tag in ingress direction */
841 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
842 GSWIP_PCE_PCTRL_0p(cpu_port));
843
844 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
845 GSWIP_MAC_CTRL_2p(cpu_port));
846 gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
847 GSWIP_MAC_FLEN);
848 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
849 GSWIP_BM_QUEUE_GCTRL);
850
851 /* VLAN aware Switching */
852 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
853
854 /* Flush MAC Table */
855 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
856
857 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
858 GSWIP_PCE_GCTRL_0_MTFL);
859 if (err) {
860 dev_err(priv->dev, "MAC flushing didn't finish\n");
861 return err;
862 }
863
864 gswip_port_enable(ds, cpu_port, NULL);
865
866 ds->configure_vlan_while_not_filtering = false;
867
868 return 0;
869 }
870
871 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
872 int port,
873 enum dsa_tag_protocol mp)
874 {
875 return DSA_TAG_PROTO_GSWIP;
876 }
877
878 static int gswip_vlan_active_create(struct gswip_priv *priv,
879 struct net_device *bridge,
880 int fid, u16 vid)
881 {
882 struct gswip_pce_table_entry vlan_active = {0,};
883 unsigned int max_ports = priv->hw_info->max_ports;
884 int idx = -1;
885 int err;
886 int i;
887
888 /* Look for a free slot */
889 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
890 if (!priv->vlans[i].bridge) {
891 idx = i;
892 break;
893 }
894 }
895
896 if (idx == -1)
897 return -ENOSPC;
898
899 if (fid == -1)
900 fid = idx;
901
902 vlan_active.index = idx;
903 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
904 vlan_active.key[0] = vid;
905 vlan_active.val[0] = fid;
906 vlan_active.valid = true;
907
908 err = gswip_pce_table_entry_write(priv, &vlan_active);
909 if (err) {
910 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
911 return err;
912 }
913
914 priv->vlans[idx].bridge = bridge;
915 priv->vlans[idx].vid = vid;
916 priv->vlans[idx].fid = fid;
917
918 return idx;
919 }
920
921 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
922 {
923 struct gswip_pce_table_entry vlan_active = {0,};
924 int err;
925
926 vlan_active.index = idx;
927 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
928 vlan_active.valid = false;
929 err = gswip_pce_table_entry_write(priv, &vlan_active);
930 if (err)
931 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
932 priv->vlans[idx].bridge = NULL;
933
934 return err;
935 }
936
937 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
938 struct net_device *bridge, int port)
939 {
940 struct gswip_pce_table_entry vlan_mapping = {0,};
941 unsigned int max_ports = priv->hw_info->max_ports;
942 unsigned int cpu_port = priv->hw_info->cpu_port;
943 bool active_vlan_created = false;
944 int idx = -1;
945 int i;
946 int err;
947
948 /* Check if there is already a page for this bridge */
949 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
950 if (priv->vlans[i].bridge == bridge) {
951 idx = i;
952 break;
953 }
954 }
955
956 /* If this bridge is not programmed yet, add a Active VLAN table
957 * entry in a free slot and prepare the VLAN mapping table entry.
958 */
959 if (idx == -1) {
960 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
961 if (idx < 0)
962 return idx;
963 active_vlan_created = true;
964
965 vlan_mapping.index = idx;
966 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
967 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
968 vlan_mapping.val[0] = 0;
969 } else {
970 /* Read the existing VLAN mapping entry from the switch */
971 vlan_mapping.index = idx;
972 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
973 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
974 if (err) {
975 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
976 err);
977 return err;
978 }
979 }
980
981 /* Update the VLAN mapping entry and write it to the switch */
982 vlan_mapping.val[1] |= BIT(cpu_port);
983 vlan_mapping.val[1] |= BIT(port);
984 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
985 if (err) {
986 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
987 /* In case an Active VLAN was creaetd delete it again */
988 if (active_vlan_created)
989 gswip_vlan_active_remove(priv, idx);
990 return err;
991 }
992
993 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
994 return 0;
995 }
996
997 static int gswip_vlan_add_aware(struct gswip_priv *priv,
998 struct net_device *bridge, int port,
999 u16 vid, bool untagged,
1000 bool pvid)
1001 {
1002 struct gswip_pce_table_entry vlan_mapping = {0,};
1003 unsigned int max_ports = priv->hw_info->max_ports;
1004 unsigned int cpu_port = priv->hw_info->cpu_port;
1005 bool active_vlan_created = false;
1006 int idx = -1;
1007 int fid = -1;
1008 int i;
1009 int err;
1010
1011 /* Check if there is already a page for this bridge */
1012 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1013 if (priv->vlans[i].bridge == bridge) {
1014 if (fid != -1 && fid != priv->vlans[i].fid)
1015 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1016 fid = priv->vlans[i].fid;
1017 if (priv->vlans[i].vid == vid) {
1018 idx = i;
1019 break;
1020 }
1021 }
1022 }
1023
1024 /* If this bridge is not programmed yet, add a Active VLAN table
1025 * entry in a free slot and prepare the VLAN mapping table entry.
1026 */
1027 if (idx == -1) {
1028 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1029 if (idx < 0)
1030 return idx;
1031 active_vlan_created = true;
1032
1033 vlan_mapping.index = idx;
1034 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1035 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1036 vlan_mapping.val[0] = vid;
1037 } else {
1038 /* Read the existing VLAN mapping entry from the switch */
1039 vlan_mapping.index = idx;
1040 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1041 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1042 if (err) {
1043 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1044 err);
1045 return err;
1046 }
1047 }
1048
1049 vlan_mapping.val[0] = vid;
1050 /* Update the VLAN mapping entry and write it to the switch */
1051 vlan_mapping.val[1] |= BIT(cpu_port);
1052 vlan_mapping.val[2] |= BIT(cpu_port);
1053 vlan_mapping.val[1] |= BIT(port);
1054 if (untagged)
1055 vlan_mapping.val[2] &= ~BIT(port);
1056 else
1057 vlan_mapping.val[2] |= BIT(port);
1058 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1059 if (err) {
1060 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1061 /* In case an Active VLAN was creaetd delete it again */
1062 if (active_vlan_created)
1063 gswip_vlan_active_remove(priv, idx);
1064 return err;
1065 }
1066
1067 if (pvid)
1068 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1069
1070 return 0;
1071 }
1072
1073 static int gswip_vlan_remove(struct gswip_priv *priv,
1074 struct net_device *bridge, int port,
1075 u16 vid, bool pvid, bool vlan_aware)
1076 {
1077 struct gswip_pce_table_entry vlan_mapping = {0,};
1078 unsigned int max_ports = priv->hw_info->max_ports;
1079 unsigned int cpu_port = priv->hw_info->cpu_port;
1080 int idx = -1;
1081 int i;
1082 int err;
1083
1084 /* Check if there is already a page for this bridge */
1085 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1086 if (priv->vlans[i].bridge == bridge &&
1087 (!vlan_aware || priv->vlans[i].vid == vid)) {
1088 idx = i;
1089 break;
1090 }
1091 }
1092
1093 if (idx == -1) {
1094 dev_err(priv->dev, "bridge to leave does not exists\n");
1095 return -ENOENT;
1096 }
1097
1098 vlan_mapping.index = idx;
1099 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1100 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1101 if (err) {
1102 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1103 return err;
1104 }
1105
1106 vlan_mapping.val[1] &= ~BIT(port);
1107 vlan_mapping.val[2] &= ~BIT(port);
1108 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1109 if (err) {
1110 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1111 return err;
1112 }
1113
1114 /* In case all ports are removed from the bridge, remove the VLAN */
1115 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1116 err = gswip_vlan_active_remove(priv, idx);
1117 if (err) {
1118 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1119 err);
1120 return err;
1121 }
1122 }
1123
1124 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1125 if (pvid)
1126 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1127
1128 return 0;
1129 }
1130
1131 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1132 struct net_device *bridge)
1133 {
1134 struct gswip_priv *priv = ds->priv;
1135 int err;
1136
1137 /* When the bridge uses VLAN filtering we have to configure VLAN
1138 * specific bridges. No bridge is configured here.
1139 */
1140 if (!br_vlan_enabled(bridge)) {
1141 err = gswip_vlan_add_unaware(priv, bridge, port);
1142 if (err)
1143 return err;
1144 priv->port_vlan_filter &= ~BIT(port);
1145 } else {
1146 priv->port_vlan_filter |= BIT(port);
1147 }
1148 return gswip_add_single_port_br(priv, port, false);
1149 }
1150
1151 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1152 struct net_device *bridge)
1153 {
1154 struct gswip_priv *priv = ds->priv;
1155
1156 gswip_add_single_port_br(priv, port, true);
1157
1158 /* When the bridge uses VLAN filtering we have to configure VLAN
1159 * specific bridges. No bridge is configured here.
1160 */
1161 if (!br_vlan_enabled(bridge))
1162 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1163 }
1164
1165 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1166 const struct switchdev_obj_port_vlan *vlan,
1167 struct netlink_ext_ack *extack)
1168 {
1169 struct gswip_priv *priv = ds->priv;
1170 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1171 unsigned int max_ports = priv->hw_info->max_ports;
1172 int pos = max_ports;
1173 int i, idx = -1;
1174
1175 /* We only support VLAN filtering on bridges */
1176 if (!dsa_is_cpu_port(ds, port) && !bridge)
1177 return -EOPNOTSUPP;
1178
1179 /* Check if there is already a page for this VLAN */
1180 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1181 if (priv->vlans[i].bridge == bridge &&
1182 priv->vlans[i].vid == vlan->vid) {
1183 idx = i;
1184 break;
1185 }
1186 }
1187
1188 /* If this VLAN is not programmed yet, we have to reserve
1189 * one entry in the VLAN table. Make sure we start at the
1190 * next position round.
1191 */
1192 if (idx == -1) {
1193 /* Look for a free slot */
1194 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1195 if (!priv->vlans[pos].bridge) {
1196 idx = pos;
1197 pos++;
1198 break;
1199 }
1200 }
1201
1202 if (idx == -1) {
1203 NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1204 return -ENOSPC;
1205 }
1206 }
1207
1208 return 0;
1209 }
1210
1211 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1212 const struct switchdev_obj_port_vlan *vlan,
1213 struct netlink_ext_ack *extack)
1214 {
1215 struct gswip_priv *priv = ds->priv;
1216 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1217 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1218 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1219 int err;
1220
1221 err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1222 if (err)
1223 return err;
1224
1225 /* We have to receive all packets on the CPU port and should not
1226 * do any VLAN filtering here. This is also called with bridge
1227 * NULL and then we do not know for which bridge to configure
1228 * this.
1229 */
1230 if (dsa_is_cpu_port(ds, port))
1231 return 0;
1232
1233 return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1234 untagged, pvid);
1235 }
1236
1237 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1238 const struct switchdev_obj_port_vlan *vlan)
1239 {
1240 struct gswip_priv *priv = ds->priv;
1241 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1242 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1243
1244 /* We have to receive all packets on the CPU port and should not
1245 * do any VLAN filtering here. This is also called with bridge
1246 * NULL and then we do not know for which bridge to configure
1247 * this.
1248 */
1249 if (dsa_is_cpu_port(ds, port))
1250 return 0;
1251
1252 return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1253 }
1254
1255 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1256 {
1257 struct gswip_priv *priv = ds->priv;
1258 struct gswip_pce_table_entry mac_bridge = {0,};
1259 int i;
1260 int err;
1261
1262 for (i = 0; i < 2048; i++) {
1263 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1264 mac_bridge.index = i;
1265
1266 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1267 if (err) {
1268 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1269 err);
1270 return;
1271 }
1272
1273 if (!mac_bridge.valid)
1274 continue;
1275
1276 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1277 continue;
1278
1279 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1280 continue;
1281
1282 mac_bridge.valid = false;
1283 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1284 if (err) {
1285 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1286 err);
1287 return;
1288 }
1289 }
1290 }
1291
1292 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1293 {
1294 struct gswip_priv *priv = ds->priv;
1295 u32 stp_state;
1296
1297 switch (state) {
1298 case BR_STATE_DISABLED:
1299 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1300 GSWIP_SDMA_PCTRLp(port));
1301 return;
1302 case BR_STATE_BLOCKING:
1303 case BR_STATE_LISTENING:
1304 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1305 break;
1306 case BR_STATE_LEARNING:
1307 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1308 break;
1309 case BR_STATE_FORWARDING:
1310 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1311 break;
1312 default:
1313 dev_err(priv->dev, "invalid STP state: %d\n", state);
1314 return;
1315 }
1316
1317 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1318 GSWIP_SDMA_PCTRLp(port));
1319 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1320 GSWIP_PCE_PCTRL_0p(port));
1321 }
1322
1323 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1324 const unsigned char *addr, u16 vid, bool add)
1325 {
1326 struct gswip_priv *priv = ds->priv;
1327 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1328 struct gswip_pce_table_entry mac_bridge = {0,};
1329 unsigned int cpu_port = priv->hw_info->cpu_port;
1330 int fid = -1;
1331 int i;
1332 int err;
1333
1334 if (!bridge)
1335 return -EINVAL;
1336
1337 for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1338 if (priv->vlans[i].bridge == bridge) {
1339 fid = priv->vlans[i].fid;
1340 break;
1341 }
1342 }
1343
1344 if (fid == -1) {
1345 dev_err(priv->dev, "Port not part of a bridge\n");
1346 return -EINVAL;
1347 }
1348
1349 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1350 mac_bridge.key_mode = true;
1351 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1352 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1353 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1354 mac_bridge.key[3] = fid;
1355 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1356 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1357 mac_bridge.valid = add;
1358
1359 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1360 if (err)
1361 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1362
1363 return err;
1364 }
1365
1366 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1367 const unsigned char *addr, u16 vid)
1368 {
1369 return gswip_port_fdb(ds, port, addr, vid, true);
1370 }
1371
1372 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1373 const unsigned char *addr, u16 vid)
1374 {
1375 return gswip_port_fdb(ds, port, addr, vid, false);
1376 }
1377
1378 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1379 dsa_fdb_dump_cb_t *cb, void *data)
1380 {
1381 struct gswip_priv *priv = ds->priv;
1382 struct gswip_pce_table_entry mac_bridge = {0,};
1383 unsigned char addr[6];
1384 int i;
1385 int err;
1386
1387 for (i = 0; i < 2048; i++) {
1388 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1389 mac_bridge.index = i;
1390
1391 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1392 if (err) {
1393 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1394 err);
1395 return err;
1396 }
1397
1398 if (!mac_bridge.valid)
1399 continue;
1400
1401 addr[5] = mac_bridge.key[0] & 0xff;
1402 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1403 addr[3] = mac_bridge.key[1] & 0xff;
1404 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1405 addr[1] = mac_bridge.key[2] & 0xff;
1406 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1407 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1408 if (mac_bridge.val[0] & BIT(port)) {
1409 err = cb(addr, 0, true, data);
1410 if (err)
1411 return err;
1412 }
1413 } else {
1414 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1415 err = cb(addr, 0, false, data);
1416 if (err)
1417 return err;
1418 }
1419 }
1420 }
1421 return 0;
1422 }
1423
1424 static void gswip_phylink_set_capab(unsigned long *supported,
1425 struct phylink_link_state *state)
1426 {
1427 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1428
1429 /* Allow all the expected bits */
1430 phylink_set(mask, Autoneg);
1431 phylink_set_port_modes(mask);
1432 phylink_set(mask, Pause);
1433 phylink_set(mask, Asym_Pause);
1434
1435 /* With the exclusion of MII, Reverse MII and Reduced MII, we
1436 * support Gigabit, including Half duplex
1437 */
1438 if (state->interface != PHY_INTERFACE_MODE_MII &&
1439 state->interface != PHY_INTERFACE_MODE_REVMII &&
1440 state->interface != PHY_INTERFACE_MODE_RMII) {
1441 phylink_set(mask, 1000baseT_Full);
1442 phylink_set(mask, 1000baseT_Half);
1443 }
1444
1445 phylink_set(mask, 10baseT_Half);
1446 phylink_set(mask, 10baseT_Full);
1447 phylink_set(mask, 100baseT_Half);
1448 phylink_set(mask, 100baseT_Full);
1449
1450 bitmap_and(supported, supported, mask,
1451 __ETHTOOL_LINK_MODE_MASK_NBITS);
1452 bitmap_and(state->advertising, state->advertising, mask,
1453 __ETHTOOL_LINK_MODE_MASK_NBITS);
1454 }
1455
1456 static void gswip_xrx200_phylink_validate(struct dsa_switch *ds, int port,
1457 unsigned long *supported,
1458 struct phylink_link_state *state)
1459 {
1460 switch (port) {
1461 case 0:
1462 case 1:
1463 if (!phy_interface_mode_is_rgmii(state->interface) &&
1464 state->interface != PHY_INTERFACE_MODE_MII &&
1465 state->interface != PHY_INTERFACE_MODE_REVMII &&
1466 state->interface != PHY_INTERFACE_MODE_RMII)
1467 goto unsupported;
1468 break;
1469 case 2:
1470 case 3:
1471 case 4:
1472 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1473 goto unsupported;
1474 break;
1475 case 5:
1476 if (!phy_interface_mode_is_rgmii(state->interface) &&
1477 state->interface != PHY_INTERFACE_MODE_INTERNAL)
1478 goto unsupported;
1479 break;
1480 default:
1481 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1482 dev_err(ds->dev, "Unsupported port: %i\n", port);
1483 return;
1484 }
1485
1486 gswip_phylink_set_capab(supported, state);
1487
1488 return;
1489
1490 unsupported:
1491 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1492 dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1493 phy_modes(state->interface), port);
1494 }
1495
1496 static void gswip_xrx300_phylink_validate(struct dsa_switch *ds, int port,
1497 unsigned long *supported,
1498 struct phylink_link_state *state)
1499 {
1500 switch (port) {
1501 case 0:
1502 if (!phy_interface_mode_is_rgmii(state->interface) &&
1503 state->interface != PHY_INTERFACE_MODE_GMII &&
1504 state->interface != PHY_INTERFACE_MODE_RMII)
1505 goto unsupported;
1506 break;
1507 case 1:
1508 case 2:
1509 case 3:
1510 case 4:
1511 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1512 goto unsupported;
1513 break;
1514 case 5:
1515 if (!phy_interface_mode_is_rgmii(state->interface) &&
1516 state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1517 state->interface != PHY_INTERFACE_MODE_RMII)
1518 goto unsupported;
1519 break;
1520 default:
1521 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1522 dev_err(ds->dev, "Unsupported port: %i\n", port);
1523 return;
1524 }
1525
1526 gswip_phylink_set_capab(supported, state);
1527
1528 return;
1529
1530 unsupported:
1531 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1532 dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1533 phy_modes(state->interface), port);
1534 }
1535
1536 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1537 {
1538 u32 mdio_phy;
1539
1540 if (link)
1541 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1542 else
1543 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1544
1545 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1546 GSWIP_MDIO_PHYp(port));
1547 }
1548
1549 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1550 phy_interface_t interface)
1551 {
1552 u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1553
1554 switch (speed) {
1555 case SPEED_10:
1556 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1557
1558 if (interface == PHY_INTERFACE_MODE_RMII)
1559 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1560 else
1561 mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1562
1563 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1564 break;
1565
1566 case SPEED_100:
1567 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1568
1569 if (interface == PHY_INTERFACE_MODE_RMII)
1570 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1571 else
1572 mii_cfg = GSWIP_MII_CFG_RATE_M25;
1573
1574 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1575 break;
1576
1577 case SPEED_1000:
1578 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1579
1580 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1581
1582 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1583 break;
1584 }
1585
1586 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1587 GSWIP_MDIO_PHYp(port));
1588 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1589 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1590 GSWIP_MAC_CTRL_0p(port));
1591 }
1592
1593 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1594 {
1595 u32 mac_ctrl_0, mdio_phy;
1596
1597 if (duplex == DUPLEX_FULL) {
1598 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1599 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1600 } else {
1601 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1602 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1603 }
1604
1605 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1606 GSWIP_MAC_CTRL_0p(port));
1607 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1608 GSWIP_MDIO_PHYp(port));
1609 }
1610
1611 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1612 bool tx_pause, bool rx_pause)
1613 {
1614 u32 mac_ctrl_0, mdio_phy;
1615
1616 if (tx_pause && rx_pause) {
1617 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1618 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1619 GSWIP_MDIO_PHY_FCONRX_EN;
1620 } else if (tx_pause) {
1621 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1622 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1623 GSWIP_MDIO_PHY_FCONRX_DIS;
1624 } else if (rx_pause) {
1625 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1626 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1627 GSWIP_MDIO_PHY_FCONRX_EN;
1628 } else {
1629 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1630 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1631 GSWIP_MDIO_PHY_FCONRX_DIS;
1632 }
1633
1634 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1635 mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1636 gswip_mdio_mask(priv,
1637 GSWIP_MDIO_PHY_FCONTX_MASK |
1638 GSWIP_MDIO_PHY_FCONRX_MASK,
1639 mdio_phy, GSWIP_MDIO_PHYp(port));
1640 }
1641
1642 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1643 unsigned int mode,
1644 const struct phylink_link_state *state)
1645 {
1646 struct gswip_priv *priv = ds->priv;
1647 u32 miicfg = 0;
1648
1649 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1650
1651 switch (state->interface) {
1652 case PHY_INTERFACE_MODE_MII:
1653 case PHY_INTERFACE_MODE_INTERNAL:
1654 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1655 break;
1656 case PHY_INTERFACE_MODE_REVMII:
1657 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1658 break;
1659 case PHY_INTERFACE_MODE_RMII:
1660 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1661
1662 /* Configure the RMII clock as output: */
1663 miicfg |= GSWIP_MII_CFG_RMII_CLK;
1664 break;
1665 case PHY_INTERFACE_MODE_RGMII:
1666 case PHY_INTERFACE_MODE_RGMII_ID:
1667 case PHY_INTERFACE_MODE_RGMII_RXID:
1668 case PHY_INTERFACE_MODE_RGMII_TXID:
1669 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1670 break;
1671 case PHY_INTERFACE_MODE_GMII:
1672 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1673 break;
1674 default:
1675 dev_err(ds->dev,
1676 "Unsupported interface: %d\n", state->interface);
1677 return;
1678 }
1679
1680 gswip_mii_mask_cfg(priv,
1681 GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1682 GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1683 miicfg, port);
1684
1685 switch (state->interface) {
1686 case PHY_INTERFACE_MODE_RGMII_ID:
1687 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1688 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1689 break;
1690 case PHY_INTERFACE_MODE_RGMII_RXID:
1691 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1692 break;
1693 case PHY_INTERFACE_MODE_RGMII_TXID:
1694 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1695 break;
1696 default:
1697 break;
1698 }
1699 }
1700
1701 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1702 unsigned int mode,
1703 phy_interface_t interface)
1704 {
1705 struct gswip_priv *priv = ds->priv;
1706
1707 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1708
1709 if (!dsa_is_cpu_port(ds, port))
1710 gswip_port_set_link(priv, port, false);
1711 }
1712
1713 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1714 unsigned int mode,
1715 phy_interface_t interface,
1716 struct phy_device *phydev,
1717 int speed, int duplex,
1718 bool tx_pause, bool rx_pause)
1719 {
1720 struct gswip_priv *priv = ds->priv;
1721
1722 if (!dsa_is_cpu_port(ds, port)) {
1723 gswip_port_set_link(priv, port, true);
1724 gswip_port_set_speed(priv, port, speed, interface);
1725 gswip_port_set_duplex(priv, port, duplex);
1726 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1727 }
1728
1729 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1730 }
1731
1732 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1733 uint8_t *data)
1734 {
1735 int i;
1736
1737 if (stringset != ETH_SS_STATS)
1738 return;
1739
1740 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1741 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1742 ETH_GSTRING_LEN);
1743 }
1744
1745 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1746 u32 index)
1747 {
1748 u32 result;
1749 int err;
1750
1751 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1752 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1753 GSWIP_BM_RAM_CTRL_OPMOD,
1754 table | GSWIP_BM_RAM_CTRL_BAS,
1755 GSWIP_BM_RAM_CTRL);
1756
1757 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1758 GSWIP_BM_RAM_CTRL_BAS);
1759 if (err) {
1760 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1761 table, index);
1762 return 0;
1763 }
1764
1765 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1766 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1767
1768 return result;
1769 }
1770
1771 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1772 uint64_t *data)
1773 {
1774 struct gswip_priv *priv = ds->priv;
1775 const struct gswip_rmon_cnt_desc *rmon_cnt;
1776 int i;
1777 u64 high;
1778
1779 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1780 rmon_cnt = &gswip_rmon_cnt[i];
1781
1782 data[i] = gswip_bcm_ram_entry_read(priv, port,
1783 rmon_cnt->offset);
1784 if (rmon_cnt->size == 2) {
1785 high = gswip_bcm_ram_entry_read(priv, port,
1786 rmon_cnt->offset + 1);
1787 data[i] |= high << 32;
1788 }
1789 }
1790 }
1791
1792 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1793 {
1794 if (sset != ETH_SS_STATS)
1795 return 0;
1796
1797 return ARRAY_SIZE(gswip_rmon_cnt);
1798 }
1799
1800 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1801 .get_tag_protocol = gswip_get_tag_protocol,
1802 .setup = gswip_setup,
1803 .port_enable = gswip_port_enable,
1804 .port_disable = gswip_port_disable,
1805 .port_bridge_join = gswip_port_bridge_join,
1806 .port_bridge_leave = gswip_port_bridge_leave,
1807 .port_fast_age = gswip_port_fast_age,
1808 .port_vlan_filtering = gswip_port_vlan_filtering,
1809 .port_vlan_add = gswip_port_vlan_add,
1810 .port_vlan_del = gswip_port_vlan_del,
1811 .port_stp_state_set = gswip_port_stp_state_set,
1812 .port_fdb_add = gswip_port_fdb_add,
1813 .port_fdb_del = gswip_port_fdb_del,
1814 .port_fdb_dump = gswip_port_fdb_dump,
1815 .phylink_validate = gswip_xrx200_phylink_validate,
1816 .phylink_mac_config = gswip_phylink_mac_config,
1817 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1818 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1819 .get_strings = gswip_get_strings,
1820 .get_ethtool_stats = gswip_get_ethtool_stats,
1821 .get_sset_count = gswip_get_sset_count,
1822 };
1823
1824 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1825 .get_tag_protocol = gswip_get_tag_protocol,
1826 .setup = gswip_setup,
1827 .port_enable = gswip_port_enable,
1828 .port_disable = gswip_port_disable,
1829 .port_bridge_join = gswip_port_bridge_join,
1830 .port_bridge_leave = gswip_port_bridge_leave,
1831 .port_fast_age = gswip_port_fast_age,
1832 .port_vlan_filtering = gswip_port_vlan_filtering,
1833 .port_vlan_add = gswip_port_vlan_add,
1834 .port_vlan_del = gswip_port_vlan_del,
1835 .port_stp_state_set = gswip_port_stp_state_set,
1836 .port_fdb_add = gswip_port_fdb_add,
1837 .port_fdb_del = gswip_port_fdb_del,
1838 .port_fdb_dump = gswip_port_fdb_dump,
1839 .phylink_validate = gswip_xrx300_phylink_validate,
1840 .phylink_mac_config = gswip_phylink_mac_config,
1841 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1842 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1843 .get_strings = gswip_get_strings,
1844 .get_ethtool_stats = gswip_get_ethtool_stats,
1845 .get_sset_count = gswip_get_sset_count,
1846 };
1847
1848 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1849 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1850 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1851 };
1852
1853 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1854 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1855 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1856 };
1857
1858 static const struct xway_gphy_match_data xrx300_gphy_data = {
1859 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1860 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1861 };
1862
1863 static const struct of_device_id xway_gphy_match[] = {
1864 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1865 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1866 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1867 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1868 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1869 {},
1870 };
1871
1872 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1873 {
1874 struct device *dev = priv->dev;
1875 const struct firmware *fw;
1876 void *fw_addr;
1877 dma_addr_t dma_addr;
1878 dma_addr_t dev_addr;
1879 size_t size;
1880 int ret;
1881
1882 ret = clk_prepare_enable(gphy_fw->clk_gate);
1883 if (ret)
1884 return ret;
1885
1886 reset_control_assert(gphy_fw->reset);
1887
1888 /* The vendor BSP uses a 200ms delay after asserting the reset line.
1889 * Without this some users are observing that the PHY is not coming up
1890 * on the MDIO bus.
1891 */
1892 msleep(200);
1893
1894 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1895 if (ret) {
1896 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1897 gphy_fw->fw_name, ret);
1898 return ret;
1899 }
1900
1901 /* GPHY cores need the firmware code in a persistent and contiguous
1902 * memory area with a 16 kB boundary aligned start address.
1903 */
1904 size = fw->size + XRX200_GPHY_FW_ALIGN;
1905
1906 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1907 if (fw_addr) {
1908 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1909 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1910 memcpy(fw_addr, fw->data, fw->size);
1911 } else {
1912 dev_err(dev, "failed to alloc firmware memory\n");
1913 release_firmware(fw);
1914 return -ENOMEM;
1915 }
1916
1917 release_firmware(fw);
1918
1919 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1920 if (ret)
1921 return ret;
1922
1923 reset_control_deassert(gphy_fw->reset);
1924
1925 return ret;
1926 }
1927
1928 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1929 struct gswip_gphy_fw *gphy_fw,
1930 struct device_node *gphy_fw_np, int i)
1931 {
1932 struct device *dev = priv->dev;
1933 u32 gphy_mode;
1934 int ret;
1935 char gphyname[10];
1936
1937 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1938
1939 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1940 if (IS_ERR(gphy_fw->clk_gate)) {
1941 dev_err(dev, "Failed to lookup gate clock\n");
1942 return PTR_ERR(gphy_fw->clk_gate);
1943 }
1944
1945 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1946 if (ret)
1947 return ret;
1948
1949 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1950 /* Default to GE mode */
1951 if (ret)
1952 gphy_mode = GPHY_MODE_GE;
1953
1954 switch (gphy_mode) {
1955 case GPHY_MODE_FE:
1956 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1957 break;
1958 case GPHY_MODE_GE:
1959 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1960 break;
1961 default:
1962 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1963 return -EINVAL;
1964 }
1965
1966 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1967 if (IS_ERR(gphy_fw->reset)) {
1968 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1969 dev_err(dev, "Failed to lookup gphy reset\n");
1970 return PTR_ERR(gphy_fw->reset);
1971 }
1972
1973 return gswip_gphy_fw_load(priv, gphy_fw);
1974 }
1975
1976 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1977 struct gswip_gphy_fw *gphy_fw)
1978 {
1979 int ret;
1980
1981 /* check if the device was fully probed */
1982 if (!gphy_fw->fw_name)
1983 return;
1984
1985 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1986 if (ret)
1987 dev_err(priv->dev, "can not reset GPHY FW pointer");
1988
1989 clk_disable_unprepare(gphy_fw->clk_gate);
1990
1991 reset_control_put(gphy_fw->reset);
1992 }
1993
1994 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1995 struct device_node *gphy_fw_list_np, u32 version)
1996 {
1997 struct device *dev = priv->dev;
1998 struct device_node *gphy_fw_np;
1999 const struct of_device_id *match;
2000 int err;
2001 int i = 0;
2002
2003 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2004 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2005 * needs a different GPHY firmware.
2006 */
2007 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2008 switch (version) {
2009 case GSWIP_VERSION_2_0:
2010 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2011 break;
2012 case GSWIP_VERSION_2_1:
2013 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2014 break;
2015 default:
2016 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2017 return -ENOENT;
2018 }
2019 }
2020
2021 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2022 if (match && match->data)
2023 priv->gphy_fw_name_cfg = match->data;
2024
2025 if (!priv->gphy_fw_name_cfg) {
2026 dev_err(dev, "GPHY compatible type not supported");
2027 return -ENOENT;
2028 }
2029
2030 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2031 if (!priv->num_gphy_fw)
2032 return -ENOENT;
2033
2034 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2035 "lantiq,rcu");
2036 if (IS_ERR(priv->rcu_regmap))
2037 return PTR_ERR(priv->rcu_regmap);
2038
2039 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2040 sizeof(*priv->gphy_fw),
2041 GFP_KERNEL | __GFP_ZERO);
2042 if (!priv->gphy_fw)
2043 return -ENOMEM;
2044
2045 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2046 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2047 gphy_fw_np, i);
2048 if (err)
2049 goto remove_gphy;
2050 i++;
2051 }
2052
2053 /* The standalone PHY11G requires 300ms to be fully
2054 * initialized and ready for any MDIO communication after being
2055 * taken out of reset. For the SoC-internal GPHY variant there
2056 * is no (known) documentation for the minimum time after a
2057 * reset. Use the same value as for the standalone variant as
2058 * some users have reported internal PHYs not being detected
2059 * without any delay.
2060 */
2061 msleep(300);
2062
2063 return 0;
2064
2065 remove_gphy:
2066 for (i = 0; i < priv->num_gphy_fw; i++)
2067 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2068 return err;
2069 }
2070
2071 static int gswip_probe(struct platform_device *pdev)
2072 {
2073 struct gswip_priv *priv;
2074 struct device_node *np, *mdio_np, *gphy_fw_np;
2075 struct device *dev = &pdev->dev;
2076 int err;
2077 int i;
2078 u32 version;
2079
2080 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2081 if (!priv)
2082 return -ENOMEM;
2083
2084 priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2085 if (IS_ERR(priv->gswip))
2086 return PTR_ERR(priv->gswip);
2087
2088 priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2089 if (IS_ERR(priv->mdio))
2090 return PTR_ERR(priv->mdio);
2091
2092 priv->mii = devm_platform_ioremap_resource(pdev, 2);
2093 if (IS_ERR(priv->mii))
2094 return PTR_ERR(priv->mii);
2095
2096 priv->hw_info = of_device_get_match_data(dev);
2097 if (!priv->hw_info)
2098 return -EINVAL;
2099
2100 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2101 if (!priv->ds)
2102 return -ENOMEM;
2103
2104 priv->ds->dev = dev;
2105 priv->ds->num_ports = priv->hw_info->max_ports;
2106 priv->ds->priv = priv;
2107 priv->ds->ops = priv->hw_info->ops;
2108 priv->dev = dev;
2109 version = gswip_switch_r(priv, GSWIP_VERSION);
2110
2111 np = dev->of_node;
2112 switch (version) {
2113 case GSWIP_VERSION_2_0:
2114 case GSWIP_VERSION_2_1:
2115 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2116 return -EINVAL;
2117 break;
2118 case GSWIP_VERSION_2_2:
2119 case GSWIP_VERSION_2_2_ETC:
2120 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2121 !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2122 return -EINVAL;
2123 break;
2124 default:
2125 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2126 return -ENOENT;
2127 }
2128
2129 /* bring up the mdio bus */
2130 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2131 if (gphy_fw_np) {
2132 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2133 of_node_put(gphy_fw_np);
2134 if (err) {
2135 dev_err(dev, "gphy fw probe failed\n");
2136 return err;
2137 }
2138 }
2139
2140 /* bring up the mdio bus */
2141 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2142 if (mdio_np) {
2143 err = gswip_mdio(priv, mdio_np);
2144 if (err) {
2145 dev_err(dev, "mdio probe failed\n");
2146 goto put_mdio_node;
2147 }
2148 }
2149
2150 err = dsa_register_switch(priv->ds);
2151 if (err) {
2152 dev_err(dev, "dsa switch register failed: %i\n", err);
2153 goto mdio_bus;
2154 }
2155 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2156 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2157 priv->hw_info->cpu_port);
2158 err = -EINVAL;
2159 goto disable_switch;
2160 }
2161
2162 platform_set_drvdata(pdev, priv);
2163
2164 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2165 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2166 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2167 return 0;
2168
2169 disable_switch:
2170 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2171 dsa_unregister_switch(priv->ds);
2172 mdio_bus:
2173 if (mdio_np)
2174 mdiobus_unregister(priv->ds->slave_mii_bus);
2175 put_mdio_node:
2176 of_node_put(mdio_np);
2177 for (i = 0; i < priv->num_gphy_fw; i++)
2178 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2179 return err;
2180 }
2181
2182 static int gswip_remove(struct platform_device *pdev)
2183 {
2184 struct gswip_priv *priv = platform_get_drvdata(pdev);
2185 int i;
2186
2187 if (!priv)
2188 return 0;
2189
2190 /* disable the switch */
2191 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2192
2193 dsa_unregister_switch(priv->ds);
2194
2195 if (priv->ds->slave_mii_bus) {
2196 mdiobus_unregister(priv->ds->slave_mii_bus);
2197 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2198 }
2199
2200 for (i = 0; i < priv->num_gphy_fw; i++)
2201 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2202
2203 platform_set_drvdata(pdev, NULL);
2204
2205 return 0;
2206 }
2207
2208 static void gswip_shutdown(struct platform_device *pdev)
2209 {
2210 struct gswip_priv *priv = platform_get_drvdata(pdev);
2211
2212 if (!priv)
2213 return;
2214
2215 dsa_switch_shutdown(priv->ds);
2216
2217 platform_set_drvdata(pdev, NULL);
2218 }
2219
2220 static const struct gswip_hw_info gswip_xrx200 = {
2221 .max_ports = 7,
2222 .cpu_port = 6,
2223 .ops = &gswip_xrx200_switch_ops,
2224 };
2225
2226 static const struct gswip_hw_info gswip_xrx300 = {
2227 .max_ports = 7,
2228 .cpu_port = 6,
2229 .ops = &gswip_xrx300_switch_ops,
2230 };
2231
2232 static const struct of_device_id gswip_of_match[] = {
2233 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2234 { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2235 { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2236 {},
2237 };
2238 MODULE_DEVICE_TABLE(of, gswip_of_match);
2239
2240 static struct platform_driver gswip_driver = {
2241 .probe = gswip_probe,
2242 .remove = gswip_remove,
2243 .shutdown = gswip_shutdown,
2244 .driver = {
2245 .name = "gswip",
2246 .of_match_table = gswip_of_match,
2247 },
2248 };
2249
2250 module_platform_driver(gswip_driver);
2251
2252 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2253 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2254 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2255 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2256 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2257 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2258 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2259 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2260 MODULE_LICENSE("GPL v2");