]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/dsa/microchip/ksz_common.c
net: dsa: Pass a port to get_tag_protocol()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / dsa / microchip / ksz_common.c
1 /*
2 * Microchip switch driver main logic
3 *
4 * Copyright (C) 2017
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30
31 #include "ksz_priv.h"
32
33 static const struct {
34 int index;
35 char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 { 0x00, "rx_hi" },
38 { 0x01, "rx_undersize" },
39 { 0x02, "rx_fragments" },
40 { 0x03, "rx_oversize" },
41 { 0x04, "rx_jabbers" },
42 { 0x05, "rx_symbol_err" },
43 { 0x06, "rx_crc_err" },
44 { 0x07, "rx_align_err" },
45 { 0x08, "rx_mac_ctrl" },
46 { 0x09, "rx_pause" },
47 { 0x0A, "rx_bcast" },
48 { 0x0B, "rx_mcast" },
49 { 0x0C, "rx_ucast" },
50 { 0x0D, "rx_64_or_less" },
51 { 0x0E, "rx_65_127" },
52 { 0x0F, "rx_128_255" },
53 { 0x10, "rx_256_511" },
54 { 0x11, "rx_512_1023" },
55 { 0x12, "rx_1024_1522" },
56 { 0x13, "rx_1523_2000" },
57 { 0x14, "rx_2001" },
58 { 0x15, "tx_hi" },
59 { 0x16, "tx_late_col" },
60 { 0x17, "tx_pause" },
61 { 0x18, "tx_bcast" },
62 { 0x19, "tx_mcast" },
63 { 0x1A, "tx_ucast" },
64 { 0x1B, "tx_deferred" },
65 { 0x1C, "tx_total_col" },
66 { 0x1D, "tx_exc_col" },
67 { 0x1E, "tx_single_col" },
68 { 0x1F, "tx_mult_col" },
69 { 0x80, "rx_total" },
70 { 0x81, "tx_total" },
71 { 0x82, "rx_discards" },
72 { 0x83, "tx_discards" },
73 };
74
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 u8 data;
78
79 ksz_read8(dev, addr, &data);
80 if (set)
81 data |= bits;
82 else
83 data &= ~bits;
84 ksz_write8(dev, addr, data);
85 }
86
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 u32 data;
90
91 ksz_read32(dev, addr, &data);
92 if (set)
93 data |= bits;
94 else
95 data &= ~bits;
96 ksz_write32(dev, addr, data);
97 }
98
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 bool set)
101 {
102 u32 addr;
103 u8 data;
104
105 addr = PORT_CTRL_ADDR(port, offset);
106 ksz_read8(dev, addr, &data);
107
108 if (set)
109 data |= bits;
110 else
111 data &= ~bits;
112
113 ksz_write8(dev, addr, data);
114 }
115
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 u32 bits, bool set)
118 {
119 u32 addr;
120 u32 data;
121
122 addr = PORT_CTRL_ADDR(port, offset);
123 ksz_read32(dev, addr, &data);
124
125 if (set)
126 data |= bits;
127 else
128 data &= ~bits;
129
130 ksz_write32(dev, addr, data);
131 }
132
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 u8 data;
136
137 do {
138 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 if (!(data & waiton))
140 break;
141 usleep_range(1, 10);
142 } while (timeout-- > 0);
143
144 if (timeout <= 0)
145 return -ETIMEDOUT;
146
147 return 0;
148 }
149
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 struct ksz_device *dev = ds->priv;
153 int ret;
154
155 mutex_lock(&dev->vlan_mutex);
156
157 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159
160 /* wait to be cleared */
161 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 if (ret < 0) {
163 dev_dbg(dev->dev, "Failed to read vlan table\n");
164 goto exit;
165 }
166
167 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170
171 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172
173 exit:
174 mutex_unlock(&dev->vlan_mutex);
175
176 return ret;
177 }
178
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 struct ksz_device *dev = ds->priv;
182 int ret;
183
184 mutex_lock(&dev->vlan_mutex);
185
186 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189
190 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192
193 /* wait to be cleared */
194 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 if (ret < 0) {
196 dev_dbg(dev->dev, "Failed to write vlan table\n");
197 goto exit;
198 }
199
200 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201
202 /* update vlan cache table */
203 dev->vlan_cache[vid].table[0] = vlan_table[0];
204 dev->vlan_cache[vid].table[1] = vlan_table[1];
205 dev->vlan_cache[vid].table[2] = vlan_table[2];
206
207 exit:
208 mutex_unlock(&dev->vlan_mutex);
209
210 return ret;
211 }
212
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 struct ksz_device *dev = ds->priv;
216
217 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 struct ksz_device *dev = ds->priv;
226
227 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 u32 data;
236
237 do {
238 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 if (!(data & waiton))
240 break;
241 usleep_range(1, 10);
242 } while (timeout-- > 0);
243
244 if (timeout <= 0)
245 return -ETIMEDOUT;
246
247 return 0;
248 }
249
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 u32 data;
253
254 do {
255 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 if (!(data & waiton))
257 break;
258 usleep_range(1, 10);
259 } while (timeout-- > 0);
260
261 if (timeout <= 0)
262 return -ETIMEDOUT;
263
264 return 0;
265 }
266
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 struct ksz_device *dev = ds->priv;
270 u8 data8;
271 u16 data16;
272 u32 data32;
273
274 /* reset switch */
275 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276
277 /* turn off SPI DO Edge select */
278 ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281
282 /* default configuration */
283 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287
288 /* disable interrupts */
289 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292
293 /* set broadcast storm protection 10% rate */
294 ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 data16 &= ~BROADCAST_STORM_RATE;
296 data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298
299 return 0;
300 }
301
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 u8 data8;
305 u16 data16;
306
307 /* enable tag tail for host port */
308 if (cpu_port)
309 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 true);
311
312 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313
314 /* set back pressure */
315 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316
317 /* set flow control */
318 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320
321 /* enable broadcast storm limit */
322 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323
324 /* disable DiffServ priority */
325 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326
327 /* replace priority */
328 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 false);
330 ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 MTI_PVID_REPLACE, false);
332
333 /* enable 802.1p priority */
334 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335
336 /* configure MAC to 1G & RGMII mode */
337 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 data8 |= PORT_RGMII_ID_EG_ENABLE;
339 data8 &= ~PORT_MII_NOT_1GBIT;
340 data8 &= ~PORT_MII_SEL_M;
341 data8 |= PORT_RGMII_SEL;
342 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343
344 /* clear pending interrupts */
345 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 struct ksz_device *dev = ds->priv;
351 int i;
352
353 ds->num_ports = dev->port_cnt;
354
355 for (i = 0; i < ds->num_ports; i++) {
356 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 dev->cpu_port = i;
358
359 /* enable cpu port */
360 port_setup(dev, i, true);
361 }
362 }
363 }
364
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 struct ksz_device *dev = ds->priv;
368 int ret = 0;
369
370 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 dev->num_vlans, GFP_KERNEL);
372 if (!dev->vlan_cache)
373 return -ENOMEM;
374
375 ret = ksz_reset_switch(ds);
376 if (ret) {
377 dev_err(ds->dev, "failed to reset switch\n");
378 return ret;
379 }
380
381 /* accept packet up to 2000bytes */
382 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383
384 ksz_config_cpu_port(ds);
385
386 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387
388 /* queue based egress rate limit */
389 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390
391 /* start switch */
392 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393
394 return 0;
395 }
396
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 int port)
399 {
400 return DSA_TAG_PROTO_KSZ;
401 }
402
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405 struct ksz_device *dev = ds->priv;
406 u16 val = 0;
407
408 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409
410 return val;
411 }
412
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415 struct ksz_device *dev = ds->priv;
416
417 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418
419 return 0;
420 }
421
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 struct phy_device *phy)
424 {
425 struct ksz_device *dev = ds->priv;
426
427 /* setup slave port */
428 port_setup(dev, port, false);
429
430 return 0;
431 }
432
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 struct phy_device *phy)
435 {
436 struct ksz_device *dev = ds->priv;
437
438 /* there is no port disable */
439 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441
442 static int ksz_sset_count(struct dsa_switch *ds)
443 {
444 return TOTAL_SWITCH_COUNTER_NUM;
445 }
446
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
448 {
449 int i;
450
451 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453 ETH_GSTRING_LEN);
454 }
455 }
456
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458 uint64_t *buf)
459 {
460 struct ksz_device *dev = ds->priv;
461 int i;
462 u32 data;
463 int timeout;
464
465 mutex_lock(&dev->stats_mutex);
466
467 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468 data = MIB_COUNTER_READ;
469 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
471
472 timeout = 1000;
473 do {
474 ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475 &data);
476 usleep_range(1, 10);
477 if (!(data & MIB_COUNTER_READ))
478 break;
479 } while (timeout-- > 0);
480
481 /* failed to read MIB. get out of loop */
482 if (!timeout) {
483 dev_dbg(dev->dev, "Failed to get MIB\n");
484 break;
485 }
486
487 /* count resets upon read */
488 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
489
490 dev->mib_value[i] += (uint64_t)data;
491 buf[i] = dev->mib_value[i];
492 }
493
494 mutex_unlock(&dev->stats_mutex);
495 }
496
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
498 {
499 struct ksz_device *dev = ds->priv;
500 u8 data;
501
502 ksz_pread8(dev, port, P_STP_CTRL, &data);
503 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
504
505 switch (state) {
506 case BR_STATE_DISABLED:
507 data |= PORT_LEARN_DISABLE;
508 break;
509 case BR_STATE_LISTENING:
510 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511 break;
512 case BR_STATE_LEARNING:
513 data |= PORT_RX_ENABLE;
514 break;
515 case BR_STATE_FORWARDING:
516 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517 break;
518 case BR_STATE_BLOCKING:
519 data |= PORT_LEARN_DISABLE;
520 break;
521 default:
522 dev_err(ds->dev, "invalid STP state: %d\n", state);
523 return;
524 }
525
526 ksz_pwrite8(dev, port, P_STP_CTRL, data);
527 }
528
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
530 {
531 struct ksz_device *dev = ds->priv;
532 u8 data8;
533
534 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535 data8 |= SW_FAST_AGING;
536 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
537
538 data8 &= ~SW_FAST_AGING;
539 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
540 }
541
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
543 {
544 struct ksz_device *dev = ds->priv;
545
546 if (flag) {
547 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548 PORT_VLAN_LOOKUP_VID_0, true);
549 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551 } else {
552 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 PORT_VLAN_LOOKUP_VID_0, false);
556 }
557
558 return 0;
559 }
560
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562 const struct switchdev_obj_port_vlan *vlan,
563 struct switchdev_trans *trans)
564 {
565 /* nothing needed */
566
567 return 0;
568 }
569
570 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
571 const struct switchdev_obj_port_vlan *vlan,
572 struct switchdev_trans *trans)
573 {
574 struct ksz_device *dev = ds->priv;
575 u32 vlan_table[3];
576 u16 vid;
577 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
578
579 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
580 if (get_vlan_table(ds, vid, vlan_table)) {
581 dev_dbg(dev->dev, "Failed to get vlan table\n");
582 return;
583 }
584
585 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
586 if (untagged)
587 vlan_table[1] |= BIT(port);
588 else
589 vlan_table[1] &= ~BIT(port);
590 vlan_table[1] &= ~(BIT(dev->cpu_port));
591
592 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
593
594 if (set_vlan_table(ds, vid, vlan_table)) {
595 dev_dbg(dev->dev, "Failed to set vlan table\n");
596 return;
597 }
598
599 /* change PVID */
600 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
601 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
602 }
603 }
604
605 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
606 const struct switchdev_obj_port_vlan *vlan)
607 {
608 struct ksz_device *dev = ds->priv;
609 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
610 u32 vlan_table[3];
611 u16 vid;
612 u16 pvid;
613
614 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
615 pvid = pvid & 0xFFF;
616
617 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
618 if (get_vlan_table(ds, vid, vlan_table)) {
619 dev_dbg(dev->dev, "Failed to get vlan table\n");
620 return -ETIMEDOUT;
621 }
622
623 vlan_table[2] &= ~BIT(port);
624
625 if (pvid == vid)
626 pvid = 1;
627
628 if (untagged)
629 vlan_table[1] &= ~BIT(port);
630
631 if (set_vlan_table(ds, vid, vlan_table)) {
632 dev_dbg(dev->dev, "Failed to set vlan table\n");
633 return -ETIMEDOUT;
634 }
635 }
636
637 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
638
639 return 0;
640 }
641
642 struct alu_struct {
643 /* entry 1 */
644 u8 is_static:1;
645 u8 is_src_filter:1;
646 u8 is_dst_filter:1;
647 u8 prio_age:3;
648 u32 _reserv_0_1:23;
649 u8 mstp:3;
650 /* entry 2 */
651 u8 is_override:1;
652 u8 is_use_fid:1;
653 u32 _reserv_1_1:23;
654 u8 port_forward:7;
655 /* entry 3 & 4*/
656 u32 _reserv_2_1:9;
657 u8 fid:7;
658 u8 mac[ETH_ALEN];
659 };
660
661 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
662 const unsigned char *addr, u16 vid)
663 {
664 struct ksz_device *dev = ds->priv;
665 u32 alu_table[4];
666 u32 data;
667 int ret = 0;
668
669 mutex_lock(&dev->alu_mutex);
670
671 /* find any entry with mac & vid */
672 data = vid << ALU_FID_INDEX_S;
673 data |= ((addr[0] << 8) | addr[1]);
674 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
675
676 data = ((addr[2] << 24) | (addr[3] << 16));
677 data |= ((addr[4] << 8) | addr[5]);
678 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
679
680 /* start read operation */
681 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
682
683 /* wait to be finished */
684 ret = wait_alu_ready(dev, ALU_START, 1000);
685 if (ret < 0) {
686 dev_dbg(dev->dev, "Failed to read ALU\n");
687 goto exit;
688 }
689
690 /* read ALU entry */
691 read_table(ds, alu_table);
692
693 /* update ALU entry */
694 alu_table[0] = ALU_V_STATIC_VALID;
695 alu_table[1] |= BIT(port);
696 if (vid)
697 alu_table[1] |= ALU_V_USE_FID;
698 alu_table[2] = (vid << ALU_V_FID_S);
699 alu_table[2] |= ((addr[0] << 8) | addr[1]);
700 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
701 alu_table[3] |= ((addr[4] << 8) | addr[5]);
702
703 write_table(ds, alu_table);
704
705 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
706
707 /* wait to be finished */
708 ret = wait_alu_ready(dev, ALU_START, 1000);
709 if (ret < 0)
710 dev_dbg(dev->dev, "Failed to write ALU\n");
711
712 exit:
713 mutex_unlock(&dev->alu_mutex);
714
715 return ret;
716 }
717
718 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
719 const unsigned char *addr, u16 vid)
720 {
721 struct ksz_device *dev = ds->priv;
722 u32 alu_table[4];
723 u32 data;
724 int ret = 0;
725
726 mutex_lock(&dev->alu_mutex);
727
728 /* read any entry with mac & vid */
729 data = vid << ALU_FID_INDEX_S;
730 data |= ((addr[0] << 8) | addr[1]);
731 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
732
733 data = ((addr[2] << 24) | (addr[3] << 16));
734 data |= ((addr[4] << 8) | addr[5]);
735 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
736
737 /* start read operation */
738 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
739
740 /* wait to be finished */
741 ret = wait_alu_ready(dev, ALU_START, 1000);
742 if (ret < 0) {
743 dev_dbg(dev->dev, "Failed to read ALU\n");
744 goto exit;
745 }
746
747 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
748 if (alu_table[0] & ALU_V_STATIC_VALID) {
749 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
750 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
751 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
752
753 /* clear forwarding port */
754 alu_table[2] &= ~BIT(port);
755
756 /* if there is no port to forward, clear table */
757 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
758 alu_table[0] = 0;
759 alu_table[1] = 0;
760 alu_table[2] = 0;
761 alu_table[3] = 0;
762 }
763 } else {
764 alu_table[0] = 0;
765 alu_table[1] = 0;
766 alu_table[2] = 0;
767 alu_table[3] = 0;
768 }
769
770 write_table(ds, alu_table);
771
772 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
773
774 /* wait to be finished */
775 ret = wait_alu_ready(dev, ALU_START, 1000);
776 if (ret < 0)
777 dev_dbg(dev->dev, "Failed to write ALU\n");
778
779 exit:
780 mutex_unlock(&dev->alu_mutex);
781
782 return ret;
783 }
784
785 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
786 {
787 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
788 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
789 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
790 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
791 ALU_V_PRIO_AGE_CNT_M;
792 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
793
794 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
795 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
796 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
797
798 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
799
800 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
801 alu->mac[1] = alu_table[2] & 0xFF;
802 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
803 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
804 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
805 alu->mac[5] = alu_table[3] & 0xFF;
806 }
807
808 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
809 dsa_fdb_dump_cb_t *cb, void *data)
810 {
811 struct ksz_device *dev = ds->priv;
812 int ret = 0;
813 u32 ksz_data;
814 u32 alu_table[4];
815 struct alu_struct alu;
816 int timeout;
817
818 mutex_lock(&dev->alu_mutex);
819
820 /* start ALU search */
821 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
822
823 do {
824 timeout = 1000;
825 do {
826 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
827 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
828 break;
829 usleep_range(1, 10);
830 } while (timeout-- > 0);
831
832 if (!timeout) {
833 dev_dbg(dev->dev, "Failed to search ALU\n");
834 ret = -ETIMEDOUT;
835 goto exit;
836 }
837
838 /* read ALU table */
839 read_table(ds, alu_table);
840
841 convert_alu(&alu, alu_table);
842
843 if (alu.port_forward & BIT(port)) {
844 ret = cb(alu.mac, alu.fid, alu.is_static, data);
845 if (ret)
846 goto exit;
847 }
848 } while (ksz_data & ALU_START);
849
850 exit:
851
852 /* stop ALU search */
853 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
854
855 mutex_unlock(&dev->alu_mutex);
856
857 return ret;
858 }
859
860 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
861 const struct switchdev_obj_port_mdb *mdb,
862 struct switchdev_trans *trans)
863 {
864 /* nothing to do */
865 return 0;
866 }
867
868 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
869 const struct switchdev_obj_port_mdb *mdb,
870 struct switchdev_trans *trans)
871 {
872 struct ksz_device *dev = ds->priv;
873 u32 static_table[4];
874 u32 data;
875 int index;
876 u32 mac_hi, mac_lo;
877
878 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
879 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
880 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
881
882 mutex_lock(&dev->alu_mutex);
883
884 for (index = 0; index < dev->num_statics; index++) {
885 /* find empty slot first */
886 data = (index << ALU_STAT_INDEX_S) |
887 ALU_STAT_READ | ALU_STAT_START;
888 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
889
890 /* wait to be finished */
891 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
892 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
893 goto exit;
894 }
895
896 /* read ALU static table */
897 read_table(ds, static_table);
898
899 if (static_table[0] & ALU_V_STATIC_VALID) {
900 /* check this has same vid & mac address */
901 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
902 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
903 (static_table[3] == mac_lo)) {
904 /* found matching one */
905 break;
906 }
907 } else {
908 /* found empty one */
909 break;
910 }
911 }
912
913 /* no available entry */
914 if (index == dev->num_statics)
915 goto exit;
916
917 /* add entry */
918 static_table[0] = ALU_V_STATIC_VALID;
919 static_table[1] |= BIT(port);
920 if (mdb->vid)
921 static_table[1] |= ALU_V_USE_FID;
922 static_table[2] = (mdb->vid << ALU_V_FID_S);
923 static_table[2] |= mac_hi;
924 static_table[3] = mac_lo;
925
926 write_table(ds, static_table);
927
928 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
929 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
930
931 /* wait to be finished */
932 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
933 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
934
935 exit:
936 mutex_unlock(&dev->alu_mutex);
937 }
938
939 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
940 const struct switchdev_obj_port_mdb *mdb)
941 {
942 struct ksz_device *dev = ds->priv;
943 u32 static_table[4];
944 u32 data;
945 int index;
946 int ret = 0;
947 u32 mac_hi, mac_lo;
948
949 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
950 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
951 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
952
953 mutex_lock(&dev->alu_mutex);
954
955 for (index = 0; index < dev->num_statics; index++) {
956 /* find empty slot first */
957 data = (index << ALU_STAT_INDEX_S) |
958 ALU_STAT_READ | ALU_STAT_START;
959 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
960
961 /* wait to be finished */
962 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
963 if (ret < 0) {
964 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
965 goto exit;
966 }
967
968 /* read ALU static table */
969 read_table(ds, static_table);
970
971 if (static_table[0] & ALU_V_STATIC_VALID) {
972 /* check this has same vid & mac address */
973
974 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
975 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
976 (static_table[3] == mac_lo)) {
977 /* found matching one */
978 break;
979 }
980 }
981 }
982
983 /* no available entry */
984 if (index == dev->num_statics) {
985 ret = -EINVAL;
986 goto exit;
987 }
988
989 /* clear port */
990 static_table[1] &= ~BIT(port);
991
992 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
993 /* delete entry */
994 static_table[0] = 0;
995 static_table[1] = 0;
996 static_table[2] = 0;
997 static_table[3] = 0;
998 }
999
1000 write_table(ds, static_table);
1001
1002 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1003 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1004
1005 /* wait to be finished */
1006 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1007 if (ret < 0)
1008 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1009
1010 exit:
1011 mutex_unlock(&dev->alu_mutex);
1012
1013 return ret;
1014 }
1015
1016 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1017 struct dsa_mall_mirror_tc_entry *mirror,
1018 bool ingress)
1019 {
1020 struct ksz_device *dev = ds->priv;
1021
1022 if (ingress)
1023 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1024 else
1025 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1026
1027 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1028
1029 /* configure mirror port */
1030 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1031 PORT_MIRROR_SNIFFER, true);
1032
1033 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1034
1035 return 0;
1036 }
1037
1038 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1039 struct dsa_mall_mirror_tc_entry *mirror)
1040 {
1041 struct ksz_device *dev = ds->priv;
1042 u8 data;
1043
1044 if (mirror->ingress)
1045 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1046 else
1047 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1048
1049 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1050
1051 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1052 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1053 PORT_MIRROR_SNIFFER, false);
1054 }
1055
1056 static const struct dsa_switch_ops ksz_switch_ops = {
1057 .get_tag_protocol = ksz_get_tag_protocol,
1058 .setup = ksz_setup,
1059 .phy_read = ksz_phy_read16,
1060 .phy_write = ksz_phy_write16,
1061 .port_enable = ksz_enable_port,
1062 .port_disable = ksz_disable_port,
1063 .get_strings = ksz_get_strings,
1064 .get_ethtool_stats = ksz_get_ethtool_stats,
1065 .get_sset_count = ksz_sset_count,
1066 .port_stp_state_set = ksz_port_stp_state_set,
1067 .port_fast_age = ksz_port_fast_age,
1068 .port_vlan_filtering = ksz_port_vlan_filtering,
1069 .port_vlan_prepare = ksz_port_vlan_prepare,
1070 .port_vlan_add = ksz_port_vlan_add,
1071 .port_vlan_del = ksz_port_vlan_del,
1072 .port_fdb_dump = ksz_port_fdb_dump,
1073 .port_fdb_add = ksz_port_fdb_add,
1074 .port_fdb_del = ksz_port_fdb_del,
1075 .port_mdb_prepare = ksz_port_mdb_prepare,
1076 .port_mdb_add = ksz_port_mdb_add,
1077 .port_mdb_del = ksz_port_mdb_del,
1078 .port_mirror_add = ksz_port_mirror_add,
1079 .port_mirror_del = ksz_port_mirror_del,
1080 };
1081
1082 struct ksz_chip_data {
1083 u32 chip_id;
1084 const char *dev_name;
1085 int num_vlans;
1086 int num_alus;
1087 int num_statics;
1088 int cpu_ports;
1089 int port_cnt;
1090 };
1091
1092 static const struct ksz_chip_data ksz_switch_chips[] = {
1093 {
1094 .chip_id = 0x00947700,
1095 .dev_name = "KSZ9477",
1096 .num_vlans = 4096,
1097 .num_alus = 4096,
1098 .num_statics = 16,
1099 .cpu_ports = 0x7F, /* can be configured as cpu port */
1100 .port_cnt = 7, /* total physical port count */
1101 },
1102 };
1103
1104 static int ksz_switch_init(struct ksz_device *dev)
1105 {
1106 int i;
1107
1108 mutex_init(&dev->reg_mutex);
1109 mutex_init(&dev->stats_mutex);
1110 mutex_init(&dev->alu_mutex);
1111 mutex_init(&dev->vlan_mutex);
1112
1113 dev->ds->ops = &ksz_switch_ops;
1114
1115 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1116 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1117
1118 if (dev->chip_id == chip->chip_id) {
1119 dev->name = chip->dev_name;
1120 dev->num_vlans = chip->num_vlans;
1121 dev->num_alus = chip->num_alus;
1122 dev->num_statics = chip->num_statics;
1123 dev->port_cnt = chip->port_cnt;
1124 dev->cpu_ports = chip->cpu_ports;
1125
1126 break;
1127 }
1128 }
1129
1130 /* no switch found */
1131 if (!dev->port_cnt)
1132 return -ENODEV;
1133
1134 return 0;
1135 }
1136
1137 struct ksz_device *ksz_switch_alloc(struct device *base,
1138 const struct ksz_io_ops *ops,
1139 void *priv)
1140 {
1141 struct dsa_switch *ds;
1142 struct ksz_device *swdev;
1143
1144 ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1145 if (!ds)
1146 return NULL;
1147
1148 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1149 if (!swdev)
1150 return NULL;
1151
1152 ds->priv = swdev;
1153 swdev->dev = base;
1154
1155 swdev->ds = ds;
1156 swdev->priv = priv;
1157 swdev->ops = ops;
1158
1159 return swdev;
1160 }
1161 EXPORT_SYMBOL(ksz_switch_alloc);
1162
1163 int ksz_switch_detect(struct ksz_device *dev)
1164 {
1165 u8 data8;
1166 u32 id32;
1167 int ret;
1168
1169 /* turn off SPI DO Edge select */
1170 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1171 if (ret)
1172 return ret;
1173
1174 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1175 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1176 if (ret)
1177 return ret;
1178
1179 /* read chip id */
1180 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1181 if (ret)
1182 return ret;
1183
1184 dev->chip_id = id32;
1185
1186 return 0;
1187 }
1188 EXPORT_SYMBOL(ksz_switch_detect);
1189
1190 int ksz_switch_register(struct ksz_device *dev)
1191 {
1192 int ret;
1193
1194 if (dev->pdata)
1195 dev->chip_id = dev->pdata->chip_id;
1196
1197 if (ksz_switch_detect(dev))
1198 return -EINVAL;
1199
1200 ret = ksz_switch_init(dev);
1201 if (ret)
1202 return ret;
1203
1204 return dsa_register_switch(dev->ds);
1205 }
1206 EXPORT_SYMBOL(ksz_switch_register);
1207
1208 void ksz_switch_remove(struct ksz_device *dev)
1209 {
1210 dsa_unregister_switch(dev->ds);
1211 }
1212 EXPORT_SYMBOL(ksz_switch_remove);
1213
1214 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1215 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1216 MODULE_LICENSE("GPL");