]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/dsa/microchip/ksz9477.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT BIT(0)
22 #define NEW_XMII BIT(1)
23 #define IS_9893 BIT(2)
24
25 static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
65 };
66
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
74 {
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
77 }
78
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
86 {
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
89 }
90
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 unsigned int val;
94
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
97 }
98
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
101 {
102 int ret;
103
104 mutex_lock(&dev->vlan_mutex);
105
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
114 }
115
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122 exit:
123 mutex_unlock(&dev->vlan_mutex);
124
125 return ret;
126 }
127
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
130 {
131 int ret;
132
133 mutex_lock(&dev->vlan_mutex);
134
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
147 }
148
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156 exit:
157 mutex_unlock(&dev->vlan_mutex);
158
159 return ret;
160 }
161
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 unsigned int val;
181
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
184 }
185
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 unsigned int val;
189
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
194 }
195
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 u8 data8;
199 u32 data32;
200
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
207
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
224
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229 return 0;
230 }
231
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
234 {
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
239
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
253 }
254
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
258 }
259
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
262 {
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
271
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
279 }
280
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
292
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port,
299 enum dsa_tag_protocol mp)
300 {
301 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 struct ksz_device *dev = ds->priv;
303
304 if (dev->features & IS_9893)
305 proto = DSA_TAG_PROTO_KSZ9893;
306 return proto;
307 }
308
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311 struct ksz_device *dev = ds->priv;
312 u16 val = 0xffff;
313
314 /* No real PHY after this. Simulate the PHY.
315 * A fixed PHY can be setup in the device tree, but this function is
316 * still called for that port during initialization.
317 * For RGMII PHY there is no way to access it so the fixed PHY should
318 * be used. For SGMII PHY the supporting code will be added later.
319 */
320 if (addr >= dev->phy_port_cnt) {
321 struct ksz_port *p = &dev->ports[addr];
322
323 switch (reg) {
324 case MII_BMCR:
325 val = 0x1140;
326 break;
327 case MII_BMSR:
328 val = 0x796d;
329 break;
330 case MII_PHYSID1:
331 val = 0x0022;
332 break;
333 case MII_PHYSID2:
334 val = 0x1631;
335 break;
336 case MII_ADVERTISE:
337 val = 0x05e1;
338 break;
339 case MII_LPA:
340 val = 0xc5e1;
341 break;
342 case MII_CTRL1000:
343 val = 0x0700;
344 break;
345 case MII_STAT1000:
346 if (p->phydev.speed == SPEED_1000)
347 val = 0x3800;
348 else
349 val = 0;
350 break;
351 }
352 } else {
353 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 }
355
356 return val;
357 }
358
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 u16 val)
361 {
362 struct ksz_device *dev = ds->priv;
363
364 /* No real PHY after this. */
365 if (addr >= dev->phy_port_cnt)
366 return 0;
367
368 /* No gigabit support. Do not write to this register. */
369 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 return 0;
371 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373 return 0;
374 }
375
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 u32 stringset, uint8_t *buf)
378 {
379 int i;
380
381 if (stringset != ETH_SS_STATS)
382 return;
383
384 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 ETH_GSTRING_LEN);
387 }
388 }
389
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 u8 member)
392 {
393 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 dev->ports[port].member = member;
395 }
396
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 u8 state)
399 {
400 struct ksz_device *dev = ds->priv;
401 struct ksz_port *p = &dev->ports[port];
402 u8 data;
403 int member = -1;
404 int forward = dev->member;
405
406 ksz_pread8(dev, port, P_STP_CTRL, &data);
407 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409 switch (state) {
410 case BR_STATE_DISABLED:
411 data |= PORT_LEARN_DISABLE;
412 if (port != dev->cpu_port)
413 member = 0;
414 break;
415 case BR_STATE_LISTENING:
416 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 if (port != dev->cpu_port &&
418 p->stp_state == BR_STATE_DISABLED)
419 member = dev->host_mask | p->vid_member;
420 break;
421 case BR_STATE_LEARNING:
422 data |= PORT_RX_ENABLE;
423 break;
424 case BR_STATE_FORWARDING:
425 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427 /* This function is also used internally. */
428 if (port == dev->cpu_port)
429 break;
430
431 member = dev->host_mask | p->vid_member;
432 mutex_lock(&dev->dev_mutex);
433
434 /* Port is a member of a bridge. */
435 if (dev->br_member & (1 << port)) {
436 dev->member |= (1 << port);
437 member = dev->member;
438 }
439 mutex_unlock(&dev->dev_mutex);
440 break;
441 case BR_STATE_BLOCKING:
442 data |= PORT_LEARN_DISABLE;
443 if (port != dev->cpu_port &&
444 p->stp_state == BR_STATE_DISABLED)
445 member = dev->host_mask | p->vid_member;
446 break;
447 default:
448 dev_err(ds->dev, "invalid STP state: %d\n", state);
449 return;
450 }
451
452 ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 p->stp_state = state;
454 mutex_lock(&dev->dev_mutex);
455 /* Port membership may share register with STP state. */
456 if (member >= 0 && member != p->member)
457 ksz9477_cfg_port_member(dev, port, (u8)member);
458
459 /* Check if forwarding needs to be updated. */
460 if (state != BR_STATE_FORWARDING) {
461 if (dev->br_member & (1 << port))
462 dev->member &= ~(1 << port);
463 }
464
465 /* When topology has changed the function ksz_update_port_member
466 * should be called to modify port forwarding behavior.
467 */
468 if (forward != dev->member)
469 ksz_update_port_member(dev, port);
470 mutex_unlock(&dev->dev_mutex);
471 }
472
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475 u8 data;
476
477 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481 if (port < dev->mib_port_cnt) {
482 /* flush individual port */
483 ksz_pread8(dev, port, P_STP_CTRL, &data);
484 if (!(data & PORT_LEARN_DISABLE))
485 ksz_pwrite8(dev, port, P_STP_CTRL,
486 data | PORT_LEARN_DISABLE);
487 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 } else {
490 /* flush all */
491 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 }
493 }
494
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 bool flag)
497 {
498 struct ksz_device *dev = ds->priv;
499
500 if (flag) {
501 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 PORT_VLAN_LOOKUP_VID_0, true);
503 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504 } else {
505 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507 PORT_VLAN_LOOKUP_VID_0, false);
508 }
509
510 return 0;
511 }
512
513 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514 const struct switchdev_obj_port_vlan *vlan)
515 {
516 struct ksz_device *dev = ds->priv;
517 u32 vlan_table[3];
518 u16 vid;
519 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520
521 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
522 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
523 dev_dbg(dev->dev, "Failed to get vlan table\n");
524 return;
525 }
526
527 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
528 if (untagged)
529 vlan_table[1] |= BIT(port);
530 else
531 vlan_table[1] &= ~BIT(port);
532 vlan_table[1] &= ~(BIT(dev->cpu_port));
533
534 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
535
536 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
537 dev_dbg(dev->dev, "Failed to set vlan table\n");
538 return;
539 }
540
541 /* change PVID */
542 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
543 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
544 }
545 }
546
547 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
548 const struct switchdev_obj_port_vlan *vlan)
549 {
550 struct ksz_device *dev = ds->priv;
551 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
552 u32 vlan_table[3];
553 u16 vid;
554 u16 pvid;
555
556 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
557 pvid = pvid & 0xFFF;
558
559 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
560 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
561 dev_dbg(dev->dev, "Failed to get vlan table\n");
562 return -ETIMEDOUT;
563 }
564
565 vlan_table[2] &= ~BIT(port);
566
567 if (pvid == vid)
568 pvid = 1;
569
570 if (untagged)
571 vlan_table[1] &= ~BIT(port);
572
573 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
574 dev_dbg(dev->dev, "Failed to set vlan table\n");
575 return -ETIMEDOUT;
576 }
577 }
578
579 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580
581 return 0;
582 }
583
584 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585 const unsigned char *addr, u16 vid)
586 {
587 struct ksz_device *dev = ds->priv;
588 u32 alu_table[4];
589 u32 data;
590 int ret = 0;
591
592 mutex_lock(&dev->alu_mutex);
593
594 /* find any entry with mac & vid */
595 data = vid << ALU_FID_INDEX_S;
596 data |= ((addr[0] << 8) | addr[1]);
597 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598
599 data = ((addr[2] << 24) | (addr[3] << 16));
600 data |= ((addr[4] << 8) | addr[5]);
601 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602
603 /* start read operation */
604 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605
606 /* wait to be finished */
607 ret = ksz9477_wait_alu_ready(dev);
608 if (ret) {
609 dev_dbg(dev->dev, "Failed to read ALU\n");
610 goto exit;
611 }
612
613 /* read ALU entry */
614 ksz9477_read_table(dev, alu_table);
615
616 /* update ALU entry */
617 alu_table[0] = ALU_V_STATIC_VALID;
618 alu_table[1] |= BIT(port);
619 if (vid)
620 alu_table[1] |= ALU_V_USE_FID;
621 alu_table[2] = (vid << ALU_V_FID_S);
622 alu_table[2] |= ((addr[0] << 8) | addr[1]);
623 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624 alu_table[3] |= ((addr[4] << 8) | addr[5]);
625
626 ksz9477_write_table(dev, alu_table);
627
628 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629
630 /* wait to be finished */
631 ret = ksz9477_wait_alu_ready(dev);
632 if (ret)
633 dev_dbg(dev->dev, "Failed to write ALU\n");
634
635 exit:
636 mutex_unlock(&dev->alu_mutex);
637
638 return ret;
639 }
640
641 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642 const unsigned char *addr, u16 vid)
643 {
644 struct ksz_device *dev = ds->priv;
645 u32 alu_table[4];
646 u32 data;
647 int ret = 0;
648
649 mutex_lock(&dev->alu_mutex);
650
651 /* read any entry with mac & vid */
652 data = vid << ALU_FID_INDEX_S;
653 data |= ((addr[0] << 8) | addr[1]);
654 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655
656 data = ((addr[2] << 24) | (addr[3] << 16));
657 data |= ((addr[4] << 8) | addr[5]);
658 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659
660 /* start read operation */
661 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662
663 /* wait to be finished */
664 ret = ksz9477_wait_alu_ready(dev);
665 if (ret) {
666 dev_dbg(dev->dev, "Failed to read ALU\n");
667 goto exit;
668 }
669
670 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671 if (alu_table[0] & ALU_V_STATIC_VALID) {
672 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675
676 /* clear forwarding port */
677 alu_table[2] &= ~BIT(port);
678
679 /* if there is no port to forward, clear table */
680 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681 alu_table[0] = 0;
682 alu_table[1] = 0;
683 alu_table[2] = 0;
684 alu_table[3] = 0;
685 }
686 } else {
687 alu_table[0] = 0;
688 alu_table[1] = 0;
689 alu_table[2] = 0;
690 alu_table[3] = 0;
691 }
692
693 ksz9477_write_table(dev, alu_table);
694
695 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696
697 /* wait to be finished */
698 ret = ksz9477_wait_alu_ready(dev);
699 if (ret)
700 dev_dbg(dev->dev, "Failed to write ALU\n");
701
702 exit:
703 mutex_unlock(&dev->alu_mutex);
704
705 return ret;
706 }
707
708 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709 {
710 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714 ALU_V_PRIO_AGE_CNT_M;
715 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716
717 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720
721 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722
723 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724 alu->mac[1] = alu_table[2] & 0xFF;
725 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728 alu->mac[5] = alu_table[3] & 0xFF;
729 }
730
731 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732 dsa_fdb_dump_cb_t *cb, void *data)
733 {
734 struct ksz_device *dev = ds->priv;
735 int ret = 0;
736 u32 ksz_data;
737 u32 alu_table[4];
738 struct alu_struct alu;
739 int timeout;
740
741 mutex_lock(&dev->alu_mutex);
742
743 /* start ALU search */
744 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745
746 do {
747 timeout = 1000;
748 do {
749 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751 break;
752 usleep_range(1, 10);
753 } while (timeout-- > 0);
754
755 if (!timeout) {
756 dev_dbg(dev->dev, "Failed to search ALU\n");
757 ret = -ETIMEDOUT;
758 goto exit;
759 }
760
761 /* read ALU table */
762 ksz9477_read_table(dev, alu_table);
763
764 ksz9477_convert_alu(&alu, alu_table);
765
766 if (alu.port_forward & BIT(port)) {
767 ret = cb(alu.mac, alu.fid, alu.is_static, data);
768 if (ret)
769 goto exit;
770 }
771 } while (ksz_data & ALU_START);
772
773 exit:
774
775 /* stop ALU search */
776 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777
778 mutex_unlock(&dev->alu_mutex);
779
780 return ret;
781 }
782
783 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784 const struct switchdev_obj_port_mdb *mdb)
785 {
786 struct ksz_device *dev = ds->priv;
787 u32 static_table[4];
788 u32 data;
789 int index;
790 u32 mac_hi, mac_lo;
791
792 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
793 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
794 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
795
796 mutex_lock(&dev->alu_mutex);
797
798 for (index = 0; index < dev->num_statics; index++) {
799 /* find empty slot first */
800 data = (index << ALU_STAT_INDEX_S) |
801 ALU_STAT_READ | ALU_STAT_START;
802 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
803
804 /* wait to be finished */
805 if (ksz9477_wait_alu_sta_ready(dev)) {
806 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
807 goto exit;
808 }
809
810 /* read ALU static table */
811 ksz9477_read_table(dev, static_table);
812
813 if (static_table[0] & ALU_V_STATIC_VALID) {
814 /* check this has same vid & mac address */
815 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
816 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
817 static_table[3] == mac_lo) {
818 /* found matching one */
819 break;
820 }
821 } else {
822 /* found empty one */
823 break;
824 }
825 }
826
827 /* no available entry */
828 if (index == dev->num_statics)
829 goto exit;
830
831 /* add entry */
832 static_table[0] = ALU_V_STATIC_VALID;
833 static_table[1] |= BIT(port);
834 if (mdb->vid)
835 static_table[1] |= ALU_V_USE_FID;
836 static_table[2] = (mdb->vid << ALU_V_FID_S);
837 static_table[2] |= mac_hi;
838 static_table[3] = mac_lo;
839
840 ksz9477_write_table(dev, static_table);
841
842 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
843 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
844
845 /* wait to be finished */
846 if (ksz9477_wait_alu_sta_ready(dev))
847 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848
849 exit:
850 mutex_unlock(&dev->alu_mutex);
851 }
852
853 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
854 const struct switchdev_obj_port_mdb *mdb)
855 {
856 struct ksz_device *dev = ds->priv;
857 u32 static_table[4];
858 u32 data;
859 int index;
860 int ret = 0;
861 u32 mac_hi, mac_lo;
862
863 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
864 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
865 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
866
867 mutex_lock(&dev->alu_mutex);
868
869 for (index = 0; index < dev->num_statics; index++) {
870 /* find empty slot first */
871 data = (index << ALU_STAT_INDEX_S) |
872 ALU_STAT_READ | ALU_STAT_START;
873 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
874
875 /* wait to be finished */
876 ret = ksz9477_wait_alu_sta_ready(dev);
877 if (ret) {
878 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
879 goto exit;
880 }
881
882 /* read ALU static table */
883 ksz9477_read_table(dev, static_table);
884
885 if (static_table[0] & ALU_V_STATIC_VALID) {
886 /* check this has same vid & mac address */
887
888 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
889 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
890 static_table[3] == mac_lo) {
891 /* found matching one */
892 break;
893 }
894 }
895 }
896
897 /* no available entry */
898 if (index == dev->num_statics)
899 goto exit;
900
901 /* clear port */
902 static_table[1] &= ~BIT(port);
903
904 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
905 /* delete entry */
906 static_table[0] = 0;
907 static_table[1] = 0;
908 static_table[2] = 0;
909 static_table[3] = 0;
910 }
911
912 ksz9477_write_table(dev, static_table);
913
914 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
915 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
916
917 /* wait to be finished */
918 ret = ksz9477_wait_alu_sta_ready(dev);
919 if (ret)
920 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921
922 exit:
923 mutex_unlock(&dev->alu_mutex);
924
925 return ret;
926 }
927
928 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
929 struct dsa_mall_mirror_tc_entry *mirror,
930 bool ingress)
931 {
932 struct ksz_device *dev = ds->priv;
933
934 if (ingress)
935 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
936 else
937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
938
939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
940
941 /* configure mirror port */
942 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
943 PORT_MIRROR_SNIFFER, true);
944
945 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
946
947 return 0;
948 }
949
950 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
951 struct dsa_mall_mirror_tc_entry *mirror)
952 {
953 struct ksz_device *dev = ds->priv;
954 u8 data;
955
956 if (mirror->ingress)
957 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
958 else
959 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
960
961 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
962
963 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
964 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
965 PORT_MIRROR_SNIFFER, false);
966 }
967
968 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
969 {
970 bool gbit;
971
972 if (dev->features & NEW_XMII)
973 gbit = !(data & PORT_MII_NOT_1GBIT);
974 else
975 gbit = !!(data & PORT_MII_1000MBIT_S1);
976 return gbit;
977 }
978
979 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
980 {
981 if (dev->features & NEW_XMII) {
982 if (gbit)
983 *data &= ~PORT_MII_NOT_1GBIT;
984 else
985 *data |= PORT_MII_NOT_1GBIT;
986 } else {
987 if (gbit)
988 *data |= PORT_MII_1000MBIT_S1;
989 else
990 *data &= ~PORT_MII_1000MBIT_S1;
991 }
992 }
993
994 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
995 {
996 int mode;
997
998 if (dev->features & NEW_XMII) {
999 switch (data & PORT_MII_SEL_M) {
1000 case PORT_MII_SEL:
1001 mode = 0;
1002 break;
1003 case PORT_RMII_SEL:
1004 mode = 1;
1005 break;
1006 case PORT_GMII_SEL:
1007 mode = 2;
1008 break;
1009 default:
1010 mode = 3;
1011 }
1012 } else {
1013 switch (data & PORT_MII_SEL_M) {
1014 case PORT_MII_SEL_S1:
1015 mode = 0;
1016 break;
1017 case PORT_RMII_SEL_S1:
1018 mode = 1;
1019 break;
1020 case PORT_GMII_SEL_S1:
1021 mode = 2;
1022 break;
1023 default:
1024 mode = 3;
1025 }
1026 }
1027 return mode;
1028 }
1029
1030 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1031 {
1032 u8 xmii;
1033
1034 if (dev->features & NEW_XMII) {
1035 switch (mode) {
1036 case 0:
1037 xmii = PORT_MII_SEL;
1038 break;
1039 case 1:
1040 xmii = PORT_RMII_SEL;
1041 break;
1042 case 2:
1043 xmii = PORT_GMII_SEL;
1044 break;
1045 default:
1046 xmii = PORT_RGMII_SEL;
1047 break;
1048 }
1049 } else {
1050 switch (mode) {
1051 case 0:
1052 xmii = PORT_MII_SEL_S1;
1053 break;
1054 case 1:
1055 xmii = PORT_RMII_SEL_S1;
1056 break;
1057 case 2:
1058 xmii = PORT_GMII_SEL_S1;
1059 break;
1060 default:
1061 xmii = PORT_RGMII_SEL_S1;
1062 break;
1063 }
1064 }
1065 *data &= ~PORT_MII_SEL_M;
1066 *data |= xmii;
1067 }
1068
1069 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1070 {
1071 phy_interface_t interface;
1072 bool gbit;
1073 int mode;
1074 u8 data8;
1075
1076 if (port < dev->phy_port_cnt)
1077 return PHY_INTERFACE_MODE_NA;
1078 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1079 gbit = ksz9477_get_gbit(dev, data8);
1080 mode = ksz9477_get_xmii(dev, data8);
1081 switch (mode) {
1082 case 2:
1083 interface = PHY_INTERFACE_MODE_GMII;
1084 if (gbit)
1085 break;
1086 fallthrough;
1087 case 0:
1088 interface = PHY_INTERFACE_MODE_MII;
1089 break;
1090 case 1:
1091 interface = PHY_INTERFACE_MODE_RMII;
1092 break;
1093 default:
1094 interface = PHY_INTERFACE_MODE_RGMII;
1095 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1096 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1097 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1098 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1099 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1100 interface = PHY_INTERFACE_MODE_RGMII_ID;
1101 }
1102 break;
1103 }
1104 return interface;
1105 }
1106
1107 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1108 u8 dev_addr, u16 reg_addr, u16 val)
1109 {
1110 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1111 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1112 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1113 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1114 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1115 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1116 }
1117
1118 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1119 {
1120 /* Apply PHY settings to address errata listed in
1121 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1122 * Silicon Errata and Data Sheet Clarification documents:
1123 *
1124 * Register settings are needed to improve PHY receive performance
1125 */
1126 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1127 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1128 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1129 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1130 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1131 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1132 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1133
1134 /* Transmit waveform amplitude can be improved
1135 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1136 */
1137 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1138
1139 /* Energy Efficient Ethernet (EEE) feature select must
1140 * be manually disabled (except on KSZ8565 which is 100Mbit)
1141 */
1142 if (dev->features & GBIT_SUPPORT)
1143 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1144
1145 /* Register settings are required to meet data sheet
1146 * supply current specifications
1147 */
1148 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1149 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1150 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1151 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1152 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1153 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1154 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1155 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1156 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1158 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1159 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1160 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1161 }
1162
1163 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1164 {
1165 u8 data8;
1166 u8 member;
1167 u16 data16;
1168 struct ksz_port *p = &dev->ports[port];
1169
1170 /* enable tag tail for host port */
1171 if (cpu_port)
1172 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1173 true);
1174
1175 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1176
1177 /* set back pressure */
1178 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1179
1180 /* enable broadcast storm limit */
1181 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1182
1183 /* disable DiffServ priority */
1184 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1185
1186 /* replace priority */
1187 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1188 false);
1189 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1190 MTI_PVID_REPLACE, false);
1191
1192 /* enable 802.1p priority */
1193 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1194
1195 if (port < dev->phy_port_cnt) {
1196 /* do not force flow control */
1197 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1198 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1199 false);
1200
1201 if (dev->phy_errata_9477)
1202 ksz9477_phy_errata_setup(dev, port);
1203 } else {
1204 /* force flow control */
1205 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1206 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1207 true);
1208
1209 /* configure MAC to 1G & RGMII mode */
1210 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1211 switch (dev->interface) {
1212 case PHY_INTERFACE_MODE_MII:
1213 ksz9477_set_xmii(dev, 0, &data8);
1214 ksz9477_set_gbit(dev, false, &data8);
1215 p->phydev.speed = SPEED_100;
1216 break;
1217 case PHY_INTERFACE_MODE_RMII:
1218 ksz9477_set_xmii(dev, 1, &data8);
1219 ksz9477_set_gbit(dev, false, &data8);
1220 p->phydev.speed = SPEED_100;
1221 break;
1222 case PHY_INTERFACE_MODE_GMII:
1223 ksz9477_set_xmii(dev, 2, &data8);
1224 ksz9477_set_gbit(dev, true, &data8);
1225 p->phydev.speed = SPEED_1000;
1226 break;
1227 default:
1228 ksz9477_set_xmii(dev, 3, &data8);
1229 ksz9477_set_gbit(dev, true, &data8);
1230 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1231 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1232 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1233 dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1234 data8 |= PORT_RGMII_ID_IG_ENABLE;
1235 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236 dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1237 data8 |= PORT_RGMII_ID_EG_ENABLE;
1238 p->phydev.speed = SPEED_1000;
1239 break;
1240 }
1241 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1242 p->phydev.duplex = 1;
1243 }
1244 mutex_lock(&dev->dev_mutex);
1245 if (cpu_port)
1246 member = dev->port_mask;
1247 else
1248 member = dev->host_mask | p->vid_member;
1249 mutex_unlock(&dev->dev_mutex);
1250 ksz9477_cfg_port_member(dev, port, member);
1251
1252 /* clear pending interrupts */
1253 if (port < dev->phy_port_cnt)
1254 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1255 }
1256
1257 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1258 {
1259 struct ksz_device *dev = ds->priv;
1260 struct ksz_port *p;
1261 int i;
1262
1263 ds->num_ports = dev->port_cnt;
1264
1265 for (i = 0; i < dev->port_cnt; i++) {
1266 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1267 phy_interface_t interface;
1268
1269 dev->cpu_port = i;
1270 dev->host_mask = (1 << dev->cpu_port);
1271 dev->port_mask |= dev->host_mask;
1272
1273 /* Read from XMII register to determine host port
1274 * interface. If set specifically in device tree
1275 * note the difference to help debugging.
1276 */
1277 interface = ksz9477_get_interface(dev, i);
1278 if (!dev->interface)
1279 dev->interface = interface;
1280 if (interface && interface != dev->interface)
1281 dev_info(dev->dev,
1282 "use %s instead of %s\n",
1283 phy_modes(dev->interface),
1284 phy_modes(interface));
1285
1286 /* enable cpu port */
1287 ksz9477_port_setup(dev, i, true);
1288 p = &dev->ports[dev->cpu_port];
1289 p->vid_member = dev->port_mask;
1290 p->on = 1;
1291 }
1292 }
1293
1294 dev->member = dev->host_mask;
1295
1296 for (i = 0; i < dev->mib_port_cnt; i++) {
1297 if (i == dev->cpu_port)
1298 continue;
1299 p = &dev->ports[i];
1300
1301 /* Initialize to non-zero so that ksz_cfg_port_member() will
1302 * be called.
1303 */
1304 p->vid_member = (1 << i);
1305 p->member = dev->port_mask;
1306 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1307 p->on = 1;
1308 if (i < dev->phy_port_cnt)
1309 p->phy = 1;
1310 if (dev->chip_id == 0x00947700 && i == 6) {
1311 p->sgmii = 1;
1312
1313 /* SGMII PHY detection code is not implemented yet. */
1314 p->phy = 0;
1315 }
1316 }
1317 }
1318
1319 static int ksz9477_setup(struct dsa_switch *ds)
1320 {
1321 struct ksz_device *dev = ds->priv;
1322 int ret = 0;
1323
1324 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1325 dev->num_vlans, GFP_KERNEL);
1326 if (!dev->vlan_cache)
1327 return -ENOMEM;
1328
1329 ret = ksz9477_reset_switch(dev);
1330 if (ret) {
1331 dev_err(ds->dev, "failed to reset switch\n");
1332 return ret;
1333 }
1334
1335 /* Required for port partitioning. */
1336 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1337 true);
1338
1339 /* Do not work correctly with tail tagging. */
1340 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1341
1342 /* accept packet up to 2000bytes */
1343 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1344
1345 ksz9477_config_cpu_port(ds);
1346
1347 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1348
1349 /* queue based egress rate limit */
1350 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1351
1352 /* enable global MIB counter freeze function */
1353 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1354
1355 /* start switch */
1356 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1357
1358 ksz_init_mib_timer(dev);
1359
1360 return 0;
1361 }
1362
1363 static const struct dsa_switch_ops ksz9477_switch_ops = {
1364 .get_tag_protocol = ksz9477_get_tag_protocol,
1365 .setup = ksz9477_setup,
1366 .phy_read = ksz9477_phy_read16,
1367 .phy_write = ksz9477_phy_write16,
1368 .phylink_mac_link_down = ksz_mac_link_down,
1369 .port_enable = ksz_enable_port,
1370 .get_strings = ksz9477_get_strings,
1371 .get_ethtool_stats = ksz_get_ethtool_stats,
1372 .get_sset_count = ksz_sset_count,
1373 .port_bridge_join = ksz_port_bridge_join,
1374 .port_bridge_leave = ksz_port_bridge_leave,
1375 .port_stp_state_set = ksz9477_port_stp_state_set,
1376 .port_fast_age = ksz_port_fast_age,
1377 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1378 .port_vlan_prepare = ksz_port_vlan_prepare,
1379 .port_vlan_add = ksz9477_port_vlan_add,
1380 .port_vlan_del = ksz9477_port_vlan_del,
1381 .port_fdb_dump = ksz9477_port_fdb_dump,
1382 .port_fdb_add = ksz9477_port_fdb_add,
1383 .port_fdb_del = ksz9477_port_fdb_del,
1384 .port_mdb_prepare = ksz_port_mdb_prepare,
1385 .port_mdb_add = ksz9477_port_mdb_add,
1386 .port_mdb_del = ksz9477_port_mdb_del,
1387 .port_mirror_add = ksz9477_port_mirror_add,
1388 .port_mirror_del = ksz9477_port_mirror_del,
1389 };
1390
1391 static u32 ksz9477_get_port_addr(int port, int offset)
1392 {
1393 return PORT_CTRL_ADDR(port, offset);
1394 }
1395
1396 static int ksz9477_switch_detect(struct ksz_device *dev)
1397 {
1398 u8 data8;
1399 u8 id_hi;
1400 u8 id_lo;
1401 u32 id32;
1402 int ret;
1403
1404 /* turn off SPI DO Edge select */
1405 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1406 if (ret)
1407 return ret;
1408
1409 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1410 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1411 if (ret)
1412 return ret;
1413
1414 /* read chip id */
1415 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1416 if (ret)
1417 return ret;
1418 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1419 if (ret)
1420 return ret;
1421
1422 /* Number of ports can be reduced depending on chip. */
1423 dev->mib_port_cnt = TOTAL_PORT_NUM;
1424 dev->phy_port_cnt = 5;
1425
1426 /* Default capability is gigabit capable. */
1427 dev->features = GBIT_SUPPORT;
1428
1429 id_hi = (u8)(id32 >> 16);
1430 id_lo = (u8)(id32 >> 8);
1431 if ((id_lo & 0xf) == 3) {
1432 /* Chip is from KSZ9893 design. */
1433 dev->features |= IS_9893;
1434
1435 /* Chip does not support gigabit. */
1436 if (data8 & SW_QW_ABLE)
1437 dev->features &= ~GBIT_SUPPORT;
1438 dev->mib_port_cnt = 3;
1439 dev->phy_port_cnt = 2;
1440 } else {
1441 /* Chip uses new XMII register definitions. */
1442 dev->features |= NEW_XMII;
1443
1444 /* Chip does not support gigabit. */
1445 if (!(data8 & SW_GIGABIT_ABLE))
1446 dev->features &= ~GBIT_SUPPORT;
1447 }
1448
1449 /* Change chip id to known ones so it can be matched against them. */
1450 id32 = (id_hi << 16) | (id_lo << 8);
1451
1452 dev->chip_id = id32;
1453
1454 return 0;
1455 }
1456
1457 struct ksz_chip_data {
1458 u32 chip_id;
1459 const char *dev_name;
1460 int num_vlans;
1461 int num_alus;
1462 int num_statics;
1463 int cpu_ports;
1464 int port_cnt;
1465 bool phy_errata_9477;
1466 };
1467
1468 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1469 {
1470 .chip_id = 0x00947700,
1471 .dev_name = "KSZ9477",
1472 .num_vlans = 4096,
1473 .num_alus = 4096,
1474 .num_statics = 16,
1475 .cpu_ports = 0x7F, /* can be configured as cpu port */
1476 .port_cnt = 7, /* total physical port count */
1477 .phy_errata_9477 = true,
1478 },
1479 {
1480 .chip_id = 0x00989700,
1481 .dev_name = "KSZ9897",
1482 .num_vlans = 4096,
1483 .num_alus = 4096,
1484 .num_statics = 16,
1485 .cpu_ports = 0x7F, /* can be configured as cpu port */
1486 .port_cnt = 7, /* total physical port count */
1487 .phy_errata_9477 = true,
1488 },
1489 {
1490 .chip_id = 0x00989300,
1491 .dev_name = "KSZ9893",
1492 .num_vlans = 4096,
1493 .num_alus = 4096,
1494 .num_statics = 16,
1495 .cpu_ports = 0x07, /* can be configured as cpu port */
1496 .port_cnt = 3, /* total port count */
1497 },
1498 {
1499 .chip_id = 0x00956700,
1500 .dev_name = "KSZ9567",
1501 .num_vlans = 4096,
1502 .num_alus = 4096,
1503 .num_statics = 16,
1504 .cpu_ports = 0x7F, /* can be configured as cpu port */
1505 .port_cnt = 7, /* total physical port count */
1506 },
1507 };
1508
1509 static int ksz9477_switch_init(struct ksz_device *dev)
1510 {
1511 int i;
1512
1513 dev->ds->ops = &ksz9477_switch_ops;
1514
1515 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1516 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1517
1518 if (dev->chip_id == chip->chip_id) {
1519 dev->name = chip->dev_name;
1520 dev->num_vlans = chip->num_vlans;
1521 dev->num_alus = chip->num_alus;
1522 dev->num_statics = chip->num_statics;
1523 dev->port_cnt = chip->port_cnt;
1524 dev->cpu_ports = chip->cpu_ports;
1525 dev->phy_errata_9477 = chip->phy_errata_9477;
1526
1527 break;
1528 }
1529 }
1530
1531 /* no switch found */
1532 if (!dev->port_cnt)
1533 return -ENODEV;
1534
1535 dev->port_mask = (1 << dev->port_cnt) - 1;
1536
1537 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1538 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1539
1540 i = dev->mib_port_cnt;
1541 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1542 GFP_KERNEL);
1543 if (!dev->ports)
1544 return -ENOMEM;
1545 for (i = 0; i < dev->mib_port_cnt; i++) {
1546 mutex_init(&dev->ports[i].mib.cnt_mutex);
1547 dev->ports[i].mib.counters =
1548 devm_kzalloc(dev->dev,
1549 sizeof(u64) *
1550 (TOTAL_SWITCH_COUNTER_NUM + 1),
1551 GFP_KERNEL);
1552 if (!dev->ports[i].mib.counters)
1553 return -ENOMEM;
1554 }
1555
1556 /* set the real number of ports */
1557 dev->ds->num_ports = dev->port_cnt;
1558
1559 return 0;
1560 }
1561
1562 static void ksz9477_switch_exit(struct ksz_device *dev)
1563 {
1564 ksz9477_reset_switch(dev);
1565 }
1566
1567 static const struct ksz_dev_ops ksz9477_dev_ops = {
1568 .get_port_addr = ksz9477_get_port_addr,
1569 .cfg_port_member = ksz9477_cfg_port_member,
1570 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1571 .port_setup = ksz9477_port_setup,
1572 .r_mib_cnt = ksz9477_r_mib_cnt,
1573 .r_mib_pkt = ksz9477_r_mib_pkt,
1574 .freeze_mib = ksz9477_freeze_mib,
1575 .port_init_cnt = ksz9477_port_init_cnt,
1576 .shutdown = ksz9477_reset_switch,
1577 .detect = ksz9477_switch_detect,
1578 .init = ksz9477_switch_init,
1579 .exit = ksz9477_switch_exit,
1580 };
1581
1582 int ksz9477_switch_register(struct ksz_device *dev)
1583 {
1584 int ret, i;
1585 struct phy_device *phydev;
1586
1587 ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1588 if (ret)
1589 return ret;
1590
1591 for (i = 0; i < dev->phy_port_cnt; ++i) {
1592 if (!dsa_is_user_port(dev->ds, i))
1593 continue;
1594
1595 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1596
1597 /* The MAC actually cannot run in 1000 half-duplex mode. */
1598 phy_remove_link_mode(phydev,
1599 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1600
1601 /* PHY does not support gigabit. */
1602 if (!(dev->features & GBIT_SUPPORT))
1603 phy_remove_link_mode(phydev,
1604 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1605 }
1606 return ret;
1607 }
1608 EXPORT_SYMBOL(ksz9477_switch_register);
1609
1610 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1611 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1612 MODULE_LICENSE("GPL");