]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/dsa/lantiq_gswip.c
Merge tag 'drm-next-2020-04-03-1' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-jammy-kernel.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28 #include <linux/clk.h>
29 #include <linux/etherdevice.h>
30 #include <linux/firmware.h>
31 #include <linux/if_bridge.h>
32 #include <linux/if_vlan.h>
33 #include <linux/iopoll.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/module.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/phy.h>
40 #include <linux/phylink.h>
41 #include <linux/platform_device.h>
42 #include <linux/regmap.h>
43 #include <linux/reset.h>
44 #include <net/dsa.h>
45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
46
47 #include "lantiq_pce.h"
48
49 /* GSWIP MDIO Registers */
50 #define GSWIP_MDIO_GLOB 0x00
51 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
52 #define GSWIP_MDIO_CTRL 0x08
53 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
54 #define GSWIP_MDIO_CTRL_RD BIT(11)
55 #define GSWIP_MDIO_CTRL_WR BIT(10)
56 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
57 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
58 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
59 #define GSWIP_MDIO_READ 0x09
60 #define GSWIP_MDIO_WRITE 0x0A
61 #define GSWIP_MDIO_MDC_CFG0 0x0B
62 #define GSWIP_MDIO_MDC_CFG1 0x0C
63 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
64 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
65 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
66 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
67 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
68 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
69 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
71 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
72 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
73 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
74 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
75 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
76 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
77 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
78 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
79 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
80 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
81 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
82 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
83 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
84 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
85 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
86 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
87 GSWIP_MDIO_PHY_FCONRX_MASK | \
88 GSWIP_MDIO_PHY_FCONTX_MASK | \
89 GSWIP_MDIO_PHY_LINK_MASK | \
90 GSWIP_MDIO_PHY_SPEED_MASK | \
91 GSWIP_MDIO_PHY_FDUP_MASK)
92
93 /* GSWIP MII Registers */
94 #define GSWIP_MII_CFG0 0x00
95 #define GSWIP_MII_CFG1 0x02
96 #define GSWIP_MII_CFG5 0x04
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
99 #define GSWIP_MII_CFG_MODE_MIIP 0x0
100 #define GSWIP_MII_CFG_MODE_MIIM 0x1
101 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
102 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
103 #define GSWIP_MII_CFG_MODE_RGMII 0x4
104 #define GSWIP_MII_CFG_MODE_MASK 0xf
105 #define GSWIP_MII_CFG_RATE_M2P5 0x00
106 #define GSWIP_MII_CFG_RATE_M25 0x10
107 #define GSWIP_MII_CFG_RATE_M125 0x20
108 #define GSWIP_MII_CFG_RATE_M50 0x30
109 #define GSWIP_MII_CFG_RATE_AUTO 0x40
110 #define GSWIP_MII_CFG_RATE_MASK 0x70
111 #define GSWIP_MII_PCDU0 0x01
112 #define GSWIP_MII_PCDU1 0x03
113 #define GSWIP_MII_PCDU5 0x05
114 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
115 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
116
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES 0x000
119 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
120 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
121 #define GSWIP_VERSION 0x013
122 #define GSWIP_VERSION_REV_SHIFT 0
123 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
124 #define GSWIP_VERSION_MOD_SHIFT 8
125 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
126 #define GSWIP_VERSION_2_0 0x100
127 #define GSWIP_VERSION_2_1 0x021
128 #define GSWIP_VERSION_2_2 0x122
129 #define GSWIP_VERSION_2_2_ETC 0x022
130
131 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR 0x044
133 #define GSWIP_BM_RAM_CTRL 0x045
134 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
135 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
136 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL 0x04A
138 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
141 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
142 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
145 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
146 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
147
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK 0x448
151 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR 0x44E
153 #define GSWIP_PCE_TBL_CTRL 0x44F
154 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
155 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
156 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
157 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
158 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
159 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
160 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
161 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
162 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
164 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
166 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0 0x456
169 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
170 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
171 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1 0x457
173 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
174 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
176 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
177 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
178 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
179 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
180 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
181 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
182 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
183 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
184 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
186 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
187 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
188 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
189 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
190 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
192
193 #define GSWIP_MAC_FLEN 0x8C5
194 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
196
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
199 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
200 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
201 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
202 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
203 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
210 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
211 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
212 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */
213
214 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
215 #define GSWIP_TABLE_VLAN_MAPPING 0x02
216 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
217 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
218
219 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
220
221 struct gswip_hw_info {
222 int max_ports;
223 int cpu_port;
224 };
225
226 struct xway_gphy_match_data {
227 char *fe_firmware_name;
228 char *ge_firmware_name;
229 };
230
231 struct gswip_gphy_fw {
232 struct clk *clk_gate;
233 struct reset_control *reset;
234 u32 fw_addr_offset;
235 char *fw_name;
236 };
237
238 struct gswip_vlan {
239 struct net_device *bridge;
240 u16 vid;
241 u8 fid;
242 };
243
244 struct gswip_priv {
245 __iomem void *gswip;
246 __iomem void *mdio;
247 __iomem void *mii;
248 const struct gswip_hw_info *hw_info;
249 const struct xway_gphy_match_data *gphy_fw_name_cfg;
250 struct dsa_switch *ds;
251 struct device *dev;
252 struct regmap *rcu_regmap;
253 struct gswip_vlan vlans[64];
254 int num_gphy_fw;
255 struct gswip_gphy_fw *gphy_fw;
256 u32 port_vlan_filter;
257 };
258
259 struct gswip_pce_table_entry {
260 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
261 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
262 u16 key[8];
263 u16 val[5];
264 u16 mask;
265 u8 gmap;
266 bool type;
267 bool valid;
268 bool key_mode;
269 };
270
271 struct gswip_rmon_cnt_desc {
272 unsigned int size;
273 unsigned int offset;
274 const char *name;
275 };
276
277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
278
279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
280 /** Receive Packet Count (only packets that are accepted and not discarded). */
281 MIB_DESC(1, 0x1F, "RxGoodPkts"),
282 MIB_DESC(1, 0x23, "RxUnicastPkts"),
283 MIB_DESC(1, 0x22, "RxMulticastPkts"),
284 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
285 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
286 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
287 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
288 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
289 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
290 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
291 MIB_DESC(1, 0x12, "Rx64BytePkts"),
292 MIB_DESC(1, 0x13, "Rx127BytePkts"),
293 MIB_DESC(1, 0x14, "Rx255BytePkts"),
294 MIB_DESC(1, 0x15, "Rx511BytePkts"),
295 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
296 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
297 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
298 MIB_DESC(1, 0x18, "RxDroppedPkts"),
299 MIB_DESC(1, 0x19, "RxFilteredPkts"),
300 MIB_DESC(2, 0x24, "RxGoodBytes"),
301 MIB_DESC(2, 0x26, "RxBadBytes"),
302 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
303 MIB_DESC(1, 0x0C, "TxGoodPkts"),
304 MIB_DESC(1, 0x06, "TxUnicastPkts"),
305 MIB_DESC(1, 0x07, "TxMulticastPkts"),
306 MIB_DESC(1, 0x00, "Tx64BytePkts"),
307 MIB_DESC(1, 0x01, "Tx127BytePkts"),
308 MIB_DESC(1, 0x02, "Tx255BytePkts"),
309 MIB_DESC(1, 0x03, "Tx511BytePkts"),
310 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
311 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
312 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
313 MIB_DESC(1, 0x08, "TxSingleCollCount"),
314 MIB_DESC(1, 0x09, "TxMultCollCount"),
315 MIB_DESC(1, 0x0A, "TxLateCollCount"),
316 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
317 MIB_DESC(1, 0x0D, "TxPauseCount"),
318 MIB_DESC(1, 0x10, "TxDroppedPkts"),
319 MIB_DESC(2, 0x0E, "TxGoodBytes"),
320 };
321
322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
323 {
324 return __raw_readl(priv->gswip + (offset * 4));
325 }
326
327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
328 {
329 __raw_writel(val, priv->gswip + (offset * 4));
330 }
331
332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
333 u32 offset)
334 {
335 u32 val = gswip_switch_r(priv, offset);
336
337 val &= ~(clear);
338 val |= set;
339 gswip_switch_w(priv, val, offset);
340 }
341
342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
343 u32 cleared)
344 {
345 u32 val;
346
347 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
348 (val & cleared) == 0, 20, 50000);
349 }
350
351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
352 {
353 return __raw_readl(priv->mdio + (offset * 4));
354 }
355
356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
357 {
358 __raw_writel(val, priv->mdio + (offset * 4));
359 }
360
361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
362 u32 offset)
363 {
364 u32 val = gswip_mdio_r(priv, offset);
365
366 val &= ~(clear);
367 val |= set;
368 gswip_mdio_w(priv, val, offset);
369 }
370
371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
372 {
373 return __raw_readl(priv->mii + (offset * 4));
374 }
375
376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378 __raw_writel(val, priv->mii + (offset * 4));
379 }
380
381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
382 u32 offset)
383 {
384 u32 val = gswip_mii_r(priv, offset);
385
386 val &= ~(clear);
387 val |= set;
388 gswip_mii_w(priv, val, offset);
389 }
390
391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
392 int port)
393 {
394 switch (port) {
395 case 0:
396 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
397 break;
398 case 1:
399 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
400 break;
401 case 5:
402 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
403 break;
404 }
405 }
406
407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
408 int port)
409 {
410 switch (port) {
411 case 0:
412 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
413 break;
414 case 1:
415 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
416 break;
417 case 5:
418 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
419 break;
420 }
421 }
422
423 static int gswip_mdio_poll(struct gswip_priv *priv)
424 {
425 int cnt = 100;
426
427 while (likely(cnt--)) {
428 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
429
430 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
431 return 0;
432 usleep_range(20, 40);
433 }
434
435 return -ETIMEDOUT;
436 }
437
438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
439 {
440 struct gswip_priv *priv = bus->priv;
441 int err;
442
443 err = gswip_mdio_poll(priv);
444 if (err) {
445 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
446 return err;
447 }
448
449 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
450 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
451 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
452 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
453 GSWIP_MDIO_CTRL);
454
455 return 0;
456 }
457
458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
459 {
460 struct gswip_priv *priv = bus->priv;
461 int err;
462
463 err = gswip_mdio_poll(priv);
464 if (err) {
465 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
466 return err;
467 }
468
469 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
470 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
471 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
472 GSWIP_MDIO_CTRL);
473
474 err = gswip_mdio_poll(priv);
475 if (err) {
476 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
477 return err;
478 }
479
480 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
481 }
482
483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
484 {
485 struct dsa_switch *ds = priv->ds;
486
487 ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
488 if (!ds->slave_mii_bus)
489 return -ENOMEM;
490
491 ds->slave_mii_bus->priv = priv;
492 ds->slave_mii_bus->read = gswip_mdio_rd;
493 ds->slave_mii_bus->write = gswip_mdio_wr;
494 ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
495 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
496 dev_name(priv->dev));
497 ds->slave_mii_bus->parent = priv->dev;
498 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
499
500 return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
501 }
502
503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
504 struct gswip_pce_table_entry *tbl)
505 {
506 int i;
507 int err;
508 u16 crtl;
509 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
510 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
511
512 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
513 GSWIP_PCE_TBL_CTRL_BAS);
514 if (err)
515 return err;
516
517 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
518 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
521 GSWIP_PCE_TBL_CTRL);
522
523 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
524 GSWIP_PCE_TBL_CTRL_BAS);
525 if (err)
526 return err;
527
528 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
529 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
530
531 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
532 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
533
534 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
535
536 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
537
538 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
539 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
540 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
541
542 return 0;
543 }
544
545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
546 struct gswip_pce_table_entry *tbl)
547 {
548 int i;
549 int err;
550 u16 crtl;
551 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
552 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
553
554 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
555 GSWIP_PCE_TBL_CTRL_BAS);
556 if (err)
557 return err;
558
559 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
560 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
561 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
562 tbl->table | addr_mode,
563 GSWIP_PCE_TBL_CTRL);
564
565 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
566 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
567
568 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
569 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
570
571 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
572 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
573 tbl->table | addr_mode,
574 GSWIP_PCE_TBL_CTRL);
575
576 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
577
578 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
579 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
580 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
581 if (tbl->type)
582 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
583 if (tbl->valid)
584 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
585 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
586 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
587 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
588
589 return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
590 GSWIP_PCE_TBL_CTRL_BAS);
591 }
592
593 /* Add the LAN port into a bridge with the CPU port by
594 * default. This prevents automatic forwarding of
595 * packages between the LAN ports when no explicit
596 * bridge is configured.
597 */
598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
599 {
600 struct gswip_pce_table_entry vlan_active = {0,};
601 struct gswip_pce_table_entry vlan_mapping = {0,};
602 unsigned int cpu_port = priv->hw_info->cpu_port;
603 unsigned int max_ports = priv->hw_info->max_ports;
604 int err;
605
606 if (port >= max_ports) {
607 dev_err(priv->dev, "single port for %i supported\n", port);
608 return -EIO;
609 }
610
611 vlan_active.index = port + 1;
612 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
613 vlan_active.key[0] = 0; /* vid */
614 vlan_active.val[0] = port + 1 /* fid */;
615 vlan_active.valid = add;
616 err = gswip_pce_table_entry_write(priv, &vlan_active);
617 if (err) {
618 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
619 return err;
620 }
621
622 if (!add)
623 return 0;
624
625 vlan_mapping.index = port + 1;
626 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
627 vlan_mapping.val[0] = 0 /* vid */;
628 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
629 vlan_mapping.val[2] = 0;
630 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
631 if (err) {
632 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
633 return err;
634 }
635
636 return 0;
637 }
638
639 static int gswip_port_enable(struct dsa_switch *ds, int port,
640 struct phy_device *phydev)
641 {
642 struct gswip_priv *priv = ds->priv;
643 int err;
644
645 if (!dsa_is_user_port(ds, port))
646 return 0;
647
648 if (!dsa_is_cpu_port(ds, port)) {
649 err = gswip_add_single_port_br(priv, port, true);
650 if (err)
651 return err;
652 }
653
654 /* RMON Counter Enable for port */
655 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
656
657 /* enable port fetch/store dma & VLAN Modification */
658 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
659 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
660 GSWIP_FDMA_PCTRLp(port));
661 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
662 GSWIP_SDMA_PCTRLp(port));
663
664 if (!dsa_is_cpu_port(ds, port)) {
665 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
666 GSWIP_MDIO_PHY_SPEED_AUTO |
667 GSWIP_MDIO_PHY_FDUP_AUTO |
668 GSWIP_MDIO_PHY_FCONTX_AUTO |
669 GSWIP_MDIO_PHY_FCONRX_AUTO |
670 (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
671
672 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
673 /* Activate MDIO auto polling */
674 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
675 }
676
677 return 0;
678 }
679
680 static void gswip_port_disable(struct dsa_switch *ds, int port)
681 {
682 struct gswip_priv *priv = ds->priv;
683
684 if (!dsa_is_user_port(ds, port))
685 return;
686
687 if (!dsa_is_cpu_port(ds, port)) {
688 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
689 GSWIP_MDIO_PHY_LINK_MASK,
690 GSWIP_MDIO_PHYp(port));
691 /* Deactivate MDIO auto polling */
692 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
693 }
694
695 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
696 GSWIP_FDMA_PCTRLp(port));
697 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
698 GSWIP_SDMA_PCTRLp(port));
699 }
700
701 static int gswip_pce_load_microcode(struct gswip_priv *priv)
702 {
703 int i;
704 int err;
705
706 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
707 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
708 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
709 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
710
711 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
712 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
713 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
714 GSWIP_PCE_TBL_VAL(0));
715 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
716 GSWIP_PCE_TBL_VAL(1));
717 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
718 GSWIP_PCE_TBL_VAL(2));
719 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
720 GSWIP_PCE_TBL_VAL(3));
721
722 /* start the table access: */
723 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
724 GSWIP_PCE_TBL_CTRL);
725 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
726 GSWIP_PCE_TBL_CTRL_BAS);
727 if (err)
728 return err;
729 }
730
731 /* tell the switch that the microcode is loaded */
732 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
733 GSWIP_PCE_GCTRL_0);
734
735 return 0;
736 }
737
738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
739 bool vlan_filtering)
740 {
741 struct gswip_priv *priv = ds->priv;
742 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
743
744 /* Do not allow changing the VLAN filtering options while in bridge */
745 if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
746 return -EIO;
747
748 if (vlan_filtering) {
749 /* Use port based VLAN tag */
750 gswip_switch_mask(priv,
751 GSWIP_PCE_VCTRL_VSR,
752 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
753 GSWIP_PCE_VCTRL_VEMR,
754 GSWIP_PCE_VCTRL(port));
755 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
756 GSWIP_PCE_PCTRL_0p(port));
757 } else {
758 /* Use port based VLAN tag */
759 gswip_switch_mask(priv,
760 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
761 GSWIP_PCE_VCTRL_VEMR,
762 GSWIP_PCE_VCTRL_VSR,
763 GSWIP_PCE_VCTRL(port));
764 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
765 GSWIP_PCE_PCTRL_0p(port));
766 }
767
768 return 0;
769 }
770
771 static int gswip_setup(struct dsa_switch *ds)
772 {
773 struct gswip_priv *priv = ds->priv;
774 unsigned int cpu_port = priv->hw_info->cpu_port;
775 int i;
776 int err;
777
778 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
779 usleep_range(5000, 10000);
780 gswip_switch_w(priv, 0, GSWIP_SWRES);
781
782 /* disable port fetch/store dma on all ports */
783 for (i = 0; i < priv->hw_info->max_ports; i++) {
784 gswip_port_disable(ds, i);
785 gswip_port_vlan_filtering(ds, i, false);
786 }
787
788 /* enable Switch */
789 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
790
791 err = gswip_pce_load_microcode(priv);
792 if (err) {
793 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
794 return err;
795 }
796
797 /* Default unknown Broadcast/Multicast/Unicast port maps */
798 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
799 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
800 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
801
802 /* disable PHY auto polling */
803 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
804 /* Configure the MDIO Clock 2.5 MHz */
805 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
806
807 /* Disable the xMII link */
808 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
809 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
810 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
811
812 /* enable special tag insertion on cpu port */
813 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
814 GSWIP_FDMA_PCTRLp(cpu_port));
815
816 /* accept special tag in ingress direction */
817 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
818 GSWIP_PCE_PCTRL_0p(cpu_port));
819
820 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
821 GSWIP_MAC_CTRL_2p(cpu_port));
822 gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
823 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
824 GSWIP_BM_QUEUE_GCTRL);
825
826 /* VLAN aware Switching */
827 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
828
829 /* Flush MAC Table */
830 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
831
832 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
833 GSWIP_PCE_GCTRL_0_MTFL);
834 if (err) {
835 dev_err(priv->dev, "MAC flushing didn't finish\n");
836 return err;
837 }
838
839 gswip_port_enable(ds, cpu_port, NULL);
840 return 0;
841 }
842
843 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
844 int port,
845 enum dsa_tag_protocol mp)
846 {
847 return DSA_TAG_PROTO_GSWIP;
848 }
849
850 static int gswip_vlan_active_create(struct gswip_priv *priv,
851 struct net_device *bridge,
852 int fid, u16 vid)
853 {
854 struct gswip_pce_table_entry vlan_active = {0,};
855 unsigned int max_ports = priv->hw_info->max_ports;
856 int idx = -1;
857 int err;
858 int i;
859
860 /* Look for a free slot */
861 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
862 if (!priv->vlans[i].bridge) {
863 idx = i;
864 break;
865 }
866 }
867
868 if (idx == -1)
869 return -ENOSPC;
870
871 if (fid == -1)
872 fid = idx;
873
874 vlan_active.index = idx;
875 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
876 vlan_active.key[0] = vid;
877 vlan_active.val[0] = fid;
878 vlan_active.valid = true;
879
880 err = gswip_pce_table_entry_write(priv, &vlan_active);
881 if (err) {
882 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
883 return err;
884 }
885
886 priv->vlans[idx].bridge = bridge;
887 priv->vlans[idx].vid = vid;
888 priv->vlans[idx].fid = fid;
889
890 return idx;
891 }
892
893 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
894 {
895 struct gswip_pce_table_entry vlan_active = {0,};
896 int err;
897
898 vlan_active.index = idx;
899 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
900 vlan_active.valid = false;
901 err = gswip_pce_table_entry_write(priv, &vlan_active);
902 if (err)
903 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
904 priv->vlans[idx].bridge = NULL;
905
906 return err;
907 }
908
909 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
910 struct net_device *bridge, int port)
911 {
912 struct gswip_pce_table_entry vlan_mapping = {0,};
913 unsigned int max_ports = priv->hw_info->max_ports;
914 unsigned int cpu_port = priv->hw_info->cpu_port;
915 bool active_vlan_created = false;
916 int idx = -1;
917 int i;
918 int err;
919
920 /* Check if there is already a page for this bridge */
921 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
922 if (priv->vlans[i].bridge == bridge) {
923 idx = i;
924 break;
925 }
926 }
927
928 /* If this bridge is not programmed yet, add a Active VLAN table
929 * entry in a free slot and prepare the VLAN mapping table entry.
930 */
931 if (idx == -1) {
932 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
933 if (idx < 0)
934 return idx;
935 active_vlan_created = true;
936
937 vlan_mapping.index = idx;
938 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
939 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
940 vlan_mapping.val[0] = 0;
941 } else {
942 /* Read the existing VLAN mapping entry from the switch */
943 vlan_mapping.index = idx;
944 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
945 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
946 if (err) {
947 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
948 err);
949 return err;
950 }
951 }
952
953 /* Update the VLAN mapping entry and write it to the switch */
954 vlan_mapping.val[1] |= BIT(cpu_port);
955 vlan_mapping.val[1] |= BIT(port);
956 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
957 if (err) {
958 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
959 /* In case an Active VLAN was creaetd delete it again */
960 if (active_vlan_created)
961 gswip_vlan_active_remove(priv, idx);
962 return err;
963 }
964
965 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
966 return 0;
967 }
968
969 static int gswip_vlan_add_aware(struct gswip_priv *priv,
970 struct net_device *bridge, int port,
971 u16 vid, bool untagged,
972 bool pvid)
973 {
974 struct gswip_pce_table_entry vlan_mapping = {0,};
975 unsigned int max_ports = priv->hw_info->max_ports;
976 unsigned int cpu_port = priv->hw_info->cpu_port;
977 bool active_vlan_created = false;
978 int idx = -1;
979 int fid = -1;
980 int i;
981 int err;
982
983 /* Check if there is already a page for this bridge */
984 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
985 if (priv->vlans[i].bridge == bridge) {
986 if (fid != -1 && fid != priv->vlans[i].fid)
987 dev_err(priv->dev, "one bridge with multiple flow ids\n");
988 fid = priv->vlans[i].fid;
989 if (priv->vlans[i].vid == vid) {
990 idx = i;
991 break;
992 }
993 }
994 }
995
996 /* If this bridge is not programmed yet, add a Active VLAN table
997 * entry in a free slot and prepare the VLAN mapping table entry.
998 */
999 if (idx == -1) {
1000 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1001 if (idx < 0)
1002 return idx;
1003 active_vlan_created = true;
1004
1005 vlan_mapping.index = idx;
1006 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1007 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1008 vlan_mapping.val[0] = vid;
1009 } else {
1010 /* Read the existing VLAN mapping entry from the switch */
1011 vlan_mapping.index = idx;
1012 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1013 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1014 if (err) {
1015 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1016 err);
1017 return err;
1018 }
1019 }
1020
1021 vlan_mapping.val[0] = vid;
1022 /* Update the VLAN mapping entry and write it to the switch */
1023 vlan_mapping.val[1] |= BIT(cpu_port);
1024 vlan_mapping.val[2] |= BIT(cpu_port);
1025 vlan_mapping.val[1] |= BIT(port);
1026 if (untagged)
1027 vlan_mapping.val[2] &= ~BIT(port);
1028 else
1029 vlan_mapping.val[2] |= BIT(port);
1030 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1031 if (err) {
1032 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1033 /* In case an Active VLAN was creaetd delete it again */
1034 if (active_vlan_created)
1035 gswip_vlan_active_remove(priv, idx);
1036 return err;
1037 }
1038
1039 if (pvid)
1040 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1041
1042 return 0;
1043 }
1044
1045 static int gswip_vlan_remove(struct gswip_priv *priv,
1046 struct net_device *bridge, int port,
1047 u16 vid, bool pvid, bool vlan_aware)
1048 {
1049 struct gswip_pce_table_entry vlan_mapping = {0,};
1050 unsigned int max_ports = priv->hw_info->max_ports;
1051 unsigned int cpu_port = priv->hw_info->cpu_port;
1052 int idx = -1;
1053 int i;
1054 int err;
1055
1056 /* Check if there is already a page for this bridge */
1057 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1058 if (priv->vlans[i].bridge == bridge &&
1059 (!vlan_aware || priv->vlans[i].vid == vid)) {
1060 idx = i;
1061 break;
1062 }
1063 }
1064
1065 if (idx == -1) {
1066 dev_err(priv->dev, "bridge to leave does not exists\n");
1067 return -ENOENT;
1068 }
1069
1070 vlan_mapping.index = idx;
1071 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1073 if (err) {
1074 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1075 return err;
1076 }
1077
1078 vlan_mapping.val[1] &= ~BIT(port);
1079 vlan_mapping.val[2] &= ~BIT(port);
1080 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1081 if (err) {
1082 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1083 return err;
1084 }
1085
1086 /* In case all ports are removed from the bridge, remove the VLAN */
1087 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1088 err = gswip_vlan_active_remove(priv, idx);
1089 if (err) {
1090 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1091 err);
1092 return err;
1093 }
1094 }
1095
1096 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1097 if (pvid)
1098 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1099
1100 return 0;
1101 }
1102
1103 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1104 struct net_device *bridge)
1105 {
1106 struct gswip_priv *priv = ds->priv;
1107 int err;
1108
1109 /* When the bridge uses VLAN filtering we have to configure VLAN
1110 * specific bridges. No bridge is configured here.
1111 */
1112 if (!br_vlan_enabled(bridge)) {
1113 err = gswip_vlan_add_unaware(priv, bridge, port);
1114 if (err)
1115 return err;
1116 priv->port_vlan_filter &= ~BIT(port);
1117 } else {
1118 priv->port_vlan_filter |= BIT(port);
1119 }
1120 return gswip_add_single_port_br(priv, port, false);
1121 }
1122
1123 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1124 struct net_device *bridge)
1125 {
1126 struct gswip_priv *priv = ds->priv;
1127
1128 gswip_add_single_port_br(priv, port, true);
1129
1130 /* When the bridge uses VLAN filtering we have to configure VLAN
1131 * specific bridges. No bridge is configured here.
1132 */
1133 if (!br_vlan_enabled(bridge))
1134 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1135 }
1136
1137 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1138 const struct switchdev_obj_port_vlan *vlan)
1139 {
1140 struct gswip_priv *priv = ds->priv;
1141 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1142 unsigned int max_ports = priv->hw_info->max_ports;
1143 u16 vid;
1144 int i;
1145 int pos = max_ports;
1146
1147 /* We only support VLAN filtering on bridges */
1148 if (!dsa_is_cpu_port(ds, port) && !bridge)
1149 return -EOPNOTSUPP;
1150
1151 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1152 int idx = -1;
1153
1154 /* Check if there is already a page for this VLAN */
1155 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1156 if (priv->vlans[i].bridge == bridge &&
1157 priv->vlans[i].vid == vid) {
1158 idx = i;
1159 break;
1160 }
1161 }
1162
1163 /* If this VLAN is not programmed yet, we have to reserve
1164 * one entry in the VLAN table. Make sure we start at the
1165 * next position round.
1166 */
1167 if (idx == -1) {
1168 /* Look for a free slot */
1169 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1170 if (!priv->vlans[pos].bridge) {
1171 idx = pos;
1172 pos++;
1173 break;
1174 }
1175 }
1176
1177 if (idx == -1)
1178 return -ENOSPC;
1179 }
1180 }
1181
1182 return 0;
1183 }
1184
1185 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1186 const struct switchdev_obj_port_vlan *vlan)
1187 {
1188 struct gswip_priv *priv = ds->priv;
1189 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1190 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1191 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1192 u16 vid;
1193
1194 /* We have to receive all packets on the CPU port and should not
1195 * do any VLAN filtering here. This is also called with bridge
1196 * NULL and then we do not know for which bridge to configure
1197 * this.
1198 */
1199 if (dsa_is_cpu_port(ds, port))
1200 return;
1201
1202 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1203 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1204 }
1205
1206 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1207 const struct switchdev_obj_port_vlan *vlan)
1208 {
1209 struct gswip_priv *priv = ds->priv;
1210 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1211 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1212 u16 vid;
1213 int err;
1214
1215 /* We have to receive all packets on the CPU port and should not
1216 * do any VLAN filtering here. This is also called with bridge
1217 * NULL and then we do not know for which bridge to configure
1218 * this.
1219 */
1220 if (dsa_is_cpu_port(ds, port))
1221 return 0;
1222
1223 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1224 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1225 if (err)
1226 return err;
1227 }
1228
1229 return 0;
1230 }
1231
1232 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1233 {
1234 struct gswip_priv *priv = ds->priv;
1235 struct gswip_pce_table_entry mac_bridge = {0,};
1236 int i;
1237 int err;
1238
1239 for (i = 0; i < 2048; i++) {
1240 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1241 mac_bridge.index = i;
1242
1243 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1244 if (err) {
1245 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1246 err);
1247 return;
1248 }
1249
1250 if (!mac_bridge.valid)
1251 continue;
1252
1253 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1254 continue;
1255
1256 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1257 continue;
1258
1259 mac_bridge.valid = false;
1260 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1261 if (err) {
1262 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1263 err);
1264 return;
1265 }
1266 }
1267 }
1268
1269 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1270 {
1271 struct gswip_priv *priv = ds->priv;
1272 u32 stp_state;
1273
1274 switch (state) {
1275 case BR_STATE_DISABLED:
1276 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1277 GSWIP_SDMA_PCTRLp(port));
1278 return;
1279 case BR_STATE_BLOCKING:
1280 case BR_STATE_LISTENING:
1281 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1282 break;
1283 case BR_STATE_LEARNING:
1284 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1285 break;
1286 case BR_STATE_FORWARDING:
1287 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1288 break;
1289 default:
1290 dev_err(priv->dev, "invalid STP state: %d\n", state);
1291 return;
1292 }
1293
1294 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1295 GSWIP_SDMA_PCTRLp(port));
1296 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1297 GSWIP_PCE_PCTRL_0p(port));
1298 }
1299
1300 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1301 const unsigned char *addr, u16 vid, bool add)
1302 {
1303 struct gswip_priv *priv = ds->priv;
1304 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1305 struct gswip_pce_table_entry mac_bridge = {0,};
1306 unsigned int cpu_port = priv->hw_info->cpu_port;
1307 int fid = -1;
1308 int i;
1309 int err;
1310
1311 if (!bridge)
1312 return -EINVAL;
1313
1314 for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1315 if (priv->vlans[i].bridge == bridge) {
1316 fid = priv->vlans[i].fid;
1317 break;
1318 }
1319 }
1320
1321 if (fid == -1) {
1322 dev_err(priv->dev, "Port not part of a bridge\n");
1323 return -EINVAL;
1324 }
1325
1326 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1327 mac_bridge.key_mode = true;
1328 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1329 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1330 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1331 mac_bridge.key[3] = fid;
1332 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1333 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1334 mac_bridge.valid = add;
1335
1336 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1337 if (err)
1338 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1339
1340 return err;
1341 }
1342
1343 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1344 const unsigned char *addr, u16 vid)
1345 {
1346 return gswip_port_fdb(ds, port, addr, vid, true);
1347 }
1348
1349 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1350 const unsigned char *addr, u16 vid)
1351 {
1352 return gswip_port_fdb(ds, port, addr, vid, false);
1353 }
1354
1355 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1356 dsa_fdb_dump_cb_t *cb, void *data)
1357 {
1358 struct gswip_priv *priv = ds->priv;
1359 struct gswip_pce_table_entry mac_bridge = {0,};
1360 unsigned char addr[6];
1361 int i;
1362 int err;
1363
1364 for (i = 0; i < 2048; i++) {
1365 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1366 mac_bridge.index = i;
1367
1368 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1369 if (err) {
1370 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1371 err);
1372 return err;
1373 }
1374
1375 if (!mac_bridge.valid)
1376 continue;
1377
1378 addr[5] = mac_bridge.key[0] & 0xff;
1379 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1380 addr[3] = mac_bridge.key[1] & 0xff;
1381 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1382 addr[1] = mac_bridge.key[2] & 0xff;
1383 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1384 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1385 if (mac_bridge.val[0] & BIT(port))
1386 cb(addr, 0, true, data);
1387 } else {
1388 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1389 cb(addr, 0, false, data);
1390 }
1391 }
1392 return 0;
1393 }
1394
1395 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1396 unsigned long *supported,
1397 struct phylink_link_state *state)
1398 {
1399 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1400
1401 switch (port) {
1402 case 0:
1403 case 1:
1404 if (!phy_interface_mode_is_rgmii(state->interface) &&
1405 state->interface != PHY_INTERFACE_MODE_MII &&
1406 state->interface != PHY_INTERFACE_MODE_REVMII &&
1407 state->interface != PHY_INTERFACE_MODE_RMII)
1408 goto unsupported;
1409 break;
1410 case 2:
1411 case 3:
1412 case 4:
1413 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1414 goto unsupported;
1415 break;
1416 case 5:
1417 if (!phy_interface_mode_is_rgmii(state->interface) &&
1418 state->interface != PHY_INTERFACE_MODE_INTERNAL)
1419 goto unsupported;
1420 break;
1421 default:
1422 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1423 dev_err(ds->dev, "Unsupported port: %i\n", port);
1424 return;
1425 }
1426
1427 /* Allow all the expected bits */
1428 phylink_set(mask, Autoneg);
1429 phylink_set_port_modes(mask);
1430 phylink_set(mask, Pause);
1431 phylink_set(mask, Asym_Pause);
1432
1433 /* With the exclusion of MII and Reverse MII, we support Gigabit,
1434 * including Half duplex
1435 */
1436 if (state->interface != PHY_INTERFACE_MODE_MII &&
1437 state->interface != PHY_INTERFACE_MODE_REVMII) {
1438 phylink_set(mask, 1000baseT_Full);
1439 phylink_set(mask, 1000baseT_Half);
1440 }
1441
1442 phylink_set(mask, 10baseT_Half);
1443 phylink_set(mask, 10baseT_Full);
1444 phylink_set(mask, 100baseT_Half);
1445 phylink_set(mask, 100baseT_Full);
1446
1447 bitmap_and(supported, supported, mask,
1448 __ETHTOOL_LINK_MODE_MASK_NBITS);
1449 bitmap_and(state->advertising, state->advertising, mask,
1450 __ETHTOOL_LINK_MODE_MASK_NBITS);
1451 return;
1452
1453 unsupported:
1454 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1455 dev_err(ds->dev, "Unsupported interface: %d\n", state->interface);
1456 return;
1457 }
1458
1459 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1460 unsigned int mode,
1461 const struct phylink_link_state *state)
1462 {
1463 struct gswip_priv *priv = ds->priv;
1464 u32 miicfg = 0;
1465
1466 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1467
1468 switch (state->interface) {
1469 case PHY_INTERFACE_MODE_MII:
1470 case PHY_INTERFACE_MODE_INTERNAL:
1471 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1472 break;
1473 case PHY_INTERFACE_MODE_REVMII:
1474 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1475 break;
1476 case PHY_INTERFACE_MODE_RMII:
1477 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1478 break;
1479 case PHY_INTERFACE_MODE_RGMII:
1480 case PHY_INTERFACE_MODE_RGMII_ID:
1481 case PHY_INTERFACE_MODE_RGMII_RXID:
1482 case PHY_INTERFACE_MODE_RGMII_TXID:
1483 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1484 break;
1485 default:
1486 dev_err(ds->dev,
1487 "Unsupported interface: %d\n", state->interface);
1488 return;
1489 }
1490 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1491
1492 switch (state->interface) {
1493 case PHY_INTERFACE_MODE_RGMII_ID:
1494 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1495 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1496 break;
1497 case PHY_INTERFACE_MODE_RGMII_RXID:
1498 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1499 break;
1500 case PHY_INTERFACE_MODE_RGMII_TXID:
1501 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1502 break;
1503 default:
1504 break;
1505 }
1506 }
1507
1508 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1509 unsigned int mode,
1510 phy_interface_t interface)
1511 {
1512 struct gswip_priv *priv = ds->priv;
1513
1514 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1515 }
1516
1517 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1518 unsigned int mode,
1519 phy_interface_t interface,
1520 struct phy_device *phydev,
1521 int speed, int duplex,
1522 bool tx_pause, bool rx_pause)
1523 {
1524 struct gswip_priv *priv = ds->priv;
1525
1526 /* Enable the xMII interface only for the external PHY */
1527 if (interface != PHY_INTERFACE_MODE_INTERNAL)
1528 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1529 }
1530
1531 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1532 uint8_t *data)
1533 {
1534 int i;
1535
1536 if (stringset != ETH_SS_STATS)
1537 return;
1538
1539 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1540 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1541 ETH_GSTRING_LEN);
1542 }
1543
1544 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1545 u32 index)
1546 {
1547 u32 result;
1548 int err;
1549
1550 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1551 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1552 GSWIP_BM_RAM_CTRL_OPMOD,
1553 table | GSWIP_BM_RAM_CTRL_BAS,
1554 GSWIP_BM_RAM_CTRL);
1555
1556 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1557 GSWIP_BM_RAM_CTRL_BAS);
1558 if (err) {
1559 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1560 table, index);
1561 return 0;
1562 }
1563
1564 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1565 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1566
1567 return result;
1568 }
1569
1570 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1571 uint64_t *data)
1572 {
1573 struct gswip_priv *priv = ds->priv;
1574 const struct gswip_rmon_cnt_desc *rmon_cnt;
1575 int i;
1576 u64 high;
1577
1578 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1579 rmon_cnt = &gswip_rmon_cnt[i];
1580
1581 data[i] = gswip_bcm_ram_entry_read(priv, port,
1582 rmon_cnt->offset);
1583 if (rmon_cnt->size == 2) {
1584 high = gswip_bcm_ram_entry_read(priv, port,
1585 rmon_cnt->offset + 1);
1586 data[i] |= high << 32;
1587 }
1588 }
1589 }
1590
1591 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1592 {
1593 if (sset != ETH_SS_STATS)
1594 return 0;
1595
1596 return ARRAY_SIZE(gswip_rmon_cnt);
1597 }
1598
1599 static const struct dsa_switch_ops gswip_switch_ops = {
1600 .get_tag_protocol = gswip_get_tag_protocol,
1601 .setup = gswip_setup,
1602 .port_enable = gswip_port_enable,
1603 .port_disable = gswip_port_disable,
1604 .port_bridge_join = gswip_port_bridge_join,
1605 .port_bridge_leave = gswip_port_bridge_leave,
1606 .port_fast_age = gswip_port_fast_age,
1607 .port_vlan_filtering = gswip_port_vlan_filtering,
1608 .port_vlan_prepare = gswip_port_vlan_prepare,
1609 .port_vlan_add = gswip_port_vlan_add,
1610 .port_vlan_del = gswip_port_vlan_del,
1611 .port_stp_state_set = gswip_port_stp_state_set,
1612 .port_fdb_add = gswip_port_fdb_add,
1613 .port_fdb_del = gswip_port_fdb_del,
1614 .port_fdb_dump = gswip_port_fdb_dump,
1615 .phylink_validate = gswip_phylink_validate,
1616 .phylink_mac_config = gswip_phylink_mac_config,
1617 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1618 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1619 .get_strings = gswip_get_strings,
1620 .get_ethtool_stats = gswip_get_ethtool_stats,
1621 .get_sset_count = gswip_get_sset_count,
1622 };
1623
1624 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1625 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1626 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1627 };
1628
1629 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1630 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1631 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1632 };
1633
1634 static const struct xway_gphy_match_data xrx300_gphy_data = {
1635 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1636 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1637 };
1638
1639 static const struct of_device_id xway_gphy_match[] = {
1640 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1641 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1642 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1643 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1644 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1645 {},
1646 };
1647
1648 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1649 {
1650 struct device *dev = priv->dev;
1651 const struct firmware *fw;
1652 void *fw_addr;
1653 dma_addr_t dma_addr;
1654 dma_addr_t dev_addr;
1655 size_t size;
1656 int ret;
1657
1658 ret = clk_prepare_enable(gphy_fw->clk_gate);
1659 if (ret)
1660 return ret;
1661
1662 reset_control_assert(gphy_fw->reset);
1663
1664 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1665 if (ret) {
1666 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1667 gphy_fw->fw_name, ret);
1668 return ret;
1669 }
1670
1671 /* GPHY cores need the firmware code in a persistent and contiguous
1672 * memory area with a 16 kB boundary aligned start address.
1673 */
1674 size = fw->size + XRX200_GPHY_FW_ALIGN;
1675
1676 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1677 if (fw_addr) {
1678 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1679 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1680 memcpy(fw_addr, fw->data, fw->size);
1681 } else {
1682 dev_err(dev, "failed to alloc firmware memory\n");
1683 release_firmware(fw);
1684 return -ENOMEM;
1685 }
1686
1687 release_firmware(fw);
1688
1689 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1690 if (ret)
1691 return ret;
1692
1693 reset_control_deassert(gphy_fw->reset);
1694
1695 return ret;
1696 }
1697
1698 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1699 struct gswip_gphy_fw *gphy_fw,
1700 struct device_node *gphy_fw_np, int i)
1701 {
1702 struct device *dev = priv->dev;
1703 u32 gphy_mode;
1704 int ret;
1705 char gphyname[10];
1706
1707 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1708
1709 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1710 if (IS_ERR(gphy_fw->clk_gate)) {
1711 dev_err(dev, "Failed to lookup gate clock\n");
1712 return PTR_ERR(gphy_fw->clk_gate);
1713 }
1714
1715 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1716 if (ret)
1717 return ret;
1718
1719 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1720 /* Default to GE mode */
1721 if (ret)
1722 gphy_mode = GPHY_MODE_GE;
1723
1724 switch (gphy_mode) {
1725 case GPHY_MODE_FE:
1726 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1727 break;
1728 case GPHY_MODE_GE:
1729 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1730 break;
1731 default:
1732 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1733 return -EINVAL;
1734 }
1735
1736 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1737 if (IS_ERR(gphy_fw->reset)) {
1738 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1739 dev_err(dev, "Failed to lookup gphy reset\n");
1740 return PTR_ERR(gphy_fw->reset);
1741 }
1742
1743 return gswip_gphy_fw_load(priv, gphy_fw);
1744 }
1745
1746 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1747 struct gswip_gphy_fw *gphy_fw)
1748 {
1749 int ret;
1750
1751 /* check if the device was fully probed */
1752 if (!gphy_fw->fw_name)
1753 return;
1754
1755 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1756 if (ret)
1757 dev_err(priv->dev, "can not reset GPHY FW pointer");
1758
1759 clk_disable_unprepare(gphy_fw->clk_gate);
1760
1761 reset_control_put(gphy_fw->reset);
1762 }
1763
1764 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1765 struct device_node *gphy_fw_list_np, u32 version)
1766 {
1767 struct device *dev = priv->dev;
1768 struct device_node *gphy_fw_np;
1769 const struct of_device_id *match;
1770 int err;
1771 int i = 0;
1772
1773 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1774 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1775 * needs a different GPHY firmware.
1776 */
1777 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1778 switch (version) {
1779 case GSWIP_VERSION_2_0:
1780 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1781 break;
1782 case GSWIP_VERSION_2_1:
1783 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1784 break;
1785 default:
1786 dev_err(dev, "unknown GSWIP version: 0x%x", version);
1787 return -ENOENT;
1788 }
1789 }
1790
1791 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1792 if (match && match->data)
1793 priv->gphy_fw_name_cfg = match->data;
1794
1795 if (!priv->gphy_fw_name_cfg) {
1796 dev_err(dev, "GPHY compatible type not supported");
1797 return -ENOENT;
1798 }
1799
1800 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1801 if (!priv->num_gphy_fw)
1802 return -ENOENT;
1803
1804 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1805 "lantiq,rcu");
1806 if (IS_ERR(priv->rcu_regmap))
1807 return PTR_ERR(priv->rcu_regmap);
1808
1809 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1810 sizeof(*priv->gphy_fw),
1811 GFP_KERNEL | __GFP_ZERO);
1812 if (!priv->gphy_fw)
1813 return -ENOMEM;
1814
1815 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1816 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1817 gphy_fw_np, i);
1818 if (err)
1819 goto remove_gphy;
1820 i++;
1821 }
1822
1823 return 0;
1824
1825 remove_gphy:
1826 for (i = 0; i < priv->num_gphy_fw; i++)
1827 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1828 return err;
1829 }
1830
1831 static int gswip_probe(struct platform_device *pdev)
1832 {
1833 struct gswip_priv *priv;
1834 struct device_node *mdio_np, *gphy_fw_np;
1835 struct device *dev = &pdev->dev;
1836 int err;
1837 int i;
1838 u32 version;
1839
1840 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1841 if (!priv)
1842 return -ENOMEM;
1843
1844 priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1845 if (IS_ERR(priv->gswip))
1846 return PTR_ERR(priv->gswip);
1847
1848 priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1849 if (IS_ERR(priv->mdio))
1850 return PTR_ERR(priv->mdio);
1851
1852 priv->mii = devm_platform_ioremap_resource(pdev, 2);
1853 if (IS_ERR(priv->mii))
1854 return PTR_ERR(priv->mii);
1855
1856 priv->hw_info = of_device_get_match_data(dev);
1857 if (!priv->hw_info)
1858 return -EINVAL;
1859
1860 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1861 if (!priv->ds)
1862 return -ENOMEM;
1863
1864 priv->ds->dev = dev;
1865 priv->ds->num_ports = priv->hw_info->max_ports;
1866 priv->ds->priv = priv;
1867 priv->ds->ops = &gswip_switch_ops;
1868 priv->dev = dev;
1869 version = gswip_switch_r(priv, GSWIP_VERSION);
1870
1871 /* bring up the mdio bus */
1872 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1873 if (gphy_fw_np) {
1874 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1875 of_node_put(gphy_fw_np);
1876 if (err) {
1877 dev_err(dev, "gphy fw probe failed\n");
1878 return err;
1879 }
1880 }
1881
1882 /* bring up the mdio bus */
1883 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1884 if (mdio_np) {
1885 err = gswip_mdio(priv, mdio_np);
1886 if (err) {
1887 dev_err(dev, "mdio probe failed\n");
1888 goto put_mdio_node;
1889 }
1890 }
1891
1892 err = dsa_register_switch(priv->ds);
1893 if (err) {
1894 dev_err(dev, "dsa switch register failed: %i\n", err);
1895 goto mdio_bus;
1896 }
1897 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1898 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1899 priv->hw_info->cpu_port);
1900 err = -EINVAL;
1901 goto disable_switch;
1902 }
1903
1904 platform_set_drvdata(pdev, priv);
1905
1906 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1907 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1908 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1909 return 0;
1910
1911 disable_switch:
1912 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1913 dsa_unregister_switch(priv->ds);
1914 mdio_bus:
1915 if (mdio_np)
1916 mdiobus_unregister(priv->ds->slave_mii_bus);
1917 put_mdio_node:
1918 of_node_put(mdio_np);
1919 for (i = 0; i < priv->num_gphy_fw; i++)
1920 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1921 return err;
1922 }
1923
1924 static int gswip_remove(struct platform_device *pdev)
1925 {
1926 struct gswip_priv *priv = platform_get_drvdata(pdev);
1927 int i;
1928
1929 /* disable the switch */
1930 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1931
1932 dsa_unregister_switch(priv->ds);
1933
1934 if (priv->ds->slave_mii_bus) {
1935 mdiobus_unregister(priv->ds->slave_mii_bus);
1936 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1937 }
1938
1939 for (i = 0; i < priv->num_gphy_fw; i++)
1940 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1941
1942 return 0;
1943 }
1944
1945 static const struct gswip_hw_info gswip_xrx200 = {
1946 .max_ports = 7,
1947 .cpu_port = 6,
1948 };
1949
1950 static const struct of_device_id gswip_of_match[] = {
1951 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1952 {},
1953 };
1954 MODULE_DEVICE_TABLE(of, gswip_of_match);
1955
1956 static struct platform_driver gswip_driver = {
1957 .probe = gswip_probe,
1958 .remove = gswip_remove,
1959 .driver = {
1960 .name = "gswip",
1961 .of_match_table = gswip_of_match,
1962 },
1963 };
1964
1965 module_platform_driver(gswip_driver);
1966
1967 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1968 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1969 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1970 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1971 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1972 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1973 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1974 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1975 MODULE_LICENSE("GPL v2");